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ABSTRACT

Magnetohydrodynamics (MHD) investigates the intricate relationship between electromagnetism and fluid dynamics, offering a complete
insight into the behavior of conducting fluids under the influence of magnetic fields. This theory plays a pivotal role in the framework of
magnetic confinement fusion, where it can be applied to describe both thermonuclear plasmas confined inside the vacuum vessel and
operating fluids, such as liquid metals and molten salts, flowing within the blanket of future tokamaks. Currently, the state-of-the-art
numerical modeling of MHD scenarios employs a multi-physics framework to examine the interplay between magnetic fields and thermal
hydraulics; however, due to the complexity of the involved physics, detailed models are required, resulting in a significant computational bur-
den. In this regard, reduced order modeling (ROM) techniques may represent a promising solution, as they enable approximating complex
systems with lower-dimensional models. Indeed, ROM methodologies can significantly reduce the required computational time while main-
taining accuracy in capturing the convoluted physics involved in fusion reactors, especially in the contexts of sensitivity analysis, uncertainty
quantification, and control. Despite their potential, ROM methods are relatively under-explored within the MHD framework; this study
applies ROM techniques to MHD scenarios, focusing on their capabilities and possible limitations. To this aim, the backward-facing step,
which is well suited for exploring the effects of different magnetic fields on turbulent dynamics, is adopted as case study. In particular, this
work evaluates the potentialities of the ROM approach in enhancing computational efficiency within the MHD domain. Each of the methods
evaluated was effective in precisely reconstructing flow dynamics at any given time and across the full range of magnetic field values tested
while significantly reducing computational costs compared to full-order simulations. Practically, this study demonstrates the feasibility to cre-
ate simplified models that accurately represent the magnetohydrodynamic flows of fluids within the blanket.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0230708

I. INTRODUCTION

Magnetohydrodynamics (MHD) studies the dynamics of electri-
cally conducting fluids, i.e., fluids with a non-negligible electrical con-
ductivity, under the influence of a magnetic field.1 This theory
provides mathematical models widely exploited in the nuclear field,
including magnetic confinement fusion (MCF), since thermonuclear
plasmas can be treated as conducting fluids confined by intense mag-
netic fields.2 Indeed, charged particles tend to follow the magnetic field
lines, reducing their ability to escape the confined region. This is criti-
cal for controlling plasma in tokamaks, where magnetic fields help to
maintain the stability of high-temperature plasmas. Moreover, the

MHD theory can also describe conducting liquid metals that flow in
the blanket of EU-DEMO-like reactors,3 or molten salts as foreseen in
the ARC reactor.4 In these systems, the magnetic field confines the
plasma inside the vacuum vessel. At the same time, residual magnetic
field lines could emerge from the plasma chamber and reach the liquid
metals or molten salts flowing in the blanket, impacting their fluid
dynamics. Then, when designing this component, the presence of a
magnetic field varying in amplitude and direction over time and affect-
ing the flow regime of these conducting fluids must be considered. In
addition to fusion reactor applications, the MHD theory may be
adopted for the analyses of innovative engineering systems that make

Phys. Fluids 36, 107167 (2024); doi: 10.1063/5.0230708 36, 107167-1

VC Author(s) 2024

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

 11 N
ovem

ber 2024 15:19:12

https://doi.org/10.1063/5.0230708
https://doi.org/10.1063/5.0230708
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0230708
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0230708&domain=pdf&date_stamp=2024-10-29
https://orcid.org/0009-0001-6404-8623
https://orcid.org/0000-0001-9997-4101
https://orcid.org/0000-0003-4682-1683
https://orcid.org/0000-0002-2137-3645
https://orcid.org/0000-0002-0267-2877
https://orcid.org/0009-0001-7972-5316
https://orcid.org/0000-0003-1508-5935
mailto:antonio.cammi@polimi.it
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/5.0230708
pubs.aip.org/aip/phf


use of conducting fluids in the presence of an electromagnetic field, as
the magnetic field might enhance the thermal-hydraulics and the over-
all dynamics of the operating fluid (in terms of pressure drops, velocity,
thermal diffusion, flow regime). For these reasons, being crucial to
know the effects of the magnetic field on the motion of these fluids
and how it influences their dynamics, numerical investigations become
essential to explore these phenomena.

The actual effects on fluid dynamics strongly depend on the
intensity and direction of the imposed magnetic field, and simulating
every possible case is prohibitive from a computational point of view.
The presence of a large number of potential cases becomes even more
relevant when it comes to real-time applications for control purpose:
in general, highly detailed models might be able to predict even unfore-
seen conditions; however, their response time will likely be too high
for any meaningful real-time action. Indeed, MHDmodels are systems
of nonlinear and highly complex equations, where velocity and mag-
netic field are coupled in a multi-physics framework.5 Therefore, the
necessity arises to find a strategy to reduce the computational com-
plexity in simulating MHD scenarios. In this context, reduced order
modeling (ROM) techniques6,7 can be a promising solution for
approximating complex systems with surrogate models, especially in
multi-query and real-time contexts.8 These approaches minimize the
computational efforts whilst keeping the accuracy at a desired level; in
particular, they are frequently employed to simulate unseen fluid
dynamics scenarios9–12 without performing new calculations on the
original high-fidelity model. On one side, for multi-query scenarios
that require multiple evaluations of the high-fidelity model, the avail-
ability of ROM approaches could significantly reduce the computa-
tional costs: for instance, sensitivity analyses may exploit the ROM
itself. Conversely, reducing the computational time would allow the
application of ROMs in real-time contexts, such as control-oriented
applications, where it is essential to rapidly verify the instantaneous
effects of residual magnetic fields on the blanket fluids, both for opera-
tional and safety reasons.

The application of ROM methods to MHD scenarios, where the
magnetic field also comes into play, is still limited in the literature. In
particular, all the few studies that adopt ROM techniques for MHD
scenarios involve thermonuclear plasma. For example, Taylor et al.13

applied the dynamic mode decomposition (DMD) for the diagnostic
analysis of the non-linear dynamics of a magnetized plasma in resistive
magnetohydrodynamics; Kaptanoglu et al.14 applied DMD to extract
spatiotemporal magnetic coherent structures from the experimental
and simulation datasets of the helicity injected torus with steady induc-
tive experiment; Kaptanoglu et al.15 applied a data-driven version of
the proper orthogonal decomposition (POD) Galerkin models for
compressible plasmas, relying on physically constrained sparse-
identification of non-linear dynamics.16 However, according to the
authors’ knowledge, there are not many studies using ROMmethodol-
ogies for MHD scenarios where the conductive fluids are the liquids
flowing in the reactor blanket. Therefore, the present work aims to
apply ROM techniques, well-known for incompressible flows,10,17 to
magnetohydrodynamic scenarios involving fluids foreseen in the
design of the blanket of future tokamaks: in this work, the focus is on
the generation of surrogate models, encoding sufficiently high infor-
mation from the high-fidelity data, for their future use in sensitivity
analysis and uncertainty quantification. This paper applies a non-intru-
sive ROM technique, based on the combination of the POD with

Gaussian process regression to learn the dynamics18,19 on an MHD
flow in a backward facing step (BFS), with different initial value of the
vertical component of the magnetic field.

The structure of the present paper is now reported. Section II
provides an overview of the reduced order modeling approach and a
description of the specific techniques adopted in this work. Section III
describes the MHD model and presents the numerical results obtained
with the ROM approach. Finally, Sec. IV resumes the main conclu-
sions of the present work.

II. DATA-DRIVEN REDUCED ORDER MODELING
TECHNIQUES

Dimensionality reduction methods are typically used to decrease
the computational cost required to numerically solve a partial differen-
tial equation (PDE), with the natural application for multi-query and
real-time scenarios.6,7 In particular, one of the most wide-spread
approaches is the reduced basis (RB) method in which the solution
manifold U � L2ðXÞ, given X � R3 the spatial domain, is approxi-
mated by a finite-dimensional space, spanned by basis functions
obtained by some training solutions fui ¼ uðx; liÞgNs

i¼1 of the PDEs
under study, called snapshots, dependent on the spatial coordinate
x 2 X and the parameters l (including, for instance, time t, Reynolds
number Re, initial conditions, and material properties). In this context,
the RB approach allows us to approximate any element of the solution
manifold with a linear combination of the basis functions, i.e.,

uðx; lÞ ’
XN
n¼1

anðlÞ � unðxÞ; (1)

in which fungNn¼1 are the basis functions, spanning the reduced space
XN approximating the manifold U , and fangNn¼1 are the modal/
reduced coefficients in which the parametric dependencies are
embedded.

All reduced order modeling methods are characterized by the so-
called offline-online paradigm,7 which can be resumed as follows: first,
the high-fidelity full-order model (FOM) is solved several times to gen-
erate the training snapshots needed to compute the basis functions
(and hence the reduced space itself); then, the modal coefficients are
computed according to the adopted technique. These approaches can
belong to two main categories, intrusive and non-intrusive. The former
takes the governing equations and adopts a Galerkin projection9

through the basis functions previously computed to obtain a reduced
order model consisting of a relatively small set of ordinary differential
equations (ODEs), which can be solved several times with much lower
computational costs. The latter can either use online measure-
ments20,21 or machine learning methods18,22,23 to obtain the modal
coefficients in a grey-box framework, starting from some available data
(either full-order snapshots or measurements). Even though the intru-
sive approach is more physically consistent, since a surrogate model is
directly derived from the FOM itself, it may be difficult to define a
ROM for strongly non-linear problems with several coupled PDEs,
such as the MHD case. Moreover, the system of ODEs is typically stiff,
for which proper numerical schemes are needed.24,25 On the other
hand, non-intrusive approaches do not require access to the governing
equations and they are more suited to be adopted in a fully data-driven
framework.
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A. Proper orthogonal decomposition

In the context of ROM, proper orthogonal decomposition (POD)
is the most widespread approach to obtain low-rank approximations
and is often taken as reference ROM technique against which to com-
pare other ROM methods. The POD lays its foundation on the singu-
lar value decomposition (SVD),26 a linear algebra procedure aiming at
generalizing the eigen-decomposing of a matrix. For the particular
case of continuous functions living in a functional space endowed with
an inner product [e.g., L2ðXÞ], the POD algorithm is based on the
eigendecomposition of the correlation matrixC 2 RNs�Ns , defined as

Cnm ¼ un; umð ÞL2ðXÞ ¼
ð
X
un � um dX n;m ¼ 1;…Ns: (2)

given Ns is the amount of training solutions of the PDEs. For this
matrix, the associated eigenvalue problem is solved

Cgn ¼ kngn; (3)

to obtain the correspondent eigenvalues fkngNs
n¼1 and eigenvectors

fgn 2 RNsgNs
n¼1: these are used to generate a set of basis functions

named PODmodes

unðxÞ ¼
1ffiffiffiffiffi
kn

p
XNs

l¼1

gn;l � ulðxÞ (4)

recalling that ulðxÞ ¼ uðx; llÞ and that gn;l represents the l-compo-
nent of the n-th eigenvector. The basis functions fungNn¼1 are
ortho-normal to each other in L2-sense,8 from which a reduced space
XN ¼ spanðu1;u2;…;uNÞ � U is defined such that any function
uðx; lÞ 2 U can be approximated as follows:

uðx; lÞ ’
XN
n¼1

anðlÞ � unðxÞ with an ¼ ðu;unÞL2ðXÞ ¼
ð
X
u � un dX:

(5)

The dimension of the reduced space N, sometimes also called
rank, is typically selected such that the projection error is smaller than
a desired tolerance ePOD: namely, N is the smallest integer satisfying

IðrÞ ¼
Pr

n¼1 knP
k kk

� 1� e2POD; (6)

with I(r) representing the energy content retained by the first r POD
modes, which is known as relative information content.8

These basis functions define the dominant spatial behavior of the
snapshots, whereas the parametric dependencies are hidden in the
modal coefficients fanðlÞgNn¼1. The focus now shifts to the methodol-
ogy to compute these coefficients in a quick, efficient, and reliable way.
In this work, a non-intrusive approach is pursued, in which the func-
tional dependence between l and anðlÞ is learned through Gaussian
process regression (GPR) supervised learning method,27,28 adopting
the same strategy proposed by Guo and Hesthaven,22,23 and later
applied by Ortali et al.18 and Cicci et al.19

The generation of the POD modes and the state estimation
[Eq. (1)] have been implemented in Python within the pyforce
package,29,30 built with the dolfinx package (v. 0.6.0), part of the
FEniCSx library31–34 and openly available on Github under the
MIT license.

B. Gaussian process regression

A Gaussian process (GP) is any collection of random variables, in
which each finite subset obeys a joint Gaussian distribution; the
Gaussian process regression (GPR) is a supervised learning algorithm
able to generate a model based on the knowledge coming from some
training data, to predict continuous quantities of interest.28

Let D ¼ ðxi; yiÞ : i ¼ 1; 2;…;Ns
� �

be the training set of Ns

observations, given xi 2 Rd as the input with d entries and yi the cor-
responding output. Supervised learning algorithms find a model f that
can infer the relationship between x and y. The GPR method28 infers a
probabilistic distribution over functions given the observation data,
used to make predictions given new (unknown) inputs x. For GPR,
given a mean EðxÞ and a covariance function (or kernel) jhðx; x0Þ,
the prior distribution of f is a GP written as

f ðxÞ � GP EðxÞ; jhðx; x0Þ
� �

; (7)

in whichEðxÞ is typically assumed to be a constant function based on
the training data and the kernel jhðx; x0Þ is dependent on some
hyper-parameters h, to be tuned. In the literature, there are plenty of
options for j: one of the most common choices is the radial basis func-
tion (RBF) kernel

jhðx; x0Þ ¼ h1e
�jjx�x0 jj2

2
2h2
2 : (8)

The hyper-parameters h ¼ ½h1; h2� need to be tuned to augment the
predictive performance of the GPR. GPR models embed knowledge
from training data D into the prior distribution to obtain a posterior.
Hence, given a set of training input X ¼ ½x1jx2j…xNs � 2 Rd�Ns with
correspondent output y ¼ ½y1; y2;…yNs �T 2 RNs and a set of new test
input dataX	 2 Rd�M , predictions y	 2 RM can be made by exploit-
ing the theorem of conditional Gaussian so that the conditional distri-
bution of the predicted GP is given by

y	 ¼ f ðX	jy;X;X	Þ � GP ÊðX	Þ; ĵðX; X	0Þ
� �

; (9)

in which the knowledge of the mean and covariance function updated
as follows:19

ÊðX	Þ ¼ EðX	Þ þK	K�1 ðy �EðXÞÞ;
ĵðX; X	0Þ ¼ K		 �K	K�1KT

	 ;
(10)

given K ¼ jðX;X0Þ;K	 ¼ jðX	;X0Þ;KT
	 ¼ jðX;X	0Þ;K		

¼ jðX	;X	0Þ. As stated before, the kernel functions depend on
hyper-parameters h, which are required to be tuned by maximizing
the loss function log-marginal likelihood as in the works of Cicci
et al.19 and Rasmussen andWilliams"28

hopt ¼ argmax
h

logPðyjXÞ;

¼ argmax
h

� 1
2
yTK�1ðhÞy � 1

2
log jKðhÞj � Ns

2
log ð2pÞ

	 

;

(11)

where PðyjXÞ is the conditional density function of y given X, also
known as marginal likelihood. The implementation of the GPR and
the hyper-parameter tuning are carried out in Python through the
open-source package GPy.
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1. Tensor-decomposition

The standard version of the GPR, which we will henceforth refer
to as monolithic GPR, can consider multiple inputs providing a scalar
output quantity; thus, a surrogate model for each reduced coefficient
anðlÞ can be built, i.e.,

f GPn : l ! an; (12)

and each of them can be trained using data obtained from the training
snapshots. For transient problems with large datasets, it is convenient
to separate the parameters l into two main contributions: the pseudo-
parameter t, i.e., the time, and all other parameters, labeled with l

from now on with abuse of notation, e.g., the initial magnetic field or
the Reynolds number. This distinction is usually performed since the
time t rigorously is an independent parameter. Supposing the training
set of snapshots is composed of Ns parametric solutions of a transient
sampling Nt time instants, the total dimension of the snapshot matrix
is N h � ðNt � NsÞ, given N h the dimension of the spatial grid.
Therefore, the GPR model requires training for a Nt � Ns-dimensional
dataset per each coefficient an.

The literature shows an alternative approach for parametric-
transient datasets, as Guo23 proposed a tensor-decomposition algo-
rithm to separate the parametric dependency from the time one; this
can be useful to reduce the time required for the training of the ML
regression models. LetAn 2 RNt�Ns the corresponding matrix for the
nth coefficient anðt; lÞ, defined as

An ¼

an t1; l1
� �

… an t1; lNs

� �
..
. ..

.

an tNt ; l1
� �

… an tNt ; lNs

� �

2
66664

3
77775: (13)

The truncated SVD can be performed onAn as

An ’ wðnÞKðnÞ /ðnÞ� �T
; (14)

given wðnÞ 2 RNt�l and /ðnÞ 2 RNs�l are the time and parametric
modes, respectively, KðnÞ 2 Rl�l is a diagonal matrix with the singular
values of the SVD, and l is the truncation rank obtained using the SVD
tolerance as in Eq. (6). For n ¼ 1;…N , the following maps can be
learned:

t ! fwðnÞ
l ðtÞglk¼1 and l ! f/ðnÞ

l ðtÞglk¼1 (15)

for each component of the truncated SVD, hence two Gaussian pro-
cesses (one for time t and one for the parameters l) are trained with
two smaller datasets (Nt and Ns). This algorithm is known as tensor-
decomposition (TD): it allows a strong reduction in the computational
times of the hyper-parameter tuning phase,19,23 which becomes signifi-
cant when large datasets are considered.

C. POD with GPR as a data-driven technique

In this section, the POD is integrated with the GPR,18 referred to
as POD-GPR, for the specific application in MHD: the basic ideas con-
sist of generating a low-rank representation of some training snapshots
through the POD, then infer the reduced coefficients in the time-
parameters space to approximate the solution manifold using GPR, in

a fully data-driven framework: in fact, no information about the physi-
cal model and the correspondent governing equations is employed for
the encoding with POD and the inferring with GPR.

The input dataset is represented by the snapshot matrix

S ¼ ½u1;…; uNt�Ns � 2 RN h�ðNt �NsÞ, given ui 2 RN h the discrete rep-
resentation of the i th snapshot, e.g., the evaluation of the continuous
function at the degrees of freedom of the spatial mesh of dimension
N h. Each snapshot ui depends on the training time and the parame-
ters l, belonging to the training set Ntrain. The POD is used to
generate a reduced representation of the training snapshots through
the POD modes fungNn¼1 with the truncation rank N obtained from
Eq. (6).

Hence, the PODmodes can be used to find a reduced representa-
tion of the snapshots through the coefficients fanðt; lÞgNn¼1 dependent
on training time t and parameters l. Each component can be consid-
ered as a scalar output onto which a probabilistic response model can
be built using Gaussian process regression. This allows learning the
map between the input parameters (t and l) and each reduced coeffi-
cient an. These steps are all executed during the offline phase, which is
computationally demanding even though it is performed only once.
The steps of the offline phase are reported in Algorithm I.

During the online phase, the aim is to obtain an approximation
of the full-order solution for a case not used for the training with
ðt?; l?Þ. At first, the GPR models, generated during the offline phase,
are evaluated for the unseen parameters to find the correspondent
reduced coefficients fanðt?; l?ÞgNn¼1. In the end, the decoding step is
performed: the full state is reconstructed using a linear combination of
the POD modes weighted against the aforementioned reduced
coefficients.

III. NUMERICAL RESULTS
A. Test case

As a test case, this work considers a flow in the bi-dimensional
backward-facing step (BFS). Although this geometry is not representa-
tive of any realistic configuration involved in fusion reactors, it is cho-
sen for its simplicity in investigating the effects of different magnetic

ALGORITHM 1: POD-GPR (Offline Phase).

Input
Training Parameters ðt; lÞ 2 Ntrain;
Snapshot matrix S ¼ ½u1;…; uNt�Ns � 2 RN h�ðNt �NsÞ;

Output
POD modes fu1ðxÞ;…;uNðxÞg;
GPR models for the reduced coefficients fangNn¼1;

Proper Orthogonal Decomposition
Computation of correlation matrix

Cnm ¼ ðun; umÞL2ðXÞ ¼
Ð
Xun � um dX;

Eigen-decomposition Cgn ¼ kngn;
Selection of the rank with Eq. (6);
Definition of the POD modes funðxÞ¼

ffiffiffiffiffiffiffi
k�1
n

q PNs
l¼1gn;l �ulðxÞgNn¼1;

Gaussian Process Regression
Computation of reduced coefficients fangNn¼1 by projection;
Training of a GPR model per each an;
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fields on recirculation dynamics. The assumption of 2D flow is
accepted since no significant variation in span-wise direction is
expected in the separation and reattachment regions. Indeed, the goal
of this work is to investigate the potential applications of ROM for
MHD problems, focusing on the application itself rather than on the
complexity of the test case: further works will focus on more realistic
geometries.

The considered fluid is the lead–lithium eutectic, which is the typ-
ical operating liquid metal foreseen in several concepts of breeding
blankets, such as the water-cooled lead–lithium candidate system for
the European DEMO.35 The flow is described with the following
incompressible, viscoresistive magnetohydrodynamic full-order
model:36

q
@u
@t

þ q u � rð Þu ¼ �rpþ lDuþ 1
l0

r� B
� �

� B; (16a)

@B
@t

¼ r� ðu� BÞ þ g
l0

DB; (16b)

r � B ¼ 0; (16c)

where u is the velocity of the fluid; B is the magnetic field; p is the
pressure; and q, l, and g represent the density, the dynamic viscos-
ity, and the electrical resistivity of the fluid, while l0 denotes the
magnetic permeability. This model combines the Navier–Stokes
and Maxwell equations with a bidirectional coupling between
velocity and magnetic field. The energy equation is neglected in
this phase, as the emphasis is on the flow field rather than on the
temperature field.

The fluid dynamics is affected by the magnetic field through
the Lorentz force, represented by the term ð 1l0 r� BÞ � B in Eq.
(16a). Then, the magnetic field reacts to the change in the fluid
velocity, due to the term r� ðu� BÞ in Eq. (16b), and an induced
magnetic field arises and superimposes itself to the external one.
To complete the set-up, initial and boundary conditions are
required. The fluid is considered initially still; moreover, for the
sake of simplicity (without affecting the applicability of the
method), the imposed magnetic field will be assumed to be ori-
ented in the vertical direction

ujt¼0 ¼ 0;

Bjt¼0 ¼ B0 ¼ B0;yey;

(
(17)

given ey ¼ ½0; 1; 0�T the unit vector of the y-axis. Moreover, a uni-
form velocity is supposed to enter the inlet while no-slip condi-
tions and perfect electrical conductance are assumed for the top
and bottom walls

ujinlet ¼ uin;

@u
@n


outlet

¼ 0;

ujwall ¼ 0;

@B
@n


@X

¼ 0;

pjoutlet ¼ 105 Pa;

@p
@n


@Xnoutlet

¼ 0;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(18)

where uin is taken equal to 0.32m/s in order to have Re ’ 8000, thus
ensuring a turbulent regime for the case without a magnetic field. For
the BFS case, the Reynolds number, which represents the ratio between
inertial and viscous forces, is defined as

Re ¼ quinH
l

; (19)

where H ðmÞ represents the depth of the step. No turbulence model
has been implemented since the magnetic field tends to suppress tur-
bulence, favoring a completely laminar flow. Indeed, the Lorentz force
induced by the presence of a vertical magnetic field acts in the opposite
direction to the flow with a direct proportionality to the local velocity,
resulting in a global slowdown of the flow and a damping of turbu-
lence. The laminarisation induced by the magnetic field is observed
even at the lowest values imposed for the intensity of B. Figure 1
reports a sketch of the simulated benchmark, along with the adopted
numerical mesh. All the details on the physical and numerical parame-
ters are summarized in Table I (the temperature reported is the one at
which the thermophysical properties are evaluated).

In the following, different values for B0 2 R3 are considered, to
explore different effects of various magnetic intensities on the flow
regime: specifically, the initial magnetic field is only directed in the y-
component as B0 ¼ ½0;By;0; 0�T [Eq. (17)]. For each value of the
imposed magnetic field, the flow reaches a steady state before 4 s,
which is considered the final time of each simulation; the discretization

FIG. 1. Computational domain and grid for
the BFS case study.

TABLE I. Physical and numerical parameters for the FOM.

q 9806 kg/m3 uin 0.321336 m/s N h 7500

l 1.93e-3 Pa � s Bin ½0:25; 1� T L 0.18m
l0 1:26e� 6 H/m pout 105 Pa H 0.0049m
g 1:28e� 6X�m T 600K z 1e� 5 m (1 cell)
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time varies at any time step, according to the CFL condition, to ensure
numerical stability. The simulations have been performed adopting the
finite volume discretization in OpenFOAM-org (v.7)37 using the
librarymagnetoHDFoam developed in Ref. 38 and available on Github
under the MIT license.

B. Offline phase

The full-order model (FOM), represented by the OpenFOAM
model described in the previous section, has been solved for different
parametric configurations: the parameters l 2 D � R2 are given by
the time t and the y-component of the initial magnetic field, i.e., By;0.
The parametric domain is then defined as follows:

t 2 T ¼ 0; 4½ � s By;0 2 B ¼ 0:25; 1½ �T such thatD ¼ T �B;

(20)

from which a train Ntrain and a test Ntest set are derived, as displayed in
Fig. 2. The non-uniform sampling for the time is driven by physical

observation, as most of the dynamics are concentrated in the first time
instants (before 2 s), whereas, as the magnetic field increases, the flow
is completely laminarised, thus showing less turbulent behavior.
Overall, the training dataset is composed of 660 snapshots related to
11 values of the initial magnetic field and 60-time instances. Two dif-
ferent fields are going to be considered: the pressure p and the velocity
u; in particular, the former has been rescaled with respect to the outlet
boundary condition, i.e., pjoutlet ¼ 105 Pa, thus the reduced pressure
~p ¼ p� pjoutlet .

First, the training snapshot matrix is used to perform the POD
procedure to obtain the eigenvalues and the associated modes. Both
are ordered from the most energetic to the lowest according to the
eigenvalues; specifically, low-rank modes contain more information
and represent the dominant spatial physics in the system.6,8 Figure 3
shows on the left the decay of the singular values

ffiffiffiffiffi
kr

p
as a function of

the rank r, presenting good exponential behavior for both the quanti-
ties of interest: this means that both solution manifolds can be

FIG. 2. Separation of the train and test set in the parametric domain D.

FIG. 3. POD singular values (left) and information/energy content (right) as a function of the rank for the velocity and the reduced pressure field.
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approximated by a linear subspace spanned by the POD modes;8 the
right subplot reports the decay of the information/energy content I(r),
defined in Eq. (6), depicting how the error of low-rank approximation
decreases as more basis functions are added to the subspace. In partic-
ular, for the online phase, the maximum number of available modes
has been selected to be 20 for both fields in order to have information
about the most dominant physics and the smaller scales.

Afterwards, the GP models have been trained using both the
monolithic approach and the tensor decomposition (TD), as explained
in Sec. IIB 1: in both cases, the input data x of the GP have been
rescaled using themin–max approach

~x ¼ x � xmin

xmax � xmin
; (21)

given xmin the minimum of each feature in the training sample and
xmax the maximum; whereas, the i th output data yi using the
standardization

~yi ¼
yi � hyii

ri
; (22)

with hyii as the sample mean on the training dataset and r2i its sample
variance. This is performed to keep the different features in the same
range and thus improve the training capabilities of the GPR.18,26 As
already mentioned in Sec. IIB, the kernel of the GP is chosen to be a
radial basis function (RBF),28 which is the most widespread choice: the
prediction of the surrogate models was satisfying; thus, no hyper-
parameter tuning on the kernel has been done.

C. Online phase

Once the POD modes and the GP models (both monolithic and
tensor-decomposed) have been generated in the offline phase, in this
section, the results of the online phase will be presented, focusing on
the reconstruction error and the prediction of the reattachment length

xR. Before diving into the discussion, the average absolute error E/
N

and relative error e/N for the generic field / have been defined as
follows:

E/
N ¼ 1

dimðNtestÞ
X
l2Ntest

jjr/Nðx; lÞjjL2ðXÞ;

e/N ¼ 1
dimðNtestÞ

X
l2Ntest

jjr/Nðx; lÞjjL2ðXÞ
jj/ðx; lÞjjL2ðXÞ

; (23)

given Ntest � D a subset of the parameter space with test data (not
used for the training) and r/Nðx; lÞ the residual field defined as the
absolute difference between the full-order solution / and the recon-
struction with N modes PN ½/�, i.e., r/Nðx; lÞ ¼ j/ðx; lÞ
�PN ½/�ðx; lÞj.

The results of the non-intrusive approach proposed in this work,
i.e., the integration of Gaussian process regression with the proper
orthogonal decomposition to estimate the modal coefficients, both
with the monolithic GPR (POD-GPR) and the GPR with Tensor
Decomposition (POD-GPR-TD) have been compared with the best-fit
case in which the coefficients are computed through projection (POD-
Project) as in Eq. (5). Figure 4 shows the decay of test errors for the
reduced pressure ~p and the velocity u as the dimension of the reduced
space increases: both the cases with GPR interpolation present a “satu-
ration” on the error itself, as found by Cammi et al.29 and Introini
et al.;39 nevertheless, the average error on the test set is around 3% for
the velocity and 0.3% for the reduced pressure, both values are evalu-
ated by the authors as acceptable since most of the information is
encoded correctly and the test output is sufficiently close to the high-
fidelity data. The POD-Project case shows a convergence trend; as
more modes are added, the reconstruction tends to become more and
more similar to the ground-truth given by the full-order solution itself.

A significant quantity of interest for the adopted case study is the
reattachment length xR,

40–42 defined as the maximum distance from

FIG. 4. Online absolute (first column) and
relative (second column) test error for the
POD-GPR for the pressure (first row) and
the velocity (second row), compared with
the projection error (best-fit).
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the step where the x-component of the velocity close to the wall
(Dy ¼ 0:0004 m) changes sign, meaning a left-to-right flow along the
positive direction of the x-axis. Thus, xR is a function of time t, and the
value is averaged starting from t¼ 2 s, that is, when the flow for each
value of the initial magnetic field is laminarised.43 The results have
been plotted as a function of the initial magnetic field By in Fig. 5: each
ROM method shows quite good agreement with the full-order solu-
tion, being able to reconstruct the average flow field and its characteris-
tic quantities.

The algorithms have been executed on a tower computer with an
Intel Core i7-9800X processor, whereas the FOM simulations have
been performed on an HPC cluster. One of the important advantages
of the ROM methods consists in the significant reduction of the com-
putational costs in multi-query and real-time applications compared
to a direct numerical solution: Fig. 6 shows the average CPU time
needed to estimate a modal coefficient for the pressure and the velocity
comparing the three different methods; overall, the time required is
quite low even though the POD-GPR-TD case is more CPU consum-
ing because more GPR models have to be evaluated during the online
phase. The main advantage of the GPR-TD approach lies in the offline
phase due to the reduction of the computational cost of the training

phase:19,23 once the reduced model is built, several cheap simulations
can be run very quickly also for parameter values not included in the
training range, which is especially useful for uncertainty quantification
and parameter estimation. Indeed, for the wall-clock time, the test
transient for a given value of the magnetic field can be completed in
less than 1 s. In contrast, the computation of the full-order solution
requires significantly more time, ranging from 4 to 5min when high
values of the magnetic field are imposed to 50–60min for low values.
The variation in time based on the magnetic field intensity is due to
the fact that an elevated magnetic field brings the flow to a steady state
much faster, after which all the computed values remain constant.

In the end, all the considered techniques accurately reconstructed
the velocity and pressure fields at any time instant and for any value of
a magnetic field in the considered range. Figures 7 and 8 report the
velocity field from the FOM and the ROM reconstruction for two-time
instants (t¼ 2 s and t¼ 4 s) for the case with By ¼ 0:325 T, using ten
modes: it can be observed that the average flow field is accurately
described by any method adopted in this work and that the smaller
scales44 have been suppressed by the POD truncation. This behavior is
expected and coherent with the POD algorithm itself, whose first
modes correspond to the most energetic ones,8 being characterized by
eddies of larger scales.45,46 So, the residual is primarily concentrated
near the step, where smaller scales evolve with faster dynamics com-
pared to the temporal sampling used. However, by increasing the
temporal sampling resolution, it would be possible to capture these
higher-frequency dynamics, thereby improving the accuracy of the
reconstruction achieved by the POD. Nevertheless, even with the cur-
rent temporal sampling, the residual remains sufficiently small and
acceptable for both pressure and velocity. Moreover, Figs. 7 and 8 put
in evidence the effect exerted by the magnetic field on the flow behav-
ior:43 indeed, since the value of the Reynolds number is very high
(Re¼ 8000), the flow would be characterized by extremely turbulent
dynamics,42 if no magnetic fields were applied. Instead, the perpendic-
ular magnetic field laminarises the regime, causing turbulent dynamics
to be dampened in favor of a fully laminar flow.

IV. CONCLUSIONS

The present work applies a non-intrusive reduced-order model-
ing approach to a magnetohydrodynamic scenario consisting of lea-
d–lithium flowing in a BFS geometry. According to the authors’
knowledge, this study represents one of the few works focusing
on ROM for MHD flows involving fluids representing liquid metals

FIG. 5. (a) Definition of the reattachment
length xR. (b) Prediction of xR (m) by FOM
and ROM using ten modes at different
magnetic field intensities.

FIG. 6. CPU times of the ROM during the online phase.
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flowing in breeding blankets. In the offline phase, the reduced model
has been trained with several time-dependent snapshots in which dif-
ferent intensities of the applied perpendicular magnetic field were
imposed, being the considered parameters represented by the time and
vertical component of the magnetic field. This step encodes the spatial
information in the reduced coordinate system provided by the reduced
basis built by the POD procedure. During the online phase, the
reduced coefficients have been estimated using two different super-
vised learning techniques, i.e., the monolithic GPR and the tensor-
decomposed GPR. The results obtained with the two methods have
been compared with the best-fit case in which the coefficients are com-
puted by projection. All the explored methods proved to be able to

accurately reconstruct the flow dynamics at any time instant and for
any value of the imposed magnetic field belonging to the train range,
with much lower computational costs compared to a full-order solu-
tion. The average CPU time needed to estimate modal coefficients for
pressure and velocity is relatively low across the three methods applied.
However, the POD-GPR-TD approach requires more CPU resources
since it involves evaluating several GPR models during the online
phase. The GPR-TD technique is particularly advantageous in the off-
line phase, where it significantly lowers the training computational
burden. Once the reduced model is created, it allows for quick and
inexpensive simulations, even for parameters not included in the train-
ing range. Thus, from an applicative standpoint, this study shows the

FIG. 7. Comparison of the ROM reconstruction, using ten modes, and the associated residual field for By ¼ 0:325 T at t¼ 2.00 s.

FIG. 8. Comparison of the ROM reconstruction, using ten modes, and the associated residual field for By ¼ 0:325 T at t¼ 4.00 s.
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possibility of generating reduced models representing the MHD effects
exerted by residual magnetic fields of any intensity on operating fluids
flowing within the blanket. The creation of these models could signifi-
cantly aid in sensitivity analysis and uncertainty quantification by
shifting the calculation to the reduced order level rather than the high-
fidelity one. Furthermore, ROMs could facilitate the study of real-time
simulations, which would be essential in contexts where controlling
the effects of the magnetic field is critical. Future studies could explore
the application of these techniques in scenarios involving more general
magnetic fields, with arbitrary direction and orientation, as well as
time-varying conditions. Additionally, the model could also be trained
using data from experimental measurements, further enhancing its
accuracy and applicability. Moreover, it is foreseen to apply these
approaches to more complex geometries closer to real cases encoun-
tered in fusion reactors and to adopt other techniques aimed at com-
bining the information of mathematical models with data directly
taken from the physical system.
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NOMENCLATURE

Acronyms

BC Boundary condition
DMD Dynamic mode decomposition
FOM Full-order model
GP Gaussian process

GPR Gaussian process regression
MCF Magnetic confinement fusion
MHD Magnetohydrodynamics
ODE Ordinary differential equation
PDE Partial differential equation

POD Proper orthogonal decomposition
RB Reduced basis

RBF Radial basis function
ROM Reduced order modeling
SVD Singular value decomposition
TD Tensor decomposition

Greek Symbols

fangNn¼1 Modal/reduced coefficients
C Boundary of the spatial domain
e Relative error

ePOD POD projection error lower bound
g Fluid electrical resistivity ðX�mÞ

fgngNs
n¼1 POD eigenvectors
h GP kernel hyper-parameters vector

jhðx; x0Þ Kernel (covariance function) of the prior distribution
of f

KðnÞ Singular values matrix
fkgNs

n¼1 POD eigenvalues
l Parameters vector
l Fluid viscosity ðPa�sÞ
l0 Magnetic permeability ðH=mÞ

Ntest Test set
Ntrain Training set

q Fluid density ðkg=m3Þ
r2 Sample variance

/ðnÞ Parametric modes
fungNn¼1 Basis functions

wðnÞ Time modes
X Spatial domain

Latin Symbols

An Matrix for the nth coefficient an
B Magnetic field ðT Þ
B Magnetic field parametric domain
C POD correlation matrix
c Constant for wave function initialization
D Training set
d Size of the GRP training set D
E Average absolute error

EðxÞ Mean of the prior distribution of f
f Generic (to-be-inferred) input–output relationship
h Step height ðmÞ
I Relative information content
l Truncation rank

M Dimension of the GPR test set
N h Dimension of the spatial grid
N Dimension of the reduced space (rank)
Ns Number of available training solutions
Nt Number of sampled time instants
P Conditional density function of y
p Fluid pressure ðPaÞ
r Residual field

Re Fluid Reynolds number
S Snapshot matrix
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T Time parametric domain
U Solution manifold
u Training solutions (snapshots)
u Fluid velocity ðm=sÞ

XN Reduced space
X Input training set

ðxi; yiÞ Input-output pair
y Output training set

REFERENCES
1J. P. Freidberg, Ideal MHD (Cambridge University Press, 2014).
2H. Zohm, G. Gantenbein, A. Isayama, A. Keller, R. L. Haye, M. Maraschek, A.
M€uck, K. Nagasaki, S. Pinches, and E. Strait, “Mhd limits to tokamak operation
and their control,” Plasma Phys. Controlled Fusion 45, A163 (2003).

3L. B€uhler, “Liquid metal magnetohydrodynamics for fusion blankets,” in
Magnetohydrodynamics, Fluid Mechanics And Its Applications Vol. 80
(Springer, Dordrecht, 2007).

4G. Ferrero, R. Testoni, and M. Zucchetti, “Impact assessment of radiative heat
transport in arc-class reactor FLiBe liquid immersion blanket,” Nucl. Sci. Eng.
198, 898–816 (2024).

5D. Biskamp and D. Biskamp, Nonlinear Magnetohydrodynamics (Cambridge
University Press, 1997), Vol. 1.

6T. Lassila, A. Manzoni, A. Quarteroni, and G. Rozza, “Model order reduction
in fluid dynamics: Challenges and perspectives,” in Reduced Order Methods for
Modeling and Computational Reduction (Springer International Publishing,
Cham, 2014), pp. 235–273.

7G. Rozza, M. Hess, G. Stabile, M. Tezzele, F. Ballarin, C. Gr€aßle, M. Hinze, S.
Volkwein, F. Chinesta, P. Ladeveze, Y. Maday, A. Patera, and J. Farhat Char,
Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms
(De Gruyter, 2020).

8A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial
Differential Equations: An Introduction, 1st ed., UNITEXT (Springer Cham, 2015).

9S. Lorenzi, A. Cammi, L. Luzzi, and G. Rozza, “POD-Galerkin method for finite
volume approximation of Navier–Stokes and RANS equations,” Comput.
Methods Appl. Mech. Eng. 311, 151–179 (2016).

10M. Tezzele, N. Demo, A. Mola, and G. Rozza, “An integrated data-driven com-
putational pipeline with model order reduction for industrial and applied math-
ematics,” in Novel Mathematics Inspired by Industrial Challenges (Springer
International Publishing, Cham, 2022), pp. 179–200.

11A. Charalampopoulos and T. Sapsis, “Uncertainty quantification of turbulent
systems via physically consistent and data-informed reduced-order models,”
Phys. Fluids 34, 075120 (2022).

12A. Moni, W. Yao, and H. Malekmohamadi, “Data-driven reduced-order model-
ing for nonlinear aerodynamics using an autoencoder neural network,” Phys.
Fluids 36, 016105 (2024).

13R. Taylor, J. N. Kutz, K. Morgan, and B. A. Nelson, “Dynamic mode decomposition
for plasma diagnostics and validation,” Rev. Sci. Instrum. 89, 053501 (2018).

14A. A. Kaptanoglu, K. D. Morgan, C. J. Hansen, and S. L. Brunton,
“Characterizing magnetized plasmas with dynamic mode decomposition,”
Phys. Plasmas 27, 032108 (2020).

15A. A. Kaptanoglu, K. D. Morgan, C. J. Hansen, and S. L. Brunton, “Physics-con-
strained, low-dimensional models for magnetohydrodynamics: First-principles
and data-driven approaches,” Phys. Rev. E 104, 015206 (2021).

16S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations
from data by sparse identification of nonlinear dynamical systems,” Proc. Nat.
Acad. Sci. U.S.A. 113, 3932–3937 (2016).

17Y. Yang, Y. Xue, W. Zhao, S. Yao, C. Li, and C. Wu, “Fast flow field prediction
of three-dimensional hypersonic vehicles using an improved Gaussian process
regression algorithm,” Phys. Fluids 36, 016129 (2024).

18G. Ortali, N. Demo, and G. Rozza, “A Gaussian process regression approach
within a data-driven POD framework for engineering problems in fluid dynam-
ics,”Math. Eng. 4, 1–16 (2021).

19L. Cicci, S. Fresca, M. Guo, A. Manzoni, and P. Zunino, “Uncertainty quantifi-
cation for nonlinear solid mechanics using reduced order models with Gaussian
process regression,” Comput. Math. Appl. 149, 1–23 (2023).

20Y. Maday, O. Mula, A. T. Patera, and M. Yano, “The generalized empirical
interpolation method: Stability theory on Hilbert spaces with an application to
the Stokes equation,” Comput. Methods Appl. Mech. Eng. 287, 310–334
(2015).

21A. Cammi, S. Riva, C. Introini, L. Loi, and E. Padovani, “Indirect field recon-
struction and sensor positioning in circulating fuel reactors using data-driven
model order reduction,” in Proceeding of the 2023 International Congress on
Advances in Nuclear Power Plants, Gyeongju, Korea (2023), pp. 1–12.

22M. Guo and J. S. Hesthaven, “Reduced order modeling for nonlinear structural
analysis using Gaussian process regression,” Comput. Methods Appl. Mech.
Eng. 341, 807–826 (2018).

23M. Guo and J. S. Hesthaven, “Data-driven reduced order modeling for time-
dependent problems,” Comput. Methods Appl. Mech. Eng. 345, 75–99 (2019).

24D. Xiao et al., “Non-intrusive reduced order models and their applications,”
Ph.D. thesis (Imperial College London, 2016).

25D. Xiao, F. Fang, C. Pain, and I. Navon, “A parameterized non-intrusive
reduced order model and error analysis for general time-dependent nonlinear
partial differential equations and its applications,” Comput. Methods Appl.
Mech. Eng. 317, 868–889 (2017).

26S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine
Learning, Dynamical Systems, and Control, 2nd ed. (Cambridge University
Press, USA, 2022).

27C. Williams and C. Rasmussen, “Gaussian processes for regression,” in
Advances in Neural Information Processing Systems, edited by D. Touretzky, M.
C. Mozer, and M. Hasselmo (MIT Press, 1995), Vol. 8, pp. 1–7.

28C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning., Adaptive Computation and Machine Learning (MIT Press, 2006).

29A. Cammi, S. Riva, C. Introini, L. Loi, and E. Padovani, “Data-driven model
order reduction for sensor positioning and indirect reconstruction with noisy
data: Application to a Circulating Fuel Reactor,” Nucl. Eng. Des. 421, 113105
(2024).

30S. Riva, C. Introini, and A. Cammi, “Multi-physics model bias correction with
data-driven reduced order techniques: Application to nuclear case studies,”
Appl. Math. Modell. 135, 243–268 (2024).

31M. W. Scroggs, I. A. Baratta, C. N. Richardson, and G. N. Wells, “Basix: A run-
time finite element basis evaluation library,” J. Open Source Softw. 7, 3982
(2022).

32M. S. Alnaes, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, “Unified
form language: A domain-specific language for weak formulations of partial
differential equations,” ACM Trans. Math. Softw. 40, 1 (2014).

33I. A. Baratta, J. P. Dean, J. S. Dokken, M. Habera, J. S. Hale, C. N. Richardson,
M. E. Rognes, M. W. Scroggs, N. Sime, and G. N. Wells (2023). “DOLFINx:
The next generation FEniCS problem solving environment,” Zenodo. http://
www.doi.org/10.5281/zenodo.10447666

34M. W. Scroggs, J. S. Dokken, C. N. Richardson, and G. N. Wells, “Construction
of arbitrary order finite element degree-of-freedom maps on polygonal and
polyhedral cell meshes,” ACM Trans. Math. Softw. 48, 1 (2022).

35L. Boccaccini, G. Aiello, J. Aubert, C. Bachmann, T. Barrett, A. Del Nevo, D.
Demange, L. Forest, F. Hernandez, P. Norajitra et al., “Objectives and status of
eurofusion demo blanket studies,” Fusion Eng. Des. 109–111, 1199–1206
(2016).

36U. M€uller and L. B€uhler, Magnetofluiddynamics in Channels and Containers
(Springer Science & Business Media, 2001).

37H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach to com-
putational continuum mechanics using object-oriented techniques,” Comput.
Phys. 12, 620–631 (1998). publisher: AIP.

38M. Lo Verso, C. Introini, E. Cervi, F. Giacobbo, and A. Cammi, “A novel
OpenFOAM library for magneto-hydrodynamics studies in the nuclear fusion
field,” in Proceedings of the NUTHOS 2024 Conference, 2024.

39C. Introini, S. Riva, S. Lorenzi, S. Cavalleri, and A. Cammi, “Non-intrusive sys-
tem state reconstruction from indirect measurements: A novel approach based
on hybrid data assimilation methods,” Ann. Nucl. Energy 182, 109538 (2023).

40B. Armaly, F. Durst, J. Pereira, and B. Sch€onung, “Experimental and theoretical
investigation of backward-facing step flow,” J. Fluid Mech. 127, 473–496
(1983).

41S. Scharnowski, I. Bolgar, and C. K€ahler, “Control of the recirculation region of
a transonic backward-facing step flow using circular lobes,” in Proceedings of

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 107167 (2024); doi: 10.1063/5.0230708 36, 107167-11

VC Author(s) 2024

 11 N
ovem

ber 2024 15:19:12

https://doi.org/10.1088/0741-3335/45/12A/012
https://doi.org/10.1007/978-1-4020-4833-3_10
https://doi.org/10.1080/00295639.2023.2219815
https://doi.org/10.1016/j.cma.2016.08.006
https://doi.org/10.1016/j.cma.2016.08.006
https://doi.org/10.1063/5.0098278
https://doi.org/10.1063/5.0177577
https://doi.org/10.1063/5.0177577
https://doi.org/10.1063/1.5027419
https://doi.org/10.1063/1.5138932
https://doi.org/10.1103/PhysRevE.104.015206
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1063/5.0183291
https://doi.org/10.3934/mine.2022021
https://doi.org/10.1016/j.camwa.2023.08.016
https://doi.org/10.1016/j.cma.2015.01.018
https://doi.org/10.1016/j.cma.2018.07.017
https://doi.org/10.1016/j.cma.2018.07.017
https://doi.org/10.1016/j.cma.2018.10.029
https://doi.org/10.1016/j.cma.2016.12.033
https://doi.org/10.1016/j.cma.2016.12.033
https://doi.org/10.1016/j.nucengdes.2024.113105
https://doi.org/10.1016/j.apm.2024.06.040
https://doi.org/10.21105/joss.03982
https://doi.org/10.1145/2566630
http://www.doi.org/10.5281/zenodo.10447666
http://www.doi.org/10.5281/zenodo.10447666
https://doi.org/10.1145/3524456
https://doi.org/10.1016/j.fusengdes.2015.12.054
https://doi.org/10.1063/1.168744
https://doi.org/10.1063/1.168744
https://doi.org/10.1016/j.anucene.2022.109538
https://doi.org/10.1017/S0022112083002839
pubs.aip.org/aip/phf


the Ninth International Symposium on Turbulence and Shear Flow Phenomena
(TSFP-9) (2015), pp. 1–6.

42P. M. Nadge and R. N. Govardhan, “High Reynolds number flow over a
backward-facing step: Structure of the mean separation bubble,” Exp. Fluids 55,
1657 (2014).

43D. Lee and H. Choi, “Magnetohydrodynamic turbulent flow in a channel at low
magnetic Reynolds number,” J. Fluid Mech. 439, 367–394 (2001).

44P. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford
University Press, 2015).

45L. Sirovich, “Turbulence and the dynamics of coherent structures part II:
Symmetries and transformations,” Quart. Appl. Math. 45, 573–582
(1987).

46R. Everson and L. Sirovich, “Karhunen–Lo�eve procedure for gappy data,”
J. Opt. Soc. Am. A 12, 1657 (1995).

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 107167 (2024); doi: 10.1063/5.0230708 36, 107167-12

VC Author(s) 2024

 11 N
ovem

ber 2024 15:19:12

https://doi.org/10.1007/s00348-013-1657-5
https://doi.org/10.1017/S0022112001004621
https://doi.org/10.1090/qam/910463
https://doi.org/10.1364/JOSAA.12.001657
pubs.aip.org/aip/phf

