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The heterogeneity in link weights 
may decrease the robustness of 
real-world complex weighted 
networks
M. Bellingeri1, D. Bevacqua2, F. Scotognella3,4 & D. Cassi1

Here we report a comprehensive analysis of the robustness of seven high-quality real-world complex 
weighted networks to errors and attacks toward nodes and links. We use measures of the network 
damage conceived for a binary (e.g. largest connected cluster LCC, and binary efficiency Effbin) or a 
weighted network structure (e.g. the efficiency Eff, and the total flow TF). We find that removing a 
very small fraction of nodes and links with respectively higher strength and weight triggers an abrupt 
collapse of the weighted functioning measures while measures that evaluate the binary-topological 
connectedness are almost unaffected. These findings unveil a problematic response-state where the 
attack toward a small fraction of nodes-links returns the real-world complex networks in a connected 
but inefficient state. Our findings unveil how the robustness may be overestimated when focusing 
on the connectedness of the components only. Last, to understand how the networks robustness is 
affected by link weights heterogeneity, we randomly assign link weights over the topological structure 
of the real-world networks and we find that highly heterogeneous networks show a faster efficiency 
decrease under nodes-links removal: i.e. the robustness of the real-world complex networks against 
nodes-links removal is negatively correlated with link weights heterogeneity.

The robustness of a network is its ability to maintain the system functioning in case of failures of nodes or links. 
Networks robustness is extremely important and has been widely investigated in last years in different fields of 
science1–13. A comprehensive analysis of network robustness considers the failure of both nodes (e.g. Iyer et al.9) 
and links (e.g. Pajevic and Plenz13). Initially, large attention has been dedicated to binary-topological analyses 
where the links among nodes are only present or absent. Yet, recent studies evidenced that the robustness of 
complex networks can be comprehensively understood only when considering the strength (weight) of the rela-
tionship (link) among nodes13–22.

The analysis of the robustness of complex weighted networks provided fundamental outcomes. Past studies 
demonstrated that when the network robustness is measured using the largest connected cluster (LCC), it is 
highly vulnerable to the removal of links with lower weight (weak links) but robust to deletion of links of higher 
weight (strong links)18–21. The widely accepted outcome was that ‘weak links are the universal key for complex 
networks stability’21. On the other hand, Pajevic and Plenz13 outline how the average clustering of nodes (that 
can be viewed as a measure of the local efficiency of the system) is robust to the removal of weak links but rapidly 
destroyed when removing links with higher strength. Dall’Asta et al.22 showed that introducing the weight of links 
in the US airports network would decrease its robustness with respect to classic topological frameworks. Further, 
Bellingeri and Cassi23 outlined how the network robustness response to node attacks changes according to the 
considered measures of the system functioning, i.e. weighted or binary.

In the present work, we investigate the role of the weighted structure of complex networks in shaping their 
robustness against the removal of both nodes and links. We analyze a high quality set of real-world weighted 
complex networks from different fields of science (Table 1). The considered network present different number 
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of nodes, links, and a sound interpretation of the nature of link weights, e.g. in the US airports network, the 
weight identifies the passengers flowing from two airports; in the neural network of the nematode C. Elegans, it 
identifies the number of connections between two neurons. We randomly removed nodes or links to simulate an 
error in the system, and we eliminated nodes with higher number of links and with higher strength (e.g. higher 
sum of link weights) and links with higher weight to simulate an attack. This is the so-called attack strategy with 
nodes or links removed according to some structural properties of the network1–9. We evaluated the robustness 
of the complex networks to removal of nodes or links in terms of the decrease of network functioning measures 
reflecting both the binary-topological and the complex weighted structure of the system3,7,8,14. We therefore used 
the largest connected cluster in the network (LCC)1–3 and the unweighted efficiency (Effbin)14,15,23, to get a binary 
(unweighted) measures of the network functioning and we used the efficiency (Eff)14,15,23 and the total flow in the 
system (TF)17 to have a weighted measures for the functioning of the networks (Table 2).

Results and Discussion
When links or nodes are removed from the network we can assess the decrease of the system functioning accord-
ing to different measures as showed in Fig. 1a. The more important are the components removed from the net-
work, the steeper is the decrease in the network functioning measure. For example, in Fig. 1a the red removal 
strategy identifies more important components in the network, since a given fraction q of nodes-links removed, 
triggers a steeper decrease in the network functioning efficiency (Eff, normalized on the initial maximal value) 
with respect to the black strategy. To compare the response among networks and measures, we resume the 
removal outcomes in a single value defined as the network robustness (R), reported in Fig. 1b. The value of R 
corresponds to the area below the curve of the system functioning against the fraction of nodes-links removed 
and ranging between two theoretical extremes, R ≃ 0 and R ≃ 1. In Fig. 1 we show the robustness outcomes under 
different types of nodes-links removals.

Links removal.  When quantifying the system functioning with Eff we find the real-world complex networks 
to be highly vulnerable to the removal of links with higher weight (Fig. 1c); i.e. Strong strategy produces the fast-
est decrease of the system efficiency functioning (Eff). Further, we found real-world complex networks Eff to be 
very robust to the deletion of weaker links and Weak links removal strategy is highly ineffective even causing an 
efficiency decrease lower than the random removal of links (Rand). At the opposite, when measuring the network 
functioning with LCC, we find Strong and Weak links attack strategies the less and the most effective to reduce the 
LCC, especially for Cargo and Air networks (Fig. 1c). Only in the social networks (Net and UK), the deletion of 
strong links is able to vanish the LCC faster than Weak links removal. This confirms recent analyses showing that 

Name US Airports C. Elegans Human brain Cargo ship E. Coli Netscience UK Faculties

Type Transport Biological Biological Transport Biological Social Social

Nodes Airports Neurons Brain Regions Ports Metabolites Scholars Individuals

Weights Passengers Connections number Connections density Shipping journeys Common reactions Common papers Friendship Strength

N 500 279 501 834 1100 1589 81

L 2980 2287 6038 4349 3637 2743 817

<k> 11.9 15.3 24.1 10.4 6.6 3.45 20.2

<w> 1815657 57.6 0.23 897.44 9.01 1.5 92.1

<Ew> 152320.2 3.76 0.01 97.70 1.36 1.43 4.57

Ref. 27 30,31 32,33 24 24,28 34 35

Key Air Eleg Human Cargo Coli Net UK

Table 1.  Real-world complex networks features. N number of nodes; L number of links; <k> average node 
degree; <w> average node strength; <Ew> average link weights.

Measure Formula Functioning meaning Ref.

LCC =LCC Smax( )j
Sj: size of the j cluster

The LCC is the largest number of nodes connected by at least one path in the 
network and can be viewed as a binary (unweighted) measure of the network 
functioning.

1–3

Eff

= ∑⋅ − ≠ ∈Eff N N i j Gd i j
1

( 1)
1
( , )

N: number of nodes
Di,j: length of the weighted shortest 
path between node i and j

The efficiency (Eff) is a measure of the global complex network capacity to 
deliver information among system constituents (nodes) and allows a precise 
quantitative evaluation of the weighted networks functioning. It is computed 
considering the link weights.

13,14,22

Effbin

= ∑⋅ − ≠ ∈Effbin N N i j Gd i j
1

( 1)
1
( , )

N: number of nodes
Di,j: length of the binary shortest path 
between node i and j

The efficiency (Effbin) is a measure of the global complex network capacity to 
deliver information among system constituents (nodes). It is computed over 
the binary network, where all link weights equals 1.

13,14,22

TF = ∑ ∑= =TF wi
N

j
N

i j1 1 ,

The total flow in the system (TF) is the sum of the link weights; it represents 
the simplest weighted measure evaluating the actual or the potential flows 
between couple of nodes in the networks.

17

Table 2.  List of the complex network functioning measures used in this research.
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Figure 1.  Robustness of seven real-world complex weighted networks under different strategies of nodes-links 
removals. The robustness of real-world complex weighted networks was analyzed under different nodes-links 
removals strategies and using different measures for the system functioning. (a) Efficiency of the system (Eff) 
as a function of the fraction of nodes or links removed (q). The network efficiency (Eff) decreases under nodes-
links removal; in this example the red strategy produced a sharper decrease in the network efficiency meaning 
that is more harmful than the black strategy. (b) Example of the complex networks robustness (R) for the two 
strategies of nodes or links removal of the outcomes in (a). The robustness (R) of the removal strategy is the 
area below the curve produced by the removal strategy in (a). The robustness (R) produced by the removal 
strategy is normalized on the max value of the strategy robustness for that system functioning measurement; in 
this way we can easily compare the robustness of the network under different nodes-links removal strategies. 
(c,d) The real-world networks robustness (R) under different nodes-links removal strategies. (c) Links removal 
strategies. (d) Nodes removal strategies. Eff indicates the weighted system efficiency computed on the real-world 
networks; Effran is the weighted efficiency computed on the real-world network after the randomization of the 
link weights, i.e. the real link weights are randomly re-assigned on the network links. LCC indicates the largest 
connected cluster in the network; LCCran is the largest connected cluster measurements computed on the real-
world network after the randomization of the link weights; TF is the total flow in the network, i.e. the sum of 
the all link weights; TFran is the total flow on the real-world networks after the randomization of link weights. 
The random removal (Rand) and the randomized link weights network counterparts (LCCran, EFFran and TFran) 
outcomes are the average of 104 simulations.

https://doi.org/10.1038/s41598-019-47119-2
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the deletion of strong links preserves the LCC until the weakest links are removed18–21, except for the real-world 
social networks under study.

In real-world networks, link weights are coupled to the binary topology in a non-trivial way18–22, for instance 
with nodes strength-degree correlation meaning that links with higher weight are more likely joining high degree 
nodes16,17. For this reason it is important to understand if strong links are important in supporting Eff because of 
their large weight or of their specific occurrence among more connected nodes (hubs) of the network. We com-
pute the robustness of the real-world networks after weights randomization over the topological structure, with 
link weights independent of any topological features and acting as a control outcome. Strong strategy results to be 
the most harmful to decrease Eff even when randomizing the real weights over the binary-topological structure, 
i.e. the importance of strong links to support Eff is maintained also when the real weight-topology coupling is not 
correlated (Fig. 1c, see Effran). We then perform an experimentum crucis by removing links according to the real 
link weights, then measuring Effbin considering links like binary (all weights equals to 1). In this way we nullify the 
influence of the weight to shape the efficiency (Eff) and we maintain only the binary-topological role of the strong 
links. We find an efficiency reversal pattern for all the real-world complex networks where weak links removal 
(Weak) readily decreases the efficiency functioning whereas Strong becomes ineffective (Fig. 2a, Eff − Effbin col-
umn). In other words, the importance of strong links to support the information delivery efficiency is mainly 
due to their larger intensity, with a secondary role of their topological positioning. These results bring important 
evidences inside the long standing debate about the importance of weak and strong links13,18–21,24 showing that 
links carrying larger weight would be fundamental to support the efficiency of the system hence not being the 
main responsible of the topological connectedness of the network. We also revise the importance of weak links 
in support network robustness confirming their function in maintaining the topological connectedness of the 
network18–21 but also their small relevance to the information delivery efficiency (Figs 1c, 2a). Very important, 
we outline that removing a small fraction of strong links can readily reduce the real-world network information 
delivery efficiency (Eff) despite the size of the largest connected cluster (LCC) is still preserved. In other terms, 
the binary network functioning parameters Effbin and LCC are constant under the removal of links with higher 
weight (strong links) whereas Eff and TF experience a fast decrease and leave the system in a ‘connected but inef-
ficient’ network state. For example, removing a small fraction of busy shipping routes (10% of the strong links) 
from Cargo-ship network produced a quick collapse in the system efficiency (losing 50% Eff) while isolating only 
2% of ports-nodes (2% LCC) (Fig. S8, Strong row). Further, in C. Elegans network the removals of 10% of strong 
links induced the 60% Eff decrease yet leaving roughly unaltered the size of the LCC (Fig. S8, Strong row). This 
discover outline an under-appreciated but most likely pattern of network failures: namely that most failures may 
occur even though the network is completely connected. For the sake of an example, we illustrate this finding in 
Fig. 3a–c for a subgraph of the US Airports network. After the removals of 16 links of highest weight, i.e. 10% of 
the links (Fig. 3b), the system loses 29% of the total flow (TF, black bar) and the 35% of the system functioning 
efficiency (Eff, red bar) but only the 4% of the binary efficiency (Effbin, blue bar) and no decrease in the largest 
connected cluster (LCC, green bar). After the removals of 26 links of highest weight (17% of the links), the total 
flow (TF) is the 44% of the initial flowing meaning that the removal of only 17% of the links is able to roughly 
halves the number of passengers from this subset of airports (Fig. 3c). Further, the system functioning efficiency 
(Eff) collapses to 38% of its initial efficiency. At this final step where all the 26 strongest links are removed, the 
network loses only the 12% of the binary efficiency (Effbin) and only one node is disconnected from the network 
with a decrease in the largest connected cluster (LCC) of the 4%.

Nodes removal.  We find that real-world networks are robust to the random removal but vulnerable to the 
deletion of higher connected and higher strength nodes for all the functioning measures, i.e. real-world weighted 
networks would be “random resistance” and “attack prone” (Fig. 1d) confirming classical binary-topological out-
comes1–9. Very interesting, removing a few nodes abruptly collapse the functioning efficiency (Eff) of the networks 
(Fig. 4). For example, in Fig. 3d–f we depict the outcomes of the removal of the three highest strength nodes in the 
C. Elegans neuronal network. Removing the first highest strength node triggers the 27% of the efficiency (Eff) and 
the 20% of the total flow TF decrease, but only 3% of the LCC and 2% of the Effbin. (Fig. 3e). Removing the three 
main nodes the C. Elegans is deprived of the links with higher weight (dark grey links) with a sharp decrease of 
the efficiency Eff (50%) and of the total flow TF (32%). Nonetheless, a multitude of weak interactions (soft grey 
links) holds the network still connected showing a minimal LCC (4%) and Effbin (5%) decrease (Fig. 3f). We find 
the same system vulnerability in the other real-word networks, for example removing 5 nodes-metabolites among 
the 1100 total nodes-metabolites in E. Coli network decreases the 30% of the efficiency and only the 2% the LCC 
(Fig. 4); in the US Airports network, 5 nodes-airports removals over the N = 500 airports sharply decreases the 
total flow (TF) to the 60% of the initial value with 5% LCC decrease (Fig. S10); further, 5 nodes-ports attack 
reduces to the 70% the efficiency in the Cargo-ship network (Fig. 4). Only for the Human brain network we find 
a small difference in the measurements with Eff close to the LCC (Figs 4 and S10). In all the networks the binary 
efficiency (Effbin) follows the LCC with a slow decrease. These outcomes can be resumed in a novel and problem-
atic response pattern of the real-world complex networks, where the removal of nodes-links playing a major role 
in the energy-information delivery may leave the system in a connected but inefficient state (Fig. 3).

Dall’Asta et al.22 showed that when removing highly connected nodes the total ‘outreach’ (e.g. a measure com-
puting the product the link weight and the Euclidean distance covered by the link connecting airports) of the US 
Airports network decreased much rapidly than its LCC measure. Our findings wide Dall’Asta et al.22 outcomes 
for different kinds of network and measures able to evaluate its weighted structure, unveiling that even removing 
a few nodes can leave real-world complex weighted networks in a connected (the LCC and Effbin are preserved) 
but inefficient state (Eff and TF quickly collapse). Comparing the normalized LCC and Eff trends under few nodes 
removals, we observe narrow difference in the network functioning measurement, with a sharper decrease of 
the network efficiency Eff. This difference is quantified by the pink area between the curves in Fig. 4 for all the 
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real-world complex networks. For example, for the Net scientist co-autorship network, after 5 higher strength 
nodes removals we find Eff collapsing below the 50% of the initial value where instead the LCC is around the 
85% (Fig. 4, Str column). In the Coli network, 5 high degree nodes removals only, are able to decrease Eff below 
the 75% leaving the LCC roughly unchanged (Fig. 4, First column). These evidences outline how using binary 
measurements like the widely used largest connected cluster (LCC) may overestimate the robustness of real-world 
networks.

Figure 2.  Robustness of seven real-world complex weighted networks with real and randomized link weights. 
Real-world complex weighted networks was analyzed comparing the robustness (R) of real and randomized 
link weights. In this figure we show the robustness (R) comparing outcomes of the real-world network with 
the randomized version of the same system. In the randomized network weights are reshuffled and randomly 
reassigned over the links; in this manner the binary-topological structure is maintained. The filled box indicates 
the robustness of the real-world system and the empty box of the same color contour shows the robustness 
of the randomized version of the same system. (a) Links removal strategies. (b) Nodes removal strategies. Eff 
indicates the weighted system efficiency computed on the real-world networks; Effran is the weighted efficiency 
computed on the real-world network after the weights reshuffle, i.e. the real link weights are randomly re-
assigned over the network. LCC indicates the largest connected cluster in in the network; LCCran is the largest 
connected cluster measures computed on the real-world network after the randomization of the weights; 
TF is the total flow in the network, i.e. the sum of the all link weights; TFran is the total flow computed on the 
real-world networks after the randomization of link weights. For the links removal strategy TF is not plotted 
because the real and the randomized link weights return the same hierarchy of links removal and thus the same 
outcomes of system total flow decrease. The random removal (Rand) and the randomized link weights network 
counterparts (LCCran, EFFran and TFran) are the average of 104 simulations.

https://doi.org/10.1038/s41598-019-47119-2
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Very interesting, we find that real-world networks exhibit higher efficiency (Eff) robustness to the removal of 
nodes after the link weights randomization (except for the Human brain) (Fig. 2b, Eff − Effran, and Fig. S7). We 
find an important higher efficiency (Eff) robustness to nodes attack of the randomized networks for a few of nodes 
attack as well (Fig. S11). In networks with strength-degree correlation, the removal of higher connected nodes 
(the so-called hubs) will delete strongest links with higher information loss; differently, in the control network, 
the weights randomization eliminates the correlation and the removal of hubs would intercept less strong links 
with a reduced decrease in the information delivery efficiency. This finding indicates that some level of nodes 
degree-strength coupling discovered in real-world complex networks16,17,22,24 would make these systems even 
more vulnerable to nodes attack.

The role of weights heterogeneity.  To examine in depth how link weights pattern influences the robust-
ness of real-world networks we removed nodes-links increasing the link weights heterogeneity, by assigning 
link weights sorted from a rectangular and from a two values distribution (Supplemental Material S2). The link 
weights heterogeneity is enhanced by progressively increasing the maximum weight (Wmax). We find that the 

Figure 3.  Abrupt functioning efficiency collapse and the ‘connected but inefficient’ network state. Step by step 
strong links removal simulation on a sub-network (N = 25) of the US Airports and three nodes removal on 
the C. Elegans real-world complex weighted network. The total flow TF and the weighted efficiency Eff readily 
decrease under the removal of links with higher weight and nodes with higher strength. (a) Initial sub-network 
of 25 nodes and 153 links drew from US Airports network. The weight of the links identifies the number of 
passengers flowing from the connected airports; the weights ranges from a minimum of 9 to maximum of 
2.253.992 passengers per year. For the illustrative example we maintain only the strongest links with weight 
>106 (26 strongest dark grey links) and <380.000 passengers per year (127 weakest soft grey links). (b) The 
sub-network after the removal of 16 links of highest weight (10% of the links). (c) The sub-network after the 
removal of 26 links of highest weight (17% of the links). (d) C. Elegans real-world complex weighted network 
representing nodes-neurons and the links connections number among them (link weights). Dark grey are the 
strongest and soft grey are the weakest links. The three red nodes of higher strength are outlined in the center 
where the others nodes are in the circle layout. (e) C. Elegans network after the removal of the first highest 
strength node. (f) Neuronal network of C. Elegans following the removal of the three main nodes.

https://doi.org/10.1038/s41598-019-47119-2
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robustness of the network efficiency (Eff) is negatively correlated with link weights heterogeneity; differently, 
the robustness of the largest connected cluster (LCC) remains roughly constant by increasing the link weight 
heterogeneity (Fig. 5). This discovery would indicate that the overestimation of the network robustness adopting 
the LCC measure may be higher in real-world complex networks owing larger heterogeneity in the weights of the 
links.

Surprisingly, increasing Wmax we assist to a decrease in the robustness (Eff) for all the nodes removal strat-
egies (Fig. 6a) whereas the proportion of total flow (TF) subtracted to the networks remains roughly constant 
(Fig. 6a). For random links removal we find the same pattern (Fig. 6b). All these trends are more pronounced for 
the two values distribution of link weights (Fig. S11). This indicating that the decrease in robustness efficiency is 
not due to a major amount of ‘weight’ intercepted in the networks with increasing Wmax, but it would be an effect 
of the larger link weights heterogeneity (See Supplemental Material S3 for additional results and discussion). 

Figure 4.  Real-world complex weighted networks functioning decrease (Eff vs LCC) under few removals. 
The system functioning is normalized by the initial functioning value (e.g. before any removal). The pink 
area depicts the difference between Eff and LCC measures along the nodes removal process. For all systems 
except Human brain network, after very few (1 to 5) higher strength-degree nodes removal we observe a quick 
efficiency (Eff) decrease whereas the largest connected cluster (LCC) remains roughly constant.

https://doi.org/10.1038/s41598-019-47119-2
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Differently, the total flow subtracted in the network by Strong and Weak links removal is clearly related to the 
weights heterogeneity, and we observe a robustness decrease for strongest (and an increase for weakest) links 
removal for both TF and Eff measures (Fig. 6b).

This last discovery of the negative relationship between network efficiency decrease and link weights heter-
ogeneity shows that the robustness decrease is not only related to the transition from binary (LCC) to weighted 
measurement as suggested from Dall’Asta et al.22, but it is within a more general mechanism by which enhancing 
link weights heterogeneity negatively affects the robustness (Eff) in real-world complex networks (Figs 6, S12). 
The heterogeneity in link weights is interpreted as a feature able to stabilize different real-world networks21,25 with 
these systems self-organizing toward large heterogeneity in link weights (with many weak links). Our discoveries 
suggest that if the real-world complex networks are systems evolving toward larger link weights heterogeneity, 
they may pay the price in terms of robustness, with potential higher vulnerability to nodes-links failure.

Conclusion
The problem of measuring the robustness of a network to targeted attacks or to random failures of its nodes-links 
components is rapidly becoming major topics of research in the complex network community26. This for the 
urgency to reduce the adverse consequences associated with real-world systems failures, and especially of criti-
cal infrastructures. The robustness of complex networks is mainly investigate focusing on the binary version of 
these systems. Our study showed that adopting measures of functioning able to evaluate the link weights struc-
ture strongly change the response of the real-world weighted networks under attack or failure. We find that the 
attack of a very small fraction of nodes-links can trigger an abrupt collapse of the weighted functioning measures 
while parameter that evaluate the simple binary connectedness are almost unaffected, i.e. the attack toward few 

Figure 5.  The real-world complex networks robustness of the efficiency functioning (Eff) decreases with links 
weight heterogeneity where instead the LCC is approximately constant. The robustness of the efficiency Eff and 
largest connected cluster LCC measures of the system functioning under nodes and links removal strategies. We 
randomly assigned the weight of the links over the real-world topological structure of the networks under exam. 
Link weights are sorted from 2 values distribution (1, Wmax); the upper limit Wmax ranges in (1, 105); the 
outcomes are the average of 104 simulations. For sake of example we depict the outcomes from the Cargo ship 
and the E. coli network. Left column: Cargo ship network under nodes removal strategies; Right column: E. Coli 
network under links removal strategies.

https://doi.org/10.1038/s41598-019-47119-2
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nodes-links returns these systems in what we called a connected but inefficient state. This finding has important 
implications since the most of the real-world system failures may occur even though the network is completely 
connected and for this reason, adopting a binary measures of the network functioning like widely used the largest 
connected cluster (LCC) may overestimate the network robustness.

On the other hand, to investigate the reasons bearing the robustness of real-world networks is the gate to 
understand the mechanisms underlying evolution of these complex systems. Most of the studies focusing the 
binary structure of the real-world networks showed yet classical outcomes about the evolution of real-world net-
works, such as their small-world characteristic1,7, e.g. nodes are close each other in real-world networks, or their 
robustness to failure in spite of higher levels of vulnerability to the attack of higher connected nodes1–3. Analyses 
of weighted networks showed that links of lower weight play a key role in sustaining the connectivity of the sys-
tem outlining the importance of weak links for real-world complex networks stability21. In this contribution we 
furnished a complementary perspective outlining the importance of links with higher weight for the real-world 
network functioning, by showing that a small fraction of strong links removal rapidly decreases the efficiency and 
the total flow in these systems.

Figure 6.  The real-world complex networks robustness of the efficiency functioning (Eff) decrease with 
link weights heterogeneity. The robustness of the efficiency Eff and total flow TF of the system functioning 
under nodes and links removal strategies. We randomly assigned the weight of the links over the real-world 
topological structure of the networks under exam. Link weights are sorted from 2 values distribution (1, 
Wmax); the upper limit Wmax ranges in (1, 105) and for each Wmax value we performed 104 simulations. 
For sake of example we depict the outcomes from the Cargo ship and the E. coli network. Left column: Cargo 
ship network under nodes removal strategies; Right column: E. Coli network under links removal strategies. 
In the bottom figure we exemplify the discovery outcomes: the robustness of the efficiency (REff) is negatively 
correlated with the heterogeneity of link weights, i.e. increasing the variance in the weight of the links, the real-
world complex network become more vulnerable to nodes-links removal, both selective and random.
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Last, we investigated how the difference in the weight of the links affects the robustness of real-world net-
works. We find that the artificial increase of the link weights heterogeneity produced a faster efficiency (Eff) 
decrease under attack and failures. This finding open a new perspective showing that real-world networks with 
higher level of weight heterogeneity associated to the links may be less robust to attacks or failures.

Our study leads to several additional observations and interesting directions for future investigations. First, to 
analyze the robustness of real-world networks under attacks where nodes-links are ranked according to weighted 
properties, such as the weighted betweenness centrality, the weighted closeness centrality or others. To under-
stand which attack based on weighted properties of the nodes is able to trigger the higher damage in the network 
will be a novel approach in the research investigating the nodes attack strategies efficacy. Second, to encourage 
studies exploring what we consider an important but under-appreciated fact of network failures: namely that most 
failures occur even though the real-world networks are completely connected. This can be the case of many daily 
life examples in transportation networks, such as a street closure in a road network or the personal strike closing 
nodes-airports in the flying network. But it can be also a frequent occurrence in biological and social networks, 
like the inhibition of some nodes-neurons functioning in brain networks or the leaving of individuals in working 
community. In all these examples from different reality domains, the network functioning is expected to decrease 
even though its general connectivity is still preserved. Last, we showed an interesting negative correlation with 
link weights heterogeneity and the robustness of real-world networks. Since real-world weighted networks owns 
significant level of heterogeneity in links weights21,24,27,28 our last result bring important implications for the 
robustness of the real systems. This result comes from numerical simulations based on seven given real networks. 
We hope it could inspire future theoretical investigations that might bring to more general mathematical proves 
of the observed relationship.

Methods
Nodes removal strategies.  We follow 3 nodes removal strategies:

•	 Rand: nodes are randomly removed. This type of removal represents the possibility of failure (error) in the 
network8,9. For the random process of nodes removal (Rand) we averaged the outcomes from 104 simulations.

•	 First: nodes are removed according to the degree of the nodes, i.e. the number of links to the node8,9. The 
number of the links to the node corresponds to the neighbors nodes number. First is the binary nodes removal 
strategy, not considering the weight of the links and it represents the classical network attack8.

•	 Str: nodes are removed according to the strength, i.e. the sum of the weight of the links to the node23. This is 
the weighted counterpart of the binary attack strategy First.

Links removal strategies.  We follow 3 links removal strategies:

•	 Rand: links are randomly removed. This type of removal represents the possibility of links failure (error) in the 
network13. For the random process of links removal (Rand) we averaged the outcomes from 104 simulations.

•	 Strong: links are removed in decreasing order of weight, i.e. links with higher weight are removed first13 and it 
represents an attack directed to the links.

•	 Weak: links are removed in increasing order of weight, i.e. links with lower weight are removed first13.

The sequential removal of nodes-links is evaluated on the initial configuration of the network (i.e. before any 
removals) and not recalculated. In presence of ties (i.e. nodes or links with equals ranking properties) nodes-links 
with equals rank are randomly sorted.

The measures of network functioning.  The largest connected cluster (LCC).  The largest connected clus-
ter (LCC) is a widely used measure of the network functioning1–3. The LCC is also known as giant component and 
it is the highest number of connected nodes in the network. Complex network may present different clusters, e.g. 
different subsets of nodes connected among them but disjointed with nodes belonging to other clusters. Let be Sj 
the size of the j-th cluster in the network, the LCC is the maximum cluster size:

=LCC Smax( ) (1)j

The removal of nodes-links may disconnect nodes belonging to the giant component thus producing the LCC 
measure decrease. The LCC decrease indicates that if we start from one node chose at random in the largest con-
nected cluster, less nodes in the network are reachable. The LCC is a simple indicator evaluating the topological 
connectedness of the network and it not account the weight of the links that join nodes belonging to the largest 
connected cluster. We can see the LCC as an indicator of the possibility to reach nodes in the network with no 
consideration about the magnitude of the links-pathways we have to travel. For this reasons we adopt it like a 
binary measure of the network functioning not reflecting the heterogeneity of the link weights.

The total flow (TF).  The total flow is the sum of link weights and it represents the actual or the potential flow-
ing between nodes pairs in the network. For example, in the transportation network of the US Airports the TF 
measure represent the actual flows between nodes pairs (where ‘actual’ means the flying passengers in a year); 
also in the transportation Cargo ship network TF represents the actual flow indicating the shipping journeys 
between ports in a year. Differently, in the Human brain network, where the weight of the link indicates the fiber 
connection density among brain regions, TF that is the sum of all the weights is a potential energy-information 
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flowing along the fibers connecting nodes pairs, or in the C. Elegans real-world complex weighted network, TF 
indicates the total number of connections realized between pairs of neurons. In other terms, TF can be viewed as 
the thermodynamics capacity or a quantity influencing the actual flow between nodes pairs in the network but 
do not uniquely determine it, e.g. the higher is the connection density in the brain network, the higher can be the 
information delivered between brain regions in the unit of time.

Let be the weighted network Gw can be represented by a N × N matrix W where elements wij > 0 if there is a 
links of weight w between nodes i and j, wij = 0 otherwise.

The total flow is computed as:

∑∑=
= =

TF w
(2)i

N

j

N

i j
1 1

,

The total flow in the system (TF) is the sum of the link weights not reflecting the global weighted structure 
of network. In particular, TF not consider the links paths necessary to travel among nodes or the related global 
information delivery efficiency (like the Eff measures) or the nodes connectedness (as the LCC). Thus, when the 
network is subjected to the removal of nodes or links in our simulations, TF will not evaluate the following elon-
gation of the paths among nodes or the nodes disconnections (or other combined changes) in the global network 
structure, but only it accounts the decrease in the total weight of the links. Since TF does not evaluate the global 
network structure we can see it like the simplest measure evaluating the weighted networks functioning.

The weighted efficiency (Eff) and the binary efficiency (Effbin).  The concept of efficiency of the network was pro-
posed by Latora and Marchiori14 with the aim to introduce a measurement encompassing the difference in link 
weights in the evaluation of the weighted networks functioning. The efficiency of a network is a measure of how 
efficiently it exchanges information. On a global scale, i.e. considering all the nodes-components of the system, 
the efficiency quantifies the exchange of information across the whole network where information is concurrently 
exchanged. The efficiency is a robust and widely used measure of the network functioning14,15,23,29.

The efficiency measurement is based on the shortest paths notion17. In network science, the shortest path is 
the path between two nodes in a network such that the sum of the weights of its constituent links is minimized. 
In a binary network a shortest path between a couple of nodes is an integer number computing the minimum 
number of links to travel from one node to the other. To compute the shortest path in a weighted network we have 
to account the difference in link weights and to do this we first compute the inverse of the link weights. This is a 
standard procedure14,15,23,29 with the aim to decrease the length of the links with higher weight and increase the 
length of the links with lower weight. In this way nodes joined by links with higher weight are more close to each 
other. This procedure has a straight meaning in real-world weighted networks. For example, in the C. Elegans net-
work, two nodes-neurons joined by higher number of links-connections (higher weight) are closer than couples 
of neurons with lower number of connections (lower weight). For this reasons we can see the inverse of the link 
weights as a ‘weighted distance’ covered by the link and higher weight links as ‘shorter and faster routes’ for the 
information travelling. Thus, in a weighted network the shortest path between a couple of nodes is the minimum 
sum of the ‘weighted distances’ necessary to travel from the nodes. In the Supplemental Materials S1 we furnish a 
step by step example of the shortest paths computation in binary and weighted networks.

The efficiency of the network is then defined:

∑=
⋅ − ≠ ∈

Eff
N N d i j

1
( 1)

1
( , ) (3)i j G

where N denotes the total nodes in a network and d(i, j) denotes the length of the shortest path between a node i 
and another node j. When we include weight to the links (computing the weighted shortest paths) we obtain the 
weighted efficiency Eff; in the case we do not associate weight to the links (computing the simple binary shortest 
paths) we obtain the binary efficiency Effbin. For a detailed explanation of the network efficiency measurement see 
Supplemental Materials S1. The efficiency here defined works with binary or weighted networks as well but it fur-
nishes different interpretation of the information delivery in the system. Effbin considers the information delivery 
as all the network links owns equal capacity; differently, Eff precisely evaluates the effect of link weights heteroge-
neity to shape the shortest paths in the network and thus affecting the information delivery efficiency. We point 
out that the efficiency (Eff) and the total flow (TF) are measures able to account the heterogeneity in link weights 
with different meaning. The efficiency (Eff) is measure based on the shortest paths evaluating the global network 
structure capacity to deliver information among nodes and a decrease in the efficiency indicates a reduction in 
the energy-information pace exchanging over the network. The total flow (TF) is the sum of the link weights not 
accounting the shortest paths and the global network structure; thus a decrease in the total flow (TF) indicates a 
simple reduction in the link weights sum over the network. For example, supposing we remove some strong links 
in the networks, the Eff measure will evaluate both the higher weight lost in the system and the elongation of the 
shortest paths, whereas the TF will only evaluate the simple reduction in the link weights sum.

Real-world complex networks with modified link weights.  We modify the weight of the links maintaining the 
binary topological structure of these systems. We first randomly assign to each link a weight sorted from the 
rectangular distribution tuning the sole parameter Wmax indicating the allowed maximum links weight. Then 
we randomly assign the weight to the links sorting from the bimodal distribution where links weight can have 
only two distinct values with equals probability (1, Wmax). For both the distributions, we tune Wmax with values  
{1, 2, 3, 5, 7, 10, 20, 50, 100, 1000, 100000}; for Wmax = 1 all the links have weight = 1 (higher network 
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homogeneity) and the network is binary; for Wmax ≥ 2 the network starts to exhibit variance in link weights with 
the max variance for Wmax = 100000 (higher network heterogeneity). In this way the binary topological structure 
of the real-world network is maintained but any pattern of correlation between the topological and the weighted 
structure is eliminated, making possible to understand how the simple heterogeneity in links weights affects the 
system robustness. Since the link weights assignment is a random procedure, we perform 104 simulations for each 
Wmax value.
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