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Abstract: This paper presents an in-depth analysis of an excitable membrane of a biological system
by proposing a novel approach that the cells of the excitable membrane can be modeled as the
networks of memristors. We provide compelling evidence from the Chay neuron model that the state-
independent mixed ion channel is a nonlinear resistor, while the state-dependent voltage-sensitive
potassium ion channel and calcium-sensitive potassium ion channel function as generic memristors
from the perspective of electrical circuit theory. The mechanisms that give rise to periodic oscillation,
aperiodic (chaotic) oscillation, spikes, and bursting in an excitable cell are also analyzed via a small-
signal model, a pole-zero diagram of admittance functions, local activity, the edge of chaos, and the
Hopf bifurcation theorem. It is also proved that the zeros of the admittance functions are equivalent
to the eigen values of the Jacobian matrix, and the presence of the positive real parts of the eigen
values between the two bifurcation points lead to the generation of complicated electrical signals in
an excitable membrane. The innovative concepts outlined in this paper pave the way for a deeper
understanding of the dynamic behavior of excitable cells, offering potent tools for simulating and
exploring the fundamental characteristics of biological neurons.

Keywords: memristor; excitable cell; oscillation; chaos; spikes; bursting; Chay model; small-signal
model; pole-zero diagram; local activity; edge of chaos; Hopf bifurcation

1. Introduction

The electrical activities of neurons are characterized by a diverse array of dynamic
phenomena, such as action potential, spike, chaos, and bursting. Understanding these qual-
itative features are essential for unraveling the principles underlying neuronal excitability.
The popular Hodgkin-Huxley (HH) model developed in 1952, which consists of membrane
voltage, potassium conductance, sodium conductance, and leakage conductance, provides
a framework for understanding the propagation of action potential based on the squid
giant axon experiments [1]. Recent analysis revealed that the potassium ion channel and
sodium ion channel in the HH model, initially interpreted as time-varying conductances,
are in fact generic memristors from the perspective of electrical circuit theory [2–5]. The HH
model has spurred significant interest in designing electrical circuit models and observing
the experimental results in the wide variety of complex systems of the membrane potential,
nervous system, barnacle giant muscle fibers, Purkinje fibers, solitary hair cells, auditory pe-
riphery, mini-review of neuromorphic architectures and implementation, organic synapses
for neuromorphic electronics, and photochromic compounds [6–16]. Similarly, extensive
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research has been conducted to observe the varieties of oscillations in pancreatic β-cells
inspired by the HH model [17–26]. The mathematical model of an excitable membrane in
pancreatic β–cells consist of voltage-sensitive channels that allow Na+ and Ca2+ to enter
the cell and voltage-sensitive K+ channels and voltage-insensitive K+ channel that allow K+

ions to leave the cell and activate intracellular calcium ions, respectively [27–29]. Therefore,
the outward current carried by K+ ions pass through the voltage and calcium-sensitive
channels, and the inward currents carried by Na+ and Ca2+ ions pass through the voltage-
sensitive Na+ and Ca2+ channels. However, the above models consist of complicated
nonlinear differential equations associated with membrane voltage. Later, a modified
model was presented by Chay [30], assuming the β-cells of the voltage-sensitive Na+ con-
ductance are almost inactive and the inward current is almost exclusively carried by Ca2+

ions through the voltage-sensitive Ca2+ channel. Therefore, the assumption of a mixed
effective conductance was formulated without affecting the results by expressing the total
inward current in terms of a single mixed conductance gI and the reversal potential EI of
the two functionally independent Na+ and Ca2+ channels. The model consists of three
nonlinear differential equations, in contrast to the other complicated models of an excitable
membrane of a pancreatic β-cell. Our studies in this paper typically focus on the simplified
Chay neuron model of an excitable cell [30].

Understanding the intricacies of excitable membranes in biological systems are com-
plicated and the mechanisms governing the generation of periodic, aperiodic (chaotic),
bursting, and the spiking signals in the cells are still subject to under investigation. This
paper aims to explore a model that the state-independent voltage-sensitive mixed ion
channel gI functions as a nonlinear resistor, while the state-dependent voltage-sensitive
potassium ion-channel gK,V and calcium-sensitive potassium ion-channel gK,Ca function as
time-invariant memristors in Chay neuron model of an excitable cell. Additionally, this
study seeks to delve into the memristive model of an excitable cell with the goal of gaining
deeper insights into the dynamic behavior of excitable cell through analyses of small signal
equivalent circuit models, pole-zero diagrams, local activity principle, edge of chaos and
Hopf bifurcation theorem.

The paper is organized as follows: We introduce the Chay neuron model and its
comparison analyses with the HH, FitzHugh–Nagumo, and Morris–Lecar (ML) models in
Section 2. Section 3 describes the pinched hysteresis fingerprints of ion channel memristors.
Section 4 presents the direct current (DC) analysis of the memristive Chay neuron model.
Section 5 provides the small-signal analysis. Section 6 explores the application of the local
activity principle, the edge of chaos theorem, and Hopf bifurcations in memristive Chay
neurons. Finally, Section 7 concludes the paper.

2. Chay Neuron Model of an Excitable Cell

Excitable cells are specialized cells in the body and neurons that are capable of gen-
erating electrical signals in response to certain stimuli. These cells are crucial for the
functioning of various physiological processes, including nerve signaling, muscle contrac-
tion, and hormone release. Excitability in these cells are primarily due to the presence of
specialized proteins called ion channels in their cell membranes. These ion channels control
the movement of ions such as sodium (Na+), potassium (K+), calcium (Ca2+), and chloride
(Cl−) across the membrane, leading to changes in the cell’s membrane potential and the
generation of electrical signals. The study of excitable cells encompasses a wide array of
topics, and our primary aim is to present a unified model for both neuronal and secretory
excitable membranes based on the Chay neuron model. The Chay neuron model, which
focuses on a simplified representation of neuronal and secretory excitable membranes, aims
to provide a unified framework for understanding the complex electrical activity observed
in excitable cells. This model typically involves just three ordinary differential equations
(ODEs) to capture the essential features of an excitable cell membrane. The model consists
of (a) mixed ion channel gI; (b) state-dependent voltage-sensitive potassium ion channel
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gK,V; (c) calcium-sensitive potassium ion channel gK,Ca; and (d) leakage channels, which
are described by the following differential equations:

dV
dt

=
I − gIm

3
∞h∞(V − EI)− gK,Vn4(V − EK)− gK,Ca

Ca
1+Ca (V − EK)− gL(V − EL)

Cm
(1)

dn
dt

=
n∞ − n

τn
(2)

dCa
dt

= −ρ
[

m3
∞h∞(V − ECa) + kCaCa

]
(3)

where

n∞ =
αn

αn + βn
, αn =

0.01(V + 20)
1 − e−0.1(V+20)

, βn = 0.125e(
−(V+30)

80 ) (4)

m∞ =
αm

αm + βm
, αm =

0.1(V + 25)
1 − e−0.1(V+25)

, βm = 4e(
−(V+50)

18 ) (5)

h∞ =
αh

αh + βh
, αh = 0.07e(

−(V+50)
20 ), βh =

1
1 + e−0.1(V+20)

, τn =
1

λn(αn + βn)
(6)

Figure 1a shows the typical circuit of the Chay model with external current stimulus,
denoted as I (The electrical model is not given in the Chay paper [30]. We have designed a
typical electrical circuit model following the differential equations of the membrane potential. The
symbolic representation of the conductances and potentials are assumed in different notations
compared with the original representation. Figure 1a shows an electrical circuit model following the
conventional assumption of the HH model). It consists of membrane potential V of capacitance
Cm, potentials EI, EK, and EL for mixed Na+-Ca2+ ions, K+, and leakage ions, respectively.
The conductances gI, gK,V, gK,Ca, and gL represent the voltage-sensitive mixed ion channel,
voltage-sensitive potassium ion channel, calcium-sensitive potassium ion channel, and
leakage channel, respectively. In the upcoming session, we will provide rigorous proofs
that the state-independent mixed ion channel functions as a nonlinear resistor. However,
the commonly held belief regarding state-dependent ion channels exhibiting time-varying
conductances are found to be conceptually incorrect from the perspective of electrical
circuit theory. Contrary to this conventional assumption, these ion channels do not adhere
to time-varying conductance principles. Instead, they align more accurately with the
characteristics of time-invariant generic memristors from a circuit-theoretic standpoint. A
rigorous proof will be demonstrated in the subsequent section. The parameters for this
model are summarized in Table 1 (The units of conductance for mixed ion channel, voltage-
sensitive potassium ion channel, calcium-sensitive potassium ion channel and leakage ion channel
in the Chay model [30] are assumed as g∗ = conductance

membrane capacitance = mS/cm2

mF/cm2 = 1
second(s) = s−1.

As, we are assuming the value of membrane capacitance (Cm) = 1 mF/cm2, we use the unit
of all the conductances of the ion channels, g = mS/cm2, throughout this study, which is also
the equivalent unit g* of the original Chay model) and a list of abbreviations of the model
parameters are illustrated in Appendix A. The comparison analyses of the HH model [1],
FitzHugh–Nagumo model [31], ML model [8], and Chay model [30] are summarized in
Table 2 along with their respective strengths and limitations. It is notable that each model
possesses distinct advantages and drawbacks, making them suitable for different research
contexts and questions. The choice of the model depends on the level of detail required,
the computational resources available, and the specific phenomena under investigation.
This study predominantly centers on the Chay neuron model of excitable cells.
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Figure 1. Typical Chay neuron model of an excitable cell [30]. (a) Electrical circuit model, following
conventional assumption as time varying conductances [1]. (b) Equivalent memristive Chay model
based on Chua’s memristive theory [2–4]. The potential ECa for Ca2+ ion given in the rate of the
calcium concentration in Equation (3) is not an external battery source and not shown in external (a)
and (b), respectively.

Table 1. Parameters of the Chay neuron model of an excitable cell.

Cm 1 mF/cm2 gK,V 1700 mS/cm2

EK −75 mV gI 1800 mS/cm2

EI 100 mV gL 7 mS/cm2

EL −40 mV gK,Ca 10 mS/cm2

ECa 100 mV Kca 3.3/18 mV

λn 230 ρ 0.27
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Table 2. Comparison analyses of HH, FitzHugh–Nagumo, ML, and Chay models.

Models Memristive Models Strengths Limitations

HH [1]
The potassium ion channel and sodium ion
channel in the HH model are represented by

generic memristors [3].

It is a framework to understand the
emergence of action potential

propagation in neurons based on the
experimental data of the squid giant

axon.

It is difficult to generalize to all
neurons. Incapable of producing

complicated bursting patterns

FitzHugh–
Nagumo [31]

It does not follow state-dependent Ohm’s
law and cannot model with memristors.

Simplified model of neuronal
excitation.

Not accurately represent all
neuronal behaviors. Incapable of

producing bursting

ML [8]

It was modeled that the state-independent
(dependent) calcium ion channel acts as a
nonlinear resistor (generic memristor) and

state-dependent potassium ion channel acts
as a generic memristor [9,10].

It is initially presented a model for the
barnacle muscle fiber, and later it was
considered a popular and simplified
representation of the neuron model.

Limited in capturing certain
neuronal dynamics. Cannot
produce bursting patterns.

Chay [30]
We are proposing a framework that the cells
of excitable membranes can be modeled as

the networks of memristors.

Novel model of excitable cells to
capture multiple neuronal states, such

as action potentials, periodic
oscillations, aperiodic oscillations,

spikes, and bursting patterns.

Limited validation in experimental
contexts and a lack of details for

some applications.

3. Pinched Hysteresis Fingerprints of the Ion Channel Memristor

A generic memristor driven by a current source or voltage source is a two-terminal
electrical circuit element whose instantaneous current or voltage obeys a state-dependent
Ohm’s law. A generic memristor driven by a current source can be expressed as follows in
terms of state

.
xn:

v = R(x1, x2, . . . , xn)i (7)
.
xn = f1(x1, x2, . . . , xn; i) (8)

where R(x) is the memristance of the memristor and depends on “n” (n ≥ 1) state variables.
Similarly, a voltage-controlled memristor is defined in terms of the memductance G(x)

and the state variables x1, x2 . . . , xn, as follows:

i = G(x1, x2, . . . , xn)v (9)

.
xn = f1(x1, x2, . . . , xn; v) (10)

Equations (7)–(10) play significant roles in distinguishing the memristive and non-
memristive systems [32,33]. They provide evidence that the state independent voltage-
sensitive mixed ion channel functions as a nonlinear resistor, and state-dependent voltage-
sensitive potassium ion channel and calcium-sensitive potassium ion channel behave as
time-invariant generic memristors.

3.1. Voltage-Sensitive Mixed Ion channel Nonlinear Resistor

The time-varying voltage-sensitive mixed ion channel with input voltage vI and
current iI in the second element (from left) in Figure 1a is given by

V − EI = vI (11)

and
iI = GI(m∞, h∞) vI (12)

and the conductance of the voltage-sensitive mixed ion channel is given by

GI(m∞, h∞) = gIm
3
∞h∞ (13)
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where m∞ and h∞ are computed using Equations (5) and (6).

m∞ =
0.1(vI + EI + 25)

0.1(vI + EI + 25) + 4
(
1 − e−0.1(vI+EI+25)

)
e(

−(vI+EI+50)
18 )

(14)

h∞ =
0.07

(
1 + e−0.1(vI+EI+20)

)
e(

−(vI+EI+50)
20 )

0.07
(
1 + e−0.1(vI+EI+20)

)
e(

−(vI+EI+50)
20 ) + 1

(15)

Observe Equations (12)–(15) are not identical to Equations (7) and (8) or
Equations (9) and (10) in terms of state dependent Ohm’s law. Consequently, the time-
varying voltage-sensitive mixed ion channel can be substituted by a nonlinear resistor
(A mixed ion channel is a nonlinear voltage-controlled resistor with conductance GI(m∞, h∞), where
m∞ and h∞ are the functions of the voltage vI across the two-terminal element.), as depicted in
the second element (from the left) in Figure 1b. To verify the voltage-sensitive mixed ion
channel is a nonlinear resistor, an extensive numerical simulation for a sinusoidal input
voltage source vI = 100sin(2πft) mV is performed for the three different frequencies, namely,
f = 100 Hz, 200 Hz, and 1 KHz, respectively. Figure 2 shows the corresponding output
nonlinear waveform on the current iI vs. voltage vI plane for these frequencies, confirming
that the mixed ion channel exhibits the properties of a nonlinear resistor.
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Figure 2. Output waveform plotted on the iI vs. vI plane when the input voltage vI = 100sin(2πft) mV
is applied with three different frequencies, namely f = 100 Hz, 200 Hz, and 1 KHz, to the voltage-
sensitive mixed ion channel. The output nonlinear waveform observed in Figure 2 for different
frequencies confirms the mixed ion channel is a nonlinear resistor.

3.2. Voltage-Sensitive Potassium Ion Channel Memristor

Let us define the voltage across the voltage-sensitive potassium ion channel shown in
the third (from left) element in Figure 1a as vK,V, and the current is iK,V. Then

V − EK = vK,V (16)

and the current entering the channel is

iK,V = GK,v(n) vK,V (17)

where the memductance is given by

GK,V(n) = gK,V n4 (18)
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and the state equation describing the channel in terms of n can be simplified from
Equation (2) as

dn
dt

= f (n; vK,V) = λn

[
0.01(vK,V + EK + 20)
1 − e−0.1(vK,V+EK+20)

(1 − n)− 0.125 e(
−(vK,V+EK+30)

80 )n
]

(19)

Note that Equations (17)–(19) are identical to the voltage-controlled generic memristor
defined in Equations (9)–(10) with a first-order differential equation. Hence, the time-
varying conductance shown in Figure 1a of the voltage-sensitive potassium ion channel is
replaced with the voltage-sensitive potassium ion channel memristor, as shown in the third
element (from left) in Figure 1b.

We observed the memristive fingerprint of the voltage-sensitive potassium ion channel
memristor by applying a sinusoidal bipolar signal at different frequencies. This property
asserts that beyond some frequency f *, the pinched hysteresis loops characterized by a
memristor shrink to a single-valued function through the origin as frequency f > f * tends
to infinity. To verify this property, a sinusoidal voltage source vK,V(t) = 100sin(2πft) mV
is applied to the voltage-sensitive potassium ion channel with frequencies f = 100 KHz,
500 KHz, and 4 MHz, respectively. As shown in Figure 3, the zero-crossing pinched
hysteresis loops shrink as the frequencies increase and tend to a straight line at 4 MHz,
which confirms that the voltage-sensitive potassium ion channel is a generic memristor. All
of these pinched hysteresis loops exhibit the fingerprints of a memristor [33].
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Figure 3. Pinched hysteresis loops of voltage-sensitive potassium ion channel memristor at frequen-
cies f = 100 KHz, 500 KHz, and 4 MHz for the input signal vK,V(t) = 100sin(2πft) mV.

3.3. Calcium-Sensitive Potassium Ion Channel Memristor

Let us consider the input voltage of the calcium-sensitive potassium ion channel. The
fourth element (from left) in Figure 1a is vK,Ca (Since the same potential EK is shared by the
voltage-sensitive potassium ion channel memristor and calcium-sensitive potassium ion channel
memristor, the voltage assumed, V − EK = vK,V in Equation (16) and V − EK = vK,Ca in Equation
(21), are identical. The voltages vK,V and vK,Ca are assumed to distinguish the input voltage applied
to the voltage-sensitive potassium ion channel memristor and the calcium-sensitive potassium ion
channel memristor, respectively.) and the current is iK,Ca. The current entering the channel is
given by

iK,Ca = GK,Ca(Ca)vK,Ca (20)

where
V − EK = vK,Ca (21)
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and the memductance of the calcium-sensitive potassium channel is given by

GK,Ca(Ca) = gK,Ca
Ca

1 + Ca
(22)

The state equation in terms of calcium concentration from Equations (3) and (5) is
given by

dCa
dt

= f (Ca; VK,Ca) = −ρ
[

m3
∞h∞(vK,Ca + EK − ECa) + kCaCa

]
(23)

Observe that Equations (20)–(23) are examples of a voltage-controlled memristor
defined in Equations (9)–(10) in terms of the calcium concentration channel Ca. Since
only one state equation is defined in terms of Ca, we call this memristor a first-order
calcium-sensitive potassium ion channel generic memristor. Therefore, the time-varying
calcium-sensitive potassium ion channel is replaced with a calcium-sensitive potassium ion
channel memristor, as shown in the fourth element (from left) in Figure 1b.

Let us verify the fingerprint of the frequency-dependent pinched hysteresis loops of
the calcium-sensitive potassium ion channel by applying the sinusoidal voltage source
vKCa(t) = 100sin(2πft) mV with frequencies f = 10 Hz, 30 Hz, and 200 Hz, respectively.
Observe from Figure 4 that all the zero-crossing pinched hysteresis loops shrink as the
frequencies of the input signal increases and tend to a straight line for the frequency
f = 200 Hz. All of the pinched hysteresis fingerprints confirm that the calcium-sensitive
potassium ion channel is a generic memristor.
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Figure 4. Pinched hysteresis loops of the calcium-sensitive potassium ion channel memristor at
frequencies f = 10 Hz, 30 Hz, and 200 Hz for the input signal vK,Ca(t) = 100sin(2πft) mV.

4. DC Analysis of the Memristive Chay Model of an Excitable Cell

The primary objective of analyzing the DC behavior of the memristive Chay model
is to identify the equilibrium points of the nonlinear equations. These equilibrium points
represent the steady-state solutions obtained by equating the rate of change of equilibrium
voltage Vm, gate activation n of the voltage-sensitive potassium ion channel memristor,
and concentration of calcium-sensitive Ca of the calcium-sensitive potassium ion channel
memristor to zero from Equations (1), (2), and (3), respectively. By determining these equi-
librium points, insights can be gained into the behavior of the excitable cell under different
conditions, such as varying input stimuli or parameter values, and can be expressed as a
function of current I as follows:

n = n∞ (Vm) ≜ n̂(Vm) (24)

Ca = Ca∞ (Vm) ≜ Ĉa(Vm) (25)
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I = gIm
3
∞h∞(Vm − EI) + gK,V n̂4(Vm − EK) + gK,Ca

Câ
1 + Câ

(Vm − EK) + gL(Vm − EL) (26)

The external current I expressed as the function of membrane voltage Vm in Equation (26)
gives the explicit formula of the DC V-I curve of the memristive Chay model. We have
plotted the individual DC V-I curves of the voltage-sensitive mixed ion channel non-linear
resistor, voltage-sensitive potassium ion channel memristor, calcium-sensitive potassium
ion channel memristor, and leakage channel at equilibrium voltages VI, VK,V , VK,Ca and VL,
as shown in Figure 5b, Figure 5c, Figure 5d, and Figure 5e, respectively. Figure 5f shows
the DC V-I curve of Figure 5a over the range of DC voltage −50 mV < Vm < −24 mV. For
any DC value of Vm, we calculated the corresponding value of I as the vertical axis. Our
extensive calculations show that the two Hopf bifurcation points occur at Vm = −48.763 mV
(resp., I = −66.671 µA) and Vm = −27.984 mV (resp., I = 433.594 µA), respectively. Details
of these two bifurcation points will be discussed in upcoming section.
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Figure 5. (a) Memristive DC Chay model at equilibrium voltage Vm. (b) DC V-I curve of a mixed ion
channel nonlinear resistor at equilibrium voltage VI = Vm − EI. (c) DC V-I curve of voltage-sensitive
potassium ion channel memristor at equilibrium voltage VK,V = Vm − EK. (d) DC V-I curve of
the calcium-sensitive potassium ion channel memristor at equilibrium voltage VK,Ca = Vm − EK.
(e) DC V-I curve of the leakage channel at equilibrium voltage VL = Vm − EL. (f) Plot of the DC V-I
curve of the memristive Chay model at membrane voltage Vm.
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5. Small-Signal Circuit Model

The small-signal equivalent circuit is a linearized method to predict the response of
electronic circuits when a small input signal is applied to an equilibrium point Q. The
objective of this section is to analyze the small-signal response of a voltage-sensitive mixed
ion channel nonlinear resistor, a voltage-sensitive potassium ion channel memristor, and
a calcium-sensitive potassium ion channel memristor using Taylor series expansion and
Laplace transformation.

5.1. Small-Signal Circuit Model of the Mixed Ion Channel Nonlinear Resistor

The small signal equivalent circuit of the mixed ion channel nonlinear resistor at an
equilibrium point QI (The equilibrium point QI at vi = VI is obtained by solving Equation (12))
on the DC VI-II curve is derived as follows:

vI = VI(QI) + ∂vI (27)

iI = II(QI) + ∂iI (28)

Applying Taylor series expansion to the voltage-sensitive mixed ion channel nonlinear
resistor defined in Equations (27) and (28) at the DC operating point QI, we get

iI = f (VI + δvI) = a00(QI) + a12(QI)δvI + h.o.t.

= II(QI) + δiI
(29)

where h.o.t denotes higher-order terms and coefficients can be computed as

a00(QI) = GI(QI)VI(QI) = II(QI) (30)

a12 (QI) =
∂ f (vI)

∂vI
(31)

Linearize Equation (29) by neglecting the h.o.t. then

δiI = a12(QI)δvI (32)

Taking the Laplace transform of Equation (32), we obtain

îI(s) = a12(QI)v̂I(s) (33)

The admittance YI(s; QI) of the small-signal equivalent circuit of the voltage-sensitive
mixed ion channel nonlinear resistor at the DC operating point QI is given by

YI(s; QI) =
îI(s)
v̂I(s)

= a12(QI) =
1
1

a12(QI)

=
1

R1I
(34)

where
R1,I = 1/a12(QI) (35)

From Equation (34), it is clear that the small-signal admittance function of the mixed
ion channel nonlinear resistor is equivalent to that of a linear resistor. The corresponding
small-signal equivalent circuit and a plot of the coefficients a12(QI) and resistance R1,I as
a function of the DC equilibrium voltage VI = Vm − EI, where EI = 100 mV, are shown in
Figures 6a and 6b, respectively. The explicit formulas for computing coefficient a12(QI) are
given in Figure 7 for readers’ convenience.
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Figure 6. (a) Small-signal circuit model of the voltage-sensitive mixed ion channel nonlinear resistor
about the DC equilibrium point QI (VI, II). (b) Plot of the coefficient a12 and resistance R1,I as a
function of the DC equilibrium voltage VI = Vm − EI, where EI = 100 mV. R1,I < 0 over the range
of local activity, edge of chaos 1 and edge of chaos 2 of the mixed ion channel nonlinear resistor is
identified with respect to VI of the entire Chay circuit in Figure 1b and Figure 16.
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Figure 7. Explicit formulas for computing the coefficients a12(QI) of the voltage-sensitive mixed ion
channel nonlinear resistor.

5.2. Small-Signal Circuit Model of the Voltage-Sensitive Potassium Ion Channel Memristor

The small-signal circuit model of the voltage-sensitive potassium ion channel memris-
tor at an equilibrium point QK,V (The equilibrium point QK,V at vK,V = VK,V is obtained from
Equation (19) by solving f(n; VK,V) = 0 for n = nK,V. The explicit formula for n(VK,V) is given in
Figure 11) on the DC VK,V-IK,V curve is derived by defining

n = nQK,V + δn (36)

vK,V = VK,V(QK,V) + δvK,V (37)

iK,V = IK,V(QK,V) + δiK,V (38)

Expanding iK,V = GK,V(n)vK,V from Equation (17) in a Taylor series about the equilib-
rium point (N(QK,V), VK,V(QK,V)), we obtain

iK,V = a00(QK,V) + a11 (QK,V) δn + a12(QK,V) δvK,V + h.o.t.
= IK,V(QK,V) + δiK,V

(39)

where
δn = n − nQK,V (40)

δvK,V = vK,V − VK,V(QK,V) (41)

δiK,V = iK,V − IK,V(QK,V) (42)

and
a00(QK,V) = GK,V(QK,V)VK,V(QK,V) = IK,V(QK,V) (43)
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a11(QK,V) = VK,V(QK,V)G′
K,V

(
nQK,V

)
(44)

a12(QK,V) = GK,V

(
nQK,V

)
(45)

and h.o.t denotes the higher-order terms. Let us linearize the nonlinear equation by neglect-
ing the h.o.t. in Equation (39), then:

δiK = a11(QK,V)δn + a12(QK,V)δvK,V (46)

Similarly, expanding the state equation f (nK,V , VK,V) in Equation (19) using a Taylor
series about the equilibrium point (n(QK,V), VK,V(QK,V)), we obtain

f (nQK,V + δn, VK,V(QK,V) + δvK,V)

= f (nQK,V , VK,V(QK,V)) + b11(QK,V)δn + b12(QK,V)δvK,V + h.o.t.
(47)

where

b11(QK,V) =
∂ fn(n, vK,V)

∂n

∣∣∣∣
QK,V

(48)

b12(QK,V) =
∂ fN(n, vK,V)

∂vK,V

∣∣∣∣
QK,V

(49)

Linearizing the nonlinear state Equation (47) by neglecting the h.o.t., we get

d(∂n)
dt

= b11(QK,V)δn + b12(QK,V)δvK,V (50)

Taking Laplace transform of Equations (46) and (50), we obtain

îK,V(s) = a11(QK,V)n̂(s) + a12(QK,V)v̂K,V(s) (51)

s n̂(s) = b11(QK,V)n̂(s) + b12(QK,V)v̂K,V(s) (52)

Solving Equation (52) for n̂(s) and substituting the result into Equation (51), we
obtain the following admittance YK,V(s; QK,V) for the small-signal equivalent circuit of the
voltage-sensitive potassium ion channel memristor at equilibrium point QK,V:

YK,V(s; QK,V) =
îK,V(s)
v̂K,V(s)

=

 1
s

a11 (QK,V)b12(QK,V)
− b11(QK,V)

a11 (QK,V)b12(QK,V)

+
1
1

a12(QK,V)

 (53)

YK,V(s; QK,V) =

(
1

(sLK,V + R1K,V)
+

1
R2K,V

)
(54)

where LK,V ≜
1

a11 (QK,V )b12 (QK,V )
(55)

R1K,V ≜ − b11(QK,V)

a11 (QK,V )b12 (QK,V)
(56)

R2K,V ≜
1

a12 (QK,V)
(57)

It follows from Equations (55)–(57) that the small-signal admittance function of the
first-order voltage-sensitive potassium ion channel memristor is equivalent to the series
connection of an inductor and a resistor in parallel with another resistor, as shown in
Figure 8. The corresponding coefficients a11, a12, b11, b12, inductance LK,V, resistance R1K,V,
and resistance R2K,V as a function of the DC equilibrium voltage VK,V = Vm − EK, where
EK = −75 mV are shown in Figures 9 and 10, respectively. Please note that the local activity,
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edge of chaos 1, and edge of chaos 2, shown in Figure 10a–c, are not the local activity and
edge of chaos domains of the separate two terminals of the voltage-sensitive potassium
ion channel memristor. The small signal positive inductance and resistances (i.e., LK,V > 0,
R1K,V > 0, and R2K,V > 0) of the potassium ion channel memristor observed over the local
activity, edge of chaos 1 and edge of chaos 2 regime are just the corresponding range of the
voltage with respect to VK,V of the entire connected Chay small-signal equivalent circuit of
Figure 1b and Figure 16. For the readers’ convenience, the explicit formulas for computing
the coefficients a11(QK,V), a12(QK,V), b11(QK,V), b12(QK,V), and LK,V, R1K,V, and R2K,V are
summarized in Figure 11.

J. Low Power Electron. Appl. 2024, 14, x FOR PEER REVIEW 16 of 39 
 

 

 
Figure 8. Small-signal equivalent circuit model of the voltage-sensitive potassium ion channel 
memristor about the DC equilibrium point QK,V (VK,V, IK,V). 

 
Figure 9. Plot of coefficients (a) a11, (b) a12, (c) b11, and (d) b12 of the voltage-sensitive potassium ion 
channel memristor as a function of the DC equilibrium voltage VK,V. 

_

+

δvK,V

δiK, V

R1K,V

LK,V

R2K,V

(a) (b)

(c) (d)

100− 0 100 200 300 400

0.2

0.4

0.6

0.8

VK,V(mV)

b12

200− 100− 0 100 200 300

800−

600−

400−

200−

b11

VK,V(mV)

100− 0 100 200 300 400

500

1000

1500

2000

VK,V(mV)

a12

100− 0 100 200

5− 105×

5 105×

1 106×

1.5 106×

VK,V(mV)

a11

Figure 8. Small-signal equivalent circuit model of the voltage-sensitive potassium ion channel
memristor about the DC equilibrium point QK,V (VK,V , IK,V).
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channel memristor as a function of the DC equilibrium voltage VK,V .



J. Low Power Electron. Appl. 2024, 14, 31 15 of 36J. Low Power Electron. Appl. 2024, 14, x FOR PEER REVIEW 17 of 39 
 

 

 
Figure 10. (a) Inductance LK,V (b) resistance R1K,V and (c) resistance R2K,V of the voltage-sensitive po-
tassium ion channel memristor as a function of DC equilibrium voltage VK,V = Vm − EK where EK = −75 
mV. LK,V > 0, R1KV > 0 and R2KV > 0 shown in figures over the local activity, edge of chaos 1 and edge 
of chaos 2 are just corresponding range of the voltage with respect to VK,V of the entire connected 
Chay small signal equivalent circuit of Figures 1b and 16. 

  

(a)

(b)

(c)

20 32.5 45 57.5 70

0.05

0.1

0.15

0.2

VK,V(mV)

LK,V(H)

20 32.5 45 57.5 70

2

4

6

8

VK,V(mV)

R1K,V (kΩ)

20 32.5 45 57.5 70

12.5

25

37.5

50

VK,V(mV)

R2K,V (kΩ)

75K ,V m K m KV V E  =V mV  where E =-75 mV= − +

Local Activity Regime with respect to VK,V=Vm-EK
26.455 mV<Vm<51.685 mV

Edge of Chaos domain 1 with respect to VK,V=Vm-EK
26.455 mV<Vm<27.763 mV

Edge of Chaos domain 2 with respect to VK,V=Vm-EK
48.984 mV <Vm<51.685 mV

Range of Edge of Chaos 2 of the 
entire Chay circuit in Fig. 1(b)  
and Fig. 13 with respect to VK,V

Range of Edge of Chaos 1 of the 
entire Chay circuit in Fig. 1(b) and 
Fig. 13 with respect to VK,V

Range of the Locally Active  regime 
of the entire Chay circuit in Fig. 1(b)  
and Fig. 13 with respect to VK,V

m

m

Local  Activity Re gime with respect  to V
-49.455 mV V -24.68

 
5 mV  < <

49 455 48 763
m

m

Edge of  Chaos domain 1 with respect to V
- .  mV V . m

 
 V< < −

27 984 24 685
m

m

Edge of  Chaos Domain 2 with respect  to V
.  mV V - . V

 
 m− < <

Figure 10. (a) Inductance LK,V (b) resistance R1K,V and (c) resistance R2K,V of the voltage-sensitive
potassium ion channel memristor as a function of DC equilibrium voltage VK,V = Vm − EK where
EK = −75 mV. LK,V > 0, R1KV > 0 and R2KV > 0 shown in figures over the local activity, edge of chaos 1
and edge of chaos 2 are just corresponding range of the voltage with respect to VK,V of the entire
connected Chay small signal equivalent circuit of Figure 1b and Figure 16.
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Figure 11. Explicit formulas for computing the coefficients a11(QK,V), a12(QK,V), b11(QK,V), b12(QK,V)
and LK,V , R1K,V , R2K,V of the voltage-sensitive potassium ion channel memristor.
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5.3. Small-Signal Circuit Model of the Calcium-Sensitive Potassium Ion Channel Memristor

The small-signal circuit model of the calcium-sensitive potassium-channel memristor
at an equilibrium point QK,Ca (The equilibrium point QK,Ca at vK,Ca = VK,Ca is obtained from
Equation (23) by solving f(Ca; VK,Ca) = 0 for Ca = CaK,Ca. The explicit formula for Ca(VK,Ca) is
given in Figure 15.) in the DC VK,Ca-IK,Ca curve is derived by defining

Ca = CaQK,Ca + δCa (58)

vK,Ca = VK,Ca(QCa) + δvK,Ca (59)

iK,Ca = IK,Ca(QK,Ca) + δiK,Ca (60)

Expanding iK,Ca = GK,Ca(Ca) vK,Ca from Equation (20) in a Taylor series about the
equilibrium point (Ca(QK.Ca), VCa(QK,Ca)), we obtain

iK,Ca = a00(QK,Ca) + a11 (QK,Ca) δCa + a12(QK,Ca) δvK,Ca + h.o.t.
= IK,Ca(QCa) + δiK,Ca

(61)

where
δCa = Ca − CaQK,Ca (62)

δvK,Ca = vK,Ca − VK,Ca(QK,Ca) (63)

δiK,ca = iK,Ca − IK,Ca(QK,Ca) (64)

and
a00(QK,Ca) = GCa(QK,Ca)VCa(QK,Ca) = IK,Ca(QK,Ca) (65)

a11 (QK,Ca) = VK,Ca(QK,Ca)G′
K,Ca

(
CaQK,Ca

)
(66)

a12(QK,Ca) = GK,Ca

(
CaQK,Ca

)
(67)

and h.o.t denotes the higher-order terms. Let us linearize the nonlinear equation by neglect-
ing the h.o.t. in Equation (61), then:

δiK,Ca = a11(QK,Ca)δCa + a12(QK,Ca)δvK,Ca (68)

Similarly, expanding the state equation f (CaK,Ca, VK,Ca) of Equation (23) in a Taylor
series about the equilibrium point (Ca(Q,K,Ca), VCa(Q,K,ca)), we obtain

f (CaQK,Ca + δCa, VK,Ca(QK,Ca) + δvK,Ca)
= f (CaQK,Ca , VCa(QK,Ca)) + b11(QK,Ca) δCa + b12(QK,Ca) δvK,Ca + h.o.t.

(69)

where

b11(QK,Ca) =
∂ f (Ca, vK,Ca)

∂Ca

∣∣∣∣
QK,Ca

(70)

b12(QK,Ca) =
∂ f (Ca, vK,Ca)

∂vK,Ca

∣∣∣∣
QK,Ca

(71)

Linearizing the nonlinear state Equation (69) by neglecting the h.o.t., we get

d(∂Ca)
dt

= b11(QK,Ca) δCa + b12(QK,Ca)δvK,Ca (72)

Taking Laplace transform of Equations (68) and (72), we obtain

î K,Ca(s) = a11 (QK,Ca)Câ(s) + a12(QK,Ca)v̂Ca(s) (73)

s Câ(s) = b11(QK,Ca) Câ(s) + b12(QK,Ca) v̂K,Ca(s) (74)
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Solving Equation (74) for Câ(s) and substituting the result into Equation (73), we
obtain the following admittance YK,Ca(s; QK,Ca) of the small-signal equivalent circuit of the
calcium-sensitive potassium ion channel memristor at equilibrium point QK,Ca:

YK,Ca(s; QK,Ca) =
îK,Ca(s)
v̂K,Ca(s)

=

 1
s

a11 (QK,Ca)b12(QK,Ca)
− b11(QK,Ca)

a11 (QK,Ca)b12(QK,Ca)

+
1
1

a12(QK,Ca)

 (75)

YCa(s; QCa) =

(
1

(sLK,Ca + R1K,Ca)
+

1
R2K,Ca

)
(76)

where LK,Ca ≜
1

a11 (QK,Ca)b12 (QK,Ca)
(77)

R1K,Ca ≜ −
b11 (QK,Ca)

a11 (QK,Ca)b12 (QK,Ca)
(78)

R2K,Ca ≜
1

a12 (QK,Ca)
(79)

It follows from Equations (77)–(79) that the small-signal admittance function of the
first-order calcium-sensitive potassium ion channel memristor is equivalent to the series
connection of an inductor and a resistor in parallel with another resistor, as shown in
Figure 12. The corresponding coefficients a11, a12, b11, b12, and inductance LK,Ca, resistance
R1K,Ca, and resistance R2K,Ca as a function of the DC equilibrium voltage VK,Ca are shown in
Figures 13 and 14, respectively. The small-signal inductance and resistances (i.e., LK,Ca > 0,
R1K,Ca > 0 and R2KCa > 0) over the edge of chaos 1 and edge of chaos 2 with respect to the
VK,Ca are shown in Figure 14a, Figure 14b, and Figure 14c, respectively. Please note that the
local activity, edge of chaos 1 and edge of chaos 2, shown in Figure 14a–c, are not the local
activity, edge of chaos 1 and edge of chaos 2 of the individual calcium-sensitive potassium
ion channel memristor. The local activity and edge of chaos domains are just information
showing the corresponding range of voltage with respect to VK,Ca when measured across the
individual calcium-sensitive potassium ion channel memristor of the entire connected Chay
small-signal equivalent circuit in Figure 1b and Figure 16. For the readers’ convenience, the
explicit formulas for computing the coefficients a11(Q,K,Ca), a12(QK,Ca), b11(Q,K,Ca), b12(Q,K,Ca)
and LK,Ca, R1K,Ca, R2K,Ca are summarized in Figure 15.
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Figure 12. Small-signal equivalent circuit model of the calcium-sensitive potassium ion channel
memristor about the DC equilibrium point QK,Ca (VK,Ca, IK,Ca).
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Figure 13. Plot of coefficients (a) a11 (b) a12, (c) b11, and (d) b12 of the calcium-sensitive potassium ion
channel memristor as a function of the DC equilibrium voltage VK,Ca.
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Figure 14. (a) Inductance LK,Ca (b) resistance R1K,Ca and (c) resistance R2K,Ca of the calcium-sensitive
potassium ion channel memristor as a function of DC equilibrium voltage VK,Ca. LK,Ca > 0, R1K,Ca > 0,
and R2KCa > 0 over the edge of chaos 1 and edge of chaos 2 with respect to VK,Ca of the entire
connected Chay small-signal equivalent circuit of Figure 1b and Figure 16.
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The corresponding ranges of local activity, edge of chaos 1 and edge of chaos 2, at 
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Figure 15. Explicit formulas for computing the coefficients a11(QK,Ca), a12(QK,Ca), b11(QK,Ca),
b12(QK,Ca) and LK,Ca, R1K,Ca, R2K,Ca of the calcium-sensitive potassium ion channel memristor.

5.4. Small-Signal Circuit Model of the Memristive Chay Model

Let us replace the voltage-sensitive mixed ion channel nonlinear resistor, the voltage-
sensitive potassium ion channel memristor, and the calcium-sensitive potassium ion chan-
nel memristor in the memristive Chay neuron circuit of Figure 1b with their small-signal
models about DC operating voltages VI = Vm − EI, VK,V = Vm − EK, and VK,Ca = Vm − EK,
respectively. Short-circuiting all the batteries, the equivalent small-signal circuit model of
the third-order neuron circuit from Figure 1b about the operating point Vm(Q) is found
to be composed of one capacitor, two inductors, and six resistors, as shown in Figure 16.
The local admittance Y(s; Vm(Q)) of this linear circuit seen from the port and formed by the
capacitor terminals about Q is given by

Y(s; Vm(Q)) = sCm +
1

sLK,V + R1K,V
+

1
sLK,Ca + R1K,ca

+
1

R1,I
+

1
R2K,V

+
1

R2K,Ca
+ GL (80)

The corresponding ranges of local activity, edge of chaos 1 and edge of chaos 2, at
equilibrium voltage Vm(Q) (resp. I), are also given in Figure 16 for readers’ convenience.
We will cover the details of these regimes in the section on locally activity and edge of
chaos. The circuit element R1,I is obtained by calculating the small signal model of the
voltage-sensitive mixed ion channel nonlinear resistor from Figure 7 at equilibrium voltage
Vm(Q) = VI + EI. Similarly, LK,V, R1K,V, and R2K,V are calculated from the small-signal
equivalent circuit of the voltage-sensitive potassium ion channel memristor from Figure 11,
and LK,Ca, R1K,Ca, and R2K,Ca are calculated from the small-signal equivalent circuit of the
calcium-sensitive potassium ion channel memristor from Figure 15 at equilibrium voltage
Vm(Q), respectively. Note that VK,V + EK, and VK,Ca + EK must be replaced by Vm(Q) in
Figures 11 and 15 by the small signal model of the voltage-sensitive potassium ion channel
memristor and calcium-sensitive potassium ion channel memristor, respectively.
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sium ion channel memristor, respectively. 
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Figure 16. Small-signal equivalent circuit model of the memristive Chay model. The DC equilibrium
voltage Vm is computed at Vm = VI + EI for mixed ion channel non-linear resistor, Vm = VK,V + EK

for voltage-sensitive potassium ion channel memristor, and Vm = VK,Ca + EK for calcium-sensitive
potassium ion channel memristor, respectively.

5.4.1. Frequency Response

A convenient way to find the total admittance Y(s; Vm(Q)) by recasting Equation (80)
into a rational function of the complex frequency variable s is as follows:

Y(s; Vm(Q)) =
b3s3 + b2s2 + b1s + b0

a2s2 + a1s + a0
(81)

where the explicit formulas for computing the coefficients b3, b2, b1, b0, a2, a1, and a0 are
summarized in Figure 17.
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Figure 18a,b show ReY(iω; Vm(Q)) vs. ω, ImY(iω; Vm(Q)) vs. ω, and the Nyquist plot 
ImY(iω; Vm(Q)) vs. ReY(iω; Vm(Q)) at the DC equilibrium voltage Vm = −48.763 mV (resp., I 
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locally active at each of the two operating points. Our extensive numerical computations 
show the two DC equilibria coincide with two Hopf bifurcation points, which are the 
origin of the oscillation, spikes, chaos, and bursting in excitable cells. We will discuss these 
two bifurcation points in the next section with a pole-zeros and eigen values diagram. 
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Figure 17. Explicit formulas for computing the coefficients of Y(s; Vm(Q)).

Substituting s = iω in Equation (81), we obtain the following small-signal admittance
function at the equilibrium voltage Vm(Q):

Y(iω; Vm(Q)) = (b0 − b2ω2)(a0 − a2ω2) + a1ω2(b1 − b3ω2)

(a0 − a2ω2)
2
+ (a1ω)2 + iω

[
[(b1 − b3ω2)(a0 − a2ω2)− a1(b0 − b2ω2)]

(a0 − a2ω2)
2
+ (a1ω)2

]
(82)

The corresponding real part ReY(iω; Vm(Q)) and imaginary part ImY(iω; Vm(Q)) from
Equation (82) are given by,

ReY(iω; Vm(Q)) =

[
(b0 − b2ω2)(a0 − a2ω2) + a1ω2(b1 − b3ω2)

(a0 − a2ω2)
2
+ (a1ω)2

]
ImY(iω; Vm(Q)) = ω

[
[(b1 − b3ω2)(a0 − a2ω2)− a1(b0 − b2ω2)]

(a0 − a2ω2)
2
+ (a1ω)2

] (83)

Figure 18a,b show ReY(iω; Vm(Q)) vs. ω, ImY(iω; Vm(Q)) vs. ω, and the Nyquist plot
ImY(iω; Vm(Q)) vs. ReY(iω; Vm(Q)) at the DC equilibrium voltage Vm = −48.763 mV (resp.,
I = −66.671 µA), and Vm = −27.984 mV (resp., I = 433.594 µA), respectively. Observe from
Figure 18a,b that ReY(iω; Vm(Q)) < 0, thereby confirming the memristive Chay model is
locally active at each of the two operating points. Our extensive numerical computations
show the two DC equilibria coincide with two Hopf bifurcation points, which are the origin
of the oscillation, spikes, chaos, and bursting in excitable cells. We will discuss these two
bifurcation points in the next section with a pole-zeros and eigen values diagram.
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The poles of the small-signal admittance function Y(s; Vm(Q)) as a function of the 
voltage Vm over −200 mV < Vm < 200 mV is shown in Figure 19. Observe from Figure 19a,b 
that the two poles Re(p1), Re(p2) are negative while Im(p1), Im(p2) remain consistently zero 
for the specified DC input Vm. This observation confirms that the two poles of the 
admittance function possess no complex frequencies. 

At Hopf Bifurcation Point 2
Vm= -27.984 mV

I= 433.594 μA
Re Y(iω; Vm(Q)) < 0At Hopf Bifurcation Point 1

Vm=-48.763 mV
I=-66.671 μA 

Re Y(iω; Vm(Q)) < 0

200− 100− 0 100 200

0

100

200

Re Y(ω;Vm(Q))

ω

200− 100− 0 100 200
150−

75−

0

75

150

Im Y(ω;Vm(Q))

ω

50− 12.5 75 137.5 200
150−

75−

0

75

150

Re Y(ω;Vm(Q))

Im Y(ω;Vm(Q))

ω=+31.3

ω=-31.3

ω=0

ω=+∞

ω=-∞

20− 10− 0 10 20
2−

0

2

4

6

Re Y(ω;Vm(Q))

ω

20− 10− 0 10 20
20−

10−

0

10

20

Im Y(ω;Vm(Q))

ω

Re Y(ω;Vm(Q))

2− 0.125 2.25 4.375 6.5
20−

10−

0

10

20

ω=0ω
=+

∞
ω

=-
∞ ω=+0.05

ω=-0.05

Im Y(ω;Vm(Q))

(a) (b)

Figure 18. Small-signal admittance frequency response and Nyquist plot of the memristive
Chay neuron model at (a) Vm = −48.763 mV (resp., I = −66.671 µA) and (b) Vm = −27.984 mV
(resp., I = 433.594 µA). Observe that ReY(iω; Vm(Q)) < 0 at the two Hopf-bifurcation points.

5.4.2. Pole-Zero Diagram of the Small-Signal Admittance Function Y(s; Vm(Q)) and Eigen
values of the Jacobian Matrix

The location of the poles and zeros of the small signal admittance function Y(s; Vm(Q))
of Equation (81) is computed by factorizing its denominator and numerators as

Y(s; Vm(Q)) =
k(s − z1)(s − z2)(s − z3)

(s − p1)(s − p2)
(84)

The poles of the small-signal admittance function Y(s; Vm(Q)) as a function of the
voltage Vm over −200 mV < Vm < 200 mV is shown in Figure 19. Observe from Figure 19a,b
that the two poles Re(p1), Re(p2) are negative while Im(p1), Im(p2) remain consistently
zero for the specified DC input Vm. This observation confirms that the two poles of the
admittance function possess no complex frequencies.
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Figure 19. Poles diagram of the small-signal admittance function Y(s; Vm(Q)) as a function of Vm over
−200 mV < Vm < 200 mV (a) The top and bottom figures are the plots of the real part of pole 1 Re(p1)
and the imaginary part of pole 1 Im(p1), respectively. (b) The top and bottom figures are the plots of
the real part of pole 2 Re(p2) and the imaginary part of pole 2 Im(p2), respectively.

Figure 20a shows the Nyquist plot, i.e., loci of the imaginary part Im(zi) vs. the real part Re(zi)
of the zeros as a function of the input voltage Vm over the interval −55 mV ≤ Vm ≤ 25 mV.
Observe that the real parts of the two zeros z2 and z3 are zero at Vm = −48.763 mV
(resp., I = −66.671 µA) and Vm = −27.984 mV (resp., I = 433.594 µA), respectively. The
corresponding points when Re(zi) = 0 are known as Hopf bifurcation points in bifurca-
tion theory. Figure 20b,c show the zoomed version of Figure 20a near the two bifurca-
tion points, respectively. It is also observed that the Re(z2) and Re(z3) lie in the open
right half plane (RHP) between the bifurcation points −48.763 mV < Vm < −27.984 mV
(resp. −66.671 µA < I < 433.594 µA). Observe from Figure 21 that the eigen values, com-
puted from the Jacobian matrix, associated with the ODEs (1)–(3) are identical to the zeros
of the neuron local admittance Y(s; Vm(Q)), as inferable from Figure 20, and expected from
the Chua theory [3,4].
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Figure 20. Zeros diagram of the small-signal admittance function Y(s; Vm(Q)) (a) Nyquist plot of
the zeros z1, z2, z3 in Im(zi) vs. Re(zi) plane (b) Nyquist plot near the Hopf-bifurcation point 1,
Vm = −48.763 mV (resp., I = −66.671 µA). (c) Nyquist plot near the Hopf-bifurcation point 2,
Vm = −27.984 mV (resp., I = 433.594 µA).
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Figure 21. Plot of the loci of the eigen values of the Jacobian Matrix (a) Nyquist plot of the eigen
values λ1, λ2, λ3 in Im(λi) vs. Re(λi) plane. (b) Nyquist plot near the Hopf-bifurcation point
1, Vm = −48.763 mV (resp., I = −66.671 µA). (c) Nyquist plot near the Hopf-bifurcation point 2,
Vm = −27.984 mV (resp., I = 433.594 µA). Our numerical computations confirm the zeros of the ad-
mittance functions Y(s; Vm(Q)) obtained in Figure 20 are identical to the eigen values of the Jacobian
matrix.
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6. Local Activity, Edge of Chaos, and Hopf-Bifurcation in Memristive Chay Model

Local activity and the edge of chaos are powerful mathematical and quantitative theories
to predict whether a nonlinear system exhibits complexity or not. Local activity refers to a
characteristic of nonlinear systems wherein infinitesimal fluctuations in energy are amplified,
leading to the emergence of complex dynamical behavior in the system [34–44]. This section
presents an extensive analysis of the memristive Chay model using the principles of local
activity, the edge of chaos, and the Hopf-bifurcation theorem to predict the mechanism of
generating the complicated electrical signals in an excitable cell.

6.1. Locally Active Regime

The local activity theorem developed by Chua reveals that a nonlinear system must
satisfy at least one of the following conditions, concerning its local transfer function about
a given operating point in order to support the emergence of complexity [36].

(i) The zero of the admittance function Y(s; Vm(Q)) lie in the open-right plane where
Re(sz) > 0.

(ii) Y(s; Vm(Q)) has multiple zeros on the imaginary axis.
(iii) Y(s; Vm(Q)) has a simple zero on the imaginary axis s = iωz on the imaginary axis and

KQ(iωz) ≜ lim
s→iωz

= (s−iωz)Y(s; Vm(Q)) is either a negative real number or a complex number.

(iv) ReY(iω; Vm(Q)) < 0 for some ω ϵ [−∞, +∞].
In other words, the emergence of action potentials, chaos, bursting, or spikes in neu-

rons are impossible unless the cells are locally active. Therefore, restricting the behavior
of a nonlinear system to its local activity operating regime reduces the considerable time
necessary to identify the complex phenomena that may emerge across its physical medium
as compared with a standard trial-and-error numerical investigation. In order to restrict
the above dynamical behavior in the memristive Chay model of an excitable cell in the
local activity regime, we performed comprehensive numerical analyses within the range
of the DC equilibrium voltage Vm = −50 mV (resp. I = −74.316 µA) to Vm = −23.5 mV
(resp. I = 1.76 × 103 µA). Observe from Figure 22a the real part of the admittance of the
frequency response ReY(iω; Vm(Q)) > 0 at Vm = −50 mV (resp. I = −74.316 µA), thereby
confirming locally passive at this equilibrium point. However, when Vm > −50 mV, our
in-depth simulation in Figure 22b shows that ReY(iω; Vm(Q)) = 0 at Vm = −49.455 mV
(resp. I = −70.919 µA) and Figure 22c,d show that ReY(iω; Vm(Q)) < 0 at Vm = −48.1 mV
(resp. I = −62.681 µA) and Vm = −26.5 mV (resp. I = 746.457 µA) respectively for some fre-
quency ω, confirming an excitable cell is locally active at these equilibria. Our simulations
in Figure 22e shows a further increase in the DC equilibrium voltage at Vm = −24.685 mV
(resp. I =1.291 × 103 µA), and the loci are tangential to the ω axis, i.e., ReY(iω; Vm(Q)) = 0.
However, when Vm > −24.685 mV, say Vm = −23.5 mV (resp. I = 1.76 × 103 µA), it is
observed from Figure 22f that Re Y (iω; Vm(Q)) > 0, and the memrisitve Chay model is no
more locally active, confirming the cell is locally passive at this equilibrium. Therefore, the
local activity regime that started above Vm = −49.455 mV (resp. I = −70.919 µA) exists over
the following regime

Local ActivityRegime
−49.455 mV < Vm < −24.685 mV
−70.919 µA < I < 1.291 × 103µA

(85)
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Figure 22. Plot of Re(iω; Vm(Q)) to illustrate the local activity principle at (a) Vm = −50 mV
(resp. I = −74.316 µA) (b) Vm = −49.455 mV (resp. I = −70.919 µA), (c) Vm = −48.1 mV
(resp. I = −62.681 µA), (d) Vm = −26.5 mV (resp. I = 746.457 µA), (e) Vm = −24.685 mV (resp.
I = 1.291 × 103 µA), (f) Vm = −23.5 mV (resp. I = 1.76 × 103 µA), respectively.

6.2. Edge of Chaos Regime

The edge of chaos is a tiny subset of the locally active domain where the zeros of the
admittance function Y(s; Vm(Q))(equivalent to the eigen values of the Jacobian matrix) lie
in the open left-half plane, i.e., Re(zp) < 0 (eigen values λi < 0) as well as ReY(iω; Vm(Q)) < 0.
Figure 21a,b show the real part of the eigen values vanish at Vm = −48.7631 mV
(resp. I = −66.671 µA) with a pair of complex eigen values λ2,3 = ±0.557i. It follows
from the edge of chaos theorem that the corresponding equilibrium point is no longer
asymptotically stable and becomes unstable thereafter, confirming the first edge of chaos
regime over the following small interval:

Edge of chaos domain 1
−49.455 mV < Vm < −48.763 mV
−70.919 µA < I < −66.671 µA

(86)

Observe from Figure 21c that the real part of the eigen values vanish at λ2,3 = ±85.606i
at DC equilibrium voltage Vm = −27.984 mV (resp. I = 433.594 µA). It follows that the
corresponding equilibrium point Vm(Q) is no longer asymptotically stable below this
equilibrium point, therefore confirming the existence of a second edge of chaos regime over
the following interval:

Edge of chaos Domain 2
−27.984 mV < Vm < −24.685 mV
433.594 µA < I < 1.291 × 103µA

(87)

The nonlinear dynamical behavior of the memristive Chay model in this paper is
controlled by the function of the input stimulus I. The local activity, edge of chaos 1 and
edge of chaos 2 regimes are computed in this paper under the assumption of departing
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the input parameter I from lower stimulus to higher stimulus (resp. low DC equilibrium
voltage Vm(Q) to high equilibrium voltage Vm(Q)).

6.3. Hopf-Bifurcation

Hopf-bifurcation namely, super-critical and sub-critical bifurcations are local bifur-
cation phenomena in which an equilibrium point changes its stability as the parameter
of the nonlinear system changes under certain conditions. An unstable equilibrium point
surrounded by a stable limit cycle results in a super-critical Hopf bifurcation, whereas a
subcritical Hopf bifurcation refers to a qualitative change in the behavior of a system where
a stable equilibrium point transitions to instability, giving rise to sustained oscillations or
limit cycles as a parameter is varied. Our careful simulation at Hopf-bifurcation point 1
at Vm = −48.763 mV (resp. I = −66.671 µA) (The supercritical Hopf bifurcation points 1 and 2
observed in this paper are based on the numerical simulations and for the parameters listed in Table 2.
The bifurcation phenomenon may vary for different parameters and environments.) shows that
stimulus current I should be chosen within the very small edge of chaos domain 1, where
the real part of the eigen values are negative. The result converges to DC equilibrium for
any initial conditions. Likewise, if I is selected within bifurcation point 1, where the real
part of the eigen values are positive, the result converges to a stable limit cycle. Therefore,
it follows from the bifurcation theory that bifurcation point 1 is a super-critical Hopf bifur-
cation. Figure 23a,b show the numerical simulations at I = −68.118 µA and I = −65.077 µA,
respectively. Observe from Figure 23a,b that I =−68.118 µA lying within the tiny subset of
edge of chaos domain 1 converges to DC equilibrium and I = −65.077 µA lying in the open
right half-plane (RHP) converges to spikes, respectively, confirming that bifurcation point 1
is a super-critical Hopf bifurcation.
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Figure 23. Numerical simulations to confirm the super-critical Hopf bifurcation at bifurcation point 1.
Plot of membrane potential Vm at (a) I = −68.118 µA which lies inside the tiny subset of edge of
chaos domain 1 and beyond bifurcation point 1 converges to the DC equilibrium; (b) I = −65.077 µA,
chosen just to the right of bifurcation point 1, where the real parts of two zeros of the neuron local
admittance lie on the open right half plane (RHP), converges to the spikes.
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Similarly, our careful examination predicts a stable DC equilibrium point when
current I is chosen within a very small edge of chaos 2, confirming supercritical Hopf
bifurcation at bifurcation point Vm = −27.984 mV (resp. I = 433.594 µA). The possibility of
the above scenario is illustrated in Figure 24. Figure 24a shows the membrane potential
Vm converges to a stable DC equilibrium point when I = 440 µA, chosen within the edge
of chaos domain 2. Figure 24b shows that when I = 430.884 µA, chosen very close and
inside the bifurcation point 2, where the real part of the eigenvalue is positive and lies in
the open right half plane (RHP), the transient waveform converges to a stable limit cycle as
predicted by the Hopf super critical bifurcation theorem.
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Figure 24. Numerical simulations to confirm the super-critical Hopf bifurcation at bifurcation point 2.
(a) Plot of membrane potential Vm which converges to stable DC equilibrium when I = 440 µA
chosen inside the tiny subset of edge of chaos domain 2 and near and beyond the bifurcation point 2.
(b) Membrane potential converging to oscillation as predicted by the Hopf bifurcation theorem when
I = 430.884 µA is chosen inside the bifurcation point (open right-half pane).

Table 3 illustrates the computation of the potassium ion channel activation n, calcium
concentration Ca, and eigen values (λ1, λ2, and λ3) as a function of the DC stimulus current
I (resp. membrane potential Vm) at the DC equilibrium point Q. It is observed from Table 3
and Figure 21a,c that the two Hopf bifurcations points 1 and 2 occur at Vm = −48.763 mV
(resp. I = −66.671 µA) and Vm = −27.984 mV (resp. I = 433.594 µA), respectively, where
the eigen values are purely imaginary at these two equilibria. As I decreases (resp. Vm
decreases) from Hopf bifurcation point 1, the eigen values migrate to the left-hand side,
confirming the real parts of the eigen values are no longer positive and thereby confirming
the first negative real eigen values regime exists over the following interval.

Negative real eigen values regime 1 :
−∞ < Vm < −48.763 mV
−∞ < I < −66.671 µA

(88)
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Table 3. Computation of the potassium ion channel activation n, calcium concentration Ca, and eigen
values (λ1, λ2, and λ3) as a function of the stimulus current I (resp. membrane potential Vm). Rows
5 to 7 pertain to the edge of chaos 1, rows 8 to 16 pertain to the unstable local activity domain, and
rows 17 to 20 pertain to the edge of chaos 2. Rows 7 and 17 pertain to Hopf bifurcation points 1 and 2,
respectively, for the memristive Chay neuron model.

S.N Vm (mV) I (µA) n Ca λ1 λ2 λ3

1. −52.00 −87.02 0.08 0.04 −40.515 −3.842 −0.084

2. −51.00 −80.63 0.08 0.05 −40.107 −2.871 −0.111

3. −50.50 −77.46 0.09 0.06 −39.891 −2.289 −0.139

4. −50.00 −74.32 0.09 0.07 39.666 −1.617 −0.196

5. −49.455 −70.919 0.94 0.08 −39.408 −0.533 − 0.174i −0.533 + 0.174i

6. −49.00 −68.12 0.1 0.1 −39.181 −0.19 − 0.525i −0.19 + 0.525i

7. −48.763 −66.671 0.1 0.1 −39.058 0 − 0.557i 0 + 0.557i

8. −48.50 −65.08 0.1 0.11 −38.917 0.222 − 0.51i 0.2215 + 0.5097i

9. −46.00 −51.02 0.12 0.21 −37.32 0.046 5.736

10. −45.00 −46.37 0.13 0.27 −36.512 0.027 8.498

11. −42.00 −39.37 0.16 0.53 −33.218 0.0001 18.604

12. −40.00 −42.78 0.18 0.79 −29.899 −0.0084 25.99

13. −38.00 −51.26 0.21 1.13 −24.898 −0.0112 31.992

14. −32.00 17.59 0.29 2.57 −0.061 11.669 − 38.01i 11.669 + 38.01i

15. −30.00 160.68 0.32 3.12 −0.053 8.049 − 61.778i 8.049 + 61.778i

16. −28.00 430.84 0.35 3.65 −0.051 0.08 − 85.421i 0.08 + 85.421i

17. −27.984 433.594 0.35 3.65 −0.051 0 − 85.606i 0 + 85.606i

18. −27.00 628.91 0.36 3.89 −5.556 − 97.197i −5.556 + 97.197i −0.051

19. −25.50 1.02 × 103 0.39 4.22 −15.942 − 114.607i −15.942 + 114.607i −0.0501

20. −24.685 1.291 × 103 0.40 4.37 −22.466 − 123.858i −22.466 + 123.858i −0.0499

21. −23.00 1.99 × 103 0.43 4.64 −37.643 − 142.384i −37.643 + 142.384i −0.0497

22. −22.00 2.5 × 103 0.44 4.75 −47.529 − 152.923i −47.529 + 152.923i −0.0496

Similarly, as I increases (resp. Vm increases) from the second bifurcation points, the
positive real part of the eigen values migrates from the open right half to the open left half,
confirming the second negative real eigen values regime over the following interval:

Negative real eigen values regime 2 :
−27.984 mV < Vm < +∞

433.594 µA < I < +∞
(89)

Observe from Table 3 and Figure 21a–c that two eigen values of the Jacobian matrix
associated with the ODE set Equations (1)–(3) lie on the open RHP for each operating point Q
corresponding to a DC current I value between Hopf bifurcation point 1 and Hopf bifurcation
point 2. Therefore, the generation of periodic, bursting, spikes, and chaos signals predicted by
the Hopf bifurcation theorem in an excitable cell exists over the following interval:

Unstable (periodic, bursting, chaos, spikes) regime :
−48.763 mV < Vm < −27.984 mV
−66.671 µA < I < 433.594 µA

(90)
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The convergence of the membrane potential to stable and unstable DC equilibrium
points is verified by numerical simulations at different values of I and is illustrated in
Figure 25. Figure 25a shows the transient waveform of membrane potential Vm converging
to a stable DC equilibrium at I = −90 µA, confirming the Hopf bifurcation theorem no
longer holds at this equilibrium. Similarly, when DC stimulus currents I = −50 µA and
−10 µA are chosen inside the two bifurcation points I = −66.671 µA and I = 433.594 µA,
we observed different patterns of oscillations as shown in Figure 25b,c, confirming the
bifurcation theorem holds in this regime. Likewise, when DC stimulus currents I = 10µA
and I = 2000 µA are applied within the bifurcation points I = −66.671µA and I = 433.594,
respectively, oscillation patterns emerge as depicted in Figure 26a,b. Similarly, Figure 26c
illustrates the transient waveform of the membrane potential Vm, indicating its convergence
to a stable DC equilibrium at I = 500µA. This observation suggests that the Hopf bifurcation
theorem no longer holds at this equilibrium point.
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Figure 25. Patterns of oscillations when stimulus current I is chosen beyond and inside the bifurcation
points. (a) DC pattern observed when I = −90 µA chosen beyond bifurcation point 1 (I = −66.671 µA).
Different patterns of oscillations occur when I is chosen between the two bifurcation points
I = −66.671 µA and I = 433.594 µA at (b) I = −50 µA and (c) I = −10 µA.
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Figure 26. Patterns of oscillations when stimulus current I is chosen inside and beyond the bifurcation
points. Oscillation patterns when I is chosen between the two bifurcation points I = −66.671 µA and
I = 433.594 µA, at (a) I = 10 µA, and (b) I = 200 µA. (c) The DC pattern when I = 500 µA is chosen
beyond bifurcation point 2 (I = 433.594 µA).

Figures 27 and 28 show the different patterns of oscillations when the conductance
gKCa of the calcium-sensitive potassium ion channel memristor is varied from 10 mS/cm2 to
11.5 mS/cm2 at stimulus current I = 0. Figure 27a shows the excitable membrane cell has a
stable limit cycle with period one at gK,Ca = 10 mS/cm2. As the parameter gK,Ca increases to
10.7 mS/cm2, 10.75 mS/cm2, and 10.77 mS/cm2, the cell fires periods two, four, and eight,
as shown in Figure 27b, Figure 27c, and Figure 28a, respectively. The change in period
doubling is more apparent in calcium concentration (Ca) vs. time and Vm vs. Ca, as shown
at the bottom of Figure 27b, Figure 27c, and Figure 28a, respectively. Figure 28b shows the
waveform of the memistive Chay model, confirming the existence of aperiodic oscillation
(chaos) at gK,Ca = 11 mS/cm2. The firing of aperiodic oscillations from the cell can be clearly
seen from the plot of Ca vs. time and Vm vs. Ca in Figure 28b. A further increase in gK,Ca
to 11.5 mS/cm2 gives rise to the firing of the cell from aperiodic to rhythmic bursting, as
shown in Figure 28c.
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Figure 27. Different patterns of oscillations when gKCa varied from 10 mS/cm2 to 10.75 mS/cm2

at DC situmulus current I = 0. (a) Period-1 oscillation at gK,Ca = 10 mS/cm2 (b) Period-2 oscilla-
tion at gK,Ca = 10.7 mS/cm2 (c) Period-4 oscillation at gK,Ca = 10.75 mS/cm2. The simulations were
performed at the initial conditions Vm(0) = −50 mV, n(0) = 0.1, and Ca(0) = 0.48.
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Figure 28. Different patterns of oscillations when gKCa varied from 10.77 mS/cm2 to 11.5 mS/cm2 at
DC stimulus current I = 0. (a) Period-8 oscillation at gK,Ca = 10.77 mS/cm2; (b) Aperiodic (chaotic)
oscillation at gK,Ca = 11 mS/cm2; (c) Bursting at gK,Ca = 11.5 mS/cm2. The simulations were performed
at the initial conditions Vm(0) = −50 mV, n(0) = 0.1, and Ca(0) = 0.48.

7. Concluding Remarks

This paper has provided a comprehensive and quantitative analysis of a biological
excitable cell using the Chay neuron model. Through memristive theory, we have demon-
strated that the voltage-sensitive mixed ion channel functions as a nonlinear resistor, while
the voltage-sensitive potassium ion channel and calcium-sensitive potassium ion channel
in an excitable cell are indeed time-invariant first-order generic memristors.

Furthermore, we have conducted in-depth analyses to derive the small signal model,
admittance function, pole-zero diagrams, frequency response of admittance functions, and
Nyquist plot at the DC equilibrium point Q. Our investigations revealed the existence of the
local activity regime in the memristive Chay model within the voltage range of −49.455 mV to
−24.685 mV and identified edge of chaos regime domains 1 and 2 within the voltage ranges
of −49.455 mV to −48.763 mV and −27.984 mV to −24.685 mV, respectively. Moreover,
consistent with the predictions of the Hopf bifurcation theorem, we observed the presence of
an oscillating regime between two bifurcation points within the voltage range of −48.763 mV
to −27.984 mV. Our numerical simulations confirmed the super-critical Hopf bifurcation with
complex conjugates of eigen values coincident on the purely imaginary axis at ±0.557i and
±85.606i, respectively. It was also observed that a tiny change in external stimulus current
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I in excitable cells, far from the bifurcation points, no longer holds the Hopf bifurcation
theorem as it crosses the imaginary axis from right to left, confirming that the real part of the
eigen values becomes negative and converges to a DC equilibrium point.

Our comprehensive comparison of the HH, FitzHugh–Nagumo, ML, and Chay mod-
els presented in Table 2 along with their individual strengths and limitations revealed
distinct advantages and drawbacks, making them suitable for different research contexts
and questions. The selection of a particular model depends on the specific objectives.
We primarily focused on advancing the understanding of excitable cells by modeling the
networks of memristors and predicting their responses with the concepts of memristor
theory, DC steady state analyses, small signal equivalent circuits, local activity principles,
the edge of chaos theorem, and Hopf bifurcations. In conclusion, the theoretical frame-
work outlined in this paper confirms the significance of memristors in simulating action
potentials in excitable cells and also establishes a foundation for their application in neuron
modeling, artificial intelligence, and brain-like machine interfaces. Our proposed model
offers potential for enhancing adaptive neural networks, neuroprosthetics, neuromorphic
computing architectures, and the broader scope of artificial intelligence, thereby aiding in
the development of brain-like information processing systems.
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Appendix A Abbreviations of the Model Parameters

Cm Membrane Capacitance
EK Potential across K+ ion channel memristor
EI Potential across mixed ion channel memristor
EL Potential across leakage channel
ECa Potential across Ca2+ ion channel memristor
gK,V Voltage-sensitive K+ ion-channel conductance
gI Voltage-sensitive mixed ion channel conductance
gL Leakage channel conductance
gKCa Calcium activated potassium conductance
kCa Rate constant for the efflux of the intracellular Ca2+ ions
ρ Proportionality constant
λn Rate constant for K+ ion-channel opening
m∞ Probability of activation of the mixed ion channel in steady state

αm
The rate at which the activation of the mixed ion channel closed gates transition to an
open state (s−1)

βm
The rate at which the activation of the mixed ion channel open gates transition to the close
state (s−1)

h∞ Probability of inactivation of the mixed ion channel in steady state

αh
The rate at which the inactivation of the mixed ion channel closed gates transition to an
open state (s−1)

βh
The rate at which the inactivation of the mixed ion channel open gates transition to the
close state (s−1)

n Probability of n opening of the K+ ion channel memristor
n∞ Steady state value of n
αn The rate at which K+ ion channel closed gates transition to an open state (s−1)
βn The rate at which K+ ion channel opened gates transition to an close state (s−1)
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