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Abstract—Temporal Convolutional Networks (TCNs) are
promising Deep Learning models for time-series processing tasks.
One key feature of TCNs is time-dilated convolution, whose
optimization requires extensive experimentation. We propose an
automatic dilation optimizer, which tackles the problem as a
weight pruning on the time-axis, and learns dilation factors
together with weights, in a single training. Our method reduces
the model size and inference latency on a real SoC hardware
target by up to 7.4x and 3Xx, respectively with no accuracy
drop compared to a network without dilation. It also yields a
rich set of Pareto-optimal TCNs starting from a single model,
outperforming hand-designed solutions in both size and accuracy.

Index Terms—Neural Architecture Search, Temporal Convo-
lutional Networks, Edge Computing, Deep Learning

I. INTRODUCTION

Deep learning (DL) models achieve state-of-the-art perfor-
mance in many time-series processing tasks, such as bio-
signals analysis [1], [2], predictive maintenance [3]] and sound
classification [4]]. Recurrent Neural Networks (RNNs) have
long been considered the de facto standard for these tasks [J5]],
but recently, Temporal Convolutional Networks (TCNs) — a
subclass of Convolutional Neural Networks (CNNs) dedicated
to time series — have been shown to provide comparable
accuracy, whilst offering several advantages from a computa-
tional standpoint: smaller memory footprint, more data reuse
opportunities and higher arithmetic intensity [|6].

The deployment of DL models for direct inference on
Internet of Things (IoT) edge devices is an emerging paradigm
for the aforementioned time-series analysis tasks, as it provides
several benefits compared to a cloud-centric approach. Edge
computing reduces the pressure on the network, hence improv-
ing scalability, and guarantees predictable response latency, es-
pecially in presence of unreliable/unstable connectivity. More-
over, it may also improve energy efficiency and privacy, by
avoiding the highly-consuming wireless transmission of large
amounts of raw (and possibly sensitive) data to the cloud [7].
However, running DL inference at the edge implies deploying
models on cost-constrained devices such as microcontrollers
(MCUs), with extremely limited memory and low operating
frequencies.

In this context, TCNs are especially interesting due to their
hardware-friendly properties. Nonetheless, their deployment at
the edge still requires a careful tuning of all hyper-parameters,
in order to meet the accuracy requirements of the target appli-
cation at the minimum cost in terms of number of parameters
or operations. For standard CNNs, popular in computer vision,
this tuning is increasingly performed with automatic tools, in
a process known as Neural Architecture Search (NAS). Recent
years have seen the appearance of a plethora of different NAS
approaches, based on as many different search strategies, some
specifically targeting edge devices [8]—[12].

While TCNs have most of their hyper-parameters in com-
mon with standard CNNs (e.g. the filter sizes, the channels
in each layer, etc.) there is one fundamental peculiarity of
these networks that requires an orthogonal approach, i.e., time
dilation. As explained in Sec. dilation allows enlarging
the receptive field of a TCN on the time axis without increas-
ing the number of parameters. Tuning dilation parameters,
therefore, offers a clear pathway to make TCN topologies
smaller and more hardware-friendly.

In this work, we propose Pruning In Time (PIT), a novel
and light-weight automated method to simultaneously opti-
mize the dilation of all layers in a TCN, producing Pareto-
optimal solutions in terms of accuracy and complexity within
a single training run. This is achieved modeling the problem
as a structured weight pruning along the time axis: starting
from maximally-sized filters with no dilation, we concurrently
train the model weights and increase the dilation by pruning
regularly-spaced weights slices on the time dimension. To the
best of our knowledge, PIT is the first architecture optimizer
that seamlessly targets dilation as the main optimization knob;
state-of-the-art tools (e.g. [12]) require explicitly listing all
possible parameter combinations for every layer. With ex-
periments on two different time-series processing tasks, we
show that our method can find dilation factors that reduce the
model size and inference latency on the GAP8 System-on-
Chip (SOC) [13] by up to 7.4x and 3x respectively, with
no accuracy drop compared to a network without dilation.
Moreover, it can produce a rich set of Pareto-optimal TCNs
starting from a single seed, including solutions that outperform
hand-designed models, reducing the number of parameters by
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up to 54% without accuracy drop.

II. BACKGROUND AND RELATED WORKS
A. Temporal Convolutional Networks

TCNs share with 1-dimensional (1D) CNNs the main
building blocks, i.e. convolutional, pooling and linear layers.
However, to improve the processing of time series, TCN
convolutions include two new properties. Causality forces the
padding to be applied only on left side of the sequence;
therefore, the outputs y; are only functions of inputs xj
with £ < t, so that output samples are not obtained taking
information from the future. Dilation increases the receptive
field of 1D convolutions without increasing the filters sizes, by
applying a fixed step d between the input samples processed by
each filter. Therefore, a 1D-convolution in a TCN is expressed
by the following function:

K—1Cin—1
v =Conv(x)= > > x_gi-W;" (D)
i=0 1=0
where ¢ is the time index, W the filter weights, C;,, the number
of input channels, m the output channel, and K the filter size.

B. Neural Architecture Search

Neural Architecture Search (NAS) is increasingly used
to automatically design deep neural networks, avoiding the
hand tuning of hyper-parameters, e.g. layer channels, filter
dimensions, etc. NAS automatically explores a large design
space of possible hyper-parameters settings, co-optimizing the
accuracy of the resulting network with its cost, measured
as the memory footprint [10], the number of Floating Point
Operations (FLOPs) or even the latency [12]. NAS outputs are
sets of Pareto-optimal architectures in the complexity-accuracy
space, from which users can select the best solution given their
problem constraints. Due to this capability, the exploration of
NAS solutions tuned for extreme edge devices has recently
started getting traction [12], [14]], [15].

We can categorize NAS methods in three main groups.
Early approaches used reinforcement learning or evolutionary
algorithms to improve the structure of the network at the cost
of thousands of training runs (and GPU hours), thus being
often prohibitive for real-world tasks [8]]. More recent research
has focused on differentiable NAS solutions (DNAS) [16], that
model the problem as the optimization of a so-called supernet,
which includes different alternative implementations of each
layer. These methods jointly train a set of binary variables
that determines a selection of layer implementations from the
supernet (called a path) and the weights of that path. Although
more efficient than the previous group, memory occupation
and training time remain critical for these algorithms, since the
supernet includes all possible combinations of layers imple-
mentations. ProxylessNAS [12] tackles the memory problem
by training a single path of the supernet per batch, thus limiting
the memory occupation of the whole model, but not exploring
the full solution space at the same time.

Lastly, an emerging set of DNAS methods is based on so-
called DMaskingNAS [9], [10], which aims at reducing the

training time by limiting the search space to a single seed
network. DMaskingNAS approaches add trainable parameters
(“masks”) to the seed network to tweak architectural features
such as the number of channels or the filter dimensions.
Specifically, a vector of 'yi(l) is defined per each layer [/, and
combined with the normal weights of the model, in such
a way that setting each of the fyi(l) to zero has an effect
on the architecture (e.g. eliminating a channel or reducing
the filter size). Then, the non-zero *yi(l are minimized during
training with an approach similar to weight pruning, thus
reducing the network size. For instance, MorphNet [10] uses
the already present multiplicative terms in batch normalization
(BN) layers as fyi(l), to zero-out entire channels. While the
search space of DMaskingNAS algorithms is slightly more
restricted than DNAS, it is still large enough to produce high-
quality solutions; and at the same time, it can be explored at
similar cost to a single network training.

In our work, we propose the first DMaskingNAS solution
tuned specifically at exploiting the main architectural feature
of TCNs — namely, dilation — to find Pareto-optimal alterna-
tives in terms of accuracy/model size, to ease deployment on
memory-starved IoT devices.

III. PRUNING IN TIME

Despite the large number of NAS methods recently pro-
posed in literature, most of them have focused on optimizing
hyper-parameters that are relevant for standard CNNs, such
as the number of channels in each layer and the kernel
sizes [9], [10], [12]], with particular focus on 2D CNNs for
computer vision. To the best of our knowledge, no existing
NAS has explicitly targeted the automatic optimization of
dilation factors in 1D CNNs (d in Eq.[I). Nonetheless, dilation
is fundamental for the accuracy of these networks, as detailed
in [6], since it controls the relation between their receptive
field in time (i.e., the range of samples covered by each
convolution step) and their filter sizes (which determine the
model complexity). Setting dilation factors by hand requires
an empirical and time consuming trial and error process.

In this paper, we make up for this lack by proposing Pruning
In Time (PIT), a light-weight and efficient DMaskingNAS
method that learns the optimal set of dilation factors for a
TCN given as seed network. The functionality of PIT is shown
in Fig. our algorithm starts from a seed network with
maximally-sized filters and dilation d = 1 in all layers, and
concurrently learns the TCN weights and the optimal dilations
for each layer, based on a cost metric. Specifically, in this work
we consider model size as the target metric, but the method is
easily extendable to other types of optimizations (e.g., FLOPs
reduction). The optimization of dilation factors is obtained by
modeling the problem as a weight pruning in time, as explained
in the following, hence the name of our approach.

A. Making Dilation Differentiable

In order to build a DNAS algorithm for dilated convolu-
tions, the primary issue to be solved is how to embed the
different dilation factors in a (differentiable) component of the
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Fig. 1. Training flow of the proposed Pruning In Time architecture optimizer.
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Fig. 2. Combination of ~ elements with each other and with convolution

filter weights to form different dilation patterns. Example for rf .. = 9.

loss function, so that they can be optimized during training.
Similarly to other DMaskingNAS techniques, our approach is
built upon additional trainable parameters, which we call ~.

Each temporal convolution in a TCN is characterized by a
certain kernel size k£ and a certain dilation factor d. Together,
these two parameters define the receptive field rf of the layer:
rf = (k — 1) - d. Notice that, in this formulation, the dilation
is regular, i.e., the number of skipped time-steps is constant
in each convolutional layer. PIT limits the search space to
such solutions, which are the only ones supported by current-
generation inference libraries for MCUs [17], [[18], and gen-
erally enable better low-level optimizations and more regular
memory access patterns. In particular, we focus on dilation
factors d that are expressed as powers of 2. These maintain a
high degree of freedom in enlarging or reducing the receptive
field, while restricting the solution space and enabling the
simple formalization that we treat in the following.

For every temporal convolution, PIT starts by defin-
ing a vector of binary parameters -y, containing L =
|logs (7f hax — 1)]+1 elements, where 7f ... is the maximum
supported rf. In particular, 7, is constant and always equal to
1, and is added just to simplify the mathematical notation. The

remaining vi.r—1, instead, are the main knobs that control
dilation. We binarize ~ following a BinaryConnect-like ap-
proach [19]. In forward-propagation, we use a Heaviside step
function and a threshold 9, fixed to 0.5 in our experiments:

. 1, forv; >0
H(5; —8) = 2
(7 ) {O, for v; < & @

where v, is the floating point version of ;. In backward
passes, because the derivative of this function is zero almost
everywhere, its gradient is treated with a straight-through
estimator [19]], i.e., the step is replaced with an identity
function for the purpose of propagating gradients.

To restrict the search space to regular dilation patterns, the
trainable parameters in < are combined together in the way
depicted in the red part of Fig. 2] We start by multiplying
together the elements in -« to form a new set of I', which will
be the actual values used to perform the masking:

L—-1—1

=[] w 3)
k=0

Notice that, in Fig. 2] 4o has been directly replaced with 1.
Intuitively, the parameters I' have to act as on/off selectors that
enable or disable entire time slices of the convolution filter,
encoding regular patterns of power-of-two dilation.

As shown in the figure, d = 1 is achieved only when all
trainable parameters are 1, i.e., when I'o =vyp- 71 vyp-1 =
1. To encode patterns with larger dilation, every time we
double d we remove the condition on one +;, so for d = 2 we
use 'y = v9-v1 - -vL—2 = 1, etc., up to the highest supported
dilation (d = 2E~1), which is obtained with the (always true)
condition I';, 1 = = 1.

To obtain this behavior, we further combine the elements of
T in a mask vector M, of length 7f_ .., as shown in Fig.
Each element of M is then multiplied with all filter weights
relative to the corresponding time-step (and all channels) to
perform the actual masking. The right side of Fig. [2|shows how
the various dilation alternatives are mapped to the trainable
through the masking procedure described above, for the case
of 7f hax =9 (L =4).

In order to train « with a DNAS method, the constructive
description of the mask vector M given above must be
expressed in a differentiable form. To do so, we use the
following tensor transformation:

M = H {lv i) T+ (s —T)]- K} 4

columns

where [ ], ;mns indicates the product of all elements in each
column of the final matrix, 1;,; is a matrix of 1s of size i X j
and © is the Hadamard product. T and K are two constant
matrices of Os and 1s. An example of these two matrices and of
the entire transformation is shown in Fig.[3] for the same 7f .
and L used in Fig. 2] Again, 7, has been directly replaced
with 1 for clarity. Notice that T is just an upper triangular
matrix with inverted columns, whereas K can be generated
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Fig. 3. Example of generation of the M mask vector with differentiable
tensor operations, for the same layer size as Fig.

procedurally for any value of rf .., by repeating a pattern of
Os and 1s (procedure not shown for sake of space).

Finally, the complete layer equation for dilated convolution
in PIT becomes:

fmax—1 Cin—1

Z thl (M; © Wh™) (5)

where all symbols have been defined in previous Eq. [T}f4]

B. Dilation Regularizer

Having modified all convolutional layers with « vectors,
PIT performs a standard training, where the loss function is
augmented with a Lasso regularization term, to promote the
sparsification (pruning) of the ~;, thus enabling the exploration
of architectures with d > 1.

The regularization term can be customized to direct the
search towards a target cost metric. In this work, we consider
the network size as our proxy for cost. Therefore, we use the
following regularizer:

) 15 (l)|

layers
=2y ol C’(l)tZround<
=1
(6)

where A controls the strength of the regularlzatlon and su-
perscript (1) refers to the [-th layer. Ci(l and Céut are the
number of input/output channels in the [-th layer, both of
which influence the layer size in a way which is linearly
proportional to the amount of non-pruned time-slices in the

max

L3() s

filter matrix. Finally, round ( "““‘i 1) is the number of alive

(i.e. non-masked) filter time-slices added by each non-zero 'yi(l)

(see Fig. [2).
Globally, the loss function optimized in the pruning phase
by PIT is the following:
Lpir(W,7) = LI (W) + L3(v) )

where LP"f(W) is the loss term related to the TCN’s
performance, e.g., the classification accuracy.

C. Training Procedure

Algorithm summarizes the training procedure imple-
mented in PIT. As shown, the process is composed of
three separate phases. Initially, we perform a warmup lasting
Stepswy training steps. In this phase, all elements in -« vectors
are initialized to 1. Therefore, we only train the weights of
the seed network, with maximally sized filters and d = 1
in all convolution layers, and considering only the network
performance as objective. Next, the main pruning loop is
initiated. Here, we concurrently update the weights and the
~ vectors with the regularized loss. Once the pruning phase
reached convergence (i.e., loss not improving on the validation
set), we enter the third phase, where all ~ are frozen to their
latest binarized values, and the resulting network with dilation
is fine-tuned, again considering only performance in the loss.
We found that both warmup and fine-tuning significantly
improve the final accuracy of the pruned networks.

Algorithm 1 PIT - Pruning in Time
1: for i < 1,...,Stepsyy do #warmup loop
2: Update W based on Vyy Lpe, (W)
3: end for
4: while not converged do #pruning loop
5: Update W and - based on Vyw Lprr (W
6
7
8
9

)
- end while

: for i < 1,..., Stepsy do #fine-tuning loop
Update W based on Vi Lpe, (W)
: end for

The procedure of Algorithm[I|can be repeated with different
regularizer strenghts (A in Eq. [6) to explore the performance
versus cost design space. Similarly, also the number of warmup
steps has an impact on the same trade-off. Indeed, as explained
in [12], a shorter warmup, yielding a less accurate network at
the beginning of pruning, tends to favor model simplifications,
as their impact on accuracy is less at the beginning of the
pruning phase.

Importantly, PIT can be easily integrated with other DMask-
ingNAS techniques that affect different hyper-parameters, e.g.,
[10] to tune the number of channels in each layer, simply by
adding further regularization terms and masking parameters,
to perform a wider exploration.

IV. EXPERIMENTAL RESULTS
A. Setup

Datasets & architectures. We benchmark PIT using two
different datasets and 1D-CNN seed networks. The first is
Notthingham, a polyphonic music dataset extracted from
1200 American and British folk tunes [6]. Each input is a
sequence of samples, each represented by a 88-bit binary
code, corresponding to the 88 keys of a piano. As a starting
point to build the seed model for this dataset, we use the
TCN presented in [6], here refered as ResTCN. In detail, to
automatically search for the best dilation parameters, we start
from ResTCN with identical receptive fields as the one of
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Fig. 4. PIT Pareto frontiers obtained starting from two seed architectures on
the Nottingham dataset (top) and on PPGDalia (bottom). Each plot also reports
the seed model (square) and the original hand-engineered TCN (triangle).

[6]], but setting d = 1 in each layer. The second dataset is
PPGDalia [20]], the largest publicly available dataset for PPG-
based heart rate estimation. It includes measurements from a
PPG-sensor and a 3D-accelerometer, together with golden HR
values for 15 subject and a total of 37.5 hours of recording.
In this case we use TEMPONet, first introduced in [1f], as
our seed architecture, since this network achieved excellent
results on similar bio-signal processing tasks. Again, the seed
is obtained setting d = 1 in all layers while maintaining
the receptive fields. The PIT code and the results for all the
other benchmarks introduced in [|6] are released open source at
https://github.com/matteorisso/PIT and are not
reported here for sake of space.

Deployment. To measure latency and energy gains obtained
by PIT, we deploy models produced by our tool on the Green-
Waves Technologies’ GAP8 System-on-Chip (SoC) [13]], a
parallel ultra-low-power platform that features one I/O core
and an 8-core cluster with a RISC-V Instruction Set Ar-
chitecture extension for enhanced digital signal processing.
The SoC includes a two level memory hierarchy: a single-
cycle clock latency 64 kB L1 scratchpad, and a 512 kB L2
memory. Additionally, an off-chip L3 memory can be plugged
to expand the storage capability. GAPS also includes two
general-purpose Direct Memory Access (DMA) controllers to
move data between memories, reducing the memory access
bottleneck.

We deploy int8-quantized models using GreenWaves’ pro-
prietary neural network deployment flow, called NN-Tool,
which supports dilated 1D convolutions. We set the I/O core
frequency and the 8-core cluster frequency to 100 MHz.

B. Design Space Exploration

Starting from the two seed architectures detailed above, we
perform a complete design space exploration, by tweaking

TABLE I
DILATIONS OBTAINED FOR THE DIFFERENT CONVOLUTIONAL LAYERS OF
RESTCN AND TEMPONET IN DIFFERENT PIT OUTPUTS.

PIT dilations
(1,1,2,2,4,4,8,8)

4, 4,8, 8,16, 16 32, 32)
4,1, 4, 8, 16, 16, 32, 32)
(1, 4, 8, 8, 16, 16, 8, 1)

network

ResTCN dil=hand-tuned
PIT ResTCN small

PIT ResTCN medium
PIT ResTCN large

TEMPONet dil=hand-tuned | (2, 2, 1, 4, 4, 8, 8)

PIT TEMPONet small (2,4, 4,8,8, 16, 16)

PIT TEMPONet medium 1,2,4,2,1,8, 16)

PIT TEMPONet large (1,1,1,1, 1, 1, 16)
TABLE II

COMPARISON BETWEEN PIT AND PROXYLESSNAS, WITH TEMPONET
AS SEED ARCHITECTURE AND PPGDALIA AS DATASET.

ProxylessNAS Pruning in Time
# weights | Perf. [MAE] | # weights | Perf. [MAE]
small 381k 5.43 381k 5.43
medium | 517k 5.21 440k 5.28
large 731k 5.15 694k 4.92

the A regularization-strength of PIT and the warmup duration
(Steps.w). Results are summarized in Fig. [

Considering all possible power-of-two dilations achievable
given the seed network’s receptive fields, PIT operates in a
search space of ~10° different solutions for the ResTCN,
spanning from NNs with 400k to 3M parameters. For TEM-
PONet, the search includes ~10* alternatives, ranging from
400k to 900k parameters. The dilations obtained by PIT
for three different architectures, namely the largest (large),
the smallest (small) and the closest in size to the original
hand-designed ResTCN/TEMPONet (medium) are reported in
Table [Il For both benchmarks, PIT finds new Pareto-optimal
architectures that improve both the accuracy and the network
size simultaneously, compared to the seed baselines without
dilation (black squares in the figure). In detail, we find a
ResTCN-variant with 2.54x less parameters and an accu-
racy improvement of 13% (from 3.12 to 2.72 Negative Log-
Likelihood - NLL loss) with respect to the seed; concerning
TEMPONet, the top-performing architecture shows a compres-
sion of 1.35x with a Mean Absolute Error (MAE) reduction
of 0.16. PIT also finds a new ResTCN-based architecture
that dominates the hand-tuned original network presented in
[6] in the Pareto sense, resulting in a 54% reduction of the
parameters with almost identical performance. While the same
is not true for TEMPONet, the hand-engineered network sits
on the Pareto frontier in this case, showing the good quality
of the architectures identified by PIT.

C. Comparison with state-of-the-art

Table [l] compares solutions found by PIT with the ones
of the state-of-the-art ProxylessNAS [12], a DNAS algorithm
based on the supernet idea, that can be adapted to search over
different dilation factors in a 1D-CNN by manually including
all layer variants in the supernet. Specifically, for each layer,
ProxylessNAS chooses between multiple alternatives, that we
manually specified by increasing d and keeping C;,, and C,,;
constant, so to match exactly the search space explored by
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Fig. 5. Comparison of training time for ProxylessNAS, PIT, and a single NN
training using a seed TEMPONet network and the PPGDalia dataset.
TABLE III
PIT SOLUTIONS COMPARED TO ORIGINAL SEED NETWORKS WITHOUT
DILATION AND WITH HAND-TUNED DILATION DEPLOYED ON GAP8 SoC.

# weights | loss latency energy
ResTCN dil=1 3.53M 3.12 NLL 1002 ms | 262.7 mJ
ResTCN dil=h.-t. 1.05M 3.07 NLL 500 ms 131 mJ
PIT ResTCN s. 0.37M 3.79 NLL 336.7 ms | 88.2 mJ
PIT ResTCN m. 0.48M 3.09 NLL 3359 ms | 87.9 mJ
PIT ResTCN 1. 1.39M 2,72 NLL | 5392 ms | 141.3 mJ
TEMPONet dil=1 939K 5.08 MAE | 112.6 ms | 29.5 mJ
TEMPONet dil=h.-t. | 423K 5.31 MAE | 58.8 ms 15.4 mJ
PIT TEMPONet s. 381K 5.43 MAE | 54.8 ms 14.4 m]J
PIT TEMPONet m. 440K 5.28 MAE | 59.8 ms 15.7 mJ
PIT TEMPONet 1. 694K 4.92 MAE | 86.3 ms 22.6 mJ

PIT. For sake of space, the comparison is reported only on
TEMPONet as seed architecture with PPGDalia as dataset. In
Table [II} we report three different architectures found by each
algorithm (small, medium and large, selected with the same
rationale of Table [[). Both algorithms converge to same small
network, while solutions are similar for the other two cases.
Noteworthy, in the large case, PIT finds an architecture that
is both smaller (694k vs. 731k parameters) and more accurate
(4.92 vs 5.15 MAE) than ProxylessNAS.

In Fig.[5] we compare the training time required by PIT and
ProxylessNAS to find the three networks. All the experiments
have been performed with the same hardware set-up, namely
a single NVIDIA-GTX 1080Ti GPU, and the same training
algorithm parameters, including batch size = 128 and an
early-stop patience of 50 epochs. PIT reduces the search
time compared to ProxylessNAS by up to 10.4x, being only
1.3x-2.3x slower than the training of a single hand-designed
TEMPONet architecture. This is mainly due to the concurrent
training of all weights and masking parameters performed by
PIT. In contrast, ProxylessNAS trains only one path of the
supernet (and the corresponding weights) in each iteration of
the training loop, causing a significant time overhead.

D. Deployment on GAPS

We deployed the original hand-engineered TCNs, the seed
networks with unitary dilation, and the three different PIT
outputs for each dataset reported in Table [[, on the 8-cores
cluster of GAPS8. Table reports the results in terms of
network size, loss (either NLL or MAE for the two datasets),
latency and energy.

Deploying the “medium” PIT ResTCN, we obtain a loss
equivalent to that of the hand-tuned network presented in
[6] with 2.2x less parameters, and 1.5x lower latency and

energy. For TEMPONet, we obtain a medium network which
is equivalent to the hand-engineered one in every metric.

Noteworthy, our small (medium) ResTCN networks have a
20% higher (0.9% lower) loss compared to the seed network,
but are 9.5x (7.4x) smaller and 3.0x (3.0x) faster. On
TEMPONet, the small (medium) models obtain a 6.9% (3.9%)
worse error compared to the seed, with 2.5x (2.1x) less
weights and 2.1x (1.9x) lower latency and energy.

V. CONCLUSIONS

NAS methods are becoming essential tools for deep learn-
ing, enabling a fast exploration of the model architecture
design space without the tedious trial-and-error approach that
characterized the development of new neural networks in the
past. Therefore, it is fundamental to develop efficient NAS
methods, which do not require extreme hardware resources
and/or an enormous training times. At the same time, these
tools must be capable of exploring all important hyper-
parameters, which in case of a TCN include the dilation. The
proposed PIT is a light-weight NAS framework that goes in
that direction, and successfully generates size-optimized and
hardware-friendly TCNs. PIT is able to generate improved
versions of existing state-of-the-art architectures, with a com-
pression of up to 54% with negligible accuracy drop, enabling
their efficient deployment on resource-constrained MCUs.
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