
16 May 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Framework for the Gamification of GUI Testing / Coppola, Riccardo; Ardito, Luca; Fulcini, Tommaso; Garaccione,
Giacomo; Torchiano, Marco; Morisio, Maurizio - In: Software Engineering for Games in Serious Contexts / Cooper
K.M.L., Bucchiarone A.. - ELETTRONICO. - [s.l] : Springer, Cham, 2023. - ISBN 978-3-031-33337-8. - pp. 215-242
[10.1007/978-3-031-33338-5_10]

Original

A Framework for the Gamification of GUI Testing

Springer postprint/Author's Accepted Manuscript (book chapters)

Publisher:

Published
DOI:10.1007/978-3-031-33338-5_10

Terms of use:

Publisher copyright

This is a post-peer-review, pre-copyedit version of a book chapter published in Software Engineering for Games in
Serious Contexts. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-031-33338-5_10

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2982484 since: 2023-09-29T09:00:02Z

Springer, Cham

Chapter 1
A framework for the Gamification of GUI testing

Riccardo Coppola *, Luca Ardito, Tommaso Fulcini
Giacomo Garaccione, Marco Torchiano and Maurizio Morisio

Politecnico di Torino
Department of Control and Computer Engineering

Corso Duca degli Abruzzi, 24
10129, Torino, Italy

name.surname@polito.it
*: corresponding author

Abstract Software testing is a critical activity in the software development process.
Several techniques have been proposed, addressing different levels of granularity
from low-level unit testing to higher-level exploratory testing through the software’s
Graphical User Interface (GUI). In modern software development, most test cases
are obtained by automated test generation. However, while automation generally
achieves high coverage in code-level white-box testing, it does not always generate
realistic sequences of interactions with the GUI. By contrast, manual exploratory
testing has survived as a costly, error-prone and tedious yet crucial activity. Gamifi-
cation is seen as an opportunity to increase user satisfaction and engagement while
performing testing activities. It could also enable and encourage crowdsourced test-
ing tasks. The purpose of the study described in this chapter is to provide a framework
of gamification mechanics and dynamics that can be applied to the practice of man-
ual exploratory GUI testing. We provide an implementation of the framework as
an extension of an existing manual exploratory GUI testing for web applications,
and we provide a preliminary evaluation of the gamified tool in terms of provided
efficiency, effectiveness and User Experience. Our results show that the gamified
solution makes the testers obtain test suites with higher coverage, whilst reducing
slightly the number of bugs signalled while traversing the applications under test.
The gamified tool also was considered to provide a positive user experience and the
majority of participants expressed their willingness to use such instruments again
in the future. As future work, we foresee the implementation of the framework in
a standalone tool and in-depth empirical experiment to evaluate quantitatively the
benefits and drawbacks provided by such mechanics in real testing scenarios.

1

2 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

Keywords: Gamification, Software Engineering, Software Testing, Web Applica-
tion Testing, GUI Testing

1.1 Introduction

Software testing is a critical activity in the software development process. Its main
purpose is to detect defects and faults in advance in the code produced, avoiding to
release code affected by bugs and security issues, whose repair cost increases once
the software is released to the final users. Testing is also utilized to prove conformance
to functional requirements and the reliability of software artefacts. Several software
testing techniques exist in the literature, ranging from low-level unit testing of atomic
components of the software (unit tests) to higher-level exploratory testing through
the finalized software (end-to-end or E2E testing). When conducted through the
Graphical User Interface (GUI) of the software under test (SUT), E2E testing is
typically called GUI testing.
In modern software development test cases are often obtained through automated

test generation, a practice that ensures significant time savings and repeatability
of test practices. However, while automation generally achieves high coverage in
code-level white-box testing activities, automated testing is not always the optimal
choice to generate E2E test suites, with the generation of interaction sequences that
have a low level of realism in mimicking the final user’s interaction with the system.
Therefore, a relevant portion of E2E testing activities is still conducted manually
by the QA team. Manual Testing is however renowned as a costly, error-prone and
tedious yet crucial activity [1]. Throughout this manuscript, we will refer to GUI
testing as the tool-aided activity conducted by development companies or external
test factories, and not to activities performed by the final users of the applications
(e.g., beta testing or crowdsourced verification of web applications). Our focus is
also on GUI-based functional testing, i.e., to all activities related to the verification
of the main features of the SUT.

Gamification, defined as "the use of game design elements in non-game con-
texts" [2], is gaining traction in the latest years in disciplines related to Computer
Science, because of its proven capability in motivating, engaging and improving the
performance of the participants of tasks to which gamemechanics are applied [3] [4].
Several frameworks have been proposed to govern and aid the design of Gamified
activities and tools. In this chapter, we adopt as a reference the Octalysis frame-
work proposed by Yu-Kai Chou [5]. The framework identifies eight core drives that
represent aspects of human behaviour that can be stimulated through gamification.
Several works in Software Engineering literature have motivated, conceptualized,

and evaluated gamification mechanics to improve the results of many activities of the
software process [6].Albeit the primary application ofGamificationmechanics is still
used primarily in the educational field [7], there is a growing interest by practitioners
in implementing them in industrial contexts and tooling [8]. Case studies in the
literature have documented encouraging outcomes by such adoption [9].

1.1. INTRODUCTION 3

Of all Software Engineering activities, Software Testing is particularly suitable
for the application of the most common Gamification elements. Testing activities,
in fact, typically produce quantitative, measurable, and comparable results (e.g.,
coverage thresholds reached, number of defects found, number of crashes triggered)
that can be naturally translated to game-like aspects (e.g., points and leaderboards).
The present chapter has the goal of proposing a structured methodology to apply

gamification in the domain of exploratory GUI testing, a facet of the software testing
practice which is still not covered by related literature. We propose a set of game
mechanics that can be adopted for testing both web and android applications, with
a scoring algorithm that can be used in a general context. We aim to chart a viable
path for researchers and practitioners that will approach the topic of gamification in
the GUI testing discipline.
We report the process of adapting gamified mechanics to the activity of manual

exploratory GUI testing, . To that extent, we perform a preliminary investigation of
the current state of the art and practice in the field of Gamified Software Testing,
to identify the most mentioned tools and adopted mechanics, and the benefits and
drawbacks provided by the techniques. We then detail a framework of mechanics for
the Gamification of GUI testing, incorporating game elements like session scores,
leaderboards, and live graphical feedback. The framework has been developed as
a prototype for GUI testing of Web Applications, but it is by design adaptable to
different domains. We finally report the findings of an experiment conducted with
graduate students, to evaluate the improvements in effectiveness and user experience
of the Gamified tool when compared to the non-Gamified equivalent.
The framework we present brings a novel contribution to the current state of the

art related to the gamification of software testing, being an example of a gamified
tool for manual exploratory GUI testing: an analysis of the literature we have per-
formed has revealed that this is still a relatively unexplored field. More specifically,
no solutions have been proposed previously specifically for exploratory manual GUI
testing of web applications. The framework extends two previous works: the proto-
type framework proposed by Cacciotto et al. [10] and an extension of it by Fulcini
and Ardito [11], which also saw a first preliminary evaluation of the framework.
The chapter is organized as follows: section 1.2 presents background about Soft-

ware Testing techniques and Gamification in the Software Engineering discipline.
Section 1.3 provides a survey of the existing scientific literature regarding gamified
Software Testing. Section 1.4, based on the findings of the literature review, presents
a conceptual framework for gamification of manual exploratory GUI testing. Section
1.5 describes the methodology, setting and results of an empirical evaluation of the
framework. Section 1.6 discusses the threats to validity of the framework. Finally,
section 1.7 concludes the chapter with an overview of the findings and future research
directions.

4 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

1.2 Background and Related Work

This section illustrates the main concepts of GUI testing: the major available tech-
nologies, the main limitations and open challenges. We also introduce background
concepts about the utilization of Gamification in Software Engineering.

1.2.1 GUI Testing

GUI Testing is a form of Functional Testing, that exercises a Software Under Test
(SUT) of any given domain through its Graphical User Interface. GUI testing exer-
cises the SUT by mimicking the operations that would be performed by its typical
end-that In that sense, GUI Testing is a form of End-to-End (E2E) or System testing
since it aims at defining scenario-based test cases to cover the functional requirements
of the SUT.
ManyGUI Testing tools and techniques have emerged in the last three decades and

now they are available for different platforms and domains. All methodologies and
technologies used for GUI testing share several commonalities. GUI test scenarios
are typically defined as a sequence of different locators, i.e., graphical elements that
have to be recognized and interacted with inside the GUI; each locator in a GUI
test sequence is typically associated with a specific operation, e.g., mouse clicks and
movements, key presses, or text insertions. GUI test cases also make use of different
forms of oracles, i.e., visual cues or properties of the GUIs that are checked to verify
the conformance of the SUT’s behaviour with the functional requirements.
GUI testing activities are not inherently automated; in fact, related literature

highlights that a significant portion of GUI testing is still performed manually by
practitioners.
Automated support for GUI testing is made available by a large number of com-

mercial and academic tools, that can be classified under two different categorizations.
Alégroth et al. define three different generations of GUI testing tools, based on the
type of locators and oracles used [12]:

• 1st Generation, or coordinate-based testing tools, use exact coordinates to locate
and verify the presence of elements on the screen. Coordinate-based locators were
used in the very first tools in the field, and have been largely abandoned because
of their flakiness and unreliability.

• 2nd Generation, or property-based testing tools, use textual properties of the
graphical elements of the GUI to identify and verify them (e.g., XML attributes
in layout files of mobile applications, or HTML attributes and properties in
DOM files describing the appearance of web apps). Property-based testing tools
are currently the most widespread methodology of GUI testing: Selenium and
Espresso are prominent examples of such category of GUI testing tools for the
mobile and web domains respectively.

1.2. BACKGROUND AND RELATED WORK 5

• 3rd Generation, or visual testing tools, use image recognition to locate and verify
images in the pictorial GUI of the application. Visual GUI testing tools are still
an emerging research direction in the literature [13].

Another possible categorization of GUI testing techniques can be performed
based on the way the sequences of interactions against the GUI are selected and
recorded into test scripts [14]:

• Automation Frameworks and APIs are tools that allow the creation of scripts
involving methods that access the hierarchy of components of the GUI. The
frameworks offer methods that allow executing specific operations on the located
widgets.

• Record and Replay tools allow the tester to manually execute operations against
the SUT’s GUI to have them recorded into re-executable test scripts.

• Automated Input Generation (AIG) tools allow generating the sequences of in-
teractions against the GUI without human scripting. These tools can be based on
random input generation or leverage models of the GUI to test.

Althoughmany tools and techniques are available, there is evidence that GUI test-
ing tools are not widely adopted by commercial and open-source projects, and GUI
testing is conducted mostly manually, using random tools, or completely neglected.
The scarce diffusion of GUI testing is partly related to inherent technical issues:

GUI test cases exhibit very high fragility (i.e., the necessity of performing important
maintenance operations of GUI test cases when the SUT’s GUI evolves [15]), flaki-
ness (i.e., the possibility that the same test case produces unpredictable results when
applied to the same SUT [16]) and fragmentation (i.e., the necessity to execute the
test cases against different rendering of the GUI on varying configurations, browsers
or devices [17]). Recent surveys in the literature have identified the main limitations
of GUI testing in industrial practice. Even if most of the identified challenges are
technological and tool-related (e.g., the difficulty in coping with application changes
that may break test execution; timing and synchronization issues between the test
cases and the SUT; missing means to provide robust identification of GUI widgets),
some of the identified challenges are related to the requirement of specific skills and
trained professionals for the execution of even trivial GUI testing activities [18].
However, it is widely accepted in related literature that defining test scripts is

typically considered by developers as a time-consuming, error-prone and boring
activity [19]. The typically low engagement of testing activities makes them often
overlooked in computing curricula, thereby creating a lack of knowledge about
testing techniques in junior developers [20].

1.2.2 Gamification in Software Engineering

Many works in related literature have applied gamified concepts to the field of
Software Engineering.

6 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

In their systematic mapping, Pedreira et al. report that Gamification is being
adopted in many different phases of the software process [2]. The principal ap-
plication areas are Software implementation, Project Monitoring and Control, and
Collaboration between team members. Software Testing is the fifth most mentioned
area in related work about Gamified Software Engineering practices. Gamification
in Software Engineering is also a significantly growing trend in the field, as reported
in the literature review performed by Barreto et al. [21].
The mentioned surveys identified badges and leaderboards as the most frequently

mentioned Gamification aspects used to enhance engagement in Software Engineer-
ing activities. The prevalent benefits provided by the application of Gamification are
increased performance in performing the gamified activities, higher product quality,
and better learning. A few negative effects are also mentioned, e.g. ineffective and
eventually dissatisfying experiences, and cognitive overload on the participants.
Gamification is typically applied to Software Engineering practices that require

high commitment and cooperation by their participants. de Melo et al., for instance,
present a Gamified platform for Version Control systems, to build a ranking of
the most active developers contributing to software projects [22]. Ašeriškis et al.
describe game rules for a Project Management System that they evaluated through
the application of the standard System Usability Scale (SUS). The authors identified
benefits provided by the utilization of the platform, whilst guaranteeing relatively
high usability to its users [23].
The literature reviews in the Software Engineering discipline report, however, that

a high percentage of works in gamification (more than 70%) fail to report practical
results obtained by the application of the technique. This aspect underlines the
immaturity of the practice in Software Engineering, whilst not taking into account
the fundamental aspect of the User Experience provided by the gamified tools and
techniques.

1.3 Gamified Software Testing: a State of The Art

This section discusses and analyzes the current applications of Gamification me-
chanics to GUI testing. The presented results are the outcome of a semi-systematic
literature review that was performed on the Google Scholar dataset, by searching for
the keywords gamification (or ludicization, or gamified), software and testing. We
then applied a set of inclusion and exclusion criteria, which are reported in Tables
1.1 and 1.2, to the results of this first search, resulting in a total of 43 sources. The
execution of a process of backward snowballing on these sources, where we applied
the inclusion and the execution criteria to new research items found, followed by a
similar process of forward snowballing, resulted in a total of 50 different literature
sources about Gamified Software Testing, which we have listed in the online Ap-
pendix A1. An analysis of this literature review has shown that there is a significant

1 https://doi.org/10.6084/m9.figshare.21967361.v1

1.3. GAMIFIED SOFTWARE TESTING: A STATE OF THE ART 7

lack of gamified testing tools that focus on exploratory GUI testing: more precisely,
the only works we have found that have GUI testing as a focus are the previous works
we have based this framework on. We conclude that this is still an unexplored field
of research, and we feel that our work can be considered a novelty; we hope that our
framework can inspire new research works in the field of gamified GUI testing.

Table 1.1 Inclusion Criteria for the semi-systematic literature review

Inclusion Criteria Description

IC1 The source is directly related to the topic of gamification applied to the field
of Software Testing, is generally defined for the Software Engineering disci-
pline but with clear applicability to the testing activity or explicitly proposes,
discusses, improves or applies an approach, a framework, or a prototype re-
lated to the gamification of any facet of software testing, including education
of software testing subjects.

IC2 The source addresses the topics covered by the review questions.

IC3 The literature item is written in a language that is directly comprehensible
by the authors: English, Italian or Chinese.

IC4 The source is an item of white literature with the full text available for down-
load and is published in a peer-reviewed journal or conference proceedings.

Table 1.2 Exclusion Criteria for the semi-systematic literature review

Exclusion Criteria Description

EC1 The source is not directly related to the topic of gamification applied to the
field of software testing.

EC2 The source is not in a language directly comprehensible by the authors.

EC3 The source is an item of white literature, but the full text is not available for
download or online reading.

EC4 The source discusses a serious/applied game that cannot be applied to real use
case scenarios of the software testing process or software testing education
and training.

EC5 The source is not a primary study but a secondary or tertiary study of the
topic.

EC6 The source has not been published between 2010 and 2021.

All the collected sources were analyzed to collect the following information,
discussed in the subsections below: (i) the most frequently adopted mechanics and

8 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

tools for Gamified software testing, and (ii) the benefits and drawbacks of such
techniques as discussed in related literature.

1.3.1 Adopted game mechanics

To assess the adoption and diffusion of game mechanics in Gamified Software
Testing literature, all the mechanics mentioned in the selected literature underwent a
process of coding. The codes used were the names of the mechanics in the Octalysis
framework. By this analysis, 24 different mechanics of the Octalysis framework were
found in the related literature.
In the following, we report the Gamification mechanics that had a number of

mentions above the average:

• Score: The mechanic belongs to the Accomplishment core drive of the Octaly-
sis framework. It implies that the user can earn virtual points after performing
specific actions in the gamified system. The score can be used for other game
mechanics (e.g., for buying virtual goods). A scoring system is often considered
a fundamental building block for a gamified system, as many other dynamics
that directly stimulate emotion rely on that. This mechanic was implemented or
discussed in 33 different sources.

• Leaderboards: The mechanic belongs to the Accomplishment core drive of the
Octalysis Framework. It consists of comparisons and rankings between the scores
obtained by different users of the gamified system. The correlation between score
and leaderboard is clear: the former is a mechanic that does not produce emotional
value in the user until a competition dynamic, the leaderboard, is stimulated. The
mechanic was implemented or discussed in 27 different sources.

• Levels: The mechanic belongs to the Unpredictability core drive of the Octalysis
framework. They consist of the progression of the player through different stages
with different objectives. The mechanic was implemented or discussed in 16
different sources.

The complete set of mechanics proposed, along with their definitions, related
Octalysis core drive and mentions in the related literature is reported in the online
Appendix B of the manuscript2.
In Figure 1.1 we report the number of mentions for each Gamification core drive

defined in the Octalysis Framework. From the graph, it is evident how the main focus
of available Gamification implementations for software testing is to provide Accom-
plishment to the users as a positive means of motivation (43 mentions). Conversely,
only two sources implemented mechanics related to the Avoidance dimension, which
is related to the enforcement of correct patterns by applying punishments andmaluses
to non-conforming users. Few mentions were also gathered by the Gamification me-
chanics related to the Epic Meaningmacro category of the Octalysis framework. We

2 https://doi.org/10.6084/m9.figshare.20425446

1.3. GAMIFIED SOFTWARE TESTING: A STATE OF THE ART 9

Fig. 1.1 Distribution of mentions in the literature for the core drives of the Octalysis framework

consider such a low number of mentions as an effect of the still prototypical nature of
most of the described tools, which did not allow for the implementation of complex
narratives.

1.3.2 Gamified Software Testing Tools

In the mined set of literature about Gamified Software Testing, we identify 27 differ-
ent tools and/or frameworks for Gamified Software Testing. In the online Appendix
C3, we report the full list and tools, providing for each of them a brief description,
the adopted mechanics (regarding the Octalysis framework) and the list of literature
sources mentioning them.
It is evident from the list of tools that an important focus in Gamified software

testing literature is put on software testing education, as gamified mechanics are
seen as a primary means of increasing the student’s engagement in learning software
testing topics. Several Gamified tools aimed at practitioners implement crowd-based
mechanisms, to obtain higher coverage and effectiveness (i.e., detected bugs) by
generating competition between different testers.
In the following, we report the most mentioned Gamified testing tools in related

literature. For each tool, we report the primary sourcewhere it has been described and
themechanics that it implements according to the Octalysis framework ; additionally,
we present Table 1.3, where we list each tool and the gamified mechanics employed
by said tool.

• CodeDefenders is a turn-based mutation testing game, in which two players
are involved in competitive rounds. One player plays as the attacker, with the

3 https://doi.org/10.6084/m9.figshare.20425491

10 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

objective of injecting faults into the software; the other plays as the defender,
with the objective of writing test cases to spot faults. The tool has been originally
described by Rojas and Fraser [24] and has originally been used to teach mutation
testing in an academic context. In the following years, the tool received further
developments introducing more features, along with several related experiments,
which enriched the existing literature with experience reports of Code Defenders
usage. The tool implements the following Gamification mechanics: duels, scores,
leaderboards, puzzles, feedback, and challenges.

• HALO is a plugin for Eclipse proposed by Sheh et al. that uses game-like me-
chanics to make the whole software engineering process more engaging and
social [25] [26]. The tool implements an MMORPG-like (Massive Multiplayer
Online Role Playing Game) approach to software testing activities. It has been
used as the basis for the Secret Ninja approach proposed by Kiniry and Zimmer-
man, in which the Gamification aspects are applied while the users are not aware
of their application [27]. The tool implements the following Gamified mechanics:
social interaction, quests, storytelling, achievements, levels, and leaderboards.

• VU-BugZoo, originally described by Silvis-Cividjian et al. [28], is an educational
digital platform to teach software testing, based on a repository of faulty (stan-
dalone and embedded) code. The platform engages instructors and learners in
a bug-hunting experience which is empowered by the utilization of mechanics
typical of game design. The tool implements the trophy and score Gamification
mechanics.

• WReSTT-Cyle (Web-Based Repository of Software Testing Tools Cyber-Enabled
Learning Environments) is a cyber-learning environment that employs several
learning and engagement strategies in order to aid the phase of software testing
learning. It has been originally described by Clarke et al. [29] as a repository of
learning objects to support software testing teaching and has then evolved into
different projects named SEP-CyLe (Software Engineering and Programming)
and STEM-CyLe (an extension to all STEM disciplines). Originally, the tool
covered simple white and black-box unit testing. The cyber-enabled learning
environment adopts the following Gamification mechanics: score, leaderboards,
badges, timing, levels, rewards, social interaction, and quizzes.

• Auction-Based Bug Management: originally described by Usfekes et al. [26], it
is a serious game for bug tracking in Application Lifecycle Management Tools.
The tool is based on an auction reward mechanism, with the aim of providing
an incentive structure for software practitioners to find, resolve and test bugs and
malfunctionings of a given SUT. The tool implements the following Gamified
mechanics: auctions, virtual goods, timing, badges, and leaderboards.

1.3.3 Advantages and drawbacks of gamification for software testing

On the set of literature items about the Gamification of Software Testing activities,
we applied a procedure of coding to extract categories of benefits and drawbacks

1.3. GAMIFIED SOFTWARE TESTING: A STATE OF THE ART 11

Table 1.3 Gamified testing tools and their gamified mechanics

Tool Gamified Elements

CodeDefenders Duels, Scores, Leaderboards, Puzzles, Feedback, Challenges

HALO Social Interaction, Quests, Storytelling, Achievements, Levels,
Leaderboards

VU-BugZoo Trophies, Scores

WReSTT-Cyle Score, Leaderboards, Badges, Timing, Levels, Rewards, Social
Interaction, Quizzes

Auction-Based Bug Management Auctions, Virtual Goods, Timing, Badges, Leaderboards

Fig. 1.2 Number of mentions in literature for each category of advantages and limitations

caused by the adoption of gamifiedmechanics in testing procedures. After the coding
was performed, we applied axial coding to extract higher-level categories of benefits
and drawbacks. We report the full list of advantages and issues extracted from the
literature in online Appendix D4 of this chapter.
Themain categories of advantages discussed in related literature are the following:

• Better User Experience: Under this category, we include all the benefits related
to an increased quality of the user experience provided to the tester when gamified
mechanics are applied. 20 sources underline a higherEngagement (or involvement)
guaranteed by game elements in the testing activity, with quantitative empirical
results reported by Clegg et al. for unit testing [30] [31].

4 https://doi.org/10.6084/m9.figshare.20456574

12 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

15 different sources highlighted that an important benefit of having game aspects
in testing procedures is the guarantee of having more fun activities. This aspect
was highlighted especially in the educational context [32].
Finally, several Gamification mechanics have been proven to provide additional
Motivation to the testers involved.

• Higher Efficiency. Efficiency, as defined by the ISO 9001 standard, is "the extent
to which time, effort or cost is well used for the intended task or purpose" [33].
Under this category, we include advantages related to reduced efforts and costs in
test case definition, generation or execution caused by the application of gamified
mechanics. One of the most positively commented aspects of gamified tools is
the presence of Informative Content in the testing practices, which is able to
reduce the effort required by the testers to gather information during the test cases
design [34]. Several sources consider Gamification ameans to reduce the required
effort to perform test-related activities.Crowdsourced Contributions is mentioned
in several sources and are seen as a primary mean to boost the efficiency of testing
procedures [35].

• Higher Effectiveness. Effectiveness, as defined by the ISO 9001 standard, is
"the extent to which planned activities are realised and planned results are
achieved" [33]. Under this category, we include all the discussed advantages
related to an enhancement of the outcomes of gamified testing procedures. In-
creased effectiveness is measured both in testing education (Improved Learning,
measured through analysis of grades, [31]) and in testing practice (e.g., increased
branch coverage and mutation score in gamified mutation testing, as measured by
Fraser et al. [36]). Other specific effectiveness-related aspects are mentioned in
other sources, e.g. effectiveness in finding bugs, identifying code smells, finding
issues and adding comments to the original code.

The main categories of disadvantages discussed in related literature are the fol-
lowing:

• Design Issues. Several studies in the literature report issues related to how the
gamified aspects are designed and fit the underlying testing activities. For instance,
Garcia et al. and Bryce et al. report cases where gamification interferes with the
testing activities, being incompatible with other improvement efforts applied to
the testing practice [37] [38]. Five of the collected studies highlight the necessity
of proper calibration of gamificationmechanics, to disincentivise possible exploits
from the users to gain benefits.

• Implementation Issues. A limited number of the selected sources mention
implementation-related issues for gamified tools. The main concerns in this sense
are related to the scalability of gamified approaches, especially the possibility to
extend successfully to multiple players the game mechanics that are evaluated on
a limited number of subjects [35]).

• Bad User Experience. Some reports in the literature report that gamification
can make the learning curve for testing procedures steeper [39]. Harranz et al.
also report the possibility of change resistance for organizations to transition to
gamified procedures [40].

1.4. A FRAMEWORK OF GAME MECHANICS FOR GUI TESTING OF WEB APPS 13

• Lower Effectiveness. Several sources in the literature report failing attempts at
increasing the effectiveness of testing procedures through gamification, both in
terms of the bug-finding ability of generated test cases or in learning outcomes
[41].

• Lower Efficiency. By increasing the concepts that the tester has to learn, Gam-
ification – when not properly designed and applied – can actually add overhead
to the testing procedure. Pedreira et al. underline that setting up gamified work
environments never has a negligible cost [42]. de Jesus et al. report that gamified
environments are inherently complex and require incremental and constant efforts
to be built [43].

In Figure 1.2 we report the number of manuscripts in the set of analyzed literature
which mention at least one advantage or drawback for each of the defined categories.
From the number of mentions, it is evident that the main focus of literature about
gamified software testing has a primary focus on the advantages or the drawbacks
that are caused to the user experience of the tools and techniques.

1.4 A framework of game mechanics for GUI testing of web apps

In this section, we describe and discuss a framework of gamified mechanics that
can be applied to GUI web application testing. To the best of our knowledge, the
framework constitutes the first set of gamified elements specifically tailored for the
practice of GUI testing. Even if some of the mechanics can be applied to other
testing methodologies (e.g., to unit or mutation testing tools), most of the mechanics
are specifically intended to aid the definition of second-generation GUI test cases
through the Record & Replay methodology.
We have defined two preliminary prototypes of our framework of gamified me-

chanics: (i) an implementation as a plug-in for the Scout augmented testing tool,
originally presented by Nass et al. [44]; (ii) a plug-in for the Chrome browser, to
enable in-browser generation of test suites for web-applications.
Even though they are specifically implemented for web application testing, the

gamified mechanics in the framework are generalizable to GUI testing applied to any
software domain (i.e., they can be adapted with little effort to mobile and desktop
applications).
Figure 1.3 reports theOctalysis analysis performed for the proposed framework, by

assigning one point to each dimension to which the gamified mechanics belong. The
following subsections describe the individual gamification mechanics implemented.

1.4.1 Scoring Mechanism and Leaderboard

The principal gamification element of the proposed Gamification framework is a
formula to assign a score to each testing session performed by the tester 1.4. The

14 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

Fig. 1.3 Octalysis score for the proposed framework

score allows for evaluating the tester’s performance, taking into account different
factors, whilst introducing a competitive aspect that may encourage testers to put
more effort into their activities.
The score is composed of two parts: a base score, which takes into account factors

that can be used to compare different GUI test sequences on the same working
application, and a bonus score, which takes into account the bug-finding capability
of the developed test suites. As such, the score is calculated by using the following
formula:

𝑆 = 𝑆𝑏𝑎𝑠𝑒 + 𝑆𝑏𝑜𝑛𝑢𝑠

The base score is computed by using the following formula:

𝑆𝑏𝑎𝑠𝑒 = 𝑎 · 𝐶 + 𝑏 · 𝐸𝑋 + 𝑐 · 𝐸𝐹

The base score adds up to 100 points and is composed of three subcomponents
weighted by configurable parameters:

• Coverage Component (𝐶): the average page coverage obtained by the tester
during the session, according to the formula:

𝐶 =

∑
∀𝑖∈𝑃

𝑐𝑜𝑣𝑖

|𝑃 |

where 𝑐𝑜𝑣𝑖 is the coverage of the i-th page and 𝑃 is the set of pages visited during
the session. This component is multiplied by default for a coefficient equal to
60%.

• Exploration Component (𝐸𝑋): a component depending on the percentage of
pages visited and widgets interacted for the first time by the current tester. It is
therefore computed according to the following formula:

1.4. A FRAMEWORK OF GAME MECHANICS FOR GUI TESTING OF WEB APPS 15

𝐸𝑋 =
𝑘

𝑏
· 𝑝𝑛𝑒𝑤
𝑝𝑡𝑜𝑡

+ ℎ

𝑏
· 𝑤𝑛𝑒𝑤

𝑤𝑡𝑜𝑡

, 𝑘 + ℎ = 𝑏

where 𝑝𝑛𝑒𝑤 and 𝑝𝑡𝑜𝑡 are the newly discovered and the total pages respectively,
while 𝑤𝑛𝑒𝑤 and 𝑤𝑡𝑜𝑡 are the newly discovered and the total interacted widgets
respectively. By default, this component is worth 30% of the total base score.

• Efficiency Component (𝐸𝐹): it is computed as the ratio between the number of
interacted widgets and the total number of interactions, thereby according to the
formula:

𝐸𝐹 =
𝑤ℎ𝑙

𝑤𝑖𝑛𝑡

By default, this component is worth 10% of the base score. This component
aims at measuring the diversity of interactions performed by the tester to avoid
exploitations of the scoring mechanism.

The bonus score is computed by using the following formula:

𝑆𝑏𝑜𝑛𝑢𝑠 = 𝑑 · 𝑇 + 𝑒 · 𝑃

The base score adds up to 50 points and is composed of two subcomponents
weighted by configurable parameters:

• Time Component (𝑇): it is computed on top of the duration of the test session.
The rationale for the utilization of a time component is that longer test sequences
should allow a more thorough exploration of the GUI. The time component is
computed as follows:

𝑇 =


0 𝑠𝑖𝑛𝑡 ≤ 2 ∨ 𝑠𝑖𝑛𝑡 > 30
1.5 · 𝑡 2 < 𝑠𝑖𝑛𝑡 ≤ 5
𝑡 5 < 𝑠𝑖𝑛𝑡 ≤ 15
0.5 · 𝑡 15 < 𝑠𝑖𝑛𝑡 ≤ 30

where 𝑡 is the duration of the session (in minutes) while 𝑠𝑖𝑛𝑡 is the average
time spent per interaction (measured in seconds). By default, this component is
multiplied by 0.3.

• Problems Component (𝑃): it is computed on top of the number of issues reported
by the tester during the exploration of the SUT. The default coefficient of this
component is equal to 0.2.

1.4.2 Progress Bars

The progress bar is a form of live graphical feedback, that shows the number of
widgets that have been interacted with by the tester during the exploration of the
SUT.

16 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

Fig. 1.4 Results screen, showing the metrics measured for the session and the related score

The progress bar is rendered so that a global progress bar shows the percentage of
widgets interacted with by the user, in relation to the total amount of widgets present
on the page.
For the pages that have already been explored by at least another tester, a blue

line is shown on top of the progress bar to indicate the highest score in the page, i.e.,
the maximum coverage reached on such page among all past test sessions.
This element is aimed at providing satisfaction for the progress made by the

testers.

1.4.3 Exploration Highlights

Exploration Highlights are a form of live feedback employed to notify that a new
page has been discovered by the current tester, i.e. no previous test session has ever
visited it.
This element allows informing the tester when their exploration of the SUT is

better – in terms of novelty – than previous testers’ ones.

1.4.4 Injected Bugs

Injected Bugs are visual modifications that are injected into the AUT’s GUI. At the
current state of implementation of the prototype, injected bugs are represented as
superimposed oval-shaped visual elements, placed over randomly chosen elements
in a set of pages of the SUT. The purpose of injected bugs is to encourage the tester to
explore the web application by visiting as many pages as possible, whilst providing

1.4. A FRAMEWORK OF GAME MECHANICS FOR GUI TESTING OF WEB APPS 17

Fig. 1.5 Visual elements shown during the exploration of the SUT: progress bar, exploration
highlights, injected bugs

an immediate operation to perform in addition to only recording valid operations
over a properly working SUT.
In Figure 1.5 the three visual elements discussed are visible: the progress bar on

top of the screen, an exploration highlight in the top-left corner, and an injected bug
in the centre of the page.

1.4.5 Achievements

Achievements are used to provide a visual certification that the tester has met specific
objectives or requirements.
Achievements are shown through graphical badges. The purpose of achievements

is to provide gratification to the tester.
Gained achievements are shown as a form of live feedback during the test session

in which they are gained. It is possible for a tester to visualize the whole set of
achievements gained and those that are still missing.

1.4.6 User profiles and avatars

The mechanic allows defining a profile for each tester registered in the system. The
tester can then customize the profile with the preferred avatar, choosing between a
set of available ones. Additional items are unlockable by utilizing an in-game virtual
currency, which the tester is given every time he unlocks achievements or completes
quests or objectives.
Avatars belong – as a mechanic – to the Ownership core drive in the Octaly-

sis framework, and are based on the human need to empower their presence and
properties.

18 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

Fig. 1.6 Profile page of the tester, with the chosen avatar, the achievements’ badges and the avatar
shop

Each player profile is associated with a certain amount of experience points. As in
many Role Playing Game-based Gamification mechanics, experience points allow to
increase the player’s level, and to unlock additional features or customization items
when certain levels are reached.
In Figure 1.6 the profile page of the tester is reported. The profile page shows the

currently selected avatar, the item shop (where to invest virtual currency to customize
the avatar) and the unlocked achievements.

1.4.7 Quests and Challenges

Finally, the gamification framework includes two additional mechanics aimed at
encouraging the tester to execute specific actions.
Quests are specific tasks to perform during the execution of testing sequences.

They can be tied to specific types of interactions and elements, or to the number of
pages visited. The framework considers two different types of quests: daily quests,
which are available for a single day; and questlines, proposing a set of pre-defined
quests of increasing difficulty. Figure 1.7 shows both types of quests implemented
in the framework.
Challenges are specific tasks to be completed that are available only for a set

period of time (e.g., for a week). The score of all participating testers is registered
for each challenge, and a special leaderboard for the testers competing in a challenge

1.5. PRELIMINARY EVALUATION 19

Fig. 1.7 Page displaying quests and challenges, with a section for daily challenges and one for the
entire questline, each one having its set of rewards

is created. Prizes can be awarded to the testers that achieve a good placement in the
challenge.
Although real-world rewards are indeed a successful extrinsic motivator based

on tangible feedback (mostly monetary prizes), a plain usage not supported by a
balanced gamified experience would result unappealing and unsustainable in the
long term. Providing monetary incentives is an extrinsic motivator, the adoption of
which only keeps the user effectively involved in the short term (what is defined as
left-brain in the Octalysis core drives).
Providing an intrinsic motivating factor such as unpredictability (in the shape of

daily quests) is thewaywe aim at keeping testers engagedwith a balanced experience,
while attempting to mitigate the over-justification effect, whereby the effect of an
extrinsic motivator diminishes as the user becomes accustomed to it.

1.5 Preliminary Evaluation

After the definition of the framework, we performed a preliminary assessment to
evaluate the effectiveness and efficiency of the proposed Gamified GUI testing tool.
To that extent, we performed a 2 treatments × 2 sequences × 2 objects full

factorial (crossover) experiment. The treatment of the experiment was administered
as two different versions of the tool: the Gamified version (i.e., implementing our
framework) and the Standard version (i.e., the original version of the Scout tool for
exploratory GUI testing of web applications).

20 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

Table 1.4 Experiment Design

Period 1 Period 2
Object:Treatment Object:Treatment

Group 1 Mezzanine:Gamified Wagtail:Standard
Group 2 Mezzanine:Standard Wagtail:Gamified
Group 3 Wagtail:Gamified Mezzanine:Standard
Group 4 Wagtail:Standard Mezzanine:Gamified

Table 1.5 Statistics for Coverage and True Positives

Mezzanine Wagtail All
S G S G S G

Coverage Mean 8.0% 8.9% 8.6% 10.8% 8.3% 9.9%
Median 6.2% 7.4% 6.5% 8.8% 6.5% 8.1%
Std. dev 6.8% 6.0% 5.5% 6.5% 6.2% 6.3%

True positives Mean 1.87 1.57 3.68 3.58 2.75 2.58
Median 2.00 1.00 1.00 4.00 2.00 2.00
Std. dev 1.23 1.06 1.57 1.68 1.67 1.72

The experiment involved 144 participants recruited through convenience sampling
among students enrolled in the Software Engineering course held at the Polytechnic
University of Turin in the Spring semester of 2021. All participants received both
treatments, and received two different tasks to perform, each with a specific subject
application. All participants were provided with the task of generating test cases
for two different web-based SUTs, manually and utilizing the Scout tool. The ap-
plications were selected randomly from a list of open-source applications available
in grey-literature 5. The selected applications were Mezzanine6 and Wagtail7. The
experiment design is reported in Table 1.4.
In our evaluation we focused on three different aspects of the testing practice:

effectiveness, efficiency and User Experience. To evaluate Effectiveness, we injected
artificial bugs in the two experimental objects, and we measured the number of
True Positives, i.e. bug reports provided by the testers that corresponded to bugs
injected in the SUT. To evaluate Efficiency, we measured the coverage (i.e., the ratio
between analyzed widgets and total widgets in the traversed web pages) provided
by the generated test cases during the test sequences recorded by the participants.
At the end of the experimental sessions, the participants were administered the
TAM questionnaire [45], to evaluate the User Experience of the tool. The full TAM
questionnaire is reported in an online Appendix E8.

5 https://github.com/unicodeveloper/awesome-opensource-apps
6 https://github.com/stephenmcd/mezzanine
7 https://github.com/wagtail/wagtail
8 https://doi.org/10.6084/m9.figshare.20456496

1.5. PRELIMINARY EVALUATION 21

Fig. 1.8 Boxplots for the two metrics observed and measured during the experiment, Average
Coverage over pages (Percentage) and True Positives found.

Figure 1.8 shows the boxplots for the distribution of average coverage per page,
and the total number of true positives found in each session, aggregated by treatment.

Fig. 1.9 Distribution of the answers (percentage of the responses for each level of the respective
Likert scale) provided by the participants to the four categories of the TAM questionnaire: ATU
(AttitudeTowardsUsage), PU (PerceivedUsefulness), BI (Behavioural Intention) and PE (Perceived
Ease of Use). The results are averaged over all the questions of each category.

22 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

The results suggest that the gamified version of the tool achieves higher mean
coverage (9.9% against 8.3%), whereas the number of true positives detected was
both slightly higher for the standard version of the tool on average (2.75 vs. 2.58).
These results suggest that the inclusion of gamified mechanics primarily caused

the participants to focus more on their exploratory testing. Hence, each application
pagewas testedmore thoroughly with gamifiedmechanics in place.We guess that the
primary explanation for this behavioural change is connected to the visual highlight
features that were added to the tool.
In the experiment, we verified that gamification had a negative (albeit not signif-

icant) impact on the defect-finding ability of the testers. We guess that the slightly
lower number of defects found on average can be justified by the cognitive overhead
introduced by the gamification concepts.
Figure 1.9 reports the distribution of the answers to the TAMQuestionnaire. In the

graph, we report the mean of the answers for each category of the questionnaire (i.e.,
Attitude towards Usage or ATU, Perceived Usefulness or PU, Behavioural Intention
or BI, Perceived Ease of Use or PE).
We observe, on average, that participants had mostly positive perceptions towards

all the metrics measured by the TAM model. The metric with the most positive re-
sponses was the Attitude towards Usage metric, with 17% of participants strongly
agreeing and 66% agreeing that gamification is a desirable addition to the practice of
exploratory testing. A high value for the Attitude towards Usage can be considered
as a consequence of a positive User Experience of the users in their sessions with the
Gamified tool. High positive perceptions were also measured for Perceived Useful-
ness and Behavioural Intention. These results suggest that most of the participants
would use tools with gamification if they had to perform testing activities in the
future. Additionally, they indicate that gamification was perceived as valuable and
usable. The values for Behavioural Intention and Perceived Usefulness suggest that
the Gamified mechanics and aims were easily understandable by the users.
The most negative perceptions were aimed toward Perceived Ease of Use (16%

Disagree, 4% Strongly disagree). This result, however, can be justified by the lack of
experience of the participants with the practices and the inherently low ease of use
of the specific tool that was extended with gamified mechanics.

1.6 Threats to Validity

The potential threats to the framework’s validity are discussed according to the
categories defined by Wohlin et al. [46].

Threats to Internal Validity concern factors that may affect the results and were
not considered in the study. There is no guarantee that the measures selected to
evaluate a testing session (coverage, time spent) are the most optimal ones for this
purpose: a systematic literature review by Coppola and Alégroth [47] identified 55
different metrics belonging to 4 categories of GUI-based testing: Functional level
metrics, GUI level metrics, Model-level metrics, and Code-level metrics. With this

1.7. CONCLUSION AND FUTURE DIRECTIONS 23

many possible metrics present in the literature for GUI testing, it is not possible to
say that the metrics we used for our frameworks are the most beneficial or effective;
future experiments and studies are going to be required in order to be able to correctly
gauge whether the selected metrics are effective or if they can be replaced with other
ones.

Threats to Construct Validity concern the relationship between theory and ob-
servation. The framework defines a set of gamified mechanics that have been proven
to be effective in multiple studies, but it cannot be assumed that the combination
of said mechanics will prove effective for a GUI testing tool, as there is currently
no study on gamification of this specific practice. Future experiments are going
to be necessary to evaluate whether usage of the tool can lead to improved GUI
testing practices, as well as increased interest and motivation for the testers; these
experiments will have to evaluate the framework in its entirety as well as the single
gamified elements, to identify eventual weak links.

Threats to External Validity concern whether the results can be generalized.
We cannot affirm for certain that the tool will prove to be effective for all cases
of exploratory GUI testing of web applications, mainly due to two factors: the
selection of gamified mechanics, which may appear to be effective on paper but then
prove itself not optimal when applied to real-world scenarios, and the absence of
other studies and experiments on gamified GUI testing that can be compared to the
framework. The fact that this framework consists of, to the extent of our knowledge,
a novelty for the current literature, means that we cannot consider our choices and
methods to be generalized for all possible facets of exploratory GUI testing. There
is also the risk of having selected gamified elements that cannot be applied to every
possible kind of web application or to different domains; different web development
strategies may not interact correctly with the framework, for example, and this means
that the defined strategy cannot be generalized to the entire field of GUI testing for
web applications.

1.7 Conclusion and Future Directions

In this chapter, we have described a framework of gamifiedmechanics to be applied to
exploratory GUI testing of web applications. To our best knowledge, the framework
constitutes the first effort in adapting gamification mechanics to GUI testing. We
complement the definition of the framework with a literature review of Gamification
applied to Software Testing, to provide a view of the current state of the art about
gamified testing tools, along with the most utilized mechanics, and the mentioned
advantages and drawbacks of the technique.
The framework contains seven different mechanics. Three of them represent novel

contributions w.r.t. the existing literature: a scoring mechanism specifically defined
for GUI Testing of web applications, and graphical feedback (exploration highlights,
and progress bars) that are specifically designed to follow the typical procedure of
exploratory testing of web-based SUTs.

24 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

Wehave implemented themechanics in a prototype tool, developed as both a plug-
in for an existing Augmented testing tool (Scout) and as a plug-in for the Chrome
browser. The implementation of the framework allowed us to perform a preliminary
evaluation, in the form of a controlled experiment with 144 participants.
The performed experimentation showed that gamified mechanics provide higher

page coverage than non-gamified GUI testing. From a bug-finding standpoint, gam-
ification has shown to have no significant beneficial or detrimental effects. Finally,
gamification was considered to provide a good user experience. Our experiment
thereby confirms that, with no loss in effectiveness of the generated test sequences,
gamification can enhance the User Experience provided to software testers. A better
user experience can lead to higher productivity, engagement and quality of test cases
produced by testers. The conduction of more well-structured empirical experimenta-
tions, including more metrics to verify effectiveness, efficiency and user experience,
and the consequent evaluation of the interaction between the different measures, will
be crucial to provide a dependable assessment of the benefits provided by Gamifi-
cation. The current positive effects on coverage can in fact be considered as direct
behavioural consequence of some introduced gamification mechanics (e.g., progress
bar and visualization highlights) with negligible or even detrimental effects on the
real quality of generated test cases with the gamified tool.
At the current state of implementation, the tool is still in a prototypal state and

it needs to be deployed on the tester’s machine to work; in our future development,
we foresee a distributed implementation that will allow the utilization of the tool
with crowd-testing purposes, and effective utilization of competitivemechanics (e.g.,
leaderboards).
Future research directions include the adoption of the tool in an educational

context – e.g., a Software Engineering course – in order to conduct a longitudinal
study to evaluate the effects of utilizing Gamification when teaching System-level
and GUI testing to students. Moreover, we believe it is important to evaluate the
impact of the individual proposed mechanics in isolation.

References

1. E. Borjesson, R. Feldt, Automated system testing using visual gui testing tools: A compar-
ative study in industry, in: 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, IEEE, 2012, pp. 350–359.

2. O. Pedreira, F. García, N. Brisaboa, M. Piattini, Gamification in software engineering–a sys-
tematic mapping, Information and software technology 57 (2015) 157–168.

3. M. V. Mäntylä, K. Smolander, Gamification of software testing-an mlr, in: International con-
ference on product-focused software process improvement, Springer, 2016, pp. 611–614.

4. L. Rodrigues, F. D. Pereira, A. M. Toda, P. T. Palomino, M. Pessoa, L. S. G. Carvalho, D. Fer-
nandes, E. H. Oliveira, A. I. Cristea, S. Isotani, Gamification suffers from the novelty effect
but benefits from the familiarization effect: Findings from a longitudinal study, International
Journal of Educational Technology in Higher Education 19 (1) (2022) 1–25.

5. Y.-k. Chou, Actionable gamification: Beyond points, badges, and leaderboards, Packt Publish-
ing Ltd, 2019.

References 25

6. C. Hosseini, O. Humlung, A. Fagerstrøm, M. Haddara, An experimental study on the effects of
gamification on task performance, Procedia Computer Science 196 (2022) 999–1006, interna-
tional Conference on ENTERprise Information Systems / ProjMAN - International Conference
on Project MANagement / HCist - International Conference on Health and Social Care Infor-
mation Systems and Technologies 2021.
URL https://www.sciencedirect.com/science/article/pii/S1877050921023255

7. C. Wang, J. He, Z. Jin, S. Pan, M. Lafkihi, X. Kong, The impact of gamification on teaching
and learning physical internet: a quasi-experimental study, Industrial Management & Data
Systems 122 (2022) 1499–1521.

8. M. L. Jensen, R. T. Wright, A. Durcikova, S. Karumbaiah, Improving phishing reporting using
security gamification, Journal of Management Information Systems 39 (3) (2022) 793–823.

9. O. Liechti, J. Pasquier, R. Reis, Supporting agile teams with a test analytics platform: a case
study, in: 2017 IEEE/ACM 12th International Workshop on Automation of Software Testing
(AST), IEEE, 2017, pp. 9–15.

10. F. Cacciotto, T. Fulcini, R. Coppola, L. Ardito, A metric framework for the gamification of
web and mobile gui testing, in: 2021 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), 2021, pp. 126–129.

11. T. Fulcini, L. Ardito, Gamified exploratory gui testing of web applications: a preliminary
evaluation, in: 2022 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), 2022, pp. 215–222.

12. E. Alégroth, Z. Gao, R. Oliveira, A. Memon, Conceptualization and evaluation of component-
based testing unified with visual gui testing: an empirical study, in: 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST), IEEE, 2015, pp. 1–10.

13. L. Ardito, A. Bottino, R. Coppola, F. Lamberti, F. Manigrasso, L. Morra, M. Torchiano,
Feature matching-based approaches to improve the robustness of android visual gui testing,
ACM Transactions on Software Engineering and Methodology (TOSEM) 31 (2) (2021) 1–32.

14. M. L. Vasquez, K. Moran, D. Poshyvanyk, Continuous, evolutionary and large-scale: A new
perspective for automated mobile app testing, arXiv preprint arXiv:1801.06267 (2018).

15. R. Coppola, M. Morisio, M. Torchiano, Mobile gui testing fragility: a study on open-source
android applications, IEEE Transactions on Reliability 68 (1) (2018) 67–90.

16. A. M. Memon, M. B. Cohen, Automated testing of gui applications: models, tools, and con-
trolling flakiness, in: 2013 35th International Conference on Software Engineering (ICSE),
IEEE, 2013, pp. 1479–1480.

17. M. Kamran, J. Rashid, M. W. Nisar, Android fragmentation classification, causes, problems
and solutions, International Journal of Computer Science and Information Security 14 (9)
(2016) 992.

18. M. Nass, E. Alégroth, R. Feldt, Why many challenges with GUI test automation (will) remain,
Information and Software Technology 138 (2021) 106625.

19. P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, D. Lo, Understanding the test au-
tomation culture of app developers, in: 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST), IEEE, 2015, pp. 1–10.

20. D. E. Krutz, S. A. Malachowsky, T. Reichlmayr, Using a real world project in a software
testing course, in: Proceedings of the 45th ACM technical symposium on Computer science
education, 2014, pp. 49–54.

21. C. F. Barreto, C. França, Gamification in software engineering: A literature review, in: 2021
IEEE/ACM 13th International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE), IEEE, 2021, pp. 105–108.

22. A. A. de Melo, M. Hinz, G. Scheibel, C. Diacui Medeiros Berkenbrock, I. Gasparini, F. Baldo,
Version control system gamification: A proposal to encourage the engagement of developers to
collaborate in software projects, in: G. Meiselwitz (Ed.), Social Computing and Social Media,
Springer International Publishing, 2014, pp. 550–558.

23. D. Ašeriškis, R. Damaševičius, Gamification of a project management system, in: The Seventh
International Conference on Advances in Computer-Human Interactions, 2014, pp. 200–207.

26 CHAPTER 1. A FRAMEWORK FOR THE GAMIFICATION OF GUI TESTING

24. R. M. Parizi, On the gamification of human-centric traceability tasks in software testing and
coding, in: 2016 IEEE 14th International Conference on Software Engineering Research,
Management and Applications (SERA), 2016, pp. 193–200.

25. J. Ruohonen, L. Allodi, A bug bounty perspective on the disclosure of web vulnerabilities,
ArXiv abs/1805.09850 (2018).

26. Ç. Üsfekes, E. Tüzün, M. Yilmaz, Y. Macit, P. M. Clarke, Auction-based serious game for bug
tracking, IET Softw. 13 (2019) 386–392.

27. J. Bell, S. Sheth, G. Kaiser, Secret ninja testing with halo software engineering, in: Proceedings
of the 4th International Workshop on Social Software Engineering, SSE ’11, Association for
Computing Machinery, New York, NY, USA, 2011, p. 43–47.

28. N. Silvis-Cividjian, R. Limburg, N. Althuisius, E. Apostolov, V. Bonev, R. Jansma, G. Visser,
M. Went, Vu-bugzoo: A persuasive platform for teaching software testing, in: Proceedings of
the 2020 ACM Conference on Innovation and Technology in Computer Science Education,
ITiCSE ’20, Association for Computing Machinery, New York, NY, USA, 2020, p. 553.

29. Y. F. P.E., P. J. Clarke, Gamification-based cyber-enabled learning environment of software
testing, in: 2016 ASEE Annual Conference & Exposition, ASEE Conferences, New Orleans,
Louisiana, 2016, pp. 1–16, https://peer.asee.org/27000.

30. B. S. Clegg, J. M. Rojas, G. Fraser, Teaching software testing concepts using a mutation testing
game, in: 2017 IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering Education and Training Track (ICSE-SEET), 2017, pp. 33–36.

31. Y. Sun, Design and implementation of a gamified training system for software testing, Advances
in Education 10 (2020) 395–400.

32. G. Fraser, A. Gambi, M. Kreis, J. M. Rojas, Gamifying a software testing course with code
defenders, in: Proceedings of the 50th ACM Technical Symposium on Computer Science
Education, SIGCSE ’19, Association for Computing Machinery, New York, NY, USA, 2019,
p. 571–577.

33. I. 9001:2005, Quality management systems - requirements, Standard, International Organiza-
tion for Standardization (2005).

34. B. Lőrincz, B. Iudean, A. Vescan, Experience report on teaching testing through gamification,
in: EASEAI 2021, Association for Computing Machinery, New York, NY, USA, 2021, p.
15–22.

35. S. Amiri-Chimeh, H. Haghighi, M. Vahidi-Asl, K. Setayesh-Ghajar, F. Gholami-Ghavamabad,
Rings: A Game with a Purpose for Test Data Generation, Interacting with Computers 30 (1)
(2017) 1–30.

36. G. Fraser, A. Gambi, J. M. Rojas, Teaching software testing with the code defenders testing
game: Experiences and improvements, in: 2020 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), 2020, pp. 461–464.

37. R. Bryce, Q. Mayo, A. Andrews, D. Bokser, M. Burton, C. Day, J. Gonzolez, T. Noble, Bug
catcher: A system for software testing competitions, in: Proceeding of the 44th ACM Tech-
nical Symposium on Computer Science Education, SIGCSE ’13, Association for Computing
Machinery, New York, NY, USA, 2013, p. 513–518.

38. F.García, O. Pedreira,M. Piattini, A. Cerdeira-Pena,M. Penabad,A framework for gamification
in software engineering, Journal of Systems and Software 132 (2017) 21–40.
URL https://www.sciencedirect.com/science/article/pii/S0164121217301218

39. K. Berkling, C. Thomas, Gamification of a software engineering course and a detailed anal-
ysis of the factors that lead to it’s failure, in: 2013 International Conference on Interactive
Collaborative Learning (ICL), 2013, pp. 525–530.

40. E. Herranz, R. Colomo-Palacios, A. Al-Barakati, Deploying a gamification framework for
software process improvement: Preliminary results, in: J. Stolfa, S. Stolfa, R. V. O’Connor,
R. Messnarz (Eds.), Systems, Software and Services Process Improvement, Springer Interna-
tional Publishing, Cham, 2017, pp. 231–240.

41. G. M. de Jesus, L. N. Paschoal, F. C. Ferrari, S. R. S. Souza, Is it worth using gamification
on software testing education? an experience report, in: Proceedings of the XVIII Brazilian
Symposium on Software Quality, SBQS’19, Association for ComputingMachinery, NewYork,
NY, USA, 2019, p. 178–187.

References 27

42. O. Pedreira, F. García, M. Piattini, A. Cortiñas, A. Cerdeira-Pena, An architecture for software
engineering gamification, Tsinghua Science and Technology 25 (6) (2020) 776–797.

43. G. M. d. Jesus, F. C. Ferrari, L. N. Paschoal, S. d. R. S. d. Souza, D. d. P. Porto, V. H. S.
Durelli, Is it worth using gamification on software testing education? an extended experience
report in the context of undergraduate students, Journal of Software Engineering Research and
Development 8 (2020) 6:1 – 6:19.
URL https://sol.sbc.org.br/journals/index.php/jserd/article/view/738

44. M. Nass, E. Alégroth, R. Feldt, Augmented testing: Industry feedback to shape a new testing
technology, in: 2019 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), IEEE, 2019, pp. 176–183.

45. Y. Lee, K. A. Kozar, K. R. Larsen, The technology acceptance model: Past, present, and future,
Communications of the Association for information systems 12 (1) (2003) 50.

46. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén, Experimentation in
software engineering, Springer Science & Business Media, 2012.

47. R. Coppola, E. Alégroth, A taxonomy of metrics for gui-based testing research: A systematic
literature review, Information and Software Technology 152 (2022) 107062.
URL https://www.sciencedirect.com/science/article/pii/S0950584922001719

