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Abstract: Extracellular vesicles (EVs) play a central role in intercellular communication, which is
relevant for inflammatory and immune processes implicated in neurodegenerative disorders, such as
Parkinson’s Disease (PD). We characterized and compared distinctive cerebrospinal fluid (CSF)-
derived EVs in PD and atypical parkinsonisms (AP), aiming to integrate a diagnostic model based on
immune profiling of plasma-derived EVs via artificial intelligence. Plasma- and CSF-derived EVs
were isolated from patients with PD, multiple system atrophy (MSA), AP with tauopathies (AP-Tau),
and healthy controls. Expression levels of 37 EV surface markers were measured by a flow cytometric
bead-based platform and a diagnostic model based on expression of EV surface markers was built
by supervised learning algorithms. The PD group showed higher amount of CSF-derived EVs than
other groups. Among the 17 EV surface markers differentially expressed in plasma, eight were
expressed also in CSF of a subgroup of PD, 10 in MSA, and 6 in AP-Tau. A two-level random
forest model was built using EV markers co-expressed in plasma and CSF. The model discriminated
PD from non-PD patients with high sensitivity (96.6%) and accuracy (92.6%). EV surface marker
characterization bolsters the relevance of inflammation in PD and it underscores the role of EVs as
pathways/biomarkers for protein aggregation-related neurodegenerative diseases.

Keywords: plasma; cerebrospinal fluid; extracellular vesicles; machine learning; biomarkers;
Parkinson’s disease; multiple system atrophy; tauopathies; neuroinflammation

1. Introduction

A major current medical need in the field of neurology is the identification of reliable
biomarkers in vivo for the diagnosis of neurodegenerative diseases. Parkinson’s Disease
(PD) is the second most common neurodegenerative disorder of the elderly, character-
ized by the progressive loss of dopaminergic neurons in the substantia nigra [1]. To date,
an effective causal treatment is missing, and the diagnosis still relies exclusively on clinical
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evaluation of motor symptoms that appear late, when approximately 70% of dopamin-
ergic neurons are already lost [2]. Thus, there is urgent need for accessible and reliable
biomarkers that can stratify PD patients in clinical trials for novel therapies. Furthermore,
PD and atypical parkinsonisms (AP) are often misdiagnosed. AP refers to a variety of
protein aggregation-related diseases in which patients show signs and symptoms similar to
PD but generally do not respond to dopaminergic drug treatment specific for PD and expe-
rience a more aggressive course of disease. According to the misfolded protein aggregates
present in brain of patients, AP can be distinct in AP with synucleinopathies (AP-Syn),
such as multisystem atrophy (MSA) and AP with tauopathies (AP-Tau), such as progressive
supranuclear palsy (PSP) and corticobasal degeneration (CBD). The differential diagnosis
between PD and AP is challenging [3], preventing an early and appropriate treatment.

Extracellular vesicles (EVs) are emerging as novel and sensitive biomarkers for neu-
rodegenerative diseases [4,5]. EVs are a heterogeneous population of membrane particles
involved in physiological cell-to-cell communication and transmission of biological signals.
EVs are released into body fluids where they are easily accessible. EVs are secreted by
many cell types [6–8]: they carry membrane receptors which allow the tracking of the
cell of origin [9], while their protein and transcriptomic contents provide information on
the cell physio-pathological state [10,11]. Central nervous system (CNS) neurons and glia
cells release EVs [6] that are able to cross the blood–brain barrier and reach the peripheral
blood [11].

In a previous work, we demonstrated that distinctive pools of plasma-derived EV
surface markers related to inflammatory and immune cells stratified patients with PD and
AP according to the clinical diagnosis. We characterized distinctive EV subpopulations
in plasma by simultaneously immunophenotyping 37 different membrane proteins using
a flow cytometry multiplex bead-based platform [12,13] and then a diagnostic model
based on the distinctive EV surface proteins profile was generated via supervised machine
learning algorithms. The resulting diagnostic model was able to correctly classify 88.9% of
patients, with reliable diagnostic performance after internal and external validations [14].
Indeed, recent studies trying to dissect the cell/tissue origin of circulating EVs, showed that
the majority of plasma-derived EVs come from hematopoietic cells, in particular platelets,
B cells and T cells [15]. Thus, in order to increase the sensitivity and specificity of the model
for neurodegenerative diseases, we analyzed matched samples of cerebrospinal fluid (CSF)
and plasma in a subgroup of patients, assuming that EV surface markers, expressed both in
plasma and CSF, may have higher relevance for the respective neurodegenerative disease.
In fact, CSF permeates the cerebral cortex, spinal cord, cerebral ventricles, and medullary
canal, receiving EVs mainly from the CNS. However, despite its higher specificity for CNS,
CSF is less accessible and more difficult to obtain compared with plasma. Moreover, the EV
content in CSF is lower and the protocol for extracting EVs is technically more challenging,
requiring concentration passages which are not generally required for plasma [16].

Therefore, the aims of the present study were: (1) to characterize CSF-derived EVs
in healthy subjects and patients with PD, MSA and AP-Tau; (2) to compare EVs profiling
in matched CSF and plasma samples of PD and AP patients; (3) to improve our previous
diagnostic model, based on plasma-derived EVs by integrating information provided by
CSF-derived EVs immunophenotyping.

2. Materials and Methods
2.1. Subjects

A total of 16 patients, for which matched plasma and CSF samples were analyzed
in the current study, made up the optimization cohort: 4 idiopathic PD, 4 probable MSA
and 4 probable AP-Tau, among which 3 had probable progressive supranuclear palsy and
1 had possible corticobasal degeneration. The plasma discovery cohort included 84 subjects
(Table S1) [9]. Subjects were recruited from the movement disorder outpatient clinic at
Neurocenter of Southern Switzerland in Lugano. Inclusion criteria for MSA, PSP and
CBD were based on published diagnostic criteria [17–19]. Each subject underwent blood
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sampling and clinical evaluation, and a subgroup also underwent CSF sampling. Disease
gravity was assessed by Hoen and Yahr scale (H&Y) and Movement Disorder Society—
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS); cognitive profile by Mini-Mental
State Evaluation (MMSE) and Montreal Cognitive Assessment (MoCA); mood disorder
by Beck Depression Inventory II (BDI-II) scale; REM sleep Behavior Disorder (RBD) by
RBD screening questionnaire; olfactory function by olfactory test (Burghart Messtechnik
GmbH, Wedel, Germany). Levodopa equivalent daily dose (LEDD) was calculated for PD
and AP [20]. Patients were excluded from the analysis in case of significant comorbidities:
diabetes, renal failure, thyroid pathology, vitamin B12 deficiency, HIV infection, syphilis,
coagulopathy, fever, acute or chronic inflammatory diseases, and tumors. Finally, 4 subjects
who underwent CSF collection in emergency room for acute headache were included in
the study as HC, after CSF analysis showed normal parameters and other pathologies were
excluded. The 16 patients for which matched plasma and CSF samples were analyzed in
the current study made up the optimization cohort, whereas 84 patients from our previous
study [14] made up the plasma discovery cohort and were used to test basic and integrated
diagnostic models.

2.2. Plasma and CSF Preparation

In total, 10 mL of blood was collected into anticoagulant-EDTA tubes, after at least
4 h fasting. The following protocol was performed to obtain EV enriched plasma [21]
(Figure 1a): samples were centrifuged for 15 min at 1600× g at 10 ◦C, to eliminate cellular
components; then, three consecutive centrifuges were performed to further purify the
plasma, eliminating apoptotic bodies and larger EVs (15 min at 3000× g, 15 min at 10,000× g
and 30 min at 20,000× g at 4 ◦C). We previously demonstrated no significant change in
flowcytometric analysis by MACSPlex assay of plasma samples with and without EV
enrichment by ultracentrifugation [14]. Samples were aliquoted and stored at −80 ◦C.

Five mL of CSF was collected into 15 mL polypropylene tubes, and immediately
frozen (Figure 1a). After thawing, 500 µL of CSF samples underwent serial centrifuges
as plasma samples plus a further ultracentrifugation to maximize EV enrichment (18 h at
100,000× g at 4 ◦C). Pellets were resuspended in 30 µL of particle-free PBS. The storage
period varied among samples according to the consecutive enrollment of subjects in the
study, between 2015-07 and 2020-10.

2.3. Nanoparticle Tracking Analysis (NTA)

Nanoparticle concentrations and diameters were measured by NanoSight LM10
(Malvern Panalytical, Malvern, UK) equipped with a 405 nm laser and Nanoparticle
Tracking Analysis NTA 2.3 software (Malvern Panalytical, Malvern, UK). Only for NTA
analysis, to rule out a confounding effect of ultracentrifugation on EV amount and diameter,
plasma samples (100 µL) were centrifuged akin to CSF samples for 18 h at 100,000× g
at 4 ◦C. The obtained pellet was resuspended in 100 µL of particle-free PBS. A total of
1 µL of ultraconcentrated plasma or CSF was diluted in particle-free PBS—1:500 and 1:250,
respectively. NTA analyses were performed as previously described [14].

2.4. MACSPlex Exosome Assay and Flow Cytometry Analysis

The screening approach (MACSPlex human Exosome Kit, Miltenyi, Bergisch Gladbach,
Germany) was previously described [12,13] and is summarized in Figure 1a. The complete
list of the 37 EV surface markers that were analyzed is represented in Figure 1b.

In total, 60 µL of plasma and 30 µL of ultracentrifuged CSF were added to the MAC-
SPlex Buffer solution (final volume 120 µL) and analyzed with MACSQuant Analyzer-10
flow cytometer (Miltenyi, Bergisch Gladbach, Germany). As a blank control we used
MACSPlex Buffer incubated with beads and detection antibodies. Median fluorescence
intensity (MFI) for each EV surface marker was normalized by the mean MFI for specific
EV markers (CD9, CD63, and CD81). All analyses were based on normalized MFI (nMFI)
values. Samples were analyzed blind to the clinical diagnosis.
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Tests for the reliability/specificity of MACSPlex human Exosome Kit for EVs and for
the technical consistency and reproducibility of the assay were performed in our previous
work [14].
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Figure 1. Plasma and CSF preparation for MACSPlex human Exosome assay. (a) Protocol for extracellular vesicle (EV)
enrichment and characterization by MACSPlex Exosome Assay. Blood and cerebrospinal fluid (CSF) underwent serial
centrifugation to eliminate cellular components and larger EVs. Samples were incubated overnight with phycoerythrin (PE)-
and fluorescein isothiocyanate (FITC)-labeled capture beads, coated with antibodies against 37 different EV surface markers.
APC-conjugated detection antibodies against CD9, CD63, and CD81 were added and incubated for 1 h. After washing
steps, samples were analyzed by flow cytometry. (b) Schematic representation of the 37 EV surface markers analyzed by
MACSPlex human Exosome assay.
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2.5. Statistical Analysis

Statistics was performed using IBM SPSS Statistics 22.0 (IBM SPSS, Armonk, New York,
NY, USA), PYTHON 2.7 (Python Software Foundation, DE, USA), and GraphPad PRISM
7.0a (GraphPad Software, San Diego, CA, USA). A Kolmogorov–Smirnov test was applied
to evaluated variable distribution. Non-normally distributed variables (disease duration,
H&Y, MDS-UPDRS, BDI-II, MMSE, MoCA, Olfactory test, RBD, LEDD, NTA, MACSPlex
analysis) were expressed as medians (interquartile range) and analyzed by Kruskal–Wallis’
test. Normally distributed variables (age) were expressed as mean ± standard deviation
(SD) and analyzed by 1-way ANOVA test with Bonferroni’s correction for multiple compar-
isons. Categorical variables (sex) were expressed as absolute number and percentage (%)
and analyzed by χ2 (when applicable) or Fisher’s tests. Matched measurements (plasma vs.
CSF), variables were analyzed by Wilcoxon pairs signed rank test.

2.6. Diagnostic Modelling

Supervised learning algorithms were used to combine levels of expression of single
EV surface markers in a specific EV surface marker signature and discriminate patients
according to clinical diagnosis. Linear discriminant analysis was used as a feature reduc-
tion strategy to build the 3D canonical plots (Figure 3d,e); canonical components were
calculated from the weighted linear combination of expression levels for the 37 EV mark-
ers in order to maximize the separation between the 4 groups (HC, PD, MSA, AP-Tau);
each point represents a patient and spheres include patients with a linear combination coef-
ficient that falls within the mean of canonical components 1, 2, and 3 ± SD. The diagnostic
models were built exploiting a random forest (RF) classification algorithm, as previously
reported [14,22,23]. Briefly, each forest is composed of 20 classification trees with a maxi-
mum number of 8 splits for each tree; the diagnosis derives from the outcome of each tree
of the RF (i.e., if at least 11 of 20 trees of the RF predict PD, the patient will be classified
as PD).

The basic RF models were built on the expression of 17 EV surface markers (CD29,
CD45, CD19, CD42a, HLA-I, CD31, CD1x, CD11c, CD62P, CD40, CD41b, CD209, CD4, CD2,
CD146, CD25, MCSP), which were demonstrated to be differentially expressed in plasma
samples in HC, PD, MSA, and AP-Tau in our previous study [14]. Internal and external
validation of the basic RF models is provided by Vacchi et al. [14].

The integrated version of RF models (see Figure 6) was built selecting only markers
expressed in CSF- and plasma-derived EVs from patients with PD (8 EV markers: CD4,
CD19, CD2, CD1c, HLA-I, CD41b, CD29, and CD45), MSA (10 EV markers: CD4, CD19,
CD2, CD1c, HLA-I, MCSP, CD146, CD41b, CD29, and CD45), or AP-Tau (6 EV markers:
CD4, CD2, CD1c, HLA-I, CD41b, and CD45). Integrated models were directly validated on
the original discovery cohort. A representative classification tree was shown for each model,
and a confusion matrix reported accuracy, sensitivity, specificity, positive and negative
predictive values.

3. Results
3.1. Demographic and Clinical Characteristics

The optimization cohort included 16 patients: 4 PD, 4 MSA, 4 AP-Tau (3 PSP, 1 CBD),
and 4 healthy controls (HC). These subjects underwent plasma and CSF collection for paired
flow cytometry analysis. Clinical characteristics are summarized in Table 1. No differences
were observed between groups (p > 0.05 for all comparisons). The plasma discovery cohort
included 84 patients from our previous study [14] and was used to test both the basic and
integrated diagnostic models (Table S1). In Figure 2, a flowchart of the study is represented.
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Table 1. Clinical characteristics of the cerebrospinal fluid (CSF) optimization cohort.

Variable
HC

(n = 4)
PD

(n = 4)

AP
p-ValueMSA

(n = 4)
AP-Tau
(n = 4)

Age (years) 59 ± 20.3 67 ± 12.9 60 ± 4.6 66 ± 12.5 0.794
Sex (ref. male) 1 (25.0) 2 (50.0) 1 (25.0) 2 (50.0) 0.785

Disease duration (years) - 4.0
[0.8–6.5]

3.0
[1.0–5.8]

3.5
[3.0–8.5] 0.859

H&Y - 1.5
[1.0–2.8]

3.5
[2.3–4.8]

4.0
[2.0–4.0] 0.129

MDS-UPDRS - 34.5
[17.0–51.3]

34.8
[26.5–34.8]

67.0
[29.0–67.0] 0.511

Beck Depression - 7.0
[2.3–14.0]

5.5
[3.5–9.0]

16.0
[11.0–16.0] 0.094

MMSE - 30.0
[30.0–30.0]

28.0
[24.5–30.0]

24.0
[22.0–24.0] 0.051

MOCA - 28.0
[26.3–29.8]

23.0
[16.3–29.0]

19.0
[16.0–19.0] 0.114

Olfactory test - 6.0
[3.0–6.0]

9.0
[4.5–10.5]

7.0
[5.0–7.0] 0.722

RBD - 7.0
[3.0–8.8]

4.0
[2.5–4.8]

2.0
[1.0–2.0] 0.139

LEDD - 238
[100.0–750.0] - - -

Clinical characteristics of healthy controls (HC) compared to patients diagnosed with Parkinson’s disease (PD),
multisystem atrophy (MSA), or atypical parkinsonism with tauopathies (AP-Tau). Variables are reported as
mean ± SD, median (interquartile range) and absolute number (percentage), as appropriate. Abbreviations:
H&Y (Hoehn and Yahr scale), MDS-UPDRS (Movement Disorder Society-Unified Parkinson’s Disease Rating
Scale), BDI-II (Beck Depression Inventory II), MMSE (Mini-Mental State Examination), MoCA (Montreal Cognitive
Assessment), RBD (Rem Behavior Disorder scale), and LEDD (LevoDopa equivalent Dose).

1 

 

 

Figure 2. Study flowchart. The plasma discovery cohort was used to train and validate the basic
diagnostic model based on plasma-derived extracellular vesicle (EV) profiling. The CSF-derived EV
profiling in an optimization cohort was used to generate an integrated model that was subsequently
tested in the discovery cohort.
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3.2. PD Group Shows an Increased Number of CSF-Derived EVs

Nanoparticle tracking analysis (NTA) revealed higher concentration of CSF-derived
nanoparticles/mL in PD compared to HC (p = 0.048); this difference was mainly due to
larger vesicles (151–500 nm; p = 0.045; Table S2). A trend towards a higher amount of EVs
was observed also in MSA and AP-Tau. Although EV diameter was 1.4/1.5-fold higher in
PD and AP patients compared to HC, the difference was not significant (Figure 3b).

1 

 

 
Figure 3. CSF-derived EVs characterization. Characterization of cerebrospinal fluid (CSF)-derived extracellular vesicles
(EVs) by nanoparticle tracking analysis (NTA) and MACSPlex human exosome assay flow cytometry. Healthy controls (HC)
were compared with patients with Parkinson’s disease (PD) multisystem atrophy (MSA), or atypical parkinsonism with
tauopathies (AP-Tau). (a) EV concentration (n/mL CSF) at NTA. (b) EV diameter (nm) at NTA. Boxplots show median and
interquartile range; bars show minimum and maximum values (* p < 0.05). (c) Normalized median fluorescence intensity
(nMFI; %) for 37 EV surface markers. Data and statistics are reported in Table S1. (d,e) Different perspectives of 3D-canonical
plot reporting patient discrimination according to EV surface marker expression (each patient is indicated by a point and
diagnoses are represented by colors: HC, blue; PD, red; MSA, orange; AP-Tau, grey). Canonical axes of the plot (canonical
components 1, 2, and 3) are defined by linear discrimination analysis from weighted linear combinations of the 37 EV
markers analyzed by flow cytometry. Spheres include patients with linear combination coefficients that fall within the
mean ± SD (canonicals 1, 2, and 3 ± SD).
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3.3. CSF-Derived EV Immunophenotyping Stratifies Patients According to the Clinical Diagnosis

The immunophenotyping of 37 surface markers on CSF-derived EVs by MACSPlex
assay did not identify statistically significant differences between the four groups when
each EV marker was considered individually (Figure 3c and Table S2). However, several
markers, related to T cells (CD2, CD3, CD8, CD14, CD86), B cells (CD20), endothelia cells
(CD105) and the major histocompatibility complex class I human leukocyte antigen-ABC
(HLA-ABC), displayed higher expressions in PD, MSA, AP-Tau then HC. Nevertheless,
the linear weighted combination of all EV markers in a single specific signature by super-
vised learning (linear discriminant analysis, see methods) allowed the discrimination of
patients according to their diagnosis, as shown in the canonical plots (Figure 3d,e).

3.4. Paired Analysis of CSF vs. Plasma in Patients Identifies Different Amount of EVs and
Different Surface Marker Expressions

We compared plasma- and CSF-derived EVs of the same subjects in pathological
groups (PD, MSA, and AP-Tau; n = 12). Plasma samples showed higher numbers of
nanoparticles/mL compared to CSF, even after stratification for EV diameter (p < 0.001
for all comparisons; Figure 4a and Table S3). Moreover, CSF-derived nanoparticles were
significantly larger (p = 0.005; Figure 4b). We quantified median fluorescence intensity (MFI)
of tetraspanins CD9, CD63 and CD81 (specific markers of EVs) by flow cytometry as an
alternative measure of EV concentration. Plasmatic samples had higher level of CD81-MFI
and of average MFI for CD9, CD63 and CD81 (p < 0.001), compared to CSF (Figure 4c and
Table S3). Consistently, nanoparticle concentration by NTA directly correlated to mean MFI
for CD9-CD63-CD81 (R = 0.552; p = 0.005). Among the 37 EV surface markers analyzed in
paired plasma vs. CSF samples, 5 markers were differentially expressed in the PD group,
11 in MSA, and 8 in AP-Tau. All these markers were more highly expressed in plasma than
CSF except for CD9 in the MSA group (Figures S1 and S2 and Table S4).
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Figure 4. EV quantitative analysis: plasma vs. CSF. Quantitative analysis of extracellular vesicles (EVs) by nanoparticle
tracking analysis (NTA) and MACSPlex assay flow cytometry; plasma samples were compared to paired cerebrospinal fluid
(CSF) samples in patients with PD (Parkinson’s disease; n = 4), MSA (multisystem atrophy; n = 4) and AP-Tau (atypical
parkinsonism with tauopathies; n = 4). (a) EV concentration (n/mL plasma or CSF) at NTA. (b) EV diameter (nm) at NTA.
(c) MFI (expressed as arbitrary unity; a.u.) for CD9, CD63, CD81 and CD9-CD63-CD81 at flow cytometry. Boxplots show
median and interquartile range; bars show minimum and maximum values (** p < 0.05; *** p < 0.001). Data and statistics are
reported in Table S2.
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3.5. The Integrated Random Forest Model Demonstrates Higher Diagnostic Accuracy

In our previous work, 17 plasmatic EV surface markers were differentially expressed
in 29 idiopathic PD, 9 probable MSA, 10 probable AP-Tau patients compared to 36 HC
(plasma discovery cohort). A random forest (RF) model (we will refer to this model as
“basic” throughout the present manuscript) was built combining levels of expression of
these EV markers [14]. Among the 17 EV surface markers differentially expressed in
the plasma discovery cohort, we selected for each diagnostic group, those which were
expressed also in CSF (nMFI different from 0). Eight were expressed also in CSF-derived
EVs in patients with PD (CD4, CD19, CD2, CD1c, HLA-I, CD41b, CD29, and CD45),
10 in patients with MSA (CD4, CD19, CD2, CD1c, HLA-I, MCSP, CD146, CD41b, CD29,
and CD45), and 6 in patients with AP-Tau (CD4, CD2, CD1c, HLA-I, CD41b, and CD45)
(Figure 5). Assuming that EV surface markers expressed both in plasma and CSF may have
higher relevance for the respective neurodegenerative disease, we built an “integrated”
version of our basic diagnostic model based on plasma EV expression. In particular,
we built one model for each type of disease (PD, MSA, AP-Tau). Integrated versions of RF
models were subsequently validated in the original plasma discovery cohort (Figure 2).

 

2 

 

Figure 5. EV surface marker selection. Selection of extracellular vesicle (EV) surface markers for the 2-level random forest
diagnostic model: (a) EV surface markers differentially expressed in plasma and detected in cerebrospinal fluid (CSF) of
Parkinson’s disease (PD), multisystem atrophy (MSA), or atypical parkinsonism with tauopathies (AP-Tau). (b) Heatmap
representation of the 37 EV surface markers in plasma and CSF of matched subjects with PD, MSA and AP-Tau. The selected
markers in each diagnostic category were highlighted with red boxes.

The level 1 RF basic model [14] (built on the 17 EV surface markers differentially
expressed in plasma) was applied to the discovery cohort (n = 84; Table S1) to differentiate
subjects with neurodegenerative diseases from HC (Figure 2). All patients were correctly
diagnosed by the model (sensitivity 100.0%), whereas 6 of 36 HC were misclassified (speci-
ficity 83.3%). With an overall accuracy of 92.9% (Figure 6a), 54 patients (48 patients and
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6 HC) were introduced to level 2 analysis, aiming at the selective recognition of PD, MSA,
or AP-Tau. The level 2 RF integrated model discriminated PD from non-PD patients
(Figure 6b) with higher sensitivity then the RF basic model (96.6% vs. 93.1%, respectively),
and increased accuracy (92.6% vs. 90.7%, respectively). Similarly, the diagnostic per-
formance was higher in the integrated version for discriminating MSA from non-MSA
patients (Figure 6c), with an accuracy of 92.6% and a sensitivity of 55.6%, while the RF basic
model displayed an accuracy and sensitivity of 88.9% and 33.3%. Finally, the advanced RF
model discriminating AP-Tau from non-AP-Tau patients (Figure 6d) correctly predicted
50 of 54 patients (92.6% accuracy) with an increased sensitivity (70.0%) and a specificity
comparable to the basic model (97.7%). 

3 

 

Figure 6. Diagnostic modelling. Development of a 2-level integrated random forest (RF) model to discriminate patients with
Parkinson’s disease (PD), multisystem atrophy (MSA), or atypical parkinsonism with tauopathies (AP-Tau) in the plasma
discovery cohort (n = 84; characteristics of patients are reported in Table S4). (a) Level 1 of RF model, discriminating subjects
with neurodegenerative diseases from healthy controls (HC). Patients classified as “disease” at level 1 were introduced to
level 2. (b) Two-level RF model, discriminating PD from non-PD patients. (c) Two-level RF model, discriminating MSA from
non-MSA patients. (d) Two-level RF model, discriminating AP-Tau from non-AP-Tau patients. Confusion matrix (basic vs.
integrated version) and a representative classification tree are shown for each RF model. In bold mark are represented the
numbers of correctly predicted diagnosis and overall accuracy of the model.
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Overall, the integrated version of the RF model allowed an increased sensitivity in
discriminating specific diseases, with higher negative predictive values for all groups
of patients.

4. Discussion

The main result of this study is the optimization of a diagnostic model for PD,
MSA and AP-Tau based on immunophenotyping of plasma-derived EVs by integrating
data from CSF-derived EVs via machine learning algorithms. Our previous basic diagnostic
model [14], built on 17 EV surface markers differentially expressed in plasma between
groups, correctly predicted patient diagnosis in 88.9% of subjects. The new optimized two-
level RF integrated diagnostic model displayed an overall improved diagnostic accuracy
of 92.6%, with an increased sensitivity for all three diagnostic categories with respect to
the basic RF model. This result is even more relevant, considering the low numbers of
subjects analyzed in this pilot study and opens up the possibility to further improve the
accuracy of the model by applying this strategy to larger study groups. Indeed, CSF bears
the obvious advantages of being more specific for the CNS environment but at the same
time the collecting procedure is more invasive for patients and the protocol to enrich for
EVs is more challenging. Thus, our strategy to recalibrate the model on EV surface markers
that were expressed both in plasma and CSF in each diagnostic group allowed us to im-
prove the diagnostic system that remains based on EV profiling in plasma. This is a novel
approach to blood biomarkers by profiling EV surface markers related to inflammatory
and immune cells with potential roles in inflammation related to neurodegeneration, while
most of the current studies on EVs as biomarkers are focused especially on evaluating
target proteins in neuronal-derived exosomes [24,25]. Further, the multiplexed profiling
of inflammation markers allows a more personalized approach, as this biomarker-driven
phenotyping might be capable of capturing the clinical heterogeneity of PD and may be
used to measure the effect of potential disease-modifying drugs on peripheral inflamma-
tory processes as a proxy for central events. Nevertheless, the direct application of EV
immunocapturing and multiarray analysis by flow cytometry to biological fluids (without
isolation steps by ultracentrifugation or size exclusion chromatography) has clinical rele-
vance, as it can be achieved in hospital-based diagnostic laboratories. Given its low cost,
speed, and simplicity, as well as its high sensitivity and specificity, this approach provides
a potential biochemical index to support the clinical assessment of PD and AP. Circulating
plasma-derived EVs represent an even more promising tool in characterizing, monitoring,
and predicting PD, if their profiling can be achieved avoiding time-consuming protocols
and sophisticated instrumentation.

PD patients showed a higher number of EVs in CSF compared to HC, as also demon-
strated in plasma [14]. In analogy, MSA and AP-Tau showed a tendency towards higher
EV numbers and diameters than HC, but this was not statistically significant, probably
due to the low sample size. This result is in line with other observations in patients with
Alzheimer’s disease where the amount of EVs correlated to myelin damage and neuronal
loss [26] and in a mice model of multiple sclerosis in which EVs correlated to brain in-
flammation, suggesting a pathological role of EVs [27]. Notably, we observed an increase
in EVs in neurodegenerative diseases that are typical of elderly populations, while in
physiological conditions a decrease in the number of CSF-EVs has been observed by ag-
ing [28]. Several human and animal studies have shown that neurodegenerative disorders
are characterized by a relevant inflammatory component. PD patients, for example, display
neuroinflammatory changes in brain histopathology as well as by elevated immune mark-
ers in peripheral blood [29,30], and inflammation has been correlated to the reduction in
tyrosine hydroxylase dopaminergic neurons [31] and the expansion of activated microglia
in the substantia nigra in animal models of the disease [32]. In an in vitro study, microglial
cells activated by proinflammatory stimuli release more microvesicles than exosomes [33];
thus, the higher amount of EVs that we observed in CSF of PD could be related to the
inflammatory component.
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Patients with PD, MSA and AP-Tau showed a tendency towards larger EVs in the CSF
compared to HC, and moreover, in matched CSF and plasma samples of same patients,
CSF-derived EVs showed larger EVs compared to the plasmatic one. Thus, it could be
conceivable that in disease groups there is a different pathway of vesicle generation towards
production of microvesicles (50–1000 nm diameters), generated via outward budding of the
plasma membrane, rather than exosomes (40–120 nm) produced in multivesicular bodies
via endosomal pathway [34]. Indeed, recent observations suggest that microvesicles may
have a role in inflammatory diseases [35] and it has been proposed that they act as a bridge
between inflammation and neurodegeneration [36]. An in-depth EV characterization,
with different methodologies and with special regard to markers differentially expressed
by microvesicles and exosomes, is required to confirm this observation [35].

Regarding the EV immune profiling by MACSPlex human exosome assay applied to
CSF-derived EVs, no statistically significant differences were observed in the 37 surface
markers between groups. This is certainly due to the main limitation of this explorative
study which is the low number of subjects analyzed in each diagnostic category. However,
the simultaneous quantification of multiple EV markers increased the power of the assay
and displayed different EV profiles of expression in subjects with PD and AP vs. HC,
which allowed a good discrimination of patients in accordance with the clinical diagnosis
by linear discriminant analysis. Of interest, PD and AP patients expressed higher amounts
of HLA-I, CD8, CD2, CD3, CD14 and CD20 in CSF, while no or very low detection was
observed in HC, suggesting a CNS activation of the immune system, in particular of the T
cell-mediated immunity with particular emphasis on intracellular endogenous synthetized
antigens that involves the activation of HLA class I [37,38] and are presented to CD8 T
cells [39]. Indeed, a recent work on human substantia nigra demonstrated that CD8 T cell
infiltration is an early pathogenic event and parallels the progression of neuronal loss and
alpha synuclein aggregation in PD [40]. This is particularly relevant in diseases which
are pathologically characterized by intracellular accumulation of misfolded proteins and
confirms the crucial role which EVs play in antigen presenting immunity by spreading
HLA proteins, possibly increasing the number of dendritic cells or phagocytes presenting
them or directly interacting with T cells [41].

CD105 is highly expressed in CSF of PD and MSA. Even if it is used as an endothelial
cell marker during angiogenesis [42], it was originally described as a marker for activated
macrophages and can identify subtypes of activated microglia [43]. In fact, in the substantia
nigra of PD subjects a strong CD105 staining in microglia cells was described in association
with degenerating dopaminergic neurons [44]. Activation of microglia is supported also by
expression of CD86 in AP-Tau and MSA, whose upregulation had consistently been associ-
ated with activated microglia [45], and to a lesser extent in neurons [46] and astrocytes [47],
during inflammatory processes.

Finally, levodopa represents the first-line therapy in PD. Several drugs may influence
the mechanism of biogenesis and release of EVs [48]; however, to our knowledge, a direct
effect of levodopa has never been demonstrated. Indeed, in our previous study, we did
not find any significant association when we correlated EV parameters with Levodopa
Equivalent Daily Dose (LEDD) in PD and AP subjects [14]. However, larger studies on this
topic are certainly recommended.

This is an explorative study and the low number of subjects in the CSF cohort is
certainly a limitation; therefore, larger studies and validation in external cohorts of patients
are warranted. In addition, it is an antemortem study, lacking the diagnostic confirmation
of brain histopathologic analysis. Finally, although it is beyond the primary scope of this
paper, a deeper characterization of CSF-derived EVs with different techniques such as
transmission electron microscopy (TEM), would be insightful. However, the enrichment
of vesicle fraction by immunocapturing displays an inherent limitation for TEM analysis;
in fact, a bead–EV complex might impair the ultrastructural morphological characterization
of nanosized vesicles. Nevertheless, we can speculate that at least for plasma-derived EVs,
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by avoiding ultracentrifugation, which is known to lead to EV deformation and rapture into
smaller particles [49], the morphological structure of immuno-captured EVs is preserved.

In conclusion, a diagnostic model based on plasmatic EVs, built via machine learn-
ing, integrating information provided by the simultaneous profiling of CSF and plasma
could potentially impact on clinical practice. Furthermore, the EV surface markers char-
acterization bolsters the concept of a relevant involvement of inflammation in PD and
it underscores the importance of EVs as pathways/biomarkers for protein aggregation-
related neurodegenerative diseases.
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and MACSPlex evaluation of CSF-derived EVs; Table S3. EV quantitative analysis: plasma and CSF;
Table S4. EV surface antigens in plasma and CSF in pathological groups; Figure S1. EV surface marker
expression in plasma and CSF; Figure S2. Evaluation of EV surface antigens in pathological groups.
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