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ABSTRACT 

This paper aims to analyze the Peridynaimcs (PDs) theory and to exploit it for new possibilities in Civil Engineering by 

employing the theory for Structural Health Monitoring (SHM). In particular, the paper aims to exploit PDs for SHM and damage 

characterization of the built environment, at the structural scale, in operational conditions (i.e., without input sources). The 

reasons behind this study rely on the possibility to use PDs to emulate very complex structural behaviors effortlessly, using 

PDs as a paradigm to build low fidelity structural models of real systems. In the present paper, new features to characterize the 

damage (i.e., to detect, locate, and quantify it) are proposed thanks to a special definition of the peridynamic theory written in 

discrete form. These features are the Bond Extremity Acceleration (BEA) and Bond Extremity Velocity (BEV) conjectures, 

which are obtained by discretizing a system with the Bond Based PDs and using a micro-viscoelastic constitutive law at the 

bond level. Moreover, the authors show how the proposed peridynamic parameters are theoretically estimable with very robust 

techniques already used in SHM, such as the Stochastic Subspace Identification (SSI) algorithms. The considerations reported 

in the paper are verified with numerical (virtual) models. The paper concludes that PDs can be used to easily parametrize the 

built environment opening new research possibilities on the use of PDs for civil SHM. Additionally, the proposed BEA proves 

to be a very scalable and general parameter to be monitored in real systems (providing information on the presence, the location, 

and the amount of damage), this also due to its physical based meaning and the straightforward method of extraction in 

operational conditions.  

Keywords: Peridynamics, Structural Health Monitoring, Damage Detection and Localization, Low Fidelity Structural Models, 

Structural Simulator. 

1. INTRODUCTION 

Finding the right balance between accuracy and computational efficiency of structural simulators is essential to obtain valuable 

information on the health state of real structures in a feasible computational time. In reaching this balance, the parallel use of 

low fidelity and high fidelity structural models is helpful, being the first approach ideal to extract very fast information, while 

the second able to generate high quality knowledge on complex behaviors of real systems. However, if Structural Health 

Monitoring (SHM) techniques need to be applied to a large number of structures (e.g., urban area), very high-fidelity models 

result to be inadequate to obtain information in a feasible computational time. 

Peridynaimcs (PDs) is a modern nonlocal theory of continuum established in early 2000 by Stewart Silling [1], [2] and Silling 

et al. [3]. The theory is recently attracting attention in the field of computational mechanics since it replaces the partial 

differential equations of the classical continuum theory with integral, spatial equations. This allows overcoming problems 

related to the representation of discontinuities in the matter, which can arise during damage (e.g., cracks), where the differential 

formulations are not defined. A comprehensive literature review of Peridynamic (from the Greek words peri- i.e., around, and 

-dynami i.e. force) applications and uses can be found in [4]. Basically, PD theory found its principle in the forces-interaction 

(bonds) of points. The matter is divided into infinitesimal portions characterized by their mass and volume. Each point k is then 

supposed to interact with its neighbours inside a region. The collection of all the points inside this region is called family of k. 

The family of k is, in turn, characterized by the horizon, i.e., the maximum distance for which the interactions between k and 

the other points of a body occur. The horizon defines the locality of the behavior of a system; the smaller the horizon, the more 

local the behavior will be. It has been demonstrated that the classical theory of elasticity can be considered as a limiting case 

of the PD theory as the horizon approaches zero [5], [6], [7]. When using PD in a modelling phase, the choice of the horizon 

represents a crucial aspect. It can be a constant or variable along the modelling space. Sometime, physics defines the value of 

horizon (e.g., when modelling particles, the interatomic potential defines the maximum interaction distance). In other cases the 



 

value of the horizon is not defined, and its definition should be based on calibration procedures [8]. When the standard local 

theory, instead, well describes the structural behavior, PD can still be used. In this case, the horizon should be as small as 

possible to fit the classical continuum theory, while when the nonlocal theory is used to model damage (e.g., crack growth and 

propagation), several works have related the value of the horizon with the value of the average distance between points used to 

discretize the continuum, [5], [8]. In this case, the horizon is commonly set to 3 times the spacing between points. PD is thus a 

candidate theory that can be used for modelling real systems. About the modelling of real systems, the work of Gosliga and 

Worden [9] is noteworthy. Here the authors propose the use of Irreducible Element (IE) model, which seeks to create a graphical 

representation of a system (using graph theory [10], [11], [12]) by breaking it down into its constituent parts, with the aim to 

assess the similarity of structures. The system modelling plays an important role in the SHM of existing systems [13], [14]. In 

this field, important researches have been done by Farrar and Worden et al. [15], [16], [17], while the promising future of this 

discipline is also dictated by the technological advancement of the last years [18]. The importance of system identification in 

SHM is crucial and is due to the advantage of using the information extracted from identification techniques for defining 

damage [19]. Within this framework, damage can be defined as a change introduced in a system that negatively affects its 

current and future performance [17]. Thus, SHM techniques are precisely intended to provide some physical/non-physical 

based damage index with a broad range of validity, in the linear and nonlinear field. 

In the present paper the authors propose PDs as a general method to build physical-based graph representations (i.e., with edges 

and nodes) of civil structural systems (i.e., low fidelity models) and built environment. Then, starting from this representation, 

two features are proposed for an efficient damage identification and SHM: the Bond Extremity Acceleration (BEA) and Bond 

Extremity Velocity (BEV). This is done presenting the basic theory of PDs and the proposed algorithm to estimate the BEA 

and BEV (Section 2). Then, some numerical verifications supporting the theory is reported (Section 3). Finally, the conclusions 

are drawn (Section 4). 

2. METHODS 

In this section the methods are presented introducing the basic theory of Peridynamics and the procedure to identify the BEAs 

and BEVs using the Stochastic Subspace Identification (SSI) algorithms. 

2.1. Basic theory  

The linearized micro-linear viscoelastic Bond Based PD (BBPD) equation of motion can be written in standard form as (bold 

is herein used for vectors, bold capital for matrices and italic for scalars): 

𝐌𝐮̈(𝑡) + 𝐂𝐮̇(𝑡) + 𝐊𝐮(𝑡) = 𝐳(𝑡) 
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(1) 

where:  

𝐌𝑘 = 𝑚𝑘𝐈3 

𝐂𝑘𝑗 = 𝜈𝑘𝑗𝐊𝑘𝑗 

𝐊𝑘𝑗 = 𝑐𝑘𝑗𝑉𝑗𝑉𝑘𝚵𝑘𝑗 

𝚵𝑘𝑗 =
𝛏𝑘𝑗(𝛏𝑘𝑗

T)

‖𝛏𝑘𝑗‖
3  

𝑐𝑘𝑗 = {
𝑐𝑘𝑗  if ‖𝛏𝑘𝑗‖ ≤ ℎ 

0 if ‖𝛏𝑘𝑗‖ > ℎ
 

𝛏𝑘𝑗 = 𝐱𝑗 − 𝐱𝑘 

(2) 



 

In Eq. (1) and Eq. (2) 𝐱𝑘 = (𝑥𝑘,𝑋 , 𝑥𝑘,𝑌, 𝑥𝑘,𝑍)
T are the coordinates X, Y, Z of point k (similarly for j), 𝑐𝑘𝑗 ≥ 0 is called bond 

elastic constant, and h is the horizon. Vj and Vk are the volumes associated to the points j and k respectively while 𝜈𝑘𝑗 ≥ 0 is a 

bond damping constant; mk is the mass associated to the point k, I3 is a 3x3 identity matrix and O3 is a 3x3 zero matrix. K is the 

number of points used to discretize the system. Then, u(t) and z(t) denote the displacement vector and the external force vector 

respectively, being t the time variable and (… )̇ (𝑡) the time derivate operator. Finally, 𝐌, 𝐂, and 𝐊 denote the mass, damping, 

and stiffness global matrices of the system. 

2.2. Parameters identification 

From Eq. (1) and Eq. (2) it is possible to derive two parameters that can be easily experimentally identified without input 

(operational conditions) sources; the Bond Extremity Acceleration (BEA) 𝑤𝑘𝑗
′ , and the Bond Extremity Velocity (BEV) 𝑤𝑘𝑗

′′ , 

of the bond kj and the extremity k, which are here proposed as parameters to be monitored for SHM purpose: 

𝑤𝑘𝑗
′ =

𝑐𝑘𝑗𝑉𝑗𝑉𝑘

𝑚𝑘

 

𝑤𝑘𝑗
′′ = 𝑤𝑘𝑗

′ 𝜈𝑘𝑗  

(3) 

It is worth noting that in Eq. (3), in general, 𝑤𝑘𝑗
′ ≠ 𝑤𝑗𝑘

′  and 𝑤𝑘𝑗
′′ ≠ 𝑤𝑗𝑘

′′  as 𝑚𝑘 ≠ 𝑚𝑗. 

Starting from the acquired acceleration response 𝐮̈(𝑡) it is possible to get an estimate of the system matrix 𝐀̂ (in the state space 

formulation) reduced to the number of recorded Degree of Freedoms (DoFs), by using, for instance, SSI algorithms. The eigen-

analysis performed on 𝐀̂ provide its eigenvalues Λ, eigenvectors Φ, and modal damping ratios Ζ, where Λ is a diagonal matrix 

containing the sorted eigenvalues on the main diagonal, Ζ is a diagonal matrix containing the corresponding damping ratios on 

the main diagonal, while Φ is the eigenvectors matrix containing the corresponding eigenvectors in each column of the matrix. 

Performing the estimate of 𝐀̂ on a dimension equal to the number of recorded DoFs, it is possible to get an estimate of the mass 

𝐌̂, damping 𝐂̂, and stiffness 𝐊̂ global matrices of the system reduced to these DoFs: 

𝐊̂ = (𝚽𝑇)−1(𝚲)(𝚽)−1 

𝐌̂ = (𝚽𝑇)−1(𝐈)(𝚽)−1 

𝐂̂ = (𝚽𝑇)−1(2𝚭√𝚲)(𝚽)−1 

(4) 

where 𝐈 is an identity matrix with the same dimension of Λ. Then, the BEAs and the BEVs can be estimated with: 

𝐖̂′ = [−(𝐌̂)
−1

(𝐊̂)] (𝚫)°−𝟏 

𝐖̂′′ = [−(𝐌̂)
−1

(𝐂̂)] (𝚫)°−𝟏 

𝚫 = ⌈

𝐈3 𝚵𝑘𝑗 …

𝚵𝑘𝑗 ⋱ …

⋮ ⋮ ⋱

⌉ 

(5) 

where (… )°−𝟏 denotes the Hadamard inversion operator, while 𝐖̂′ and 𝐖̂′′ contain the estimate of the BEAs 𝑤𝑘𝑗
′ , and the 

BEVs 𝑤𝑘𝑗
′′ , respectively. The estimates of these features can be then refined by repeating the identification procedure on a 

second estimate of the of the system matrix 𝐀̂̂: 

𝐀̂̂ = [
𝐎 𝐈

−(𝐌̂)
−1

(𝐊̂) −(𝐌̂)
−1

(𝐂̂)
] (6) 

obtaining the refined estimate of BEAs 𝐖̂̂′, and BEVs 𝐖̂̂′′. 



 

3. RESULTS AND DISCUSSION 

In this section the previous described methods are applied to numerical benchmarks, and the verifications of the study are 

reported and discussed. 

The numerical benchmarks are represented by 2 Multi Degree of Freedoms (MDoFs) systems. The first with 4 DoFs, while the 

second with 10 DoFs. For the sake of clarity, the systems are represented by a series of masses (spaced 1 m from each other) 

which vibrate in one direction. The systems are supposed to do not have a unique value of the masses or volumes, but these 

values are randomly extracted between 0.8 and 1 (for both mass [kg] and volume [m3] values). Thus, for the 4 DoFs system, 

100 extractions of the model parameters (masses and volumes) have been performed. The same has been done for the 10 DoFs 

system. A dummy mass has been added to the systems in order to constrain the problem and avoid rigid body motions. Then, 

for each system, 4 cases of acquisitions have been assumed: 10 and 30 minutes of acquisitions with signals corrupted by a 5% 

and 20% of gaussian noise. The sampling frequency has been supposed equal to 100 Hz. The horizon h, has been set to 3 m, 

while 𝑐𝑘𝑗 = 2𝑒3 N/m6, and 𝜈𝑘𝑗 = 1𝑒 − 3 sec. 

The methods described in Section 2 have been then applied and the discrepancy between target (theoretically correct) values 

and identified values of the BEAs and BEVs has been studied. Fig. 1 reports the Probability Density Function (PDF) of the 

average identification error (mean values over the bonds of the absolute difference between target and identified values of 

BEAs and BEVs, normalized to the target value). Each PDF has been estimated with 100 samples. From the figure is possible 

to conclude that the error of BEV is higher and more dispersed than the error of BEA, and the error tend to decrease as the 

signal length increase. 

(a) (b) 

(c) (d) 

Fig. 1 Probability Density Function (PDF) of the average identification error [%] of BEAs and BEVs for a 4 DoFs system 

with 10 minutes (a), and 30 minutes (b) of records, and for a 10 DoFs system with 10 minutes (c) and 30 minutes (d) of 

records. All plots refer to 5% of gaussian noise in the records. 

Fig. 2 depicts the bond identification absolute error (absolute difference between target and identified values of BEAs and 

BEVs, normalized to the target value, for each bond) for a case of the 4 DoFs system, with 10 minutes of records corrupted by 

5% of gaussian noise. Also in this case it is possible to note as the errors on the bonds are higher for the estimates of the BEVs. 



 

(a) (b) 

Fig. 2 Absolute identification errors [%] of BEAs (a) and BEVs (b) of the bonds k- j, for a generic 4 DoFs system with 10 

minutes of records and 5% of gaussian noise in the records. 

Then, a realization of the model parameters (masses and volumes) for the 4 DoFs and the 10 DoFs system has been used to 

study the average identification error at increasing damage. In this study, the first bond (bond between points 1 and 2) and the 

last bond (bond between points 3 and 4 for the 4 DoFs system, and between points 9 and 10 for the 10 DoFs system) have been 

damaged. It was supposed a damage multiplier (bond damage) between 0 and 1. This multiplier defines the new values of 𝑐12  

and 𝑐21 as proportional to the initial value of 2e3 N/m6. For the last bond it was assumed a damage multiplier equal to the half 

of that one used for the first bond. Fig. 3 reports the average identification error for some analyzed cases as a function of the 

bond damage. 

(a) (b) 

(c) (d) 

Fig. 3 Average identification error [%] of BEAs and BEVs as a function of the damage level [%] on the bond 1-2 for a 4 

DoFs system with 5% (a), and 20% (b) of gaussian noise in the records, and for a 10 DoFs system with 5% (c), and 20% (d) 

of gaussian noise in the records. All plots refer to 30 minutes of records. 



 

From Fig. 3 it is possible to conclude that the error remains quite stable at increasing percentage of noise in data, and generally 

is higher and more unstable for the estimate of the BEVs. Then, Table 1 reports the comparison between target and identified 

values of BEAs as a function of the bond damage for the 4 DoFs system. 

From the table is easy to observe that the only damaged bonds are those expected to be damaged, and the amount of damage is 

consistence with the expected values. In fact, the first bond reaches a value of BEA equal to 0, while the last bond reach half 

of its initial value for a bond damage on the first bond equal to 100%. Finally, the BEA values of the remaining bonds rightly 

remain unchanged as the damage increases. 

Table 1. Discrepancy between target (dashed black line) and identified BEAs [m/s2] (blue line) as a function of the damage 

level [%] on the bond 1-2 for a 4 DoFs system with 30 minutes of records and 5% of gaussian noise in the records. 
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k=1 Point k=j=1 
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Point k=j=4 

Finally, as done for BEA, Table 2 reports the comparison between target and identified values of BEVs as a function of the 

bond damage for the 4 DoFs system. 

From the table is easy to observe that the only damaged bonds are those expected to change value, and the amount of changing 

is consistence with the expected values. In fact, the first bond reaches a value of BEV equal to 0, while the last bond reach half 

of its initial value for a bond damage on the first bond equal to 100%. Finally, the BEV values of the remaining bonds rightly 

remain unchanged as the damage increases, even if compared to the BEAs estimates, the BEVs values fluctuate more around 

the target values. 



 

Table 2. Discrepancy between target (dashed black line) and identified BEVs [m/s] (red line) as a function of the damage 

level [%] on the bond 1-2 for a 4 DoFs system with 30 minutes of records and 5% of gaussian noise in the records. 
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4. CONCLUSIONS 

In the paper, the authors proposed Peridynamics as a generic method to generate low fidelity structural models and obtaining 

valuable and very fast information on the health state of a large number of structures. Then, the authors found that Peridynamics 

can be used to define physical-based graph representations (i.e., with edges and nodes) of civil structural systems. These 

findings, for now limited to numerical verifications, demonstrate that Peridynamics proves ideal for facing the SHM of vast 

territories with computational effortless strategies, and physical-based (i.e., providing valuable information) representations of 

the built environment. In this regard, the proposed BEA proves to be a very scalable and general parameter to be monitored in 

real systems (providing information on the presence, the location, and the amount of damage), this also due to its physical based 

meaning and the straightforward method of extraction in operational conditions. About the results of the numerical verifications, 

it is possible to draw the following conclusions: 

• The identification errors for BEV are generally larger and more dispersed (greater uncertainty) than those for BEA. 

• The estimate of BEA and BEV remain quite stable to an increase of the percentage of noise in the records, while the 

errors little increase if the length of the acquisitions decrease. 

• The BEA can be used for the damage identification, i.e., to detect, quantify, and localize the damage. 



 

• The BEV, instead, is a dubious parameter, since its use strongly depends by the discrepancy between the model and 

the actual behavior of the system; therefore, its use for SHM purposes should be carefully evaluated. 

The authors envisage low fidelity peridynamic models as a general method to allow physical-based SHM of systems over a 

territorial scale. For example, our results can be useful to generate network of built structures helping in the early warning of 

catastrophic events such as earthquakes, hurricanes, tornadoes, landslides, etc. In addition, structures built in the first half of 

the twentieth century are approaching or have surpassed their typical design life, meaning that there is a need to check the state 

of aging of structures over large areas. In this regard, low fidelity peridynamic models can be used to monitor very slow or 

sudden changes of structural states relying on very robust algorithms from established literature. 

Although the results of the numerical verifications are promising, all considerations made must pass the experimental validation 

phase to be considered valid, which can represent the next step of this work. 
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