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ABSTRACT 30 

Background 31 

Autonomic failure (AF) complicates Parkinson’s disease (PD) in one-third of cases, resulting in complex blood pressure 32 

(BP) abnormalities. While autonomic testing represents the diagnostic gold standard for AF, accessibility to this 33 

examination remains limited to few tertiary referral centers.  34 

Objective 35 

The present study sought to investigate the accuracy of a machine learning algorithm applied to 24-h ambulatory BP 36 

monitoring (ABPM) as a tool to facilitate the diagnosis of AF in patients with PD.  37 

Methods 38 

Consecutive PD patients naïve to vasoactive medications underwent 24h-ABPM and autonomic testing. The diagnostic 39 

accuracy of a Linear Discriminant Analysis (LDA) model exploiting ABPM parameters was compared to autonomic 40 

testing (as per a modified version of the Composite Autonomic Symptom Score not including the sudomotor score) in 41 

the diagnosis of AF. 42 

Results 43 

The study population consisted of n= 80 PD patients (33% female) with a mean age of 64±10 years old and disease 44 

duration of 6.2±4 years. The prevalence of AF at the autonomic testing was 36%. The LDA model showed 91.3% 45 

accuracy (98.0% specificity, 79.3% sensitivity) in predicting AF, significantly higher than any of the ABPM variables 46 

considered individually (hypotensive episodes= 82%; reverse dipping= 79%; awakening hypotension= 74%).  47 

Conclusion 48 

LDA model based on 24-h ABPM parameters can effectively predict AF, allowing greater accessibility to an accurate 49 

and easy to administer test for AF. Potential applications range from systematic AF screening to monitoring and treating 50 

blood pressure dysregulation caused by PD and other neurodegenerative disorders.  51 

 52 

53 
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INTRODUCTION 54 

Autonomic failure (AF) complicates Parkinson’s disease (PD) in up to one-third of cases. Cardiovascular AF disrupts 55 

neural networks controlling blood pressure (BP) and heart rate (HR), resulting in complex abnormalities in BP control, 56 

such as orthostatic hypotension (OH), supine hypertension (SH), abnormal circadian rhythm, and increased BP 57 

variability (BPV) [1]. These abnormalities are usually asymptomatic and difficult to recognize by clinical assessment 58 

alone [2][3]. Still, they may result in organ damage [4] and functional disability [5], leading to greater morbidity and 59 

quality of life impairment [6], as well as worse clinical prognosis [7]. 60 

 61 

Unfortunately, accessibility to cardiovascular autonomic reflex testing (CART), the gold standard for diagnosing AF, is 62 

limited due to the complexity of the examination, technical skillset, and expensive equipment required to carry out this 63 

complex diagnostic test [8]. As a result, only patients complaining of “classic” OH symptoms, such as postural light-64 

headedness or fainting, are usually referred to CART, and the execution of the test may require long travels to highly 65 

specialized tertiary referral centers.  66 

 67 

Recent studies showed that selected abnormalities in the 24-hour BP profiles, such as a reversed circadian rhythm [9] 68 

and increased BPV [10], are associated with AF. The central hypothesis of the present study is that ABPM effectively 69 

predicts adrenergic AF in patients with PD. To test this hypothesis, a prospective non-interventional study was designed 70 

to evaluate the diagnostic accuracy of a machine-learning algorithm of ABPM recordings compared to standard 71 

adrenergic autonomic testing in a cohort of consecutive PD patients. 72 

 73 

METHODS 74 

Consecutive patients referred to the Autonomic Unit of the Department of Medical Science, University of Torino (Italy) 75 

between September 2016 and June 2019 were offered to participate in a single-centre, cross-sectional study 76 

investigating the diagnostic potential of a machine-learning algorithm applied to ABPM as a tool to diagnose AF in PD.  77 

 78 

Inclusion criteria 79 

Diagnosis of PD as per the EFNS/MDS-ES recommendations [11] for at least 2 years; stable dosage of dopaminergic 80 

drugs for at least 4 weeks. 81 

 82 

Exclusion criteria 83 
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Other neurological diseases associated with primary AF (multi-systemic atrophy, pure autonomic failure); diabetes 84 

mellitus or diseases potentially associated with secondary AF [12]; non-sinus rhythm or pacemaker-guided cardiac 85 

activity; severe cognitive impairment, defined as Montreal Cognitive Assessment (MoCA) score < 21 [13], or any 86 

physical impairment preventing the execution and interpretation of CART; medical history of severe impaired renal 87 

function, heart diseases, or obstructive sleep apnoea syndrome; and ongoing vasoactive therapy (anti-hypotensive 88 

and/or anti-hypertensive) for orthostatic hypotension and/or supine hypertension.  89 

 90 

Study protocol 91 

After acquisition of written informed consent, those meeting all the inclusion and none of the exclusion criteria 92 

underwent CART followed by 24h-ABPM within 10 days.  93 

 94 

CART – Technical Execution 95 

Autonomic testing have been performed as per a standard procedure and cardiovagal and adrenergic indexes calculated 96 

according to a modified version of the Composite Autonomic Symptom Score (CASS), without the sudomotor score 97 

[14]. Briefly, BP and the HR interval were continuously recorded using a beat-to-beat non-invasive monitor (Finometer, 98 

Finapres) during the performance of the following standardized tests: 99 

1) Deep breathing: patients were asked to breathe deeply and evenly at 6 breaths/min for one minute. 100 

2) Valsalva manoeuvre: patients were asked to blow into a mouthpiece attached to an aneroid pressure gauge at a 101 

pressure of 40 mmHg, for 15 seconds.  102 

3) Head-up tilt test: patients were asked to lye supine on the tilt table for 10 minutes, then the table was tilted up 103 

to a 60° upright position for 5 consecutive minutes. For this test, in addition to the beat-to-beat recording, the 104 

BP was measured with an automatic sphygmomanometer (Omron, HEM-9219T-E, Japan ©) at baseline, 1 105 

min, 3 min, and 5 min 106 

BP and HR variations were analysed with a dedicated software (DAN Test Microlab, Padua, Italy) and scored using 107 

age-related normal ranges [15]. 108 

 109 

CART – Data Interpretation  110 

OH was defined as a sustained reduction of systolic blood pressure ≥20 mmHg or diastolic blood pressure ≥10 mmHg 111 

within three minutes from standing [16]. 112 

SH was defined as systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg recorded after at 113 

least 5 minutes of supine rest [3]. 114 
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AF was diagnosed when the sum of cardiovagal and adrenergic score was ≥2. 115 

 116 

ABPM – Technical Execution 117 

24-hour ABPM were performed using a Spacelabs portable device (Spacelabs 90207 - Spacelabs Inc., Redmond, WA, 118 

USA ©) with appropriately sized arm-cuff placed on the non-dominant side, as per current guidelines [17]. BP was 119 

measured every 15 minutes during both daytime and night-time; patients were asked to record on a diary relevant 120 

behavioural and occupational activities, sleep and wake time, and meals.  121 

 122 

ABPM – Data Interpretation  123 

ABPM was performed according to definitions and reference values for ABPM data interpretation proposed by the 124 

European Society of Hypertension [17]. Specifically, the following parameters were derived: 125 

• BP load, defined as the percentage of blood pressure values exceeding reference values during daytime 126 

(≥135/85 mmHg) and nighttime (≥120/70 mmHg).  127 

• Reverse dipping, defined as a systolic day-night difference ≤0 mmHg (i.e., average nocturnal systolic BP 128 

higher than average diurnal systolic BP).  129 

• Weighted blood pressure variability (w-BPV), defined as the sum of standard deviation of diurnal and 130 

nocturnal systolic BP, normalized for daytime and night-time duration. W-BPV was considered increased 131 

when > 11 [18].  132 

• Postprandial hypotension (PPH), defined as a reduction in systolic blood pressure ≥20 mmHg within 120 133 

minutes after a meal, using the mean of the last three BP measurements before the meal as reference [19].  134 

• Hypotensive episodes, defined as any record of systolic BP values lower than average 24-hour systolic BP by 135 

at least 15 mmHg between awakening and lunch time (Hypo-ep Δ15/24h) [20].  136 

• Awakening hypotension, defined as the presence of at least one Hypo-ep Δ15/24h within 90 minutes from 137 

awakening (Hypo-aw Δ15/24h) [20].  138 

 139 

Statistical analysis. 140 

Analyses were performed with SPSS (Statistical Package for the Social Sciences – version 22 - © 2014 IBM). Normal 141 

distribution of continuous variables was tested using the Shapiro-Wilk test. Continuous variables were expressed as 142 

mean ± standard deviation. Qualitative variables were expressed as absolute values of frequency and percentage values. 143 

Differences between two independent groups were evaluated using Student’s t-test for continuous variables with normal 144 

distribution and Mann-Whitney test for continuous variables with non-normal distribution; multiple comparisons 145 
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(between more than 2 groups) were evaluated with One-way ANOVA analysis and Bonferroni’s correction. Categorical 146 

variables were compared using chi-square test or Fisher’s exact test according to sampling number of analysed groups.  147 

 148 

Univariate logistic regression analysis was used to evaluate the correlation between selected categorical ABPM 149 

abnormalities and AF; subsequently, multivariate logistic regression was performed to correct for age, sex, LEDD and 150 

disease duration. P-values less than 0.05 were considered statistically significant. 151 

 152 

Diagnostic accuracy of single ABPM parameters 153 

For categorical variables, 2x2 contingency tables were built setting ABPM parameters as diagnostic test and the 154 

presence of AF as real outcome. Sensitivity, specificity, positive predictive value (PPV), and negative predictive value 155 

(NPV) were then calculated. 156 

 157 

For continuous variables, a receiver operating characteristic (ROC) analysis was used to estimate the predictive 158 

accuracy (state variable: presence of autonomic failure; test variable: ABPM continuous parameters). Sensitivity, 159 

specificity, PPV, and NPV were calculated after selection of the optimum ROC cut point, based on the balance between 160 

sensitivity and specificity (highest Youden index).  161 

 162 

Global ABPM diagnostic accuracy - Linear discriminant analysis 163 

Supervised machine learning algorithms were trained using Python 3.5 (library, scikit-learn). Linear discriminant 164 

analysis (LDA) [21][22] was applied to develop a prediction model for AF in PD based on ABPM data. LDA employs 165 

linear combinations of variables to maximize the separation between groups by increasing precision estimates by 166 

variance reduction. The algorithm computes a set of coefficients for linear combination of each variable to predict the 167 

diagnosis of AF. The estimation is derived from the following equation: AF diagnosis = LDAcoeff1 * Variable1 + 168 

LDAcoeff2 * Variable2 + … + LDAcoeffn * Variablen > cut-off. The presence/absence of AF was set as an outcome; the 169 

following variables were used to train the model: 24-hour, daytime and nighttime blood pressure values (systolic, mean, 170 

and diastolic), 24-hour, daytime and nighttime blood pressure standard deviations (SD), daytime and nighttime blood 171 

pressure loads (systolic and diastolic), w-BPV, PPH, reverse dipping, Hypo-aw Δ15/24h, number of Hypo-ep Δ15/24h.  172 

 173 

RESULTS 174 
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The study population consisted of 80 PD patients, 54 males (67.5%) and 26 females (32.5%), with a mean age of 64±10 175 

years, and PD duration of 6.2±4 years. All patients were treated with dopaminergic drugs with a Levodopa Equivalent 176 

Daily Dose (LEDD) of 668±351 mg [23].  177 

 178 

According to the CART assessment, 29 patients (36%) were diagnosed with AF (AF+). This group was older but had 179 

similar disease duration and LEDD compared to the group without AF (AF-). Night-time average BP and BP loads were 180 

higher in patients AF+. Also, this group showed higher incidence of reverse dipping, increased SD of systolic daytime 181 

BP, and hypotensive episodes compared to AF- (Table 1). 182 

 183 

The LDA model was able to discriminate patients AF+ with 91.3% accuracy, 98.0% specificity, and 79.3% sensitivity, 184 

which was significantly higher than any of the ABPM variables considered individually [Table 2 and Figure 1]. The 185 

algorithm misdiagnosed only 6 patients with AF; among them, 1 with prevalent cardiovagal, 2 with prevalent 186 

adrenergic, and 3 with mixed AF.  187 

 188 

Further analyses were performed to determine the association of AF+ with individual variables while taking into 189 

consideration confounders, such as age, sex, disease duration and LEDD.  Logistic regression analysis showed a strong 190 

association of AF+ with Hypo-aw Δ15/24 h, ≥ 3 Hypo-ep Δ15/24 h, and reverse dipping pattern [Table 3], while the 191 

association with increased standard deviation of daytime systolic BP was not confirmed at the multivariate analysis. 192 

Nocturnal BP was also associated with AF+, with the mean BP value showing the strongest association (OR 1.09, p < 193 

0,01) [Table 3B]. 194 

 195 

DISCUSSION  196 

In this study, the diagnostic performance of a supervised learning algorithm employing ABPM recordings to diagnose 197 

AF in patients with PD was assessed. The model was able to discriminate AF with 91.3% accuracy, much higher than 198 

any of the other ABPM variables considered independently. In particular, while individual ABPM parameters, such as 199 

≥3 hypotensive episodes, awakening hypotension, reverse dipping, or increased nocturnal BP could identify AF with 200 

relatively good specificity, they were all limited by low sensitivity (<60%), hampering their potential as a screening 201 

tool.  202 

 203 

Clinical manifestations of AF encompass both short- and long-term dysregulations in BP regulatory mechanisms. The 204 

former include OH and SH, the latter include nocturnal hypertension, abnormal circadian rhythm, and increased BPV 205 
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[1]. SH and reverse dipping, in particular, have been associated with hypertensive end-organ damage and worse clinical 206 

prognosis in patients with PD [24][25][4]. Still, the extent to which a correction of these hemodynamic abnormalities 207 

might result in clinical benefit remains to be clarified. The introduction of a machine-learning-based algorithm of 24-h 208 

ABPM bears the promise to help understand the complex interaction between hemodynamic parameters and functional 209 

outcomes. A deeper understanding of BP dysregulation in AF will allow detecting profiles of BP abnormalities with a 210 

higher risk of adverse outcomes and inform the selection of treatment priorities (e.g., balancing risk and benefits of 211 

better control of SH at the expense of higher burden of OH versus allowing higher supine and nocturnal BP to mitigate 212 

OH) [26][27]. 213 

 214 

The present analyses confirm the previous finding that hypotensive episodes and reverse dipping are accurate markers 215 

of AF in PD [20][9], while increased BPV seems to be less effective in predicting AF, despite the multiple hypotensive 216 

episodes (expected to increase BPV) observed in this patient population. While this result partly conflicts with a 217 

previous study [10] suggesting that exaggerated SD of diurnal systolic BP could be used to detect primary or secondary 218 

AF, the authors did not confirm the association between AF and increased SD-SBP when the PD status and 219 

dopaminergic treatment were included in the multivariate analysis. This suggest that AF in PD (and possibly other 220 

forms of primary AF) may be characterized by a peculiar BP profile, different from the one observed in secondary AF.  221 

  222 

The strength of this study is the innovative approach involving machine learning for the detection of AF, that 223 

demonstrated high accuracy and specificity, and relatively high sensitivity. 224 

The assessment of patients in their real-life environment allows exploring the everyday BP profiles, which may be more 225 

informative on the risk of organ damage development than the standardized but artificial values obtained through 226 

CART. Several limitations, however, should also be considered in the interpretation of the results.  227 

First, the number of patients with AF was relatively low due to the stringent exclusion criteria, aiming at limiting 228 

confounders related to additional pharmacological treatment or concurrent clinical conditions; in order to reduce this 229 

bias, patients were carefully selected without vasoactive medications or known cardiovascular comorbidities, or severe 230 

cognitive impairment. Second, dopaminergic drugs have not been withheld during CART and ABPM to assess BP 231 

fluctuations in a real-life environment. Still, the impact of dopaminergic drugs may have influenced the BP recordings. 232 

To that extent, the finding that LEDD values were not significantly different among groups and most associations 233 

remained significant after adequate correction in multivariate analysis seems reassuring. Third, the possibility exists that 234 

ABPM could better capture adrenergic impairment, thus limiting the diagnosis of AF with a prominent cardiovagal 235 

impairment, although the analysis of the 6 misidentified patients does not seem to confirm this hypothesis. Fourth, the 236 
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variability in each individual patient’s day schedule might have influenced the ABPM recordings, as those with greater 237 

motor disability are less likely to engage in strenuous physical activities or prolonged standing.  238 

 239 

This should be considered as a pilot study, but a wide range of future applications for machine learning in the field of 240 

ABPM can be easily envisioned. The machine learning approach needs to be tested and validated on larger samples, 241 

evaluating the possibility to discriminate patients with prevalent cardiovagal vs. adrenergic vs. mixed autonomic 242 

impairment, with associated clinical implications. It seems reasonable to assume that patients with prevalent 243 

cardiovagal impairment should display a peculiar BP profile, since adrenergic vasoconstriction is usually preserved 244 

while HR variations are minimal or absent. Similarly, one would expect that patients with prevalent adrenergic 245 

impairment, with minimal vasoconstrictive function but preserved compensatory shifts in HR, could be differentiated 246 

by those with mixed AF.  The extent to which machine learning applied to ambulatory recordings of blood pressure and 247 

heart rate can assist in detecting distinctive patterns of blood pressure dysregulation with potentially relevant clinical 248 

implications remains to be clarified. In the meantime, these data suggest that this technology can be successfully applied 249 

to ABPM recordings to diagnose AF when CART is not easily available or difficult to obtain, favoring more 250 

appropriate referrals to a second-level CART evaluation, with the main advantage of lowering healthcare costs, 251 

improving the appropriateness of referrals, and providing an additional, real-life, measure of circadian blood pressure 252 

fluctuations. Additional possible applications include monitoring the efficacy of treatments aiming at correcting OH 253 

without resulting in excessive SH.  254 

 255 
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FIGURES 325 

Figure 1. Accuracy of Autonomic Failure prediction 326 

 327 

AF: Autonomic failure; PPH: post-prandial hypotension; w-BPV: weighted blood pressure variability; SD: standard 328 

deviation; SBP: systolic blood pressure; DBP: diastolic blood pressure; Hypo-awΔ15/24h: awakening hypotension; MBP: 329 

mean blood pressure; Hypo-epΔ15/24h: hypotensive episodes; LDA: linear discriminant analysis.   330 

 331 

332 
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TABLES 333 

Table 1. ABPM parameters: comparison between patients with and without autonomic failure. 334 

Ambulatory blood pressure monitoring 

 AF- 
(n. 51) 

AF+ 
(n. 29) 

p-value  

Age [years] [mean±SD] 61 ± 10 67 ± 10  < 0.01   

Disease duration [years] [mean±SD] 5.5 ± 3 7 ± 4.5 0.08  

LEDD [mg] [mean±SD] 657 ± 326 694 ± 403 0.72  

Female Sex [n (%)] 17 (33) 9 (31) 0.08   

Daytime SBP [mmHg] [mean±SD] 122 ± 10 118 ± 8 0.04  

Daytime MBP [mmHg] [mean±SD] 91 ± 9 88 ± 7 0.24  

Daytime DBP [mmHg] [mean±SD] 75 ± 9 73 ± 7 0.13  

Night-time SBP [mmHg] [mean±SD] 109 ± 11 122 ± 17 < 0.01  

Night-time MBP [mmHg] [mean±SD] 79 ± 8 89 ± 14 < 0.01  

Night-time DBP [mmHg] [mean±SD] 64 ± 8 71 ± 13 < 0.01  

Daytime SBP loads [%] [mean±SD] 19 ± 20 15 ± 11  0.19  

Daytime DBP loads [%] [mean±SD] 17 ± 22 18 ± 15 0.83  

Night-time SBP loads [%] [mean±SD] 19 ± 24 46 ± 36 <0.01   

Night-time DBP loads [%] [mean±SD] 23 ± 25 45 ± 37 <0.01  

Reverse dipping pattern [n (%)] 5 (10) 17 (58) < 0.01   

w-BPV > 11 mmHg [n (%)] 25 (49) 20 (68) 0.08  

SD-daytime SBP >16 mmHg [n (%)] 4 (8) 10 (34) 0.02  

PPH [n (%)] 23 (46) 17 (58) 0.27  

Hypo-aw Δ15/24 h [n (%)] 4 (8) 13 (44) < 0.01  

Hypo-ep Δ15/24 h [n.] [mean ± SD] 0.4 ± 0.6 3.4 ± 3.3  < 0.01   

 335 

AF: autonomic failure; LEDD: levodopa equivalent daily dose; SBP: systolic blood pressure; MBP: mean blood 336 

pressure; DBP: diastolic blood pressure; w-BPV: weighted blood pressure variability; SD-daytime SBP: standard 337 

deviation of diurnal systolic blood pressure; PPH: post-prandial hypotension; Hypo-aw Δ15/24h: Awakening hypotension; 338 

Hypo-ep Δ15/24h: hypotensive episodes.      339 

340 
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Table 2. Prediction of Autonomic Failure through Machine Learning and single ABPM parameters 341 

Machine learning 
(all ABPM variables) 

Accuracy AUC  Specificity Sensitivity PPV NPV 
 

LDA 91% (83-96) / 98% (90-100) 79% (60-92) 96% (77-99) 89% (80-94) 

ABPM predictive 
variables (categorical) 

Accuracy AUC  Specificity Sensitivity PPV NPV 
 

≥ 3 Hypo-epΔ15/24 h 82% (71 – 90) / 
 

100% (93 – 100) 52% (33 – 71) 100% 77% (70 – 83) 

Reverse dipping 79% (68 – 87) / 
 

90% (79 – 97) 59% (39 – 76) 77% (58 – 89) 79% (71 – 86) 
Hypo-awΔ15/24 h 74% (63 – 84) / 

 
92% (80 – 98) 45% (26 – 64) 76% (54 – 90) 74% (67 – 80) 

SD d-SBP (>16 mmHg) 71% (60-81) / 92% (81-98) 35% (18-54) 71% (46-88) 71% (65-77) 

w-BPV (>11 mmHg) 57% (46 – 68) / 
 

51% (37 – 65) 69% (49 – 84) 44% (36 – 54) 74% (61 – 84) 
PPH 56% (44 – 67) / 

 
54% (39 – 68) 59% (39 – 76) 43% (33 – 53) 69% (58 – 79) 

ABPM predictive 
variables (continuous) 

Accuracy AUC  Specificity Sensitivity PPV NPV 
 

* Diurnal SBP / 0.62 (0.49-0.75) / / / / 
* Diurnal MBP / 0.55 (0.42-0.69) / / / / 
* Diurnal DBP / 0.58 (0.46-0.71) / / / / 
Nocturnal SBP  

(cut-off 123 mmHg) 
74% (67 – 80) 0.72 (0.60-0.84) 90% (79 – 97) 45% (26 – 64) 72% (51 – 87) 74% (67 – 80) 

Nocturnal MBP  
(cut-off 95 mmHg) 

75% (64 – 84) 0.73 (0.61-0.85) 96% (87 – 99) 38% (21 – 58) 85% (57 – 96) 73% (67 – 78) 

Nocturnal DBP  
(cut-off 75 mmHg) 

74% (63 – 83) 0.67 (0.54-0.80) 92% (81 – 98) 41% (24 – 61) 75% (52 – 89) 73% (67 – 79) 

 342 

Autonomic failure (AF+) was used as outcome. The predictive power of each ABPM variable was calculated through a 343 

2x2 contingency table for dichotomous variables (Hypo-awΔ15/24h, ≥ 3 Hypo-epΔ15/24h, postprandial hypotension, reverse 344 

dipping pattern, high weighted blood pressure variability) and through the ROC curve for continuous variables 345 

(diurnal and nocturnal blood pressure values). The accuracy of the continuous variables refers to the cut-point of the 346 

ROC curve with the best sensitivity-specificity compromise (123 mmHg for SBP, 95 mmHg for MBP, 75 mmHg for 347 

DBP). LDA: linear discriminant analysis; ABPM: ambulatory blood pressure monitoring; Hypo-awΔ15/24h: awakening 348 

hypotension; Hypo-epΔ15/24h: hypotensive episodes; SD d-SBP: standard deviation of diurnal systolic blood pressure; w-349 

BPV: weighted blood pressure variability; PPH: post-prandial hypotension; AUC: area under the curve; PPV: positive 350 

predictive value; NPV: negative predictive value; SBP: systolic blood pressure; MBP: mean blood pressure; DBP: 351 

diastolic blood pressure.  * The ROC-curve output with diurnal BP value was obtained by inverting the outcome (AF-) 352 

in order to have an AUC greater than 0.5; accuracy metrics have not been reported being not significant. 353 

354 
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Table 3. Univariate and multivariate logistic regression analysis 355 

 Table 3A Outcome 

ABPM predictive 

Variables (categorical) 

Autonomic Failure 

Univariate analysis 
(IC 95%) 

Multivariate analysis 
(IC 95%) 

Hypo-awΔ15/24 h 
OR 9.1 (2.6 – 32) 8.7 (2 – 37.4) 

p-value < 0.01 0.01 

≥ 3 Hypo-epΔ15/24 h 
OR 40.2 (5.8 – 78) 60.7 (12.1 – 108) 

p-value < 0.01 < 0.01 

PPH 
OR 1.6 (0.7 – 4.2) 1.4 (0.4 – 4.5) 

p-value 0.28 0.57 

Reverse dipping 
OR 13 (4 – 42) 16.6 (3.2 – 87) 

p-value < 0.01 < 0.01 

w-BPV  
(> 11 mmHg) 

OR 2.3 (0.9 – 6) 1.4 (0.5 – 4.3) 

p-value 0.09 0.57 

DS daytime SBP  
(>16 mmHg) 

OR 6.1 (1.7 – 22.1) 3.8 (0.9 - 16) 

p-value < 0.01 0.06 

Table 3B Outcome 

ABPM predictive 

Variables (continuous) 

Autonomic Failure 

Univariate analysis 
(IC 95%) 

Multivariate analysis 
(IC 95%) 

Diurnal SBP 
OR 0.95 (0.9 – 1.01) 0.95 (0.89 – 1.01) 

p-value 0.06 0.06 

Diurnal MBP 
OR 0.96 (0.9 – 1.01) 0.96 (0.89 – 1.03) 

p-value 0.14 0.24 

Diurnal DBP 
OR 0.97 (0.91 – 1.02) 0.97 (0.91 – 1.04) 

p-value 0.24 0.41 

Nocturnal SBP 
OR 1.07 (1.03 – 1.11) 1.06 (1.01 – 1.12) 

p-value < 0.01 0.01 

Nocturnal MBP 
OR 1.09 (1.04 – 1.15) 1.08 (1.02 – 1.15) 

p-value < 0.01 0.01 

Nocturnal DBP 
OR 1.08 (1.03 – 1.14) 1.07 (1.01 – 1.13) 

p-value < 0.01 0.03 

 356 

Autonomic failure (AF+) was used as dependent variable (outcome). In univariate analysis, the independent variables 357 

were Hypo-awΔ15/24h (awakening hypotension), ≥ 3 Hypo-epΔ15/24h (hypotensive episodes), reverse dipping, w-BPV 358 

(weighted blood pressure variability), DS-daytime SBP (standard deviation of daytime systolic blood pressure), diurnal 359 

and nocturnal SBP (systolic blood pressure), diurnal and nocturnal MBP (mean blood pressure), diurnal and nocturnal 360 
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DBP (diastolic blood pressure). In multivariate analysis age, sex, disease duration and LEDD (Levodopa Equivalent 361 

Daily Dose) were used as potential confounding variables. 362 


