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A Multi-Label Active Learning Framework for
Microcontroller Performance Screening

Nicolò Bellarmino, Riccardo Cantoro, Martin Huch, Tobias Kilian,
Raffaele Martone, Ulf Schlichtmann and Giovanni Squillero

Abstract—In safety-critical applications, microcontrollers have
to be tested to satisfy strict quality and performances constraints.
It has been demonstrated that on-chip ring oscillators can be
used as speed monitors to reliably predict the performances.
However, any machine-learning model is likely to be inaccurate
if trained on an inadequate dataset, and labeling data for
training is quite a costly process. In this paper, we present a
methodology based on active learning to select the best samples to
be included in the training set, significantly reducing the time and
cost required. Moreover, since different speed measurements are
available, we designed a multi-label technique to take advantage
of their correlations. Experimental results demonstrate that the
approach halves the training-set size, with respect to a random-
labelling, while it increases the predictive accuracy, with respect
to standard single-label machine-learning models.

Index Terms—Performance Screening, Fmax, Speed Monitors,
Machine Learning, Active Learning, Device testing

I. INTRODUCTION

Electronic devices in the automotive and aerospace industry
require high dependability, and this is especially true for
microcontrollers (MCUs) used in safety-critical components.
To verify the performance of a device, traditional techniques
resort to structural tests like transition delay testing and path
delay testing; functional tests; or other indirect monitors.
Differently, in performance screening, the maximum working
clock frequency Fmax of the device is precisely determined
in different worst-case conditions; this latter technique is not
intended to replace structural testing, yet it is a much more
informative process compared to a simple speed binning,
where devices are merely sorted into categorical bins (e.g.,
“fast” and “slow”) [1]–[7].

It is common that the oscillation frequencies of appropriate
Ring Oscillators (RO) can be measured via software during
the productive test flow. Since their structures and positions
are different, when used as Speed MONitors (SMONs) they
are likely to capture the relevant variations in the physical pa-
rameters and can be used to predict the eventual performance
of the MCUs. Scholars proposed successful models of various
complexity, such as [3], [4], [8]–[10].

In our case, the Machine-Learning (ML) model that predicts
the performances maps SMONs’ frequencies (features) to the
maximum operating frequencies in a few dozens different
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test cases (labels). For the learning, these labels are acquired
by applying functional test patterns that replicate customer
use-cases of the MCU. This characterization cannot be done
directly in production, but necessitates a separate step during
the the engineering phase, and therefore requires significant
time and resources [11].

This work demonstrates how Active Learning (AL) tech-
niques can identify the data points that are more interesting
and from which a model can generalize better on new unseen
data, achieve a 50% reduction in the number of samples
required to train an ML model (and thus, a reduction in the
time needed to acquire the training set). Furthermore, while
all different test cases are required, they are likely to be
somewhat related. This work also demonstrate how to increase
the accuracy of standard single-target regression models by
means of multi-label techniques that take full advantage of
correlations between the different labels.

To summarize, the contribution of the paper are the follow-
ing:
• We propose four new selection strategies that exploit

active leaning to reduce the number of samples required
to train the model.

• We propose multi-label regressors that take advantage of
the unintended, yet inevitable correlations of the func-
tional tests.

• We demonstrate that feature-space reductions and non-
linear transformations can reduce the prediction error,
allowing the use of simpler and more explainable models.

• We improve the prediction models we previously pro-
posed in [10].

This paper is organized as follows: related works on Ma-
chine Learning applied on CAD are presented in Section II,
general background information, in Section III. The active-
learning metrics and the selection strategies are described
in Section IV; the proposed approach is detailed in Sec-
tion V. The data-collection method is summarized in section
Section VI; the experimental evaluation is presented in Sec-
tion VII. Conclusions are drawn in the last section of the paper.

II. RELATED WORK

The term Machine Learning (ML) was first used by Arthur
Samuel in 1959 in a very specific context [12], but since
then the term described generic automatic processes whose
performances improve through experience [13]. Since 2010s,
techniques based on ML have been used in countless practical,
industrial applications, and the record of successful stories is
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constantly growing. It is established that it can be applied in
the field of Integrated Circuit (IC) testing and, more in general,
in Computer-Aided Design (CAD): as design of electronic
circuits is a complex process broken down in many steps, ML
can be used to achieve circuit’s quality, both directly after
manufacturing for testing purpose and during its lifetime to
increase reliability. The increasing complexity of IC designs
naturally motivates the use of these techniques for overcoming
scalability issues in tests. Many works in recent years exploited
ML techniques at several stages in the production chain. A
summary of some works can be found in [14], in which
three groups presented their research on interpretable ML in
the field of IC test; deep-learning techniques to electrostatic
analysis using physics-informed neural networks; modelling
degradation phenomena to study the impact at chip level. In
[15], some applications of ML in integrated circuit testing are
presented. One application is in the so-called “Alternate Test”,
i.e., the application of appropriate low-cost test stimuli and
the extraction of low-cost alternate measurements from which
the performances can implicitly be inferred. If alternate mea-
surements highly correlated to the performances are selected,
then variations in the performances can be tracked implicitly
through the variations in the alternate measurements through
an input-output function in the form of a regression model.
This paradigm has been proposed as a replacement of the
specification tests, with the aim to largely simplify the test
process and reduce the test cost [16].

The correlation between structural and functional Fmax was
investigated in several works. An approach using complex ML
algorithms was first presented in [3], while previous works
were only considering single parameters [1], [2]. The work
identified, among various algorithms applied on a dataset of
60 devices, the Gaussian Process [17] as the most effective
way to learn from different sets of features (100 flip-flops,
100 transition fault patterns, and 112 testable paths). The work
also showed that outliers negatively influence the prediction,
and should be identified and removed from the training set; a
conformity check was implemented for this purpose.

In [4], two lots of the same product, composed respectively
of 79 and 74 devices were compared. The difference was in
the packages. According to authors, the models trained on one
lot were not able to predict devices belonging to the other lot,
and this might be caused by the use of different packages or
by the limited number of samples in the dataset.

In a more recent work, a different research group correlated
the functional Fmax with low-cost embedded sensors to accu-
rately measure the slack of a selected number of paths [9].
The method was tested on 300 OpenSPARCT2 SoC devices
equipped with 25 sensors, using transition level simulations of
two process variation scenarios with both features and labels
coming from the wafer sort.

In [10], the values of 27 SMONs coming from wafer
sort were correlated to functional Fmax measured on more
than 4,000 packaged devices extracted from 26 corner-lot
wafers; training devices were randomly selected among the
available ones; moreover, the models were developed taking
into consideration the process variations of the various corner-
lots, without considering further dataset shifts during the

production.
In [11], the use of active learning techniques in ML applied

to the MCU performance screening test was introduced, and
three active learning metrics was deployed to build an opti-
mal training set for MCU performance prediction based on
SMONs.

In [18], a novelty detection procedure based on wafer-level
information derived by SMON measurements on single die
was exploited, in order to estimate possible shifts in the data
distribution and to decide if re-train or not the underlying
performance prediction model.

In [19], an outlier detection technique was developed to
identify abnormal samples that lies away from labels’ normal
distribution, in order to build an higher quality dataset.

III. BACKGROUND: TESTING, MCU AND MACHINE
LEARNING

In this section background information will be given, to
better understand the developed framework and the data we
managed. In Section III-A, a general view on device test-
ing approaches is given. In Section III-B, we described the
technology of the MCU under test and the on-board ring
oscillator used as features in the performances screening task.
Section III-C briefly describes background information on ML
in terms of popular ML models/tools that will be used in this
work, including Multi-label approaches and, in particular, the
Regression Chain.

A. Device Testing

Tests on chips are mandatory to accomplish datasheet char-
acteristics. Test activities are generally carried out at different
stages during the life cycle of an IC. First validation tests are
performed during the design-phase of the product, making sure
that this can meet the specifications. Characterization tests are
performed on the first prototypes of the devices in order to
identify failure and fault, possibly leading to a redesign of the
product. Once the device has passed the characterization test,
large volume production can start: chips are now tested directly
on-wafer in the production testing phase before being diced
and packaged. Once the chips have been packaged, other tests
ensure that this process has been completed in the right way
and the IC can be sold on the market. Then, in-the-field tests
can be done to ensure that a certain application can be correctly
performed. Functional tests are performed to verify that the IC
meets the specification, but in the digital microcontroller era,
since the functionality has become more complex, verifying
the functionality of each part in an exhaustive way is infeasible
[20]. Structural tests are based on finding out if there exist
some faults in the circuits, rather than verify the functionality
of each single part. This approach may need some external test
equipment, often costly since this deals with different types of
chips with a variable number of pins. To cut cost, test features
can be incorporated into the chip. One strategy is to include
in the circuit dedicated structures (Design-for-Testability) that
make it easier to develop and apply test applications. This
approach is a structural paradigm because it tries to make
sure that the circuit has been manufactured correctly. However,
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these additional testing structures needed to be designed and
inserted in the circuit, and this may increase the design time
and physical space on the die.. When dealing with MCUs
or System-on-Chips with at least one microprocessor, suitable
test programs can be executed by the processor to test the
device itself. Programs are loaded into the processor, exciting
one or more parts of the circuit, and the responses are collected
for evaluation. This strategy is usually referred to as Software-
Based Self-Test (SBST) [21]. The advantages of this solution
are multiple: it is non intrusive, it does not require extra
hardware and the tests can be performed at the processor
operating frequency. This enables the screening of defects that
are not detectable at lower speed, avoid overtesting, and can
be applied in the field, during the product lifetime. These tests
also do not require expensive test equipment.

B. Speed Monitors

The target automotive MCU of this study is manufactured
in mature CMOS technology; 26 split-lot wafers are manu-
factured covering a wide range of technology behavior of the
MCU product. Split lots are produced only for engineering
purposes, where the tuning of the technology parameters can
mimic slow, typical and fast dies. In some split lots, the n–
MOSFET has a faster design than the p–MOSFET or vice
versa. Nearly all potential technology behavior is covered with
this wide variety of split lots, allowing a precise prediction.

The SMONs used in this work are ROs of different struc-
tures. The SMONs consist of library cells in series with
an overall inverting behavior; thus, the structures oscillate.
There are 27 SMONs on the die: the majority is placed in
the die center as a compact block; eight identical monitors
are distributed across the chip to cover the spatial variations,
also known as global mismatch. The SMONs on the die can
be further divided into five different groups based on their
structure, denoted as INV, NAND, NOR, EXT, VM. The
INV–RO consists of inverters from the standard library of
the design. This symmetric cell type reveals the n– and p–
MOSFET behavior in the same way. With the NAND SMON
we can create a certain n-biased behavior of the die. The two
daisy-chained n–MOSFETs dominate the NAND cell behavior.
In the NOR–RO, a p-biased behavior is visible for these gates.
The n- and p-biased behavior is further reinforced with the
placement of dedicated transistors [22]. More sophisticated
SMONs are called EXT; a netlist of the cell design is retrieved,
and a particular path is extracted and replicated as RO. Thus,
EXTs are replicated paths from the design converted as an
RO. These EXT ROs behave similarly to the selected path
from the design. The VM–RO is mainly designed and placed
for physical parameter variation monitoring across the chip.

All five groups of SMONs are manufactured with two
major types of transistors. The two transistor types can
be distinguished regarding their threshold voltage: Regular
threshold voltage (RegVT) and high threshold voltage (HVT).
The RegVTs are fast transistors with high performance but
contribute significantly to the leakage current due to the
lower threshold voltage. The HVT transistors, on the other
hand, have a slow switching behavior (low performance) and

significantly reduce the leakage current. Depending on the MC
specifications - high performance or low power - the designers
and the EDA tools must favor HVT or RegVT transistors. The
final design usually consists of a mixture of both transistor
types. Some paths in the design consist of transistors with a
homogeneous threshold voltage, and some paths have a certain
proportion of HVT, and RegVT-this proportion is not fixed and
varies widely. Therefore some SMONs are manufactured with
homogeneous threshold voltage transistors and some with a
mixture of both.

The diverse SMON types, in combination with the various
split-lot wafer, give a solid foundation for the investigation of
the chip behavior in every corner and enormous benefit for the
data processing.

C. Multi-label regression

Multi-Label, also known as Multi-Output or Multi-Target,
Regressions are ML problems that involve the prediction
of more than one numeric values (labels) for each input
data: given an input space D ∈ Rn and a sample x =
(x1, x2, x3 . . . xn) ∈ D, we want to predict target y =
(y1, y2 . . . ym) in the output space Y ∈ Rm, so a multi-label
model can be considered as a function that maps Rn to Rm.

The multi-label regression problems can be faced in several
ways [23]: one is to transform the multi-label problem into
different single-target problems, where only one label is pre-
dicted. This resolution method considers each target variable
as independent from the others, training m independent models
where each model i ∈ (1 . . .m) takes as input the tuple (x, yi).
However, the targets in many applications are not independent,
and independent models do not take advantage of their mutual
correlation.

In [24], two approaches have been developed: the Regressor
Chain (RC) and the Multi-Target Regressor Stacking (MT-
RS). The Regressor Chain is a problem-transformation method
based on the idea of chaining single-target models, creating a
list of regressors called h = (h1, h2...hm), in which each of
them takes advantage of the predictions made by the prede-
cessors in the list. Chosen an order C in the prediction of the
label (assuming C = (y1, y2, ...ym)), given the input features
X , the first model of the chain is trained on D1 = (X,Y1).
The successive models are trained on an augmented dataset,
including the predicted label (Ŷ ) at the previous step in the
feature space: h2 is trained on D2 = (X, Ŷ1), h3 is trained
on D3 = (X, Ŷ1, Ŷ2) and so on. Going on in the chain, the
models can exploit relationships in the output space. We refer
to the corrected version of the Regressor Chain, discussed in
[24], that use the predictions of the regression models earlier
in the chain instead of the true values of the target variables
for fitting the models. These predictions are obtained using an
internal k-fold cross-validation. In Fig. 1, it is possible to see
the regression chain approach.

IV. ACTIVE LEARNING AND SELECTION STRATEGIES

In many domains annotated data are hard and expensive
to obtain due to the cost of the process or the time needed
to label the samples. The choice of what samples to label
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Fig. 1. A visual representation of the Regression Chain.

and insert in the training set of a ML algorithm is often done
randomly, since with no assumption or further investigation on
the domain of the data there is no reason to choose one sample
over another. However, a precise strategy in choosing the data
to be inserted in the training set could lead to better models,
able to generalize well on new unseen samples, making the
training procedure faster and more efficient.

Active learning (AL) aims at easing the data collection
process. An AL model automatically decides which instances
an annotator should label to train a supervised algorithm in
the quickest and most efficient manner. The core idea is to
let the algorithm pick examples to be trained on, rather than
choosing random points to label and then train the model on
those. AL is based on the fact that an ML model trained
on a small amount of carefully-chosen data can perform as
well as the same model trained with a large random-labeled
dataset, if not better [25]. Also, labeling randomly the data
may lead to noise or redundancy in the training set and this
may slow down the learning process. A model based on Active
Learning techniques can possibly reach an higher level of
accuracy while using a smaller number of training examples:
curious algorithms are better learners in terms of efficiency and
knowledge extracted by the data. Also, large part of time of
any ML project is spent on getting the correct training dataset.
AL techniques can help in the sense that the annotator (that can
be a human or a machine) only annotates the most important
examples related to the task to be solved, making the whole
process more efficient.

It is possible to compare Active Learning to famous sam-
pling techniques as Importance Sampling: also importance
sampling can be used to speed-up the convergence of an ML
model (such as Deep Neural Network [26]). However, this
would require the computation of the Loss Functions, that is
the measure of the error made by the ML model on the training
samples, and thus, it require the presence of the labels. In this
context, instead, we consider only unlabeled sample at the
beginning of the procedure, building the training set step-by-
step by sampling the most informative samples on the basis
of some unsupervised metrics.

There exist different AL framework, divided into in three

main categories: Stream-based selective sampling [27], Pool-
based sampling [28], and Membership query synthesis [29]–
[31]. Pool-based sampling is the most well-known scenario for
active learning. This methods enables the algorithm to evaluate
the entire dataset before selecting the best samples. The active
learner algorithm is often initially trained on a labeled part
of the data which is then used to determine which instances
would be most beneficial to insert into the training set for the
next active learning loop.

Applications such as remote sensing image classification
[32], text classification [33], optical networks [34], and cer-
tainly ours too, need a representative dataset to learn from.
Active Learning performs as well as Domain Adaptation
Transfer Learning approaches [34], and can be an alternative
to this technique if obtaining samples from other sources is
expensive.

Depending on the approach used, a re-training of the actual
ML model may be required at each insertion-step: this is the
main difference between passive sampling and active sampling
approach. In passive sampling, the training set is built from a
pool of unlabeled data without relying on learning a function to
estimate the “score” value of data, but considering geometric
properties of the data itself, selecting a sample only on the
basis of its location in the feature space; this approach is
computationally efficient because it does not require to re-
train a model at each step and it is agnostic on the task that we
are facing (classification/regression) or on by the underlying
model. Active sampling, instead, relies on a regressor model
that is updated at every step, and uses this model to compute
a score function to rank the unlabeled data, in order to choose
the best sample to label at each step.

The framework chosen in this work is a pool-based sampling
strategy with different metrics to rank the samples of the
unlabeled dataset: in particular, seven unsupervised metrics are
deployed in order to find the distance between the training set
and the unlabeled samples. The points for which these metrics
present the highest values or score are chosen as points to be
labeled. Both active and passive sampling techniques are used.
In the following subsections, we will discuss the selection
strategies taken into account for our ML framework.

A. Local Outlier factor

Local Outlier Factor (LOF) algorithm inspects the “local”
property of the data, taking into account a restricted number
of neighbors to indicate the degrees of outlierness for each
point in the dataset. The LOF model is trained on ”normal
data” (i.e., the training set) and tested on new samples. This
approach can be used as AL metrics: if the LOF of a point
is high, this should be inserted in the training set since it is
identified as an outlier.

Local outlier factor is based on “local density”, where
locality is given by the k-neighbors of a point. The basic
concepts that define the LOF of a points are:
• The K-distance of a point (distK(xi)), so the distance

between the point and its K-th nearest neighbor
• The K-neighbor of a point xi, so the cardinality of the

set of points that lie inside the circle of radius K-distance
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• The Reachability Distance between two points
(RD(xi, xj)), so the maximum between the K-distance
of the point (xj) and the distance between these two
points:

RD(xi, xj) = max(distK(xj), dist(xi, xj)) (1)

• The Local Reachability Density (LRD), so the inverse
of the average reachability distance of a point xi from its
neighbors. Intuitively, the higher is the average RD (i.e.,
the neighbors of a point are far from this), the less is the
density of points present around a particular point. This
gives information on how far a point is from the nearest
cluster. Low values of LRD imply that the closest cluster
is far from the point.

LOF is the ratio between the average LRD of the K neighbors
of a point and the LRD of the point itself. If a point xi is not
an outlier, the average LRD of its neighborhood is similar to
the LRD of the points xi and the LOF is nearly equal to one.
If the point is an outlier, it has a substantially lower density
than its neighbor and the LOF is greater than one.

The number of neighbors to consider, K, is a parameter
to be tuned in the model, in addition to the distances used
in density evaluation. In practice, K from 10 to 20 appears
to work well in general. This is an active learning approach
because it requires to keep the LOF model updated (with a
re-training) at each step. In our settings, K is equal to 10
and the distance used is the classical Euclidean distance (i.e.,
Minkosky distance with p = 2).

B. Query by committee
The Query-by-Committee (QBC) method is an effective

active learning approach based on having a set of models
(called committees) and on a measure of disagreement among
the predictions made by the ensemble of models involved. A
committee of learners is trained on the available labeled data.
Given a pool of unlabeled samples, at each iteration we select
one point to label. This point, considered the most informative
one, is inserted into the training set. The criterion used to
choose the point to be labeled is based on the principle of max-
disagreement among the committees: for each unlabeled point,
the committees produce a set of predictions and the points on
which the committee members have maximal disagreement it
is chosen as the one to be labeled. In our setting, the measure
of disagreement is the standard deviation of the predictions
made by the committee members.

To be an effective approach, the committees have to be
heterogeneous: a possible choice is to consider different types
of models trained on the whole training set. We chosen models
of different natures (linear, non-linear and tree-based models,
and in particular Ridge Regressor [35], Support Vector Ma-
chine for Regression SVR [36], Random Forest [37], Gaussian
Process Regressor [38]) in order to catch different properties
of the data. This is an active sampling approach, because the
committee have to be retrained at each step.

C. Euclidean Distance
The euclidean distance (EDD) measures how far are the

points in the pool of unlabeled samples from the current train-

ing set. This is computed in terms of the euclidean distance
(L2-norm) between all the unlabeled samples xi, i = 1 . . . N
and the centroid of the actual training set, that is the mean
position of all the points in all of the coordinate directions,
or the center of mass of the points that form the dataset. In
formula, given a training set T and its samples x̃ and a pool
of unlabeled samples X , the centroid of TS is

x̄ =
1

N

∑
x̃∈T

x̃ (2)

and the distance between the training set and the unlabeled
samples is:

EDD(X,xn) = ||x̄− xn||2 (3)

The point to label is the one with the highest EDD. This is
a passive sampling approach because there is no underlying
model to be trained.

D. Greedy sampling

Following [39], three novel approaches have been used:
“Greedy sampling on the input” (GSx), “Greedy Sampling on
the output” (GSy) and “improved Greedy Sampling both on
input and output” (iGS). In the GSx approach, the distance be-
tween the training set and an unlabeled sample is computed on
the features. Given a starting training set, at each iteration we
select a new sample located furthest away from all previously
selected samples in the input space to achieve the diversity
among the samples. For each of the unlabeled samples, we
compute the minimum distance between its features and each
of the labeled samples, calling it dxn and we choose the one
with the maximum dxn, so the criterion used is the maximum
minimum distance between unlabeled and labeled samples.
Assuming that we have already sampled k items, for each of
the remaining N − k unlabeled samples xn, n = k + 1...N ,
we compute the distance between the sample and each of the
k labeled samples:

dxnm = ||xn − xm||, m = 1...k, n = k + 1 . . . N (4)

then dxn, the shortest distance from xn to all k labeled samples
is computed:

dxn = min
m

dxnm, n = k + 1 . . . N (5)

and finally we select the sample with the maximum dxn to
label.

The GSy is an active sampling approach that aims to mea-
sure the diversity in the output space. Given an initial training
set,in each iteration we select a new sample located furthest
away from all previously selected samples in the output space.
This approach requests to construct a regression model f(x),
that also must be tuned (as an hyper-parameter). For each of
the unlabeled samples xi, we compute the minimum distance
between the prediction made by the regressor on it, f(xi), and
each of the labels of the training samples, calling it dyn and
choose the one with the maximum dyn, so the criterion used
is the maximum minimum distance between prediction of the
label of the new sample and the real label of the samples in
the current training set. Assuming that we already sampled



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS , VOL. X, NO. Y, MM YYYY 6

and labeled k samples with outputs ym, m = 1...k, and a
regression model f(x) has been constructed, for each of the
remaining N −k unlabeled samples, xn, n = k+ 1 . . . N , we
compute first its distance to each of the k outputs:

dynm = ||f(xn)−ym||, m = 1 . . . k, n = k+1 . . . N (6)

and dyn that is the shortest distance from f(xn) to ym, m =
1 . . . k:

dyn = min
m

dynm, n = k + 1 . . . N (7)

and then we select the sample with the maximum dynto label.
The iGS aims to measure the distance between training and

unlabeled samples both in the input and output space, being a
mix of GSx and GSy. For each unlabeled sample, we compute
the distance on the input and and on the output between it
and all the training samples, as indicated above, choosing as
score for the sample the minimum between all the product
of distance in input and output space. In formula: assuming
that k samples have already been labeled with labels yn, n =
1 . . . k, for each of the remaining N − k unlabeled samples
xn, n = k + 1 . . . N , iGS computes first dxnm and dynm and
then dxyn as:

dxyn = min
m

dxnm · dynm, n = k + 1 . . . N (8)

and then selects and label the sample with the maximum dxyn.
More on GSx, GSy and iGS can be found in [39] While

GSx is a passive sampling approach, GSy and iGS are active
sampling approach since require the update of a model at each
step.

E. Hausdorff distance

The Hausdorff distance (HD) measures how far two subsets
of a metric space are from each other. Two sets are close in the
Hausdorff distance if every point of either set is close to some
point of the other set. In other words, it is the greatest of all
the distances from a point in one set to the closest point in the
other set. The HD distance has been used in computer vision
works to measure the distance between images for generative
models [40] or face recognition [41]. In this work, the HD is
used as an off-the-shelf distance measure between the training
set and the unlabeled samples. This is a passive sampling
approach.

V. PROPOSED PERFORMANCE SCREENING FLOW

Firsts devices that come out from production lines are
grouped by their own production wafer (corner-lots), which
have dimension of hundreds of devices. Each new unlabelled
wafer is considered as a single point of a dataset, that can be
represented by its centroid, computed as the mean of all the
features of the devices in the wafer. We assume to start with
at least one already labelled wafer, otherwise an analysis on
how choosing the first wafer to be inserted in the training
set is needed. In [39], a methodology for that problem is
presented. However, the methodology for the successive step
is the same independently of how the first wafer was chosen.
(Experiments will be performed by doing a mean on all the
possible choices for the initial wafer). For all the remaining

unlabelled wafers, an active learning measure is computed to
measure the “distance” from the training set at that time. Then,
the wafer with the highest utility score is chosen and the labels
are acquired. This procedure is repeated until a stop criterion is
reached, based on the value of the AL strategy chosen. Since
the AL value can be correlated to the prediction error, low
values for the AL strategy indicate low prediction error, as
shown in Section VII-E. The labelled samples represent the
training set for successive machine learning models, that can
be trained using one of the multi-label regression techniques
presented above. Our experiments concerned the Regression
Chain as the main multi-label approach. During the test phase,
SMONs values of new wafers are collected and passed to the
Machine Learning models in order to predict the maximum
operating frequency. For each device, if the predicted operating
frequency is below a certain threshold, the device is considered
bad and discarded. Eventually, we can compute the AL metrics
also in wafers that comes from production lines, and if the
score of a particular wafer is above a certain threshold [18]
(discussed in Section VII-F), one can decide to label that
wafer, insert it in the training set and update the ML model.
This approach permits us to:
• Select only the best samples, that contribute the most

to fit robust machine learning models. This reduces the
size of the training set for our models (i.e. number of
devices to be labelled), decreasing the time needed for
the characterization process (tens of days of saving).

• Fit an effective machine learning model, that take advan-
tage of the correlation between labels (patterns), improv-
ing the performances of the model (in terms of prediction
error and production yield).

• Decide to update the model by labelling critical wafers
that comes from production.

VI. DATA COLLECTION

Data acquisition from devices can be separated into two fun-
damental types: labeled and unlabeled devices. An unlabeled
device has only the SMON readouts, while a labeled device
has the SMON readout and also goes through a separate char-
acterization with functional patterns. It is always tried to keep
the number of labeled devices as small as possible because
the characterization process is very complex. Thus there are
possible parts in the data collection:(i) The SMON readout of
the chip, that lead the features and (ii) the measurement of
the functional patterns, that provide the reference labels for
the ML training.

The SMONs are measured in an early production phase
when the dies are still on the wafer. The wafer is mounted on
a chuck which has high-temperature stability during the mea-
surement process. An internal counter measures the oscillation
frequencies of the SMONs. Previous to measurement, each
SMON is calibrated to ensure high quality. This calibration
is implemented in the software for the measurement process.
The stable temperature and calibrated measurement generates
high-precision SMON data. The average error is less than
0.15% at the minimum voltage Vmin. All 27 SMON data
are logged for further processing. The SMON readout can
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Fig. 2. Proposed performance screening flow

be integrated in the test program of the production test flow.
Thus, the SMON data is stored for every produced MCU,
possibly leading to millions of unlabeled samples. The smons
data are acquired both before and after packaging the dies,
to analyze the effect of burn-in on the features. In Fig. 3,
the manufacturing procedure and data acquisition steps are
represented. Measuring the reference labels is a more elaborate
process. The reference labels are measured with packaged
die from the wafer. The dies are mounted on a customer
application-oriented board. This pseudo-in-system test board
has a high accuracy radio frequency (RF) socket with low
resistance and the least possible parasitics. Furthermore, the
test board has high power integrity and on-board energy-
storage capacitance to prevent voltage droop during the testing.
During the test, the MCU’s temperature and voltage can be
precisely controlled and are continuously sampled by on-chip
voltage and temperature sensors.

When the voltage and temperature conditions are on the
defined steady state values, the MCU is flashed with the
firmware. Then a functional pattern is uploaded and started
in an endless loop on the MCU. The MCU starts to execute
a functional pattern with a low frequency. The frequency is
slowly stepped-up in each loop until the functional pattern
fails. The process is executed several times (five) to ensure
that the failing frequency of the MCU remains at the same
value. This failing frequency of the MCU is considered as the
critical frequency Fmax of the functional pattern and is stored
in the database.

The applied functional patterns have a high diversity in
stressing various design units of the MCU. The functional
patterns are designed that no customer application fails ear-
lier than one out of the functional pattern. Therefore, some
patterns are designed to exhaust the maximal load of the
MCU. However, there is some Fmax uncertainty remaining
caused by the diversity of potential customer applications.
This uncertainty is why a frequency guardband is added to
the measured Fmax. One way to compute this guardband is
discussed in Section VII.

Fig. 3. Data collections steps.

For each MCU, the most critical patterns is the one with
the lowest Fmax (the one we call Pmin).

While the measurement of the features is highly accurate,
the measurement of the label is more inaccurate:it is performed
under worst-case voltage (Vcrit) and temperature (Tcrit) condi-
tions at the limits of the specified operating window. To make
matters worse, even minor deviations in individual parameters
have a negative effect on the measurement result. Even small
mechanical vibrations, a change in the base resistance, or
statistical noise change the result. Thus, the label measurement
is influenced by many unknowns in the acquisition.

To cope with uncertainty in the labelling process, those
devices which are more than four standard deviations outlying
from the wafer median in a functional test are classified as
outliers. This outlier detection is applied for every functional
test pattern. If an outlier is detected in one functional test,
the device is generally marked as an extrinsic device even
if all other functional test cases are within the acceptable
values. This outlier detection is a very pessimistic approach
but necessary for high-quality training data.

VII. EXPERIMENTAL EVALUATION

In this section we will discuss about the experiments
carried on. First, the so called advanced model will be
presented. These use feature reduction techniques and poly-
nomial transformation to adapt linear model to our scope,
making them able to better fit to our data. Then, the multi-
label approach will be discussed: the ten different patterns
available (P1, . . . , P10) will be used at once to predict an
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artificial target, Pmin. Since we want to have a single final
performance prediction, we can use the pattern with minimum
maximum frequency to be more conservative on the devices
performances. Finally, we will demonstrate how the use of
active learning can be useful to optimally train the model
with a great save in number of samples (and time) needed
for building the training set.

Results are presented in terms of famous regression perfor-
mance indices (mean absolute error MAE, root mean squared
error RMSE) but normalized by the mean of Fmax in the
test set, i.e. nMAE = MAE(ytrue, ypred)/mean(ytrue)
and nRMSE = RMSE(ytrue, ypred)/mean(ytrue). We also
computed the Guardband (G). G [42] is defined as how much
increase the amount of minimum product specification to
ensure that, even with prediction error, the product will meet
the minimum specification. In other words, the guardband is
the amount of Hz by which the operating frequency defined
in the datasheet has to be increased to ensure that no more
than a fixed parts per million (ppm) of false positives will
be in production. To make an example, let considering that
a machine learning model has been trained and G has been
calculated. Supposing that the screening frequency is fscreen,
the effect of G is to increase the threshold for the pass/fail
screening from fscreen to fscreen + G. The goal to achieve
is to have G as small as possible, as it affects the production
yield. We can compute G on a test set with true frequencies
y, predicted frequencies ŷ and errors e = y − ŷ as:

G = µe + kσe (9)

in which µe and σe are the mean and the standard deviation
of the error distribution and k is a parameter that permits to
chose the defects level in ppm. k = 5.2 is an approximation
for 0.1 ppm. In [10], it was discussed how to compute the
guardband for production wafers using bootstrapping, rather
than for a single test set.

A. Experimental Setup

We used a dataset composed by about 4000 sample with
27 features (the SMONs) and 10 patterns (the labels). A large
number of measured samples have missing values in the labels,
which is due to measurement errors. These samples were
dropped. At the end we have about 2400 full-measurements
samples. The training and test sets were created by splitting
the data into training and test sets (if not otherwise specified),
with proportion 75%-25%, respectively. ML models come
from a state-of-the-art data-analysis Python package [43].
Experiments was run into a standard workstation equipped
with an Intel® Core™ i9-9900K CPU @ 3.60GHz × 16 and
32 GB of RAM.

B. Single-Target Regression

A first analysis on predicting the operating frequency by
deploying machine learning models was done in [10]. There,
several base regression algorithms were tested. In this work,
we want to improve results already achieved. In particular, a
novel method based on applying polynomial transformation
and feature reduction is presented. We used both Linear

Regression with L1-L2 regularization (Ridge [35], Lasso [44],
ElasticNet [45]), and Non-Linear method (kernel-SVR [36],
tree-based models [37], [46]) to widely cover the type of
models a user can find in common ML tools. Model were
trained by means of 5-folds Cross Validation (5-f CV), and
Grid-Search was used to find the best hyper-parameters of the
models out a a grid of possible ones, that lead to the lowest
generalization error.

Previous results show that linear models perform worse than
the others, although the difference is not so significant [10].
This suggests that the relation between input and output is
not very complex, even though a linear relationship does not
perfectly fit for this task. Nonlinear feature transformation can
be used to enable the use of linear regression models, by
projecting the input feature space into a higher-order space
where – with more likelihood – the input-output relationship
is linear. The transformation used in this context is the poly-
nomial transformation, that is based on generating polynomial
combination of the input features with a certain degree. For
example, the degree-2 polynomial features of a 2-dimensional
input sample of the form (a,b) is:

Φ(a, b) = (1, a, b, a2, ab, b2) (10)

In our case, 27 SMONs will generate 406 features with a
2-degree transformation, 4,060 features with a 3-degree trans-
formation and so on. The 2-degree transformation has been
chosen. It resulted more effective in terms of prediction error
achieved, avoidance of overfitting and number of resulting
features. For the feature space reduction analysis, we first
computed the Pearson Correlation [47] heatmap. According
to this, some SMONs turned out to be strongly correlated.
Each single SMON has an almost perfect correlation with 12
to 14 other ones. This suggested to reduce the dimensionality
of the feature space to reduce overfitting as much as possible.

We evaluated two approaches for dimensionality reduction:
Principal Components Analysis (PCA) and Univariate Feature
Selection (UFS). In the first approach, our models extract the
first k Principal Components (PCs) and apply the regression on
the new feature space, while in the second approach the best k
features are selected based on univariate statistical tests. The
difference between the two approaches is that PCA creates
new features, while UFS simply eliminates them. Results
of these analyses are reported in Table I. In the first two
columns, the table reports the number of features (k) used
and the explained variance (EV) ratio [48], obtained using
that number of features with the PCA approach. More than
99% of the variance can be explained using only 3 PCs.
The remaining columns report the mean nRMSE value on
10 patterns computed on the test set. We selected 3 well-
representative algorithms (i.e., Ridge, SVR, and Extra Trees)
for this step.

We added the polynomial transformation of the features
extracted by the PCA in the Linear models. Results highlighted
that PCA-based approach outperforms UFS using the same k.
Moreover, UFS error is inversely proportional to y, while in
some cases, using fewer PCs produces better results than the
all initial features (e.g., SVR with RBF gave the best results
with only 4 PCs, while it starts overfitting when increasing
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k). Tree-based models resulted more robust concerning this
behaviour. Polynomial regressions using linear models are now
aligned with the other results: a comparison is visible in Table
II, in which we compare the most recent results with the ones
from [10]: for the advanced Ridge model we used the PCA
with 14 components and polynomial transformation (obtaining
120 features), while for the SVR we used the PCA with 4 PC
and RBF kernel. In the advanced Extra Trees, we used the PCA
with 14 PCs. We also tried to include both the Feature Space
reduction and the Feature Space transformation in a single step
by using the Kernel PCA (KPCA) [49], [50]. KPCA is an
extension of PCA which achieves non-linear dimensionality
reduction through the use of kernels, or functions that map
data into an higher dimensional space. Kernels should enable
dealing with more complex data patterns, which would not be
visible with only linear transformations. KPCA firsts construct
the kernel matrix K from the training dataset by mean of a
kernel function k, Ki,j = k(xi, xj) (for each couple of sample
(xi, xj)) and then compute the kernel principal components
(14, in our case), as happen in PCA. This approaches resulted
in higher prediction error with respect to the double-step of
feature reduction and feature-transformation (Table IV), but
with a final feature-space of dimension 14, rather than 120
(obtained with the application of PCA, extracting the 14 PCs,
and then the polynomial transformation of degree 2).

TABLE I
COMPARISON BETWEEN PCA AND UFS (MEAN NRMSE ON 10

PATTERNS, ADVANCED INDEPENDENT MODELS)

#Features EV ratio
PCA

(nRMSE)
UFS

(nRMSE)

Rigde1

(poly)
SVR

(RBF) E.Trees Rigde
(poly)

SVR
(RBF) E.Trees1

1 87.61% 2.84% 2.57% 2.53% 3.15% 2.93% 2.92%
2 98.90% 1.81% 1.71% 1.70% 3.06% 2.74% 2.75%
3 99.24% 1.62% 1.54% 1.60% 3.02% 2.66% 2.70%
4 99.47% 1.61% 1.54% 1.59% 1.86% 1.84% 1.83%
5 99.52% 1.60% 1.54% 1.59% 1.81% 1.80% 1.81%
6 99.57% 1.60% 1.54% 1.59% 1.79% 1.79% 1.80%
7 99.62% 1.60% 1.54% 1.60% 1.79% 1.78% 1.80%
8 99.67% 1.60% 1.55% 1.60% 1.79% 1.78% 1.79%
9 99.71% 1.60% 1.55% 1.60% 1.75% 1.72% 1.76%
10 99.74% 1.59% 1.54% 1.60% 1.74% 1.71% 1.75%
11 99.77% 1.59% 1.54% 1.59% 1.73% 1.70% 1.74%
12 99.79% 1.58% 1.55% 1.60% 1.71% 1.68% 1.72%
13 99.81% 1.58% 1.55% 1.59% 1.68% 1.65% 1.68%
14 99.83% 1.58% 1.55% 1.59% 1.68% 1.64% 1.67%
15 99.85% 1.58% 1.55% 1.60% 1.68% 1.64% 1.66%
16 99.86% 1.58% 1.55% 1.60% 1.63% 1.58% 1.63%
17 99.88% 1.58% 1.56% 1.60% 1.62% 1.57% 1.60%
18 99.89% 1.58% 1.56% 1.59% 1.62% 1.57% 1.60%
19 99.90% 1.58% 1.56% 1.60% 1.62% 1.57% 1.59%
20 99.92% 1.58% 1.56% 1.60% 1.61% 1.56% 1.59%
21 99.93% 1.58% 1.56% 1.59% 1.60% 1.56% 1.57%
22 99.94% 1.58% 1.56% 1.61% 1.60% 1.56% 1.57%
23 99.96% 1.58% 1.56% 1.61% 1.60% 1.56% 1.58%
24 99.97% 1.58% 1.56% 1.60% 1.60% 1.56% 1.57%
25 99.98% 1.58% 1.56% 1.60% 1.60% 1.56% 1.56%
26 99.99% 1.59% 1.56% 1.61% 1.59% 1.57% 1.56%
27 100.00% 1.59% 1.56% 1.61% 1.59% 1.56% 1.55%

TABLE II
ADVANCED MODELS VS BASE MODELS SCORES (MEAN VALUES ON 10

PATTERNS, INDEPENDENT TARGET)

Algorithm Base Models Advanced Models

nMAE nRMSE G nMAE nRMSE G

Ridge1 1.8% 2.4% 15.9% 1.19% 1.58% 10.30%
SVR 1.1% 1.6% 10.4% 1.12% 1.54% 10.22%

Extra Trees1 1.2% 1.6% 10.2% 1.15% 1.55% 10.15%

TABLE III
PEARSON CORRELATION BETWEEN LABELS

P1 P2 P3 P4 P5 P6 P7 P8 P9 P1
0

P1 1 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99
P2 0.99 1 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99
P3 0.99 0.99 1 0.99 0.99 0.98 0.99 0.99 0.99 0.99
P4 0.99 0.99 0.99 1 0.99 0.98 0.99 0.99 0.99 0.99
P5 0.99 0.99 0.99 0.99 1 0.98 0.99 0.99 0.99 0.99
P6 0.98 0.98 0.98 0.98 0.98 1 0.98 0.98 0.98 0.98
P7 0.99 0.99 0.99 0.99 0.99 0.98 1 0.99 0.99 0.99
P8 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1
P9 0.99 0.99 0.99 0.99 0.99 0.98 0.99 1 1 1
P10 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1

C. Multi-Label Regression

The Pearson correlation matrix was computed on the labels
(Table III). Its easy to see that all the label are extremely
high correlated and thus they cannot be independently consid-
ered, justifying the use of multi-label learning strategies. The
prediction of one label can be useful to predict the others.
This idea is the base of multi-label regression. This approach
is based on exploiting the correlation in the label space to
predict the minimum maximum operating frequency (i.e. the
artificial target Pmin. The Regressor Chain was applied to
several common regression models, in addition to the ones
mentioned above. The chained and non-chained algorithms are
compared. Each regressor was trained using a Grid Search 5-
f CV algorithm to tune the hyper-parameters, and this was
done in 20 training-test split in a nested CV fashion, to
obtain an unbiased estimation of the generalization error [51].
The inner loop of CV is responsible for model selection
and hyperparameter tuning, while the outer loop is used for
the generalization error estimation. We performed a paired t-
Student test on the 20 results obtained by the outer loop, to
reject the hypothesis that one model performed better than
another only by chance. Each model was inserted in a pipeline,
and pre-processing steps were applied as follow:

• Ridge, Lasso, Elasticnet, OMP: Standard Scaler, PCA
with 14 components and polynomial transformation with
degree 2 (according to the results already achieved)

• SVR: Standard Scaler, PCA both with 14 and 4 com-
ponents. RBF kernel was used (according to the results
already achieved).

• Decision Tree, Extra Trees, Random Forest: Standard
Scaler, PCA with 14 components

• Ridge, Lasso, Elasticnet with KPCA, 14 components and
both RBF and Polynomial (degree 2) kernels (namely RK,
PK).
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• Kernel Ridge with RBF kernel, a Ridge Regression that
make use of kernel trick [52]

• Multivariate Adaptive Regression Splines algorithm
(MARS) algorithm, both with all the features and only
with 14 PCs [53]

The order chosen for the RC was C =
(P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, Pmin)

Results are listed in Table IV: regressor chain performs
slightly better than the non-chained models in Ridge, Lasso,
OMP, Elasticnet (with a reduction of all the error metrics com-
puted and on G). With Linear model, we can now achieve a G
below 10% and nRMSE near to 1.5%. Tree-based regressors
can obtain better results in the non-chained version. This can
be related to the fact that the ratio Nsamples/Nfeatures decrease
going on in the chain (at each step we increase by one the
features), and when this happen tree-models tends to overfit,
loosing in generalization performances. For SVR-4, it seems
we do not have real improvement in the chained version. For
SVR-14 we cannot say anything: with a t-test on the 20 split
used for the estimation of generalization error we obtained a
p-value greater than 5% (that is, the control-value we have
chosen) and so we are not able to reject the hypothesis that
the slight differences in the performances are due to the choice
of training and test sets and so happen by chances. Linear
Regression models with polynomial-PCA work slightly betters
in chain, and this hold also for MARS models.

D. Discussion on ML models

Experiments showed that satisfying performances (about
1.5% of nRMSE) can be achieved with pretty different types
of models. However, in this scenario, Linear Models are
preferable since they are easily interpretable, because they
are based on coefficient assigned to each feature (and thus,
they can give diagnostics information on features importance).
Even if the kernel methods work good, and the performances
are aligned to other type of method, they require to compute
the kernel matrix K and store it, as it is needed to transform
new data points: this is a quite memory-demanding method,
and does not scale well in the case of great-size training set.
The use of Multi-Labels regression turned out to be useful to
reduce the prediction error on the critical pattern Pmin One
can choose to use or not Regression Chain or multi-labels
approach for performance prediction task on the basis of the
final goal: if we are interested in predict a single label (using
a single pattern among the ones available), the use of Multi-
Labels regression may be unnecessary. But, if highly correlated
labels are available, and we aim to have information on all of
them plus the critical patterns at once, exploiting the existing
correlation, the use of multi-labels regression is useful since it
permits to have more accurate models. This mean that we can
achieve a lower guardband G, and so increase the production
yield, since we discard less working devices.

1Similar results can be obtained with other type of linear and tree-based
models. Linear models benefits of input transformation while tree based model
seems to not

TABLE IV
COMPARISON BETWEEN ADVANCED MODELS IN-CHAIN OR SINGLE

TARGET (Pmin TARGET)

Algorithm Single models Multi-Label (RC) models

nMAE nRMSE G nMAE nRMSE G

Ridge 1.15% 1.55% 10.20% 1.12% 1.53% 10.00%
SVR (4 PCs) 1.08% 1.51% 9.99% 1.08% 1.51% 9.99%

ExtraTrees 1.11% 1.51% 9.91% 1.12% 1.52% 9.97%

Lasso 1.15% 1.55% 10.20% 1.11% 1.51% 9.92%
ElasticNet 1.15% 1.56% 10.20% 1.11% 1.51% 9.93%

OMP 1.18% 1.59% 10.41% 1.15% 1.55% 10.19%
SVR (14 PCs) 1.08% 1.50% 9.97% 1.08% 1.50% 9.95%
Random Forest 1.12% 1.53% 10.04% 1.13% 1.54% 10.07%
Decision Tree 1.57% 2.15% 14.09% 1.60% 2.18% 14.29%

Ridge RK 1.24% 1.67% 10.65% 1.25% 1.68% 10.72%
Lasso RK 1.24% 1.67% 10.67% 1.25% 1.69% 10.77%

ElasticNet RK 1.24% 1.67% 10.67% 1.25% 1.69% 10.77%
Ridge PK 1.27% 1.70% 10.86% 1.22% 1.66% 10.58%
Lasso PK 1.27% 1.71% 10.88% 1.22% 1.66% 10.61%

ElasticNet PK 1.27% 1.71% 10.88% 1.22% 1.66% 10.61%
Kernel Ridge 1.15% 1.56% 9.90% 1.12% 1.52% 9.70%

MARS 1.33% 1.78% 11.34% 1.30% 1.73% 11.05%
MARS (14 PCs) 1.43% 1.89% 12.07% 1.40% 1.85% 11.78%

E. Active Learning

We compared three regression algorithms, namely Ridge
regression with polynomial features (PFR), Support Vector
Regression (SVR), and Random Forest (RF)) to study the
generalization problem in our domain. These models are
well representative of the vastness of the models available in
general ML tools (linear, non-linear and tree-based models)
The AL selection strategies exploited and compared are seven:
LOF, QBC, EDD, GSx, GSy, iGS, HD. We also used a random
sampling and labelling approach where models were trained
using a random subset of the available wafers. At each step,
the models are tested on a proper test-set. According to the
results in Table VI, for the Polynomial Ridge we can obtain
good accuracy (below 2% of nRMSE) with 13 wafers using a
random approach, 11 using ED, 8 using QBC and GSx, 7 using
GSy and iGS and only 6 wafers using LOF and HD. These
last two metrics are also the ones with the lowest nRMSE
variance (even if also for GSx and iGS the variance is low
after 9 wafers). We can obtain similar results with the other
algorithms taken into account, summarized in Fig. 4, in which
we can clearly see the advantages of the use of AL techniques
over a random choice. In the first steps the error is high, but
adding wafers it decreases. For all the nRMSE curves, we
can calculate the Area Under the Curve. The lower this value
is, the better the model is, being able to generalize well in
few steps. In the random approach the area under the nRMSE
curve value is quite high, but this not hold if a precise strategy
is chosen. For all the metrics taken into account, the nRMSE
curve goes down faster than a random approach. The nRMSE
is halved just after a few steps if a precise strategy is used, and
this holds for all the algorithms. Table V shows that LOF and
HD are probably the best approach for this kind of problem,
resulting in the lowest area under the nRMSE curve.

The error scores obtained at each step of the AL procedure
were correlated to the unsupervised metrics and reported
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TABLE V
AREA UNDER THE NRMSE CURVE FOR DIFFERENT ALGORITHM

(POLYNOMIAL RIDGE, RANDOM FOREST, SVR)

Alg Rnd EDD LOF QBC GSx GSy iGS HD

PFR 86.8 57.8 54.2 55.0 54.7 56.1 54.8 54.1
RF 93.2 77.8 62.8 64.9.0 64.2 66.1 63.1 64.1
SVR 89.3 53.9 52.2 57.0 53.2 55.4 52.8 52.1

Fig. 4. nRMSE obtained with different regression algorithms, using AL
strategies. The curves represent the mean value of the errors depending on all
possible initial wafer choices.

in Table VII. Four metrics were used: mutual information,
Pearson, Spearman, and Kendall [54] correlation. All of them
show a very strong correlation between the nRMSE and the
selection strategies score; also in this case, LOF and HD seem
to be the best metrics to be used for the AL. A graphical view
of the correlation can be observed in Fig. 5 where mean values
are reported.

F. Discussion on Active Learning

We can quantify the impact of the AL procedure by measur-
ing the time needed to create the ML training set. We consider
the case in which no labelled devices are available at the begin-
ning of the procedure. The labels acquisition for each device
require at least 30 min. Each wafer is composed on average by
200 devices. If a random sampling and labelling approach is
chosen, to reach an acceptable error (below the 2% of nRMSE)
we need 13 wafers, while only 6 wafers are needed with AL
(LOF strategy), as indicated above (Fig. 4). This mean that
with a random approach the creation of the dataset would last
at least 30min ·13wafers ·200devices = 78, 000min ≈ 55days.
If AL is used, the dataset creation requires less than half of the
time (≈ 25 days). Also, in a practical case we cannot test the
performances of the models at each step of the AL procedure
(as done in Fig. 4) since no test set would be available. This

hold for random sampling and labelling, but if AL is used, we
can have an idea of the performances of the models by looking
at the value of the selection strategies on the unlabelled data,
since these are highly correlated with the prediction error
(Fig. 5, Table VI). Low values for AL strategies should be
correlated to low prediction error. The concept of ’low value’
depend on the strategy used and it is dataset-dependent. To
compute thresholds, it would be necessary to have collected
enough data to build a proper test set. In any case, models
created with AL procedure are more likely to be of a better
quality at each step with respect to random sampling and
labelling. AL metrics can also be applied to wafers that comes
from production lines. If a particular wafer present a value for
an AL metric above a certain threshold (computed on the basis
of the value measured during the training-set building), it can
be labeled and included in the training set, and the model can
be updated. This avoid that the ML model becomes obsolete
(and this may happen for many reason, for example a shift
in the production processes). A step toward this direction was
studied in [18], with focus on LOF metric.

VIII. CONCLUSIONS

This work presented a methodology for predicting MCUs
maximum operating frequency. We developed a framework
that uses famous existing ML techniques to be deployed in
devices performance screening during the production, using
active learning techniques and multi-label regression.

The achieved contributions are 1) to have improved ex-
isting performance prediction methods by mean of features-
transformation approaches and multi-label learning that per-
mitted us to reach lower prediction error and lower guardband,
increasing the yield of the process and 2) to have developed a
method to use as low as possible labeled device to build the
ML models, saving tens of days in the dataset creation

We improved existing performance prediction models [10]
with dimensionality-reduction techniques, useful to decrease
the number of features that the predictive ML models have
to analyze. New features are created, that can compact the
information to simplify the models.

The polynomial transformation permits to create non-linear
features, that are more suitable for the underlying problem
with a reduction in prediction error with respect to baseline
methods. These two approaches enable the use of Linear
Model in this task, and they are preferable due to their sim-
plicity and explainable nature. Multi-label learning approach
turned out to be useful to increase regression performance by
analyzing relationship and correlation among target variables
in the labels space. We were able to reduce the prediction
error of the critical pattern Pmin. Experiments demonstrated
that almost every regression algorithm can benefit of the
Regression Chain technique, while for tree-based estimator
the performances in chain are not better than the non chained
version due to overfitting problems.

The use of AL techniques demonstrated to be suitable for
the purpose of reducing the number of labeled point to reach
a certain amount of error, because they are able to find an
optimal training set. LOF and HD seem to be the best selection
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TABLE VI
POLYNOMIAL RIDGE REGRESSION MEAN AND VARIANCE NRMSE DURING ACTIVE LEARNING USING ALL POSSIBLE INITIAL WAFER CHOICES

Step nRMSE mean [%] nRMSE variance [%]

Rnd ED LOF QBC GSx GSy iGS HD Rnd ED LOF QBC GSx GSy iGS HD

1 10.76 10.76 10.76 10.76 10.35 10.35 10.35 10.35 3.29 3.29 3.29 3.29 4.02 4.02 4.02 4.02
2 7.95 4.84 4.95 4.92 5.83 6.25 6.05 6.25 2.96 2.68 2.71 2.54 1.23 1.63 1.61 1.36
3 7.15 3.39 2.80 2.83 4.36 4.93 4.31 4.61 2.98 0.70 0.57 0.63 1.17 1.65 0.85 0.99
4 6.31 2.56 2.26 2.58 3.62 3.71 3.43 3.68 2.62 0.54 0.23 0.46 0.54 0.9 0.6 0.9
5 6.33 3.09 2.12 2.41 3.16 3.26 3.03 3.15 2.58 0.97 0.16 0.53 0.26 0.74 0.26 0.31
6 5.95 2.41 1.99 2.15 3.01 2.91 2.93 2.9 2.45 0.47 0.16 0.21 0.28 0.31 0.31 0.22
7 5.65 2.26 1.93 2.02 2.83 2.7 2.69 2.71 2.25 0.28 0.09 0.13 0.31 0.27 0.22 0.24
8 5.09 2.11 1.89 1.92 2.63 2.62 2.52 2.43 1.85 0.27 0.06 0.08 0.29 0.41 0.22 0.14
9 3.66 1.99 1.89 1.91 2.44 2.53 2.37 2.32 1.26 0.16 0.07 0.09 0.16 0.44 0.17 0.11
10 3.68 2.01 1.87 1.87 2.3 2.44 2.28 2.27 1.31 0.11 0.06 0.08 0.19 0.35 0.17 0.12
11 2.77 1.99 1.83 1.84 2.22 2.36 2.17 2.25 0.48 0.09 0.05 0.06 0.13 0.32 0.15 0.13
12 2.16 1.94 1.82 1.82 2.15 2.27 2.12 2.16 0.11 0.07 0.06 0.06 0.16 0.28 0.15 0.12
13 1.98 1.89 1.80 1.78 2.07 2.2 2.05 2.09 0.06 0.05 0.05 0.03 0.13 0.21 0.16 0.09
...
26 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Fig. 5. Correlation between active learning unsupervised scores (EDD, LOF, QBC, GSx, GSy, iGS, HD) and nRMSE using polynomial Ridge regression.

TABLE VII
CORRELATION BETWEEN SELECTION STRATEGIES AND NRMSE ON THE

fmax RIDGE REGRESSION MODELS WITH POLYNOMIAL FEATURES

Selection
strategy

Mutual
information

Pearson
correlation

Spearman
correlation

Kendall
correlation

EDD 0.928 0.708 0.927 0.782
LOF 0.889 0.828 0.967 0.849
QBC 0.898 0.526 0.973 0.854
GSx 0.802 0.839 0.967 0.857
GSy 0.944 0.643 0.822 0.609
iGS 0.935 0.611 0.953 0.817
HD 0.859 0.843 0.968 0.857

strategies to be deployed in production in order to choose
the wafer to be labeled, able to halving the training set size
with respect to random sampling and labelling approach. This
permits to save time in the dataset creation, going from 55
days of continuous labelling in the case of a random approach
to 25 days with LOF/HD AL approach. Also, with AL we
can have an indication of the generalization error of our
models. To conclude, the combined use of AL and multi-label
regression permits to build robust ML models faster and better,
achieving lower prediction error, reducing the guardband and
increasing the yield of the process. In general, the methods
presented in this paper can be applied to any situation in
which we aim to correlate alternative measure to devices
performances by execute testing program on a processor (and
thus, create a relation between features and labels by mean
of ML algorithms). Multi-label techniques are more suitable
with respect to single-label model in every similar scenarios,
when several extremely highly-correlated labels are available
and the goal is to predict all of them, or, likewise, we aim
to predict a final target that derive directly from the available
labels (in our case, Pmin).
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