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ABSTRACT In the era of Industry 4.0, the use of Artificial Intelligence (AI) is widespread in occupational
settings. Since dealing with human safety, explainability and trustworthiness of AI are even more important
than achieving high accuracy. eXplainable AI (XAI) is investigated in this paper to detect physical fatigue
during manual material handling task simulation. Besides comparing global rule-based XAI models (LLM
and DT) to black-box models (NN, SVM, XGBoost) in terms of performance, we also compare global
models with local ones (LIME over XGBoost). Surprisingly, global and local approaches achieve similar
conclusions, in terms of feature importance. Moreover, an expansion from local rules to global rules is
designed for Anchors, by posing an appropriate optimization method (Anchors coverage is enlarged from
an original low value, 11%, up to 43%). As far as trustworthiness is concerned, rule sensitivity analysis
drives the identification of optimized regions in the feature space, where physical fatigue is predicted with
zero statistical error. The discovery of such “non-fatigue regions” helps certifying the organizational and
clinical decision making.

INDEX TERMS physical fatigue detection, industry 4.0, explainable AI, logic learning machine, LIME,
Anchors, reliable AI

I. INTRODUCTION
A. HUMAN FATIGUE
1) Context
According to the Health Safety Executive, human fatigue is
defined as “a state of prolonged mental or physical exertion;
it can affect people’s performance and impair their mental
alertness, which leads to dangerous errors” [1]. If we con-
sider the effects on a critical system, such general definition
well suits to the industrial context.

The huge presence of automation in today’s industrial
environments, referred to as Industry 4.0, leads to an impor-
tant discussion on how to properly integrate human workers
with machines and technologies like Artificial Intelligence
(AI) and expert systems [2]. Research in this field is now
focusing on how to take advantage of machines and tech-
nology, without impairing human health during work. This
is accomplished by studying the impact of physical tasks on

human performance. In fact, it is known that a deteriorated
physical condition can increase the probability of casualties,
injuries, slips and falls during working time.

2) Safety
Traditionally, in industrial robotics, safety has been ad-
dressed through a rigid separation between human and robot
operators; in Human-Robot Collaboration (HRC), which
involves direct physical contact [3], several technologies
for identifying and avoiding unintended contacts between
humans and robots have been published. However, current
formal methods for safety analysis of HRC do not recognize
the operators as proactive factors. Hence, research is strongly
focused on formal analysis of robots’ behaviours, verified
through model checking techniques. Particularly, although
such techniques are suitable for checking the correctness of
the robots’ components, it is very difficult to have a complete
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formal deterministic description of the surrounding physical
world. An alternative to model checking are simulation-
based cyber-physical systems (CPSs) techniques, typically
requiring models of the entire CPS, not always available in
collaborative robots (cobots). Traditional formal approaches
such as FMEA (Failure Mode and Effects Analysis) and FTA
(Fault Tree Analysis) are not well-suited for HRC applica-
tions, as they do not capture hazards related to human fac-
tors or combinations of hazards. Another solution based on
model checking and runtime verification of robots operating
systems has been published [4]. Instead, a limited number
of researches focus on data-driven approaches leveraging on
formal methods and ISO standards [5].

3) Standards
On the other hand, formal standards for industrial robotics are
devoted to functional performance and safety, almost without
considering any human safety requirement apart from phys-
ical ergonomic issues. Operators’ psychological safety and
ethical issues have not been highly addressed before, when
robots in factories remained segregated away from human
contact. Also, the need of advanced manufacturing training
methods was quite limited, since humans were not supposed
to directly collaborate with the robots. Industrial applications
of HRC only started being addressed in international stan-
dards in the past decade, in some clauses of ISO 10218-1/-
2 1. Supplementing these requirements, ISO/TS 15066 was
published in 2016 [6] to address the growing need for HRC
standards. Such standards focus on technical safety and are
not expected to venture in psychological and customized
aspects.

4) Industry 4.0
With the advent of new technologies and the transition of
production to Industry 4.0, a more flexible approach to man-
ufacturing is pursued to achieve higher productivity, where
robots and human operators are allowed to collaborate and
interact2. Such transformation leads to overcoming tradi-
tional safety procedures and the development of new safety-
assuring technologies for the minimization of risks connected
with HRC. It is worth mentioning the concept of safety agent
developed in the SHERLOCK project 3: the approach is
based on a predictive model of human motion, compared
against the planned robot trajectory and online monitoring
of satisfaction of safety requirements with formal methods4.

5) Devices
Many devices can be used to monitor human movements,
such as electromiography (EMG), 3D optical tracking, in-
frared cameras or reflective markers, but the most useful ones
are the Inertial Movement Units (IMUs). These sensors are

1https://www.iso.org/standard/51330.html, https://www.iso.org/standard/41571.
html

2https://sharework-project.eu/european-projects-on-human-robot-collaboration/
3https://www.sherlock-project.eu/home
4https://zenodo.org/record/3901416#.YCAG_OhKiUk

able to measure acceleration, velocity and orientation in 3D
space, by using a combination of accelerometers, gyroscopes
and magnetometers [7], without being invasive for people.

B. MACHINE LEARNING

Machine learning (ML) and AI algorithms can come to help
in analyzing data from human movement monitoring sensors,
in order to distinguish fatigued and non-fatigued states. One
of the main requirements for AI is the need of labelled data
for classification. While there is lack of objective systems
to quantify physical fatigue, many subjective methods exist,
based on individual perception of fatigue, collected through
questionnaires. The most common and widely used one is
Borg RPE (Rate of Perceived Exertion) scale [8], which uses
numbers from 6 to 20 for ranking fatigue levels from “None”
to “Very, very hard”. Other subjective scales exist: Borg
CR10 scale, Need for Recovery Scale (NRS) and Fatigue
Assessment Scale (FAS) [9].

Supervised ML methods like linear discriminant analysis,
naive Bayes, artificial neural networks, k-nearest neighbors
and, more often, support vector machines (SVM) are com-
monly adopted for human performance assessment, as they
allow traditional classification tasks. Statistical models like
logistic regression and penalized logistic regression may be
useful to build a relationship between a discrete output and
input variables (predictors). Furthermore, ensemble methods,
i.e., a combination of single supervised classifiers, such as
random forest, may be used for physical fatigue detection
too [2]. Despite their huge development in recent years, deep
learning models are not indicated in this field as they require
very large datasets, which can’t be available in this context.

C. XAI

In biomedical contexts, a qualitative information about the
system is essential. The onset mechanisms of a pathology
should be discussed with the medical staff. [10] For this
reason, ML research is now oriented to a branch, commonly
referred to as eXplainable Artificial Intelligence (XAI) [10],
whose goal is providing understanding of the logic involved
in ML-driven decisions. There are two main approaches to
this field: one, also referred to as Interpretable ML [11],
consists in learning transparent-by-design models that make
predictions in an intelligible way, such as rule-based mod-
els; the other main group of techniques consists in finding
explanations for black-box predictions (these methods are
also known as post-hoc techniques) [12]. Another important
classification of XAI techniques involves the distinction be-
tween global and local methods [13]: global methods aim at
explaining the overall logic of a model, while local methods
focus on explaining the reasons behind single decisions on
single data instances [14].

The XAI topic then constitutes one of the main open
challenges of the AI sector [15]–[17]. To the best of our
knowledge, the use of XAI is still unexplored in the fatigue
problem.

2 VOLUME 4, 2016

https://www.iso.org/standard/51330.html
https://www.iso.org/standard/41571.html
https://www.iso.org/standard/41571.html
https://sharework-project.eu/european-projects-on-human-robot-collaboration/
https://www.sherlock-project.eu/home
https://zenodo.org/record/3901416#.YCAG_OhKiUk


Narteni, S., et al.: On the Intersection of Explainable and Reliable AI for physical fatigue prediction

Combining both the above-mentioned categorizations of
XAI techniques, our work involves two kinds of XAI
techniques: (i) global transparent-by-design methods: Logic
Learning Machine (LLM) and Decision Tree (DT); (ii) lo-
cal post-hoc explanations of black-box models: Local Inter-
pretable Model-agnostic Explanations (LIME) and Anchors.

D. RESPONSIBLE AI
Another advantage of XAI relies on driving trustworthiness
of AI (also known as Responsible AI) [18]. We focus here
on the specific sub-case of Responsible AI related to the
intersection of AI with safety and call it Reliable AI. The at-
tention of field experts is increasingly turning to AI impact on
society: awareness is growing of the potential risk of serious
accidents, for example due to design error, poorly specified
goals or simple misapplication by the AI. The certification
of an AI-driven system is therefore another open challenge
of science and engineering for the near future (see, e.g., the
recent family of standards dedicated to AI in the automotive
sector [19]). The sensitivity analysis of XAI offers support
to Reliable AI for the control [20], [21], formal validation
[22], [23] and cybersecurity [23] of cyber-physical systems.
The paper re-designs such sensitivity analysis for the fatigue
problem in the safety perspective (i.e., finding explainable
regions in which any operator is not fatigued for certain).

E. CONTRIBUTIONS
More specifically, this work is intended to provide comple-
mentary information to formal model-based solutions (i.e.,
safety agent) for maximizing human safety. The safety agent
becomes active during the execution of safe actions and it
supervises the operator’s fatigue and informs the operators
about the decisions that will be taken by the robot to mini-
mize operator’s fatigue.

The following novelties are presented in the paper, based
on the XAI approaches mentioned in Sec. I-C:
• Full performance comparison of global transparent-by-

design methods (LLM and DT) with black-box models
(NN, SVM, XGBoost), in terms of accuracy, sensitivity,
specificity and F1-score.

• Rule optimization to drive reliable AI (statistical zero
error) of “non-fatigue regions” to facilitate the safety of
workers on the field.

• Feature ranking-based comparison between global in-
terpretable models (LLM and DT) and local post-hoc
explanations of a black-box (XGBoost + LIME).

• Rule optimization to extend Anchors coverage of data.

Overall, the paper gives a complete vision of machine
learning applied to the fatigue problem through black-box
approaches and emphasis on native eXplainable (transparent-
by-design) algorithms, as well as the further optimization of
the latter for error control that impacts on safety through
sensitivity analysis and variations of LLM and Anchors.

The remaining of the paper is structured as follows: in
Section II we revised the most recent literature about AI

solutions for physical fatigue detection. Instead, in Section
III we describe the theoretical basis of the ML/AI methods
we adopted in our work, while Section IV describes the
adopted dataset, along with a presentation of all the phases
of the work. In Section V we report and discuss the obtained
results, while we conclude the paper and propose future
works on the topic in Section VI.

II. RELATED WORK
In this section, we provide a literature review in the field of
AI solutions for fatigue classification.

A. BLACK-BOX APPROACHES
Thanks to their practicality, Inertial Movement Unit (IMU)
sensors are widely adopted for data collection in many stud-
ies. In [7], authors developed an integrated system for work-
ers fatigue state recognition, called Smart Safety Helmet, i.e.
a helmet in which IMU sensors are combined with electroen-
cephalography (EEG) in order to detect physical exertion and
mental stress at the same time. An AI module allows the
detection and computes a threshold for fatigue. The device
can generate a vibro-tactile feedback to the operator when
the threshold is reached, and a wireless signal is sent to the
industrial machines to stop their activity.

In [24], SVM with three different kernels (linear, polyno-
mial and RBF) classifier was adopted to find differences in
walking task before and after fatigue inducement; kinematic
gait data were collected from a combination of IMUs and
passive infra-red markers put on lower limbs.

Instead, the authors of [25] developed a data-driven ap-
proach for whole-body fatigue detection in manufacturing
environment through the use of inexpensive wearable IMUs
collocated on different body parts and a heart rate monitor
device. LASSO model has been chosen as the best one for
detection, compared to other penalized logistic regression
models e.g. elastic-net and ridge regression, as it was the op-
timal combination of amount of variation explained, perfor-
mance and applicability (with the lowest number of features).
As data were unbalanced between fatigued and non-fatigued,
Random Under Sampling (RUS) technique was applied. A
set of predominant features was derived by ranking model’s
coefficients. The results highlighted a predominance of wrist
movements in determining fatigue.

Following the previously cited work, [26] studied a
method to distinguish fatigued from non-fatigued subjects
using data from a single IMU on the right ankle. After a
raw data pre-processing phase to compute gait kinematics
measurements and derive so-called motor templates, a Eu-
clidean distance-based algorithm for template matching ($1
Recognizer [27]) was applied to extract distance scores.
Along with step duration, such scores are used as features
for RBF SVM classification.

Authors in [28] adopted jerk, the time derivative of accel-
eration, as a measure of physical fatigue in a bricklaying task.
Data were collected by an IMU-based motion capture suit
and a SVM model was applied to recognize intra-subject and
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inter-subject fatigue. Results showed a better performance for
the intra-subject case. In [29], a random forest classification
with Bayesian inference model was adopted to detect differ-
ent modes of load carriage tasks with different load levels,
which is known to alter gait patterns and pelvic-thoracic
coordination. For this reason, inertial sensors were put both
on thorax and shanks. From the derived predictive model,
an interpretation was provided for each predictor variable by
computing the Gini impurity index.

In [30], a computationally efficient method based on
acceleration profile from a single IMU put on the ankle
was developed. It consisted in a Statistical Process Control
technique, where deviations from a baseline, non-fatigued,
dataset were monitored.

While most of the studies involved data acquisition in
laboratory settings, [31] proposed a method for fatigue
recognition in walking task directly in the workplace; it is
based on smartphone-integrated IMU data. SVM with RBF
kernel algorithm is applied for 2-class (fatigued/not-fatigued
state) and a more useful 4-class (no fatigue, low, medium and
high fatigue) detection.

IMU sensors are not the only devices used in literature
for fatigue classification. In [32], 3D optical tracking was
exploited for exhaustion detection in natural walking. In
this analysis, linear discriminant analysis, naive Bayes, k-
nearest neighbors and SVM performances were compared. In
[33], flexible textile strain sensors and a random forest ML
model are chosen to detect fatigue level in runners. Surface
electromiography (sEMG) is instead adopted in [34] in order
to detect neck muscle fatigue while using mobile phones;
logistic regression, decision tree and SVM classifiers were
compared for this purpose. SVM resulted as the best one.

Ensemble tree learning methods, like Random Forests,
consist in aggregating multiple decision trees to improve the
generalization capabilities and avoiding overfitting. Never-
theless, the aggregation of several models makes it more
complex to interpret compared to individual tree models.
Similarly, SVM, despite being widely adopted for the prob-
lem of physical fatigue modelling, is even more complex and
less understandable, especially with the increase of feature
space dimensions. Hence, we decided to move the analysis
towards XAI-based solutions.

B. THE XAI AND ERROR ANALYSIS OPEN ISSUE
Our work involves both main categories of XAI methods,
i.e. interpretable methods and black-box explainers (see Sec.
I-C).

Referring to interpretable models, we focus on rule-based
ones. Many different algorithms have been proposed in
this field of research, dealing with either rule sets of un-
ordered rules or rule lists with ordered rules [17], [35]. In
[36], a Bayesian framework is introduced to learn a low
number of short rules, seeking a balance between accuracy
and interpretability through user-adjustable Bayesian prior
parameters. [37] proposes EXPLORE algorithm to induce
disjunctive decision rules (rule sets) in a systematic and

efficient manner, based on a branch-and-bound approach
that relies on user-defined performance constraints and seeks
rule optimal length. In [38] generalized linear models us-
ing rule-based features are considered for regression and
probabilistic classification; this solution trades off rule set
complexity, in terms of number and length of rules, and
prediction accuracy. Multi-value Rule Set (MRS) provides
a more concise and feature-efficient model form for clas-
sification and explanation [39]. Always seeking a balance
between accuracy and interpretability, authors in [40] study
interpretable decision sets, i.e. sets of independent if-then
rules.The learning process is based on an objective function
that optimizes accuracy and interpretability of the rules using
smooth local search. Rule lists are also widely investigated,
being collections of ordered rules [35]. Falling rule lists [41]
have been introduced, providing both predictive modelling
and a descending ranking of rule outcome probability (i.e.,
rules leading to higher class probabilities are reported first).
[42] presents an innovative technique for rule lists generation
over categorical feature space, called CORELS, that gives the
optimal solution according to the training objective, along
with a certificate of optimality. Also, in [43] Bayesian rule
lists method is investigated, combining decision lists with
Bayes approaches, with applications in healthcare contexts.
Rule-based models have been studied in hybrid approaches
too, where they are combined to black-box models and can
substitute the black-box decisions for given subsets of data
[44]. Companion rule lists [45] are based on a rule list
combined with a pre-trained black-box model, where users
are allowed to switch between rules and the black-box, based
on their requirements for interpretability or accuracy.

In the context of causal inference, [46] introduces an
innovative method for learning causal rule sets, based on
simulated annealing. In this work, a crucial point of rule-
based models is stressed out: according to the complexity
(noise) of available classes of data, the number and size of
the generated rules can vary a lot (i.e., complex boundaries
may lead to high numbers of small rules and viceversa). This
aspect will be also outlined in our rule-based approach to the
design of non-fatigue regions (Sections IV-D and V-B).

Another set of approaches to XAI is black-box (or post-
hoc) explanation, which can be found as model explanations,
outcome explanations or model inspections [17]. Model ex-
planations refer to global interpretable models used to learn
the predictions of a black-box [47], [48], also involving rule
extraction [49]. Outcome explanations methods consist in
making single instances predictions interpretable: examples
are LIME and Anchors, that will be used in this paper. Model
inspections consist in understanding specific properties of
the black-box, for example via providing tree-like visual
interpretations of the black-box decisions [50] or studying
the effects of changing attributes via sensitivity analysis [51],
[52]. Local black-box outcome explanations find relevant
applications for Deep Neural Networks, where several data-
driven and model-driven techniques have been developed
[53], [54].
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In the specific context of physical fatigue detection, to
the best of our knowledge, only few studies can be found
adopting any XAI technique and these are mainly based on
feature importance [55], [56]. A rule-based (IF-THEN) fuzzy
classifier has been used in [57] for classifying local muscle
fatigue into three states (non-fatigued, transition-to-fatigue,
fatigued). However, in this case data were collected from
sEMG signals, not IMU data, and fatigue was induced by
asking participants to maintain a 90° elbow angle.

In our paper, we move a step further by comparing global
rule-based interpretable models with local post-hoc expla-
nations methods. Moreover, we attempt to discover regions
where false negatives tend to zero through rule-based models,
which is new and in line with Responsible AI paradigm.

In this perspective, the open issues discussed by [58] (in
the error analysis and critique sections) are coherent with
the present idea to calibrate the value ranking through a
controllable margin from the fatigued to the non-fatigued
(safe) class. More specifically, [58] discusses the tuning
of false positives and false negatives through class weights
during training. Such methodology opens the door to more
sophisticated approaches, such as through the exploration of
zero error surfaces.

III. PRELIMINARIES ON SUPERVISED ALGORITHMS
In our work, we compared the classification performances
obtained through different ML methods, including black-
box, and analyzed the behaviour of global interpretable meth-
ods (LLM, DT) with respect to local methods for the expla-
nation of black-box models (LIME [59], Anchors [60]).
Moreover, we addressed particular attention to the tuning of
LLM rules conditions to individuate "non-fatigued regions"
(see IV-D), by exploiting its feature and value rankings. In
this section, an overall description of such methods’ funda-
mentals is then provided. It is divided into the following sec-
tions: Section III-A for global transparent-by-design models,
Section III-B for local post-hoc explanations, Section III-C
for black-box models. Figure 1 provides a general overview
of supervised learning as categorized throughout this Section.

A. GLOBAL TRANSPARENT-BY-DESIGN MODELS
Global transparent-by-design models provide predictive
models in an intelligible way. In this work, we adopted
two rule-based models, the LLM (Sec. III-A1) and the DT
(Sec. III-A2), both coming as human-understandable if-then
rules. The fundamentals of the methods are here presented,
along with the associated classification scoring system (Sec.
III-A3) and their properties of feature and value ranking (Sec.
III-A4).

1) Logic Learning Machine (LLM)
Logic Learning Machine is an innovative supervised method;
it was developed as an efficient implementation of Switching
Neural Networks [61]. LLM has the aim of building a classi-
fier g(x) described by a set of rules structured as follows:

FIGURE 1: High-level description of the categories of su-
pervised learning methods adopted in this paper. At the
top, global transparent-by-design models provide predictions
based on the input data in an interpretable way (if-then rules
in our case). In the middle, local post-hoc explanations of
black-box models provide explanations for single black-box
predictions on single data instances. At the bottom, black-
box models provide predictions, based on the data, without
any kind of explanation.

if <premise> then <consequence>. The <premise> is a
logical product (AND) of conditions on the input features,
whereas <consequence> corresponds to the output class.
The generation of the model is a three-step process:

1) Discretization and mapping to a Boolean lattice (latti-
cization, [62]): each variable is transformed into a string
of binary data in a proper Boolean lattice, using the
inverse only-one code binarization. All the strings are
eventually concatenated in one unique large string per
each sample.

2) Shadow Clustering: a set of binary values, called impli-
cants, are generated, which allow the identification of
groups of points associated with a specific class.

3) Rule generation: all the implicants are transformed into
a collection of simple conditions and eventually com-
bined into a set of intelligible rules.

Generally speaking, for any rule-based model, the building of
the conditions in a rule is done by jointly considering all the
involved variables: hence, the conditions in a rule are always
dependent. For the LLM, the conditions are built based on the
implicants, which are defined as binary strings in a Boolean
lattice that uniquely determine a group of points associated
with a given class. Such clusters of points (in the Boolean
space) are then translated into rules that combine a subset of
joint variables. It is straightforward to derive from an impli-
cant an intelligible rule having in its premise a logical product
of threshold conditions based on cutoffs obtained during the
discretization step. In LLM, all the implicants are generated
via shadow clustering by looking at the whole training set; in
this way, resulting rules can overlap and represent different
relevant aspects of the underlying phenomenon [63], [64].

A practical example on the LLM model building can be
found in the Supplementary Materials of [62].
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2) Decision Tree (DT)
Decision trees are tree-based classifiers, based on the divide-
and-conquer paradigm, that is partitioning the feature space
in an iterative way, by selecting the best feature to split the
data according to some statistical metric, such as information
gain, gain ratio, Gini index or misclassification error. The
structure of a DT is a graph where internal nodes represent
the features of a dataset, branches represent the decision rules
and each leaf node represents the outcome. Decision nodes
are used to make a decision and have multiple branches,
whereas leaf nodes are the output of those decisions and do
not contain any further branches. By navigating from leaf to
root, it’s possible to identify simple intelligible rules [64].

In DT, the choice of a variable, used to separate the
classes through a proper threshold, is done node-by-node.
Each step (node) of the tree construction depends on the
choices (variables and thresholds) made previously, during
the building of the upper part of the tree (till to that node).

The divide-and-conquer approach subsequently adds con-
ditions to the tree based on smaller and smaller subsets of
training data, thus lowering the computational time. On the
other hand, it has the side effect of reducing the information
available when selecting conditions after the first one.

As a consequence, the rules in the resulting models are
disjoint. For this reason, DT may be over-sensitive to highly
relevant attributes and imbalanced datasets [65], may depend
too much on the training set or may be corrupted by irrelevant
attributes and noise [20].

3) Rule-based classification scoring
We now introduce some general notation for any rule-based
model (hence, valid for either LLM or DT).

Consider a set ofm rules rk, k = 1, . . . ,m, each including
dk conditions clk , lk = 1k, . . . , dk. Let X1, . . . , Xn be the
input variables, s.t. Xj = xj ∈ X ⊆ R ∀j = 1, . . . , n. Let
also ŷ be the class assigned by the rule and yj the real output
of the j-th instance.

A condition clk involving the variable Xj , can assume one
of the following forms:

Xj > s, Xj ≤ t, s < Xj ≤ t, (1)

being s, t ∈ X .
For each rule generated by the algorithm, it is possible to

define a confusion matrix associated to the rule. It is made up
of four indices: TP (rk) and FP (rk), defined as the number
of instances (xj , yj) that satisfy all the conditions in rule rk,
with ŷ = yj and ŷ 6= yj respectively; TN(rk) and FN(rk),
defined as the number of examples (xj , yj) which do not
satisfy at least one condition in rule rk, with ŷ 6= yj and
ŷ = yj , respectively.

Consequently, we can derive the following useful metrics:

C(rk) =
TP (rk)

TP (rk) + FN(rk)
(2)

E(rk) =
FP (rk)

TN(rk) + FP (rk)
(3)

The covering C(rk) is adopted as a measure of relevance
for a rule rk; as a matter of fact, the greater is the covering,
the higher is the generality of the corresponding rule. The
error E(rk) is a measure of how many data are wrongly
classified by the rule.

Covering and error are both useful to determine the clas-
sification scores that are used to assign a class to input data
[66].

LetHŷ be the set of rules rk predicting class ŷ and satisfied
by an input sample xj . A score for every class is then derived
as:

wŷ = 1−
∏

rk∈Hŷ

(1− C(rk))(1− E(rk)) (4)

and every input xj is assigned to the class with the highest
score.

4) Feature and value ranking
Feature and value rankings represent very useful methods to
inspect the results obtained through rule-based models, like
LLM or DT. Again, covering and error provide the basis for
their definitions.

Feature ranking (FR) provides a way to rank the features
included into the rules according to a measure of relevance.
In order to obtain such measure of relevance R(clk) for a
condition clk , we consider rule rk in which the condition
occurs, and the same rule without that condition, denoted
as r′k. Since the premise part of r′k is less stringent, we
obtain that E(r′k) ≥ E(rk), thus the quantity R(clk) =
(E(r′k)–E(rk))C(rk) can be used as a measure of relevance
for the condition of interest clk . Each condition refers to a
specific variable Xj and is verified by some values νj ∈ X .
In this way, a measure of relevance Rŷ(νj) for every value
assumed by Xj is derived by the following equation 5:

Rŷ(νj) = 1−
∏
k

(1−R (clk)) (5)

where the product is computed on the rules rk that include
a condition clk verified when Xj = νj . Since the measure of
relevance Rŷ(νj) takes values in [0, 1], it can be interpreted
as the probability that value νj occurs to predict ŷ. The same
argument can be extended to intervals I ⊆ X , thus giving rise
to Value Ranking (VR). Relevance scores are then ordered,
thus giving evidence of the most sensitive interval of the
feature with respect to each class.

B. LOCAL POST-HOC EXPLANATIONS OF BLACK-BOX
MODELS
Along with models that are explainable-by-design, algo-
rithms aiming to find explanations for black-models are
gaining relevance in the last few years. In this work, we
chose LIME [59] and its improvement Anchors [60] as
for comparison with LLM and DT. In the following Section
III-B1 and Section III-B2, we describe how these algorithms
work.
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1) Local Interpretable Model-agnostic Explanations (LIME)
Local Interpretable Model-agnostic Explanations, more of-
ten known as LIME, is an algorithm that can explain the
results of any classifier by approximating it locally with an
interpretable model [59]. It is a concrete implementation
of local surrogate models, which are interpretable models
used to explain individual predictions of black box machine
learning models [67]. LIME is built upon three criteria that
an explainer should follow [59]: being interpretable, so that
one can understand a qualitative inputs-output relationship;
being locally faithful, i.e. the explanations must correspond
to how the model behaves in the proximity of the instance
being predicted (without need of being good global approx-
imations); finally, the explainer should be model-agnostic,
that means being able to explain any kind of model.

On the basis of these criteria, LIME model is developed.
Consider f(x) any black-box model making predictions

for data instance x; also, let g be an interpretable model
among all the available ones (e.g., linear models) and let
πx be a measure of the locality around x (it depends on a
given distance function). LIME explanations are obtained by
solving the following optimization:

arg min
g∈G
L(f, g, πx) + Ω(g), (6)

where function L defines the local fidelity between f and g,
based on the locality defined by πx. Function Ω(g) expresses
the complexity of the interpretable model g. Being LIME a
model-agnostic algorithm, no assumption is made on f , but it
is only used to make predictions over new samples z obtained
after adequately perturbing the instance x. The problem in
Equation III-B1 is then solved on the perturbed dataset [59],
[67].

2) Anchors
Anchors is a local-explanations method that has been de-
veloped from the same authors of LIME [60], in order to
overcome the lack of accuracy of LIME explanations when
moving away from the explained instance. In fact, anchors
are high-precision rules, so that in the region of feature space
where they hold, the same predictions are almost always
guaranteed even on unseen instances. They’re structured as
if-then rules, so are intuitive, easy to understand and, above
all, they allow a clear definition of coverage, intended as
a measure of how many unseen instances they apply to
[67]. Like LIME, Anchors is model-agnostic: it works by
perturbing instances of interest according to a perturbation
distribution Dx that must use an interpretable representation
of the input.

Formally, a rule A acting on such an interpretable repre-
sentation is an anchor ifA(x) = 1 (i.e., all the rule predicates
are true for x) and A is a sufficient condition for f(x) with
high probability, being f(x) the black box model to explain.
An anchor is therefore defined as follows:

EDx(z|A)[1f(x)=f(z)] ≥ τ,A(x) = 1 (7)

In equation 7, x is the instance to explain, A is the anchor,
f is the black box model, Dx(z|A) indicates the distribution
of neighbors of x when the anchor applies, 0 ≤ τ ≤ 1 is a
precision threshold.

Given an instance x, an anchor A has to be found, such
that it applies to x, while the same class predicted for x gets
predicted for at least τ of x’s neighbors. A rule’s precision
results from evaluating neighbors or perturbations using the
indicator function 1f(x)=f(z). Even if Anchors uses the same
perturbations as LIME, they are faithful by design and adapt
their coverage to the model’s behaviour, so that the conditions
in the anchors individuate wider regions when the underlying
black-box decision function is wider too.

C. BLACK-BOX MODELS
In the context of supervised learning, black-box algorithms
execute learning tasks without providing the users with
sufficient information on why and how related results are
obtained. This is due to their complexity, which is not enough
human-friendly. Even if they can be more accurate than sim-
pler interpretable models such as linear or logistic regression,
they’re not adequate when dealing with critical fields such
as health and human wellness, like in our physical fatigue
assessment case, where understanding algorithms outcomes
is fundamental.

In the following sections, we summarize the foundations of
two black-box methods, namely neural networks and support
vector machine.

1) Neural Networks (NN)
Artificial Neural Networks are biologically-inspired models
formed by the interconnection of simple units, called neu-
rons, arranged in layers. Each neuron performs a weighted
sum of its inputs (generated by the previous layer) and applies
a proper activation function to obtain the output value that
will be propagated to the following layer. The first layer
of neurons is fed by the components of the input vector
x, whereas the last layer produces the output class to be
assigned to x. The layers between input and output are called
hidden layers [63]. Training a NN means finding the optimal
weights for inputs of each layer that minimize a cost function
and this is achieved by backpropagation. It consists of two
parts: forward phase, in which, starting from the input vector,
the output of the network is produced; the backward phase,
where a gradient descent technique is applied to identify the
correction of the weights to be implemented.

2) Support Vector Machines (SVM)
Support Vector Machines are a a non-probabilistic binary
linear classifier based on the idea of finding the hyperplane
that optimally separates the data of two classes. Given a
training set of labelled data, the algorithm finds the optimal
parameters of an hyperplane so to maximize the distance
between the closest points of the two classes. These points
are called support vectors.
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The SVM classifier is linear, but it’s possible to use kernel
functions, i.e. non-linear transformations which convert the
original feature space to a new higher dimensional feature
space in which the linear classifier can be inferred. Most
common kernels are polynomial, Gaussian, Radial Basis
Function and sigmoid.

3) XGBoost

XGBoost stands for eXtreme Gradient Boosting and is now
one of the most used ensemble algorithms in ML. It was
developed by [68] as an optimization of Gradient Boosting,
which guarantees higher performances. XGBoost is a tree
ensemble model, that is a set of classification and regression
trees (CART) used as base learners. Since one tree might
not be enough to obtain good results, multiple CARTs can
be used together and the final prediction is the sum of
each CART’s score. While in the original Gradient Boosting
model the trees are built in series, XGBoost does it in a
parallel way, resulting in a greater computational speed [69].

IV. MATERIALS AND METHODS
In this section, the adopted dataset, the experimental task and
the accomplished ML tests are described in detail.

A. DATASET AND EXPERIMENTAL TASK DESCRIPTION
The data used in our study belong to an open-source dataset 5,
that was created by the authors of [2], who developed a data
analytics framework for physical fatigue management made
up of four steps (detection of fatigued state, identification of
key features, diagnosis and recovery).

15 participants were asked to perform Manual Material
Handling task, as a simulation of an industrial task, for 180
minutes and provide their RPE using the Borg Scale [8]
every 10 minutes. A RPE≥13 corresponds to a fatigued state,
whereas lower values constitute the non-fatigued class. The
executed task simulated warehousing operations by picking
cartons (whose weight was 10kg, 18kg or 26kg), loading
them on a 2-wheeled dolly, transporting them to a destination,
and then palletizing them at the destination in a known order
[25].

While performing the task, four IMUs (placed at the ankle,
hip, wrist and chest of the participants) collected acceleration
data, from which jerk and 3D space posture measures were
derived. Furthermore, a heart rate monitor device was put
on the chest, and the %HRR (Heart Rate Reserve) was
calculated to express the percentage of an individual’s heart
rate being used under effort. For all these kinds of measure,
mean and coefficient of variation (CV) were computed. In
addition, individual (age, gender) and biomechanical features
were considered. For a complete list of the original features,
see Table 2 in [2], whereas in Table 1 we report the features
adopted by us.

5https://github.com/zahrame/FatigueManagement.github.io/tree/master/
Data

Feature
Age

Wrist Jerk Mean
Wrist Acceleration Mean

Hip Jerk Mean
Hip Acceleration Mean

Hip x posture Mean
Hip y posture Mean
Hip z posture Mean

Chest Jerk Mean
Chest Acceleration Mean

Chest x posture Mean
Chest y posture Mean
Chest z posture Mean

Ankle jerk Mean
Ankle Acceleration Mean

Ankle x posture Mean
Number of steps

Average step time
Average step distance

Time bent
Average back bent angle

Mean hip oscillation
Mean foot oscillation

Leg rotational velocity sag plane
Leg rotational position sag plane

Average vertical impact
Back rotation position in sag plane
Wrist jerk coefficient of variation

Wrist Acceleration coefficient of variation
Hip jerk coefficient of variation

Hip Acceleration coefficient of variation
Chest jerk coefficient of variation

Chest Acceleration coefficient of variation
Ankle jerk coefficient of variation

Ankle Acceleration coefficient of variation
Hip y posture coefficient of variation

Chest y posture coefficient of variation
Ankle y posture coefficient of variation

TABLE 1: List of the adopted features

B. DATA PRE-PROCESSING
Starting from the previously introduced dataset, we decided
to remove gender from the dataset since we chose to inves-
tigate the subjects’ fatigue stratification - as will be shown
later for the non-fatigue regions - based on their age only
(under 40 and over 40). This choice is also supported by the
results obtained in the original study that provided the data
[2], where the feature selection process after the application
of ML models individuated an impact of the age but not
of the gender (for more information see Sec. 4.1.4 in the
mentioned reference [2]). Moreover, up to now the sensitivity
methods adopted for reliable fatigue detection via LLM (Sec.
IV-D) are designed for numerical variables and not yet for
categorical. However, we want to point out that, provided
to extend those methods to categorical variables, the role
of gender attribute could be investigated in the same way
as we did for the age attribute. Further elaborations of the
methods to include categorical attributes will be object of
future studies. Furthermore, in this work, we decided to focus
on just one kind of sensors, i.e., the Inertial Movement Units
(IMU) to monitor the accelerations associated to people’s
motion in the 3D space (then elaborated to extract features by
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the dataset creators [2]). IMU data are currently widely used
to quantify physical fatigue through black-box approaches
[24] and or goal is going a step further by investigating XAI
role. For this reason, heart rate data were removed from the
original dataset. A list of the adopted features is reported in
Table 1

After this preliminary cleanage, we normalized data so that
their scale was uniform, by applying z-score transformation.
This step was carried in Matlab R2019a.

C. FATIGUE CLASSIFICATION
Once having completed the pre-processing of the data, we
proceeded with data classification for the fatigue detection
purpose. The major part of the analysis was conducted in
Rulex software platform, a user-friendly data analytics plat-
form, developed and distributed by Rulex Inc (https://www.
rulex.ai), which allows to conduct entire machine learning
tasks through drag-and-drop interface. Since it’s not present
in the functionalities offered by Rulex platform, we also
used Python 3.8 lime package [59] for LIME algorithm and
anchor for Anchors method [60], along with the underlying
black-box method (XGBoost).

At the beginning of our work, we performed a comparison
between XAI rule-based methods and black-box methods.

We first applied logic learning machine and decision tree.
The dataset was imported in Rulex and split into a 67% of
training set and 33% of test set with a fixed seed in order
to maintain the reproducibility of our results. LLM and DT
models, with the default settings provided by Rulex, were
then built and trained. For LLM, default settings include the
minimization of the number of conditions in the rules and a
5% of maximum error allowed for each rule.

Then, we repeated the classification tasks with LLM and
DT by considering only the first three features obtained from
the previous test’s feature rankings.

Since LLM-based rules, in contrast with DT-based rules,
can overlap, a higher precision is usually offered by such
model. For this reason, we decided to focus more on LLM
than DT and repeat the LLM classification by trying different
combinations of the configuration parameters. In details,
we changed the default LLM parameters as follows: the
minimization of number of conditions (true by default) was
removed, keeping the default maximum error rate; then, we
changed the error rate (lowering it to 2% in one case and rais-
ing it to 10% ) while leaving the minimal number of condi-
tions; finally, we tried with a maximum error of 10% without
minimization of the number of conditions. For comparison
with black-box methods, we performed the classification task
using a Rulex neural network model. Again, the dataset was
split and the NN was trained. Different configurations of
parameters (number of layers, number of neurons per hidden
layer, learning rate) were tried to find the best results.

In addition, for sake of completeness, we also applied
SVM method, as it is probably the most frequently used ML
algorithm in the field of fatigue detection.

D. RELIABLE FATIGUE DETECTION
The problem of physical fatigue detection in occupational
tasks is important from a clinical point of view. Identifying
it with the lowest error possible is fundamental, allowing
clinicians to make appropriate recovery interventions. In this
context, intelligible models outperform other types of algo-
rithms, since we can force the model to define “non-fatigue
regions”, in which the number of false negatives tends to
zero. To this aim, the focus is therefore on finding envelopes
ensuring a non-fatigued status. From a practical point of
view, this can be thought as a safety guarantee: as soon
as the subject parameters move outside of the individuated
“non-fatigue regions” limits, an alarm might be generated to
advice subjects to stop working and recover, or to inform the
management about their deterioration.

The proposed design of such regions rely on the LLM
model and its feature and value ranking properties [20].

LetX be aD×N matrix of all the input vectors xi ∈ RN ,
with the total number of features N and i ∈ [1, D]. Let
g(xi) = y be the function describing the LLM classification.
In our case, g(xi) = 1 if the prediction of the subject is
fatigued and zero otherwise (g(xi) = 0). Let D1 be the
number of fatigued instances and D0 the number of non
fatigued instances, so that D1 +D0 = D.

1) Sensitivity from outside
Let NFR be the number of the most significant features
obtained through the feature ranking for the fatigued class
(y = 1). For each feature j ∈ [1, NFR], we can use the
LLM value ranking to define the most significant interval for
the fatigued class as [sj , tj ]. In our method, we expand such
intervals as follows: [sj − δsj · sj , tj + δtj · tj ].

Being ∆ = (δ1, . . . , δNFR) a matrix, with δj = (δsj , δtj ),
the optimal ∆ is computed through the following optimiza-
tion problem. Let P(∆) be the hyper-rectangle under the
expanded intervals and let V(P(∆)) be the inherent volume.

Then, the optimization problem identifies the best fit from
the outside of the non-fatigued class, namely, it finds the most
suitable shape, in terms of rule-based intervals, of fatigue
points around the non-fatigue ones. It is as follows:

∆∗ = arg min
∆:N1=D1

V(P(∆)) (8)

being N1 the number of elements in X classified as y = 1
and included into V(P(∆)).

For instance, if we fix NFR=2, the hyper-rectangle P be-
comes a rectangle S. The optimization process let us find out
the matrix ∆∗ = (δ∗1, δ

∗
2). The related optimal intervals are

I1 = (s1−δ∗s1 ·s1, t1+δ∗t1 ·t1), I2 = (s2−δ∗s2 ·s2, t2+δ∗t2 ·t2),
corresponding to the features j = 1 and j = 2 respectively:
their logical union (∨) defines a surface S.

Then, the “non-fatigue region” is defined as the comple-
mentary bi-dimensional surface of S, which can be written
as follows:
S1 = ((−∞, s1 − δ∗s1 · s1) ∨ (t1 + δ∗t1 · t1,∞))∧

((−∞, s2 − δ∗s2 · s2) ∨ (t2 + δ∗t2 · t2,∞))
(9)
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2) Sensitivity from inside
An alternative way to perform the same search for “non-
fatigue regions” consists in considering the NFR most im-
portant features for non-fatigued (y = 0) class and reducing
their most relevant intervals (again, provided by LLM value
ranking) until the obtained region only contains true negative
instances.

In this case, with the same notation as for the previ-
ous definition (section IV-D1), the reduced intervals are:
[sj + δsj · sj , tj − δtj · tj ]. Being ∆ defined in the same
way as for equation 8 and P0 the hyper-rectangle under
the reduced intervals, the optimal ∆ is found by enlarging
as much as possible the hyper-rectangle from inside the non-
fatigue class, until a fatigued point is reached. It is as follows:

∆∗ = arg max
∆:N1=0

V(P0(∆)) (10)

For NFR = 2, the “non-fatigue region” is the following
rectangle S0:

S0 = (s1 + δ∗s1 · s1, t1 − δ∗t1 · t1)∨
(s2 + δ∗s2 · s2, t2 − δ∗t2 · t2)

(11)

The results section V-B shows several examples of those
optimal rectangles. The approach further helps discriminate
further feature stratifications, e.g., by focusing on the age
of the subjects lying on those regions. This stimulates the
further inspection by the experts in the field (e.g., clinicians).
Some stratification examples are included in the results.

3) LLM with zero error
As the sharp angularity of hyper-rectangles may be not fine
enough to follow the potential complex shapes of the bound-
aries between the classes, a more refined approach would
ask for more complex separators, still preserving the zero
statistical error constraint and by starting from the available
rule baseline. Zero error classification (for the non-fatigued
class) is readily available by the shadow clustering adopted
by LLM. The clustering process is applied with the further
constraint of building clusters without superposition of points
of more than one class [20] (LLM 0%, in the following). All
the resulting rules with zero error are then joined in logical
OR (∨), thus describing a more complex geometry than a
hyper-rectangle. The new model deserves a further sensitivity
tuning (on a test set) as follows.

The LLM 0% defines a set of m rules rk, k = 1, . . . ,m
so that E(rk) = 0 ∀k ∈ [1,m]. Suppose that this procedure
provides a set of m0 rules r0

k, k = 1, . . . ,m0 for the non-
fatigued class (y = 0). Also, let c0lk , l

0
k = (1, . . . , d0

k) be
the set of d0

k conditions inside of each rule r0
k. We can join

all the obtained rules r0
k in logical OR operation (∨), thus

building a new predictor r̂. Our goal is to assess its ability
of classifying new test set data with statistical zero error
(FNR=0). This implies to further tune r̂, by reducing a subset
of its conditions c0lk , chosen as those containing the firstNFR

features obtained from LLM 0% feature ranking for class

y = 0. In mathematical terms, for each feature j ∈ [1, NFR],
we add the thresholds of the chosen conditions by applying
δ = (δs, δt), being δs and δt the perturbation applied to s and
t thresholds, respectively, as defined in equation 1. Let r̂(δ)
be the resulting perturbed predictor, our goal is then to find
the optimal δ as follows:

δ∗ = arg max
δ:E(r̂(δ))=0

C(r̂(δ)) (12)

E. GLOBAL AND LOCAL EXPLANATIONS COMPARISON
Besides the applicative context of physical fatigue detection,
another important goal of our work is to compare global
interpretable methods (LLM, DT) with local explanations of
black box methods obtained through LIME and Anchors.

In order to perform such a comparison, LIME and Anchors
algorithms were applied to the predictions of an XGBoost
classifier. The training/test proportion was maintained of
67%/33% as for the previous Rulex analysis (Section IV-C).

As LIME and Anchors allow local explanations for single
observations only, they were applied to all the test set records
separately. For each instance, LIME provided a set of expla-
nations with the corresponding weight. Anchors provided an
if-then rule with related coverage measure instead.

We adopted the submodular pick LIME version (SP-
LIME) of the algorithm in order to select a set of B most
representative LIME explanations - derived from B data
instances - that covered, together, the maximum number
of features in a non-redundant way, thus giving a global
understanding of the model. The parameter B is defined by
the authors of [59] as the number of explanations needed by
the human user to understand a model. In our case, we set
B = 5.

To perform the comparison of LIME and Anchors with
LLM and DT, we followed different approaches.

As regards LIME, we exploited the definition of impor-
tance of an explanation given in [59] to infer a feature
importance metric.

We built a matrix F of size n × d, where n is the number
of explanations (equal to the number of instances in the test
set in our case), d is the number of features involved in the
classification problem and the element Fij is the weight of
feature j involved in the i-th LIME explanation, as found by
LIME itself. We then computed the importance measure for
each feature as in equation 13:

Ij =

√√√√ N∑
i=1

|Fij | (13)

In the case of Anchors, we compared its local if-then rules
with the rules obtained with LLM and DT. Since a covering
measure is easily derived by the anchor Python library [60],
we adopted it to rank the generated rules.

Thinking about the different nature of the three methods
(i.e., global for LLM and DT, local for Anchors), the value of
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covering was expected to be quite different, being lower for
Anchors.

After having verified our hypothesis by comparing the
covering values for LLM/DT and Anchors, we assessed if
it was possible to expand the Anchors coverage to include
as many test set points as possible. To do so, we adopted an
optimization approach based on rules conditions tuning.

Suppose to consider m Anchor rules ak, k = 1, . . . ,m,
each containing dk conditions clk , lk = 1k, . . . , dk. We de-
fine a perturbation vector δ of elements δlk , lk = 1k, . . . , dk
acting on condition clk . In this way, each Anchor can be
modified on the basis of δ, so rule ak can be expressed as
a new rule ak(δ), for which covering C(ak(δ)) and error
E(ak(δ)) metrics can be computed just like in equations 2
and 3.

Our goal is then to find the optimal δ∗ as follows:

δ∗ = arg max
δ:E(ak(δ))<0.05

C(ak(δ)) (14)

V. RESULTS AND DISCUSSION
In this section, we provide an extensive performance eval-
uation for the different proposed approaches. In Section
V-A, the results of the performance comparison between
global rule-based and black box models are presented and,
in Section V-B, the obtained “non-fatigue regions” designed
in Section IV-D are shown. In Section V-C, SP-LIME
results are reported and discussed. In Section V-D, LLM,
DT and LIME feature rankings are illustrated and compared.
Finally,in Section V-E we present our comparison between
LLM, DT and Anchors.

A. FATIGUE DETECTION PERFORMANCE
In order to evaluate the performance of each ML algorithm
we have tested, we adopted some common metrics derived
from the confusion matrix. Being TP, TN, FP, FN the true
positives, true negative, false positives and false negatives
respectively, the following quantities can be computed:
• Accuracy = TP+TN

TP+FP+TN+FN :it is a measure of the
overall ability of the model of giving correct predictions.

• Sensitivity = TP
TP+FN : also known as True Positive

Rate (TPR) it is the ability of the predictor in detecting
fatigued state (class 1).

• Specificity = TN
FP+TN : also known as True Negative

Rate (TNR), it measures the correct classification of non
fatigued cases (class 0).

• F1-score = 2·TP
2·TP+FP+FN : it is the harmonic mean

of precision and sensitivity; it can vary in [0,1], with 1
being the F1-score for an ideal classifier.

In Table 2 the results of our comparison between rule-based
XAI methods (LLM and DT) and black-box methods (NN,
SVM and XGBoost) are shown.

By looking at the Table 2 for LLM and DT, we can infer
that LLM outperforms DT in terms of general classification
capabilities, measured by accuracy and F1-score. However,
LLM is less sensitive and far more specific than DT. When

Method Accuracy Sensitivity Specificity F1-score
LLM 0.82 0.71 0.95 0.81
DT 0.77 0.85 0.68 0.80
NN 0.90 0.87 0.92 0.90
SVM 0.90 0.85 0.95 0.90
XGBoost 0.79 0.81 0.75 0.79

TABLE 2: Performance measures of explainable rule-based
methods vs black-box methods.

compared to NN and SVM, LLM and DT show an overall
worsened performance (accuracy, F1-score), LLM is high-
specific as those black-box models, while DT reaches almost
the same sensitivity. XGBoost fits in the middle as regards
the accuracy, while has lower F1-score even with respect to
LLM and DT.

It is known [70] that a trade-off exists between accuracy
and interpretability, so that complex black-box models often
outperform interpretable models. Anyway, fatigue detection
is a critical field, since it deals with human health: for this
reason, we favour explainable models with acceptable per-
formance in spite of the excellent accuracy of black-boxes,
which gives no clue on why the predictions are built. On that
basis, we focused on LLM and DT. In order to assess if a
better perfomance could be achieved, we evaluated LLM and
DT on the first three most important features obtained from
the feature ranking of the previous classification task with
default configurations (see figures 6 and 7). In Table 3 we
show the obtained metrics in this case. It’s possible to see
that, with respect to the results in Table 2, the LLM improved
in all the indicators, while DT worsened in each metric except
for specificity. Again, LLM shows higher specificity whereas
DT has higher sensitivity.

Method Accuracy Sensitivity Specificity F1-score
LLM 0.84 0.73 0.97 0.83
DT 0.76 0.77 0.75 0.79

TABLE 3: Performance measures obtained from LLM and
DT classifiers on the dataset restricted to the first three
features. In detail: back rotation position in sagittal plane,
wrist jerk coefficient of variation and ChestACCMean for
LLM; back rotation position in sagittal plane, wrist jerk
coefficient of variation and HipACCMean for DT

Between LLM and DT, the first one globally outperforms
the latter. Hence, we also evaluated LLM with different
changes to its default configurations (Table 4). Analyzing the

Configurations Performance
Minimized
number
of con-
ditions

Maximum
error
allowed
(%)

Accuracy Sensitivity Specificity F1-score

False 5 0.84 0.73 0.97 0.83
True 2 0.80 0.69 0.73 0.78
True 10 0.80 0.73 0.88 0.79
False 10 0.84 0.73 0.97 0.83

TABLE 4: Performance measures obtained for LLM with
parameters changes
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differences between the four tested configurations of LLM
parameters, we can observe that such parameters changes
actually do not have a significant impact on performance with
respect to the default case (Table 2). In particular, when the
maximum error allowed is doubled from default (i.e., raised
to 10%), performance metrics do not show a corresponding
improvement.

For this reason, for further analysis, we decided to adopt
the default LLM model, with maximum error allowed of 5%
and the minimization of the number of conditions.

B. NON-FATIGUE REGIONS

By considering the default logic learning machine (Table
2), we looked for regions where fatigue was predicted with
FNR=0 by implementing the thresholds tuning procedure as
explained in sections IV-D2 and IV-D1. For completeness,
we remind that FNR is computed as the following ratio:
FNR = FN

TP+FN .
As regards the approach described in section IV-D1, the

first two most important intervals for fatigued class that we
got from LLM value ranking were back rotation position in
sagittal plane > 0.03 and wrist jerk coefficient of variation
> 0.03. We applied the optimization algorithm (Eq. 8) on
such intervals and obtained δ∗s1 = −13, δ∗s2 = 28. For such
values, we got FNR=0 and TNR=0.20. Therefore, the “non-
fatigue region” can be expressed as follows (for brevity, let
f1 and f2 be the two above mentioned features):

S1 = f1 ∈ (−∞, 0.42) ∧ f2 ∈ (−∞,−0.81)

The resulting region was then validated in order to take
into account that the involved feature values should vary in a
limited range, so to reflect real human movement capabilities
and correspond to proper execution of the task (e.g., we can’t
assume that a subject who stays still won’t ever get fatigued).
As far as we know, literature does not provide standard ranges
and quantifying them is not trivial, requiring specific studies.

To address this issue, we adopted an a-posteriori data-
driven approach. We evaluated the age histogram (not re-
ported) for the dataset and individuated age ≤ 40 y.o. and
age > 40 y.o. as a proper almost balanced split in which
to divide test set instances. We computed ranges for back
rotation position in sagittal plane and wrist jerk coefficient
of variation by taking their minimum and maximum values
within the corresponding age group. Doing so, we were able
to redefine two “non-fatigue regions” by limiting the previous
one according to the ranges we found; such new regions are
expressed as follows:

S1 = f1 ∈ (−2.52, 0.42) ∧ f2 ∈ (−1.78,−0.81) for age ≤
40 y.o

S1 = f1 ∈ (−1.86, 0.42) ∧ f2 ∈ (−2.0,−0.81) for age >
40 y.o

In Figure 2 a visual representation of the obtained regions
is provided.

FIGURE 2: Scatter plot of the first two features (back ro-
tation position in sagittal plane and wrist jerk coefficient of
variation) with representations of the “non-fatigue region”
individuated for age≤ 40 group (pink) and age> 40 (violet).

In this way, we have exploited fatigued class rules to define
a region where the LLM should never predict a non-fatigued
state when a subject is actually fatigued.

As described in section IV-D2, we considered the problem
of identifying non-fatigue regions starting from the non-
fatigued class, too. The value ranking shown back rotation
position in sagittal plane <= 0.03 and chest acceleration
mean > -0.47 as the two most relevant intervals for predict-
ing non-fatigued class. On such conditions, we applied the
optimization problem (eq. 10), which led us to individuate
δ∗t1 = 79.96, δ∗s2 = 5.71. For these values, we got FNR=0
and TNR=0.06. The “non-fatigued region” S0 is then found
(with f1 and f2 being back rotation position in sagittal plane
and chest acceleration mean respectively):

S0 = f1 ∈ (−∞,−1.68) ∨ f2 ∈ (3.65,∞)

Just as for the previous approach, we limited such region in
function of the two group ages (up to and over 40 years old).
This procedure redefines S0 for the age groups as follows
(Fig. 3):

S0 = f1 ∈ (−2.52,−1.68) ∨ f2 ∈ (3.65, 3.99) for age ≤
40 y.o.

S0 = f1 ∈ (−1.86,−1.68) ∨ f2 ∈ (3.65, 3.99) for age >
40 y.o.

By comparing the results of the application of our two
innovative approaches for the individuation of features in-
tervals where the LLM predictions of physical fatigue have
FNR=0, we can infer that using the fatigued class (opti-
mization problem 8) allows us to find regions with higher
coverage (here intended as the TNR) than using the other
approach in eq. 10. This difference is supported by the fact
that the second most important feature for LLM is different in
the two classes (feature ranking shows wrist jerk coefficient
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FIGURE 3: Scatter plot of the first two features (back rotation
position in sagittal plane, Chest Acceleration Mean) from
value ranking of non-fatigued class, with representations of
the “non-fatigue regions” based on the age group (violet for
age ≤ 40, pink otherwise)

of variation for fatigued class, whereas chest acceleration
mean for non-fatigued). Hence, data distributions for the first
two features are different in the two cases too: as depicted
in figures 2 and 3, fatigued and non-fatigued instances are
sparser and less separated in the latter, thus explaining the
difficulty in individuating wide regions were FNR=0.

Both the previous approaches have the limitation of in-
dividuating optimal and suboptimal solutions to the identi-
fication of “non-fatigue regions” characterized by relatively
low values of TNR, i.e. number of instances included in such
surfaces.

In order to assess if such value could be increased, we
adopted the LLM 0% and built a new predictor as described
in section IV-D3. We conducted the optimization process
described in equation 12 with r̂(δ) defined by the joining
(∨) of a different number, m0, of rules obtained for the non-
fatigued class. δ is tuned for the first NFR = 2 features
from non-fatigued feature ranking, namely HipACCMean
and WristjerkMean.

As an example, we report here the two rules for non-
fatigued class with highest coverage. The other considered
four rules, not reported here for the sake of brevity, present
a qualitatively similar structure and deal with the present
features, mixed with the others with less score in the ranking.

if (0.51 < HipACCMean≤ 1.98 and ChestACCcoefficientofvariation≤ 1.11 and
-1.73 < averagestepdistance ≤ 0.81 and backrotationpositioninsagplane ≤ 0.52 and
-1.42 < WristACCcoefficientofvariation≤ 1.49 then non-fatigued (C = 52%)

if (WristjerkMean > 0.55 and -1.35 < Back rotation position in sag plane≤ 0.04)

then non-fatigued (C = 33%)

As reported in table 5,before any feature perturbation,
we performed a logical OR of a different number of rules
(m0) and computed the corresponding FNR and TNR values.

m0 FNR TNR
2 0.04 0.64
3 0.04 0.71
4 0.06 0.75
5 0.06 0.84

TABLE 5: FNR and TNR values obtained by rule-joining
optimization, when the number of joined rules m0 is varied

As expected, the TNR values were much higher than with
the two previous methods. In order to lower the FNR, we
perturbed HipACCMean and WristjerkMean on the joining
of 4 rules (m0 =4). Thus, we obtained δ∗s1 =1.848 and
δ∗t2 =0.027 for such features respectively: these thresholds
perturbations brought FNR=0, with TNR=0.42, that is still
an appreciable value.

The LLM 0% is therefore able to provide a better per-
formance than the optmized hyper-rectangles above. The
conclusion here is consistent with the one in [20] and [23], in
which LLM 0% discovered complex safety regions too. It is
however worth noting that resorting to simpler schemes, such
as the optimization of the hyper-rectangles above, still allows
circumvent zero false negatives with acceptable coverage and
giving insight into the population of non-fatigued subjects.

C. LIME EXPLANATIONS
After the adoption of SP-LIME with budget B = 5, we ob-
tained the set of the 5 most representative LIME explanations
of XGBoost predictions.

We report bar plots for two of them in Figures 4 and
5. Green bars indicate positive LIME weights, associated
to a positive influence of the corresponding conditions on
the prediction probabilities, while red bars indicate negative
weights, thus indicating a negative effect on it. Such local

FIGURE 4: Bar plot of LIME explanations for an instance
being predicted by the underlying XGBoost as belonging to
fatigued class with 0.64 prediction probability.

explanations can be useful to inspect single results of a
classification black box algorithm (XGBoost in our case),
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FIGURE 5: Bar plot of LIME explanations for an instance
being predicted by underlying XGBoost as belonging to non-
fatigued class with 0.54 prediction probability.

thus investigating which factors gave a higher contribution
for that particular instance. LIME provides a local ranking
of the most influent values intervals for the most relevant
features: this is the same concept of LLM value ranking (see
III-A1), with the difference that for LLM it is global.

D. LLM AND DT VERSUS LIME FEATURE RANKING
In Figures 6, 7 and 8, we provide the overall feature ranking
bar plots obtained for LLM, DT and LIME respectively. In
the latter case, we adopted the approach as described in IV-E.

FIGURE 6: Feature Ranking for LLM

All the three rankings individuate the same first two most
important features involved in the classification task, that
are back rotation position in sagittal plane and wrist jerk
coefficient of variation. This inter-methods concordance sug-
gests that these two features actually have a greater impact in
physical fatigue detection than the others.

E. LLM AND DT RULES VERSUS ANCHORS
In the following, as an example, we show the first two rules
obtained from LLM and DT without parameters changes for

FIGURE 7: Feature Ranking for DT

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

backrotationpositioninsagplane

Wristjerkcoefficientofvariation

HipjerkMean

HipACCMean

WristjerkMean

HipACCcoefficientofvariation

AnkleACCMean

HipypostureMean

WristACCMean

FIGURE 8: Feature ranking for LIME

fatigued class, ranked by their covering percentage C.
LLM:

if (WristjerkMean ≤ 1.22 and AnklejerkMean ≤ 1.64 and AnklexpostureMean > -

1.82 and legrotationalvelocitysagplane ≤ 1.15 and backrotationpositioninsagplane >

0.034 and WristACCcoefficientofvariation≤ 2.56 and Hipyposturecoefficientofvaria-

tion≤ 2.77) then fatigued (C = 58%)

if (AnklexpostureMean > -1.79 and legrotationalvelocitysagplane ≤ 0.46 and aver-

ageverticalimpact ≤ 1.79 and Wristjerkcoefficientofvariation > 0.025) then fatigued

(C = 45%)

DT:

if (Wristjerkcoefficientofvariation > 0.63) then fatigued (C = 36%)

if (Wristjerkcoefficientofvariation≤ 0.63 and backrotationpositioninsagplane > 0.032

and averagesteptime > 0.27) then fatigued (C = 20%)

On the one hand, LLM rules have higher number of condi-
tions reaching higher values of coverage; on the other hand,
DT rules contain less conditions but present lower coverage.

The first 3 Anchors obtained for the same class, ranked by
Anchors intrinsic definition of coverage Ca, are:

1) if (Back rotation position in sag plane > 0.32 and Chest.ACC.Mean ≤ -0.25)
then fatigued (Ca = 13%)

2) if (Back rotation position in sag plane > 0.32 and Ankle.ACC.coefficient.of.variation
> 0.73) then fatigued (Ca = 12, 5%)

3) if (Back rotation position in sag plane > 0.32 and average step time > 0.24)
then fatigued (Ca = 11%)

When comparing LLM and DT rules with Anchors rules,
the most noticeable difference lies in the values of coverage,
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that are significantly lower for Anchors. This result was what
we expected, since Anchors are built upon single instances,
whereas LLM and DT consider the whole dataset.

Starting from that, we verified if it was possible to tune
the conditions inside such low-coverage rules for fatigued
class by applying the optimization algorithm as explained in
Section IV-E. The test was repeated on single Anchors and
by joining combinations of them in OR (∨) logical operation
to form single rules.

In table 6 are reported the obtained optimal values for δ∗1k

and δ∗2k
(the notation is the same adopted in section IV-E).

Comparing such values for all the six test cases, we can
conclude that the best result is achieved through changes to
the third Anchor only (for which δ∗13

= 1.86 and δ∗23
= 0.06).

With such optimal values, we computed the accuracy (0.70),
the specificity (0.95) and F1-score (0.58) too. In this case,
coverage reaches 43% as in the case of all the three anchors
joined in OR: the choice between these two highest-coverage
cases is driven by the fact that in the first one a greater overall
expansion of conditions is possible. Furthermore, results
show that it’s not possible to raise both δ1k

and δ2k
at the

same time, while remaining under the acceptable threshold
for error.

k δ∗1k δ∗2k Error Coverage
1 0.11 1.76 0.04 0.36
2 0.11 0.71 0.04 0.20
3 1.86 0.06 0.04 0.43
4 0.11 0.71 0.04 0.38
5 0.66 0.01 0.04 0.41
6 0.11 0.71 0.04 0.43

TABLE 6: Results of the Anchors optimization problem
at varying of the considered Anchor rule. k is an index
identifying Anchor ak; logical OR combinations of single
anchors are indicated as k = 4, k = 5, k = 6, referring to
(k = 1 ∨ k = 2), (k = 1 ∨ k = 3), (k = 1 ∨ k = 2 ∨ k = 3)
respectively

To further highlight this kind of trade-off between δ1k

and δ2k
for k = 3, we plotted different values of δ13 and

δ23
with blue color if the corresponding error was below

0.05 and red if it was not (Figure 9, the trade-off is visible
at the boundary between blue and red zones). Figure 10
shows the coverage function C(a3(δ13

, δ23
)) again with blue

color for acceptable error E(a3(δ13 , δ23)) and red for non
acceptable. In conclusion, this methodology has allowed us
to individuate a new expanded Anchor rule, whose coverage
reaches a value (43%) which is almost as high as that of LLM
rules and it even overcomes the coverage of DT.

VI. CONCLUSIONS AND FUTURE WORK
In this work, we studied the physical fatigue detection
problem under the explainable artificial intelligence (XAI)
paradigm a summary of the approaches and results is avail-
able in table 7.

We compared global rule-based models (LLM and DT)
with well-established black box models. Geometrically

0 0.5 1 1.5 2 2.5 3 3.5 4

1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2

Error < 0.05

Error  0.05

FIGURE 9: Bidimensional plot of δ13
, δ23

values labelled
with respect to the error obtained by applying Anchor k = 3
perturbed by their values.

FIGURE 10: Tridimensional plot showing how coverage
changes with respect to δ13 , δ23 , inside (blue) and outside
(red) the acceptable error threshold.

speaking, rule-based models represent the classes through
hyper-rectangles in the feature space, resulting in simpler
shapes than the ones resulting from more complex black-box
models like SVM or NN. For this reason, when classes have
very intricate separation profiles, these models may lack in
performance if compared to black-box methods: in fact, the
latter more complex shape is able to better fit the boundaries
between the classes. This is particularly evident for applica-
tion scenarios, like the presented one, where the available
data are noisy. However, provided to still achieve adequate
performance metrics via rule-based models, the advantages
of their adoption become evident. Indeed, XAI is useful when
one wants to inspect the reasons behind predictions (this is
the goal of explainability) and how to make such predictions
able to guarantee workers safety during occupational tasks
and prevent accidents (this is the goal of responsibility).
Nonetheless, we must remark that achieving such kinds of
guarantees, through whatever kind of modelling approach, is
still a challenge that requires further work.

By focusing on Responsible AI more in detail, safety has
been pursued by introducing innovative rule optimization
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Method Description Performance
LLM, DT vs NN, SVM, XG-
Boost

Performance comparison (sensitivity, speci-
ficity, accuracy and F1-score) between global
transparent-by-design vs black-box models

H igher overall metrics for black box models;
LLM outperforms DT (except for sensitivity)

Sensitivity from outside, inside
and LLM 0%

Identification of zero FNR "non-fatigue re-
gions" via LLM feature and value rankings

Outside (FNR=0, TNR=0.20) outperforms in-
side (FNR=0, TNR =0.06); LLM 0% reaches
far higher TNR (FNR=0, TNR=0.42)

LLM and DT vs
XGBoost+LIME

Comparison of global transparent-by-design
models (LLM, DT) and local post-hoc explana-
tions (LIME) of black-box models (XGBoost)
through the respective feature ranking (FR).
For LLM and DT, FR is directly available; for
LIME, an ad-hoc FR was built.

All the three rankings individuated the same
first two most important features: back rotation
position in sagittal plane and wrist jerk coeffi-
cient of variation

LLM and DT vs
XGBoost+Anchors

Optimization of Anchors (i.e., rules extracted
from single XGBoost predictions) conditions
thresholds to extend their covering while main-
taining low errors, for comparison with global
rule-based models like LLM and DT

In all cases, the covering increased with error
fixed to 0.04. In one of the cases, covering raises
from 11% to 43%, similar to LLM rules and
even higher than covering values for DT

TABLE 7: Summary of the tests and related results

methodologies (Section IV-D) to let the prediction model
guarantee zero statistical error (i.e., the worker is predicted
not fatigued without error).

Moreover, we achieved a comparison between global
transparent-by-design models (LLM and DT) and local post-
hoc model-agnostic explanations models (LIME and An-
chors) through novel methodologies. From the comparison
of LLM and DT with LIME by means of absolute feature
ranking, we found that all the techniques discover the same
first two features, thus showing their high impact on our
classification task.

Further, our new Anchors optimization method (Section
IV-E) has allowed to generalize local rules and make them
valid for a larger quantity of data.

The following issues deserve further attention and may
constitute future work. Black-box models with subsequent
rule extraction is another way to look at the problem under a
trade off between accuracy and intelligibility [71], including
deep learning [72], [73].

In pursuing the goal of identifying “non-fatigue regions”,
we adopted an a-posteriori approach to limit their maximum
extension based on age groups after having found the regions.
Improvements of our methods may then include an a-priori
approach instead, starting from two separate datasets related
to the age groups: this goal requires larger datasets with
balanced age groups. Also, another improvement could rely
on the validation of the identified “non-fatigue regions” on
new data through cross-validation and selective rule extrac-
tion [74]. Finally, intersection between machine learning and
formal logic to empower the knowledge mining process may
be considered too [75].
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