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Abstract
Objective. Recent trends in brain–computer interface (BCI) research concern the passive
monitoring of brain activity, which aim to monitor a wide variety of cognitive states. Engagement
is such a cognitive state, which is of interest in contexts such as learning, entertainment or
rehabilitation. This study proposes a novel approach for real-time estimation of engagement
during different tasks using electroencephalography (EEG). Approach. Twenty-three healthy
subjects participated in the BCI experiment. A modified version of the d2 test was used to elicit
engagement. Within-subject classification models which discriminate between engaging and
resting states were trained based on EEG recorded during a d2 test based paradigm. The EEG was
recorded using eight electrodes and the classification model was based on filter-bank common
spatial patterns and a linear discriminant analysis. The classification models were evaluated in
cross-task applications, namely when playing Tetris at different speeds (i.e. slow, medium, fast) and
when watching two videos (i.e. advertisement and landscape video). Additionally, subjects’
perceived engagement was quantified using a questionnaire.Main results. The models achieved a
classification accuracy of 90% on average when tested on an independent d2 test paradigm
recording. Subjects’ perceived and estimated engagement were found to be greater during the
advertisement compared to the landscape video (p= 0.025 and p< 0.001, respectively); greater
during medium and fast compared to slow Tetris speed (p< 0.001, respectively); not different
between medium and fast Tetris speeds. Additionally, a common linear relationship was observed
for perceived and estimated engagement (rrm = 0.44, p< 0.001). Finally, theta and alpha band
powers were investigated, which respectively increased and decreased during more engaging states.
Significance. This study proposes a task-specific EEG engagement estimation model with cross-task
capabilities, offering a framework for real-world applications.
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1. Introduction

Abrain–computer interface (BCI) provides a human-
computer communication channel based solely on
brain activity, without the need to physically move
body parts [1]. For decades, researchers widely invest-
igated BCI systems to help patients with severe motor
disabilities to communicate with the outside world
and indirectly restore motor function. However, dir-
ect access to brain activity can also be used to improve
and support human-machine interaction in gen-
eral, providing an additional implicit communication
channel.

So-called passive BCIs are based on brain activ-
ity that is not voluntarily modulated by the user to
control an application [2]. This activity is then inter-
preted so that the computer can adapt to the user’s
mental state. In general, users can perform their daily
activities and a system records changes in their cognit-
ive state.With passive BCIs, a wide variety of cognitive
states can be investigated, e.g. fatigue [3], vigilance,
working memory load [4], attention, frustration [5],
emotions, and engagement.

Engagement is a positive state comprising sev-
eral dimensions, including workload state, attention,
motivation, interest, emotions, and perceived time
spent on a given task [6, 7]. Measuring the level of
engagement is of great interest in many contexts. For
example, in a healthcare scenario, the level of patient
engagement may decrease during a rehabilitation ses-
sion and a pause is necessary. Keeping patient engage-
ment high can improve treatment outcomes [8]. In
the context of education, engagement detection could
be a new input channel of an adaptive automatic
teaching platform to improve learning effectiveness
[9–11]. In an entertainment context, a video game
could adapt to the player’s level of engagement to
keep it high, for example, by introducing obstacles or
increasing the speed of a game [12].

Concerning the measurability of engagement,
evaluation grids and self-assessment questionnaires,
interviews, and direct observation in the field or
in a controlled environment have traditionally been
the most widely used methods [13]. In recent years,
engagement is estimated indirectly using biosignals
such as galvanic skin response [14], heart rate [15]
or electroencephalography (EEG) [7, 16, 17]. Among
these modalities, EEG seems to be one of the most
promising technologies as a wide range of inform-
ation on the subject’s mental state can be derived
from it.

One of the best-known parameters in the liter-
ature for measuring EEG-based engagement is the
engagement index [7, 16–19]. It is defined as the ratio
between the beta power and the sum of theta and
alpha powers associated with certain EEG channels.
It is based on the hypothesis that an increase in beta-
band power is correlated with an attentive state of
the brain, such as the performance of a mental task,

activation of the visual system, and movement plan-
ning activity [7]. In contrast, increases in alpha and
theta activity correlated with decreased vigilance and
mental alertness. In particular, decreases in alpha-
band power are related to the processing of import-
ant information [20], and increases in this power
are associated with a resting state. For these reasons,
theta, alpha, and beta bands are among the promin-
ent frequency bands in the estimation of engagement.
However, this engagement index seems to not take
into account the different dimensions of engagement.
In [9], cognitive and emotional engagement in learn-
ing was detected using a filter bank common spa-
tial patterns (CSP) approach, which provided super-
ior performance compared to the engagement index.
In [21], a hybrid system based on eye tracking and
engagement-based BCI is proposed to play a hands-
free version of the Tetris game. The level of user
engagement is again detected bymeans of a filter bank
CSP and was used to control the speed of the game.

In EEG-based engagement detection, features
are extracted from the signal and then classified
using machine learning techniques. In a supervised
approach, the algorithm has to be trained to distin-
guish differentmental states. Therefore, subjectsmust
be put in these specific states to obtain the train-
ing data. Eliciting these mental states can be achieved
using psychometric tests. These tests are based on the
assumption that what they measure is also required
to perform the test. However, there is no specific test
that measures engagement. Instead several different
tests are commonly used for this aim. Examples of
common tests are the continuous performance task,
a test used in neuropsychology for the assessment of
sustained and selective attention [9, 22]; the Stroop
test that is used in psychology to determine the flex-
ibility of cognitive thinking [23]; the d2 test that is
a neuropsychological measure of selective and sus-
tained attention and visual scanning speed [24, 25];
the n-back test that measures the working memory
capacity [26]; other memory tests [21].

This study focuses on the research and devel-
opment of a passive BCI that continuously estim-
ates participants’ engagement using neural oscilla-
tions recorded by EEG. A computerized andmodified
version of the d2 test is proposed to increase the level
of user engagement and elicit distinctive features for
within-subject classifier training. Subsequently, the
generalizability of the trained classifier to estimate the
user’s level of engagement was evaluated online dur-
ing different tasks.

2. Materials andmethods

2.1. Subjects
Twenty-three healthy subjects [S01–S23, seven
females and sixteen males, age: 34 (7) years in mean
(SD)] participated in the experiment. Subjects did not
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Figure 1. Experimental procedure. Subjects performed two d2 test paradigms, resulting in two recordings. The first recording was
used to train a classification model to discriminate between the engaging (d2 test) and resting (fixation cross) states. The second
recording was used as an independent data set to evaluate the predictive power of the classification model. Then, the classification
model was used to estimate subjects’ engagement during two different tasks in real-time. Specifically, subjects played Tetris at
three different speeds and watched an engaging and non-engaging videos. After both the Tetris and video paradigms subjects
filled out a subjective questionnaire quantifying their perceived engagement.

receive any prior training regarding this experiment
and had normal or corrected to normal vision.

The study was conducted in accordance with the
principles embodied in the Declaration of Helsinki
and approved by the Comitè d’Ética de la Recerca de
la UVic-UCC (code 156/2021), Catalonia, Spain. All
subjects provided written informed consent before
taking part in the experiment.

2.2. Experimental protocol
Figure 1 shows the experimental procedure. The
experiment included two recordings of the d2 test
paradigm followed by two tasks: playing Tetris and
watching videos. The d2 test paradigm consists of
an alternation between engaging and resting state.
Specifically, the d2 test and a fixation cross were used
for this purpose.

The d2 test is a neuropsychological measure of
selective and sustained attention and visual scanning
speed [25]. The task for the user is to select any letter
‘d’ with two marks above it, or with two marks below
it, or even with one mark above and one mark below
it. The surrounding distractors are similar to the tar-
get stimulus, for example the letter ‘d’ with one, three
or four marks, and also the letter ‘p’ with one to four
marks above and below it. The test comprises 14 lines
with a maximum time of 20 s/line.

In the present study, some modifications
were made to the classic d2 pencil and paper
test. Specifically, a new computerized version was
developed to try to elicit engagement in the subjects.
First, compared to the traditional d2 test, a likelymore
difficult version of the d2 test was performed, includ-
ing also the letters ‘b’ and ‘q’ with one to four marks
above and below them as distractors. Moreover, the

test proposed in this paper comprises 12 lines and 57
items per line. A total of one minute was given for the
test. Second, the computerized version provides the
user with feedback related to the correct d2, making
the task more engaging. Specifically, correctly selec-
ted d2s are shaded in blue, as incorrect selections are
shaded in red. In addition, a blue bar indicates to sub-
jects how much time they have left to complete the
task. This bar was added with the aim of increasing
motivation and engagement during the d2 test but it
may also induce stress. An example of the proposed
d2 test is shown in figure 2.

Before the experiments, subjects were instructed
on how to perform the d2 test with an example. They
also played Tetris to get familiar with the keys on the
keyboard to use.

The first part of the experiment consisted of EEG
data collection to train the classification model to
discriminate between the engaging and resting states
of the subject. Subjects were instructed to perform
the d2 test line by line as fast as possible, from left
to right, to keep their level of engagement high.
Conversely, they were instructed to relax as much
as possible during the fixation cross while keeping
their eyes open and fixated on the cross. In total, two
d2 test paradigms were recorded (figure 1). The first
recording was used to train the classification model,
whereas the second was used as an independent data-
set to evaluate the predictive power of the classifica-
tion model.

Each recording comprised two 1min blocks of the
d2 test and two 1-min blocks of the fixation cross. The
conditions were alternated; however, the starting con-
ditionwas randomized for each of the two recordings.
Between each block a 5 s pause was inserted for sub-
jects to briefly relax.
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Figure 2. Example of the proposed d2 test showing the first 6 out of 12 lines with 57 items per line. Subjects were instructed to
click on all d2s as quickly as possible. Correctly selected d2s are shaded in blue, whereas incorrect selections are shaded in red. The
blue bar at the top indicates the time (fills from left to right).

At the end of the first recording, the developed
application estimated how accurate the model was in
detecting the two mental states. If the classification
accuracy was above 75%, the second d2 test paradigm
was recorded (see section 2.4.1). Otherwise, the first
recording was repeated and the model was re-trained
based on solely the newly acquired data. Subjects who
did not reach the specified threshold, even after re-
training, nevertheless proceeded with the rest of the
experiment.

After the two recordings of the d2 test paradigm,
the same classificationmodel was used to estimate the
subjects’ level of engagement during different tasks,
namely playing Tetris and watching videos.

During the Tetris paradigm, subjects played Tetris
at three speeds: slow, medium, and fast. Each speed
level lasted one minute with a 30 s pause between the
games. The order of the Tetris speeds was random-
ized. Subjects were instructed to move the blocks left
and right or rotate them using the arrow keys on the
keyboard, but they could not push the blocks down.

Regarding videos, two types were provided. One
was expected to be engaging, as the scenes changed
rapidly and it was a short advertisement13, the other
as non-engaging, as it was a video of a landscape14.
Each video lasted oneminute and the order of the two
videos was randomized. Both videos were provided
without sound. No specific instructions were given to
the subjects for this task.

Also the Tetris and video paradigms themselves
were randomized.

After both the Tetris and video paradigms sub-
jects filled out a subjective questionnaire in order
to quantify their perceived engagement. Based on
its definition [6, 7], the questions investigated five
dimensions of perceived engagement using a 7-point
Likert scale [27]:

13 https://www.youtube.com/watch?v=vgM4jfii4B8.
14 https://www.youtube.com/watch?v=8vyVw0qcpe4.

• The [X] was challenging.
• I felt that time passed too quickly during the [X].
• What happens in the [X] moved me emotionally.
• It was easy to focus on the [X].
• The [X] was visually pleasing.

where [X] is replaced for each of the three speeds of
Tetris (i.e. slow,medium, and fast) and the two videos
(i.e. short advertisement and landscape).

2.3. BCI system description
2.3.1. EEG device
The EEG was recorded with the unicorn hybrid black
system (g.tec medical engineering GmbH, Austria).
It comprises eight hybrid EEG electrodes, i.e. it is
possible to acquire EEG both with and without gel.
Instead of the standard device assembly with the elec-
trodes positioned at Fz, C3, Cz, C4, Pz, PO7, Oz,
PO8, the parieto-occipital region of the brain was
covered.Hence, electrodeswere placed at P3, P4, PO3,
POz, PO4, O1, Oz and O2. This choice was made to
reduce the possibility of adversely biasing the classi-
fication model and the reason was twofold. Firstly,
electrodes over motor areas may be influenced by
motor actions due to mouse movements during the
d2 test. Secondly, the chosen posterior electrode loc-
ations are less affected by eye movements and blink-
ing compared to more anterior electrodes. Moreover,
previous studies have shown involvement of parieto-
occipital areas in cognitive processes such as working
memory, processing of visual and sensory informa-
tion, particularly in relation to arousal [18, 28–31].

The ground and reference were placed on the sub-
ject’s left and right mastoids, respectively, using dis-
posable adhesive surface electrodes. The EEG signal
was acquired at a sampling rate of 250Hz and a res-
olution of 24 bits.

The device was connected to a personal computer
via the integrated Bluetooth interface. In this study,
the EEG signal was acquired with wet electrodes.

4

https://www.youtube.com/watch?v=vgM4jfii4B8
https://www.youtube.com/watch?v=8vyVw0qcpe4


J. Neural Eng. 21 (2024) 016014 A Natalizio et al

Therefore, the hybrid electrodes were filled with con-
ductive gel.

2.3.2. Application
A dedicated application for the stimuli presentation,
EEGacquisition andonline processing of the acquired
data was developed. Specifically, the application pro-
cesses the EEG data, estimates the level of users’
engagement, and is able to provide them with feed-
back (i.e. current engagement estimate) in real-time.

Prior to the measurements, the signal quality can
be assessed in the application. In addition, inform-
ation on the number of noisy channels is available
throughout the use of the application. The applica-
tion allows for the selection of the paradigm to per-
form.As described in section 2.2, the d2 test paradigm
is exploited to train the classification model. The
paradigm consists of the d2 test and the fixation cross.

Reliable performance scores [25, 32, 33] are cal-
culated by the application after the d2 test paradigm:

(i) total processed items: sum of the number of
items processed;

(ii) error of omission: sum of the number of target
items not canceled;

(iii) total correctly processed: total items processed
minus total errors made;

(iv) accuracy: total correctly processed items divided
by all processed items;

(V) concentration performance: total number of
correctly canceled minus total number incor-
rectly canceled items.

In the classic paper and pencil version, the scores
are separately calculated for each of the 14 lines of
the test [33]. In the proposed computerized version,
the performance scores were calculated considering
all the processed items (i.e. from the first item until
the last selected one) in one minute.

Regarding the fixation cross, the application
shows a cross in the center of the screen. As with the
d2 test, the time passed is indicated by the blue bar.

After the first d2 test paradigm, the application
assesses the goodness of the classification model in
discriminating between the engaging (d2 test) and
resting (fixation cross) states. Additionally, the applic-
ation offers the possibility to re-train the model
(see section 2.4.1 for details). This calibration phase,
including gelling of the electrodes, d2 test paradigm
and training of the classification model takes approx-
imately 5min.

Once themodel is trained, it is possible to perform
any task, even outside the application, and to check
the user’s level of engagement during these tasks in
real-time.

2.4. Proposed classificationmodel
The computational cost of the EEG processing
pipeline was kept low as it is intended to be used in

online (i.e. real-time) BCI experiments. Therefore, a
filter bank CSP-based approach was used for estim-
ating engagement. Models were trained in a within-
subject manner, meaning every subject had their own
model which was exclusively trained on their EEG
data.

The raw EEG recordings were notch-filtered at
50Hz by means of a 2nd order Butterworth filter.
Then, data were filtered using a filter bank with 4Hz
to 8Hz, 6Hz to 10Hz, and 8Hz to 12Hz band-
pass filters. Higher frequency components (e.g. beta)
were not included as they may be contaminated by
muscle artifacts. Specifically, as subjects were look-
ing at a computer screen while performing a visually
demanding task (i.e. d2 test), the tension in the neck
and back muscles may contaminate higher frequency
components in the EEG.

The EEG data was segmented into non-
overlapping 1 s windows in order to also achieve a 1 s
resolution for the online processing. This resulted in
120 segments for each the d2 test and resting classes.
Features were extracted for these EEG segments using
the CSP algorithm [34]. Specifically, CSPs maxim-
ize the variance between the two classes and reduces
the number of features. A similar approach was also
proposed in [9] and was found to be successful in
detecting engagement. Finally, the features obtained
were used to train the linear discriminant analysis
(LDA) [35]. The LDA returns two outputs, namely
the LDA label and the LDA score. The former is a bin-
ary value reflecting the predicted class and can thus
be used to assess the accuracy, whereas the latter is a
continuous numerical value and was used to estimate
subjects’ engagement.

2.4.1. Goodness of the classification model
After the calibration phase (i.e. first d2 test
paradigm), the goodness of the proposed classi-
fication model was assessed. Specifically, the non-
overlapping 1 s EEG segments of this first paradigm
were used to obtain a ten-fold cross-validation accur-
acy. In the current study, the model was re-trained
once if the cross-validation accuracy was below 75%.
Note that temporal correlations may still persist
between consecutive non-overlapping 1 s EEG seg-
ments, attributable to filtering processes. However,
here these 1 s segments can be assumed to be stat-
istically independent as they only contain frequency
components above 4Hz (see section 2.4).

2.4.2. Classification accuracy for independent
recording
To evaluate the predictive power of the classification
model, the classificationmodel trained on the first d2
test paradigm was tested on an independent record-
ing (see figure 1). For this purpose, the LDA labels
were used to assess the accuracy for the second d2 test
paradigm.
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For comparative purposes, the results obtained
with the proposed approach were compared with
the ones obtained by means of a classical approach,
namely the engagement index [7, 18]. Specifically, the
engagement index was computed as the ratio between
the beta (13Hz to 30Hz) power and the sum of theta
(4Hz to 8Hz) and alpha (8Hz to 12Hz) powers
according to equation (1). The band powers were
computed for the same non-overlapping 1 s windows
and channels. The resulting engagement indices were
then used as features for the LDA,

EI=
β

α+ θ
. (1)

Again, the LDA labels were used to assess the
accuracy for the second d2 test paradigm. The
accuracy obtained was then compared with the one
obtained using the proposed approach.

2.4.3. Online engagement estimation
After the two recordings of the d2 test paradigm,
the classification model was used online to estimate
the subjects’ engagement during the Tetris and Video
recordings (see figure 1). Again, the features were
computed based on non-overlapping 1 s windows as
described in section 2.4. The LDA scores were used to
quantify the estimated engagement.

2.5. Statistical analysis
The statistical analyses were performed using
MATLAB R2021b (MathWorks Inc. United States).
The normality of data was tested using the Shapiro–
Wilk test [36]. The statistical test was chosen accord-
ing to the normality of the sample, so either the paired
t-test or the Wilcoxon signed rank test was used.

Descriptive statistics are reported as mean and
the standard deviation (SD), or median and the
interquartile range (IQR) (i.e. 25th and 75th percent-
ile). The Bonferroni correction was used in the case
of multiple comparisons to control for type I errors.

The difference in subjects’ d2 test performance
between the two d2 test recordings was investig-
ated. Therefore, the obtained performance scores
were compared between the two recordings and the
p-values were Bonferroni corrected. The perceived
engagement was analyzed based on the sum of the
engagement dimensions of the Tetris game ques-
tionnaire. Additionally, the scores of the classifica-
tion model during the four conditions (rest period,
low speed, medium speed, and fast speed) were
compared in pairs recordings and the p-values were
Bonferroni corrected. Perceived engagement during
the two videos was also analyzed based on summing
up engagement dimensions of the questionnaire for
the two videos, as well as the scores of the classifica-
tion model during the two conditions (engaging and
non-engaging video).

Finally, a correlation analysis was performed
to investigate the relationship between perceived

engagement and estimated engagement. As subject-
specific models were generated, the scores provided
by these models are also subject specific. In other
words, scores should not be compared between sub-
jects but must be compared within subjects or in a
paired manner as previously described. In this ana-
lysis, each subject’s estimated engagement during
the five conditions (low speed, medium speed, fast
speed, engaging video and non-engaging video) were
standardized to achieve a common scale across sub-
jects. Then, themedian z-score (i.e. median standard-
ized estimated engagement) during each condition
was calculated for each subject. Finally, a repeated-
measures correlation was performed to investigate
the common linear relationship between perceived
and estimated engagement [37–39]. The repeated-
measures correlation was utilized as each subject was
present five times in the dataset due to the five condi-
tions. Therefore, the observations in the dataset are no
longer be independent, violating the assumption of
independence of the classic regression/classification
[40].

2.6. Topography plots
A group level analysis was carried out to investig-
ate changes in the frequency bands, which were used
for creating the classification models. Specifically,
the theta and alpha frequency bands were further
investigated.

In this offline analysis, each subjects’ EEG data
during the training, Tetris and video paradigms were
processed using the FastICA algorithm [41]. This was
done to extract and remove components that reflect
artifacts such as muscle, movement, and cardiac arti-
facts. Before applying the FastICA, EEG data were
notch filtered at 50Hz and high-pass filtered at 1Hz
using a 2nd order Butterworth filter. After remov-
ing components, which showed obvious artifacts, the
data were back-projected to electrode (i.e. channel)
level and the short-time Fourier transform was used
to estimate the power. A 4 s Hamming window with
50% overlap was employed, resulting in a frequency
resolution of 0.25Hz. The frequency bins for each of
the two frequency bands (i.e. theta and alpha bands)
were then averaged and log-transformed, resulting in
the two log-transformed band power signals for each
channel. Finally, the median log-transformed band
power was computed during each condition (e.g. d2
test and resting condition in the d2 paradigm).

The following comparisons were performed
for each frequency band and channel: during the
training recording of the d2 paradigm, the differ-
ence in log-transformed band power was calcu-
lated between d2 test and resting condition. During
the Tetris paradigm, the differences between each
speed and the resting condition were computed.
During the video paradigm, the difference between
the engaging and non-engaging video was com-
puted. Differences reflect the mean difference across
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all subjects. Additionally, Cohen’s dz (one sample,
paired statistics) was calculated to quantify the
observed effect size [42]. Finally, the computed log-
transformed band power differences for each elec-
trode and comparison were visualized using a 3D
model of the MNI-152 template brain (Montreal
Neurological Institute, Canada). A custom software
(g.tec medical engineering GmbH, Austria) was used
to visualize the changes in band power according to
[43, 44] on the scalp of the 3D model. Additionally,
electrodes were color-coded to infer the observed
effect sizes.

3. Results

3.1. d2 test paradigm
None of the subjects required re-training of the clas-
sificationmodel. In other words, all of them exceeded
75% estimated classification accuracy based on the
ten-fold cross-validation on the first d2 test paradigm.

Figure 3 shows the classification accuracy for dis-
criminating between engaging (d2 test) and resting
(fixation cross) states for the independent recording,
namely the second d2 test paradigm. Specifically, both
the accuracy for individual subjects and the across-
subject mean together with the associated type A
uncertainty (90± 3%) are reported. Twenty out of
the twenty-three subjects exceeded 80% accuracy for
their independent recording.

In the offline analysis, the classification accur-
acy for discriminating between engaging and rest-
ing states was also calculated using the engage-
ment index. In this case, the across-subject mean
accuracy together with the associated type A uncer-
tainty was equal to 81± 3%, losing about 10%
in mean accuracy compared to the proposed
approach.

In order to also take into account how subjects
performed the d2 test during the two recordings, the
performance scores calculated by the applicationwere
evaluated. Table 1 shows the results as mean (SD) for
each recording and for the difference of them. No
difference in d2 test performance between the two
recordings was found.

3.2. Tetris
Figure 4(A) shows the subjective answers for each
included engagement dimension. Specifically, the
median of the answers across subjects for each speed
and dimension is reported. Figure S2 in the supple-
mentary material presents the same data and results
as figure 4(A), with the inclusion of individual data
points for each subject. The sums of the engagement
questionnaire dimensions were observed to be 14.5
(3.2), 22.9 (3.8) and 24.9 (4.7) points in mean (SD)
for the slow, medium, and fast speed, respectively.
Subjects experienced the medium and fast speeds

as more engaging than the slow speed (p < 0.001,
respectively), whereas no difference was observed
between medium and fast speeds (p= 0.081).

Figure 4(B) shows the results of subjects’ estim-
ated level of engagement provided by the classifica-
tion model as a score for each Tetris condition. The
y-axis shows the classification model score. Negative
score values reflect states which are closer to the rest-
ing state (i.e. fixation cross), whereas positive score
values reflect states closer to the engaging state (i.e. d2
test). The boxplots reflect the median scores during
each condition and for each subject. Overall, a dif-
ference in median score can be observed between
the conditions with predominantly negative values
during rest between the three speeds. For the other
three conditions, the values are predominantly pos-
itive. Table 2 shows the results across subjects, com-
paring the difference between the four conditions in
pairs. As expected, the three Tetris speeds were found
to be more engaging than the rest period (p < 0.001,
respectively). The same applies to the medium and
fast speeds compared to the slow speed (p < 0.001,
respectively). Similarly, as for the subjective ques-
tionnaire, no difference was observed between the
medium and fast speeds (p = 0.345). Taken together,
subjects’ perceived engagement is in line with the
objective evidence put forward by the classification
model scores.

3.3. Video
Figure 5(A) shows the subjective answers for each
included engagement dimension. Note, that the
‘Challenging’ dimension was set to 1 for compar-
ison purposes, as it was not asked for the videos.
The median of the answers across subjects per each
video and per each dimension is reported. Figure
S3 in the Supplementary material presents the same
data and results as figure 5(A), with the inclusion
of individual data points for each subject. The sum
of the engagement questionnaire dimensions dur-
ing the video paradigm was observed to be 16.7
(4.6) and 20.3 (5.1) points in mean (SD) for the
landscape and advertisement videos, respectively.
Subjects experienced the advertisement video to be
overall more engaging than the landscape video
(p= 0.025).

Figure 5(B) shows the results of the subjects’
estimated level of engagement provided by the clas-
sification model as a score for each video condi-
tion. The interpretation of this figure is analogous
to figure 4(B). A difference in estimated engagement
is evident between the two videos, with predomin-
antly negative or close to 0 values (i.e. associated with
resting state) for the landscape video and predom-
inantly positive values (i.e. associated with engaging
state) for the advertising video. Finally, the across sub-
ject delta resulted in 1.8 [1.2, 3.5] in median [IQR]
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Figure 3. Classification accuracy for each subject (S01 to S23) discriminating between engaging (d2 test) and resting (fixation
cross) states obtained for an independent recording using the proposed model (i.e. filter-bank common spatial patterns). The
error bar on the mean reflects the standard error of the mean, and the classification accuracy was 94.6 [88.5, 97.4] % in median
[IQR].

Table 1. d2 test performance scores computed for the training and evaluation recording. The results are reported across subjects as mean
(SD). The difference in performance scores (∆) is computed as training minus evaluation. Depending on the normality of the
differences, the Wilcoxon signed rank test or paired t-test were used for statistical testing. Finally, the p-values were Bonferroni corrected.

Measure Training Evaluation ∆ p-value

Total processed items 466.6 (86.7) 456.2 (78.4) −10.3 (53.4) 1.000
Omissions 6.0 (4.7) 4.1 (3.2) −1.8 (4.3) 0.281
Total correctly processed 460.3 (85.1) 451.6 (77.1) −8.7 (52.3) 1.000
Accuracy (%) 97.6 (1.7) 98.2 (1.3) 0.6 (1.7) 0.535
Concentration performance 18.8 (7.5) 18.4 (7.7) −0.3 (8.5) 1.000

Figure 4. Tetris paradigm: across subject results. (A) Subjective answers (i.e. perceived engagement) from the questionnaire
(7-point Likert) are reported as median value per each question. (B) Objective results from the proposed classification model
(i.e. estimated engagement), specifically each boxplot reflects subjects’ median LDA scores. In addition, individual data points for
each subject are shown, indicating their median LDA score in the respective condition.

Table 2. Tetris paradigm: across subject statistical analysis using the Wilcoxon signed rank test. Subjects’ estimated engagement (median
LDA score) obtained by the proposed classification model were used. The difference in estimated engagement (∆) for the respective
comparison was calculated by subtracting the latter condition from the former (e.g. Slow minus Rest). The differences are reported as
median [IQR]. Depending on the normality of the differences, the Wilcoxon signed rank test or paired t-test were used for statistical
testing. Finally, the p-values were Bonferroni corrected.

Tetris ∆ p-value

Rest< Slow 2.2 [0.4, 5.5] <0.001
Rest<Medium 3.6 [2.1, 6.7] <0.001
Rest< Fast 4.2 [2.1, 7.1] <0.001
Slow<Medium 1.5 [0.7, 3.8] <0.001
Slow< Fast 2.0 [0.6, 3.3] <0.001
Medium= Fast 0.1 [−0.5, 0.8] 0.345
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Figure 5. Video paradigm: across subject results. (A) Subjective answers (i.e. perceived engagement) from the questionnaire
(7-point Likert) are reported as median value per each question. As the ‘Challenging’ dimension was not asked for the video
paradigm and was set to 1 for comparison purposes. (B) Objective results from the proposed classification model (i.e. estimated
engagement), specifically, each boxplot reflects subjects’ median LDA scores. In addition, individual data points for each subject
are shown, indicating their median LDA score in the respective condition.

Figure 6. Relationship between perceived and standardized estimated engagement of the proposed classification model for both
(A)–(C). (A) Each subject’s data are color-coded and separate linear regressions lines with common across subject slope are fit for
each subject according to [39]. (B) Data are color-coded for the three Tetris game speed conditions: slow, medium and fast. (C)
Data are color-coded for the engaging and non-engaging video.

comparing the difference between the advertising and
landscape videos. Consistent with the subjects’ per-
ceived engagement, the advertisement was observed
to be more engaging by the classification model (p <
0.001).

3.4. Perceived and estimated engagement
Figure 6 shows the relationship between the per-
ceived and standardized estimated engagement. The
repeated-measures correlation shows a significant
common linear relationship between the perceived
and standardized estimated engagement rrm = 0.44
(95% CI: 0.26 to 0.59), p < 0.001 (figure 6(A)).
Figure 6(A) shows for each subject (color-coded)
the respective perceived and estimated engage-
ment, including a linear regression with a common
slope across subjects according to [39]. Additionally,
figures 6(B) and (C) present the same data again
but this time color-coded by condition, showing
qualitatively that the perceived as well as estimated
engagement are lower for slow Tetris speed and non-
engaging video followed by medium and fast Tetris
speeds.

3.5. Topography plots
Figure 7 shows the mean difference in log-
transformed power between the conditions for the
theta and alpha frequency bands.

Subjects had greater parieto-occipital theta power
and lower parietal alpha power while performing
the d2 test in comparison to the resting condition.
While not shown here, the same phenomenon was
also observed for the subjects’ evaluation recording of
the d2 paradigm. Furthermore, the changes in these
two band powers between resting and d2 test condi-
tion were able to predict subjects’ d2 test concentra-
tion performance (p = 0.041), as shown in a cross-
validated regression analysis in the Supplementary
material. A positive relationship between theta power
and Tetris game speed can be observed over parietal
and occipital areas. Specifically, greater Tetris speed
was associated with greater theta band power. In
contrast, parieto-occipital alpha power was decreased
while playing Tetris and was modulated to a lesser
extent during the fast Tetris speed.

Finally, parieto-occipital theta power was greater
while subjects watched the engaging video, in com-
parison to the non-engaging video.
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Figure 7. Topographic plots were used to visualize the spatial distribution of power modulation in theta (4Hz to 8Hz) and alpha
(8Hz to 12Hz) frequency bands on the surface of the scalp. Specifically, they show the mean change in log-transformed theta and
alpha power between the respective conditions (e.g. d2 test minus Rest) across all subjects with values reflecting dB. The eight
points on the scalp represent the positions of the eight electrodes used to acquire the EEG signals. They are color-coded to infer
effect size, quantified by the absolute value of Cohen’s dz with brighter colors indicating greater effect size.

4. Discussion

4.1. d2 test paradigm
This work showed that the proposed approach is able
to discriminate between states of engagement and
rest. Consistent with literature [9], it also confirmed
that the engagement index is not as accurate as the
filter-bank CSP algorithm. Notably, compared to the
proposed approach, the accuracy obtained using the
engagement index was about 10% lower across sub-
jects. This result could be related to (i) modulations
in the beta band being smaller over parieto-occipital
compared to more frontal regions [45] and/or (ii)
theta power being positively related to engagement in
the current study.

The scores computed based on the d2 test per-
formance (table 1) show that the subjects processed
approximately 4 lines in one minute with a low error
of omission and high accuracy. The concentration
performance index was kept constant during the two
recordings.

Although the most common performance scores
were used [25, 32, 33], a direct comparison with
the results in literature cannot be made as a mod-
ified version of the d2 test was used in the present
study. The reported performance scores were cal-
culated considering all processed items during both
the d2 tests in each recording (section 2.3.2), how-
ever the test duration was 2min in the proposed
version compared to 4min in the original version.
Nonetheless, the total processed items, number of
omissions and total correctly processed are all com-
parable to the results in literature, when adjusting for
the difference in test duration [25, 32]. On the other
hand, the concentration performance score cannot be

compared due to the increased complexity of the pro-
posed d2 test, which incorporates more distractors
compared to the original version. Consequently, the
number of correctly canceled items in the current ver-
sion is substantially lower than the one reported in lit-
erature for the original d2 test.

No differences in d2 test performance score was
observed between the two recordings, as the d2 tests
were performed within minutes of each other.

4.2. Cross-task validity
The algorithm previously trained on the d2 test
paradigm was used to estimate the subjects’ level of
engagement while playing Tetris and watching two
videos. Engagement in gaming is of great interest
both to improve player experience and because seri-
ous games are increasingly used, for example, to pro-
mote learning or in rehabilitation [6, 13, 46]. On
the other hand, engagement while watching videos or
movies could be used to predict population prefer-
ences in neuromarketing [47].

In the current study, both perceived and estim-
ated engagement differentiate as well as correlate
across different speeds of Tetris and the two video
stimuli. For the Tetris game, the slow speed was found
to be boring for the subjects as it was very slow.
However, it allowed them to find the optimal location
for each block and was associated with the greatest
focused attention. In contrast, the fast speed was so
fast that subjects had difficulty moving and rotat-
ing the blocks quickly enough. In comparison to the
Tetris game, both videos were found to be engaging.
One explanation for this observation could be that
subjects have never previously watched these videos.
Therefore, they paid attention to the details in the
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scene. For landscape video, the level of engagement
may decrease over time as the scenes are mainly the
same. In contrast, during advertisement videos, sub-
jects may feel engaged throughout the duration of the
video as the scenes change rapidly.

This was confirmed by the subjective question-
naire answers to the dimensions of challenging and
perception of time (figures 4(A) and 5(A)). The sub-
jects also reported that the medium and fast speeds,
as well as the advertisement video, were more emo-
tionally moving compared to the slow speed and the
landscape video. In contrast to previous findings, no
difference in aesthetic pleasure was found for the two
videos [48] and the three Tetris speeds.

Future work could use this approach to adapt
applications to users’ estimated level of engagement,
as proposed in [21]. Notably, while proposing adapt-
ive modifications, [21] did not present any quantitat-
ive results.

4.3. Topography plots
The d2 test requires substantial visual processing and
attention [24, 25], as subjects are performing visual
pattern matching under the pressure of time. It is
worth noting that the filter bank exploited in this
study included the theta and alpha band as these
two frequency bands are associated with cognitive
demands, visual processing and spatial attention [49–
53]. All of these aspects are expected to be greater
during engaging tasks. Additionally, alpha power is
inversely related to blood oxygenation level depend-
ent (BOLD) activity, as well as connectivity in the
visual system [54]. This is of relevance as visual cortex
BOLD activity was recently shown to be able to pre-
dict subjective time (i.e. subjective reports of elapsed
time) [55], which is a dimension of engagement.

Here, parietal and occipital increases in theta
band power were observed during the d2 test, which
were greatest over the occipital lobe. This activation of
occipital theta is thought to be associatedwith control
of cognitive demands [49] and the visual identifica-
tion and recognition of patterns [50].

The same association was found with increasing
Tetris game speed and for the engaging compared
to the non-engaging video. This is to be expected,
as the required cognitive demands, such as atten-
tion, increased with Tetris speed. Similarly, cognitive
demands were greater during the engaging video, as
it has changes in scenes, as well as short storylines
including a person for the engaging video.

Additionally to increases in theta band power,
decreases in parietal alpha band power were observed
during the d2 test, which likely reflect spatial attention
[51]. Specifically, alpha rhythms over the parieto-
occipital area are known to desynchronize during the
anticipation and processing of visual stimuli [52, 53]
and can even predict visual target performance [56].
In line with [56], a similar result was found in this
study, when using both theta and alpha band powers,

providing insights regarding a possible causal brain-
behavior relationship. Decreases in alpha band power
over parieto-occipital areas were also observed for
all Tetris speeds, whereas no difference was observed
for the two videos, with only the right occipital area
showing amodulation. The results for the videos war-
rant further investigation, to ensure that it is not a
spurious finding. However, the right hemisphere was
found to be involved during processing of emotion-
ally arousing stimuli [57, 58].

4.4. Limitations
Although this study provides insights into real-time
classification of task-specific training-based engage-
ment and cross-task applications of training models,
some limitations should be pointed out.

Engagement involves multiple interdepend-
ent processes, including attention, working
memory, emotions, decision making, and interest.
Consequently, these behaviors are not confined to
single brain regions. Rather, they involve a network
of brain regions [59]. This network spans from
the frontal region to parieto-occipital regions. The
former is related to cognitive processes and the inter-
pretation of emotional engagement, especially in the
context of valence, whereas the others contribute to
the processing of visual and sensory information,
particularly in relation to arousal [18, 29–31]. In this
study, the electrode locations were chosen to elimin-
ate or attenuate the influence of ocular artifacts, as
well as event-related desynchronization (ERD) over
the sensorimotor cortex due to handmovements dur-
ing the d2 test. However, ERD may still be observed
over parietal electrodes (i.e. P3 and P4) due to volume
conduction. Future research could explore the integ-
ration of the frontal region to further understand the
complexities of the engagement network within the
brain.

In the current study videos were presented
without audio, but future experiments could consider
additional sensory modalities, such as the combina-
tion of visual and auditory elements. Furthermore,
videos including people could also be chosen for the
non-engaging video to further refine the modeling
process.

The proposed classification model is able to
estimate users’ level of engagement during two
distinct videos and different Tetris game speeds.
However, it was trained on the d2 test paradigm,
which is primarily a visual searching task. Thus,
the model’s performance may be influenced by
perceptual factors related to the visual stimuli
rather than solely reflecting cognitive engagement.
One such factor is visual complexity which was
found to be positively related to subjects’ perceived
engagement. Indeed, decoupling engagement from
visual complexity would be difficult in the cur-
rent setup, but future works may investigate this
aspect.
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5. Conclusion

This work focused on developing and evaluating a
novel application for the real-time estimation of EEG-
based engagement during different tasks. A classific-
ation model is trained to distinguish between users’
brain activity during an engaging task (i.e. modified
version of d2 test) and resting state. Once themodel is
trained, users may perform tasks either inside or out-
side this application, as the application continuously
estimates the users’ engagement. In this study playing
Tetris and watching videos were tested.

The application was validated with an experi-
mental campaign involving 23 subjects. The results
show that the proposed classification model estim-
ated levels of users’ engagement consistent with users’
perceived engagement. Furthermore, perceived and
estimated engagement were found to be linearly
related to each other. Finally, theta band power over
parietal-occipital areas increased with increasing task
engagement. The opposite association was found for
alpha band power. These results are in line with stud-
ies investigating visual processing and attention.

The ability of the proposed method to estimate
engagement should be further investigated by apply-
ing it to additional tasks. Furthermore, instead of
using the application to estimate engagement, the
application itself may evenmodulate different aspects
of a game (e.g. difficulty) according to its estimate.
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