POLITECNICO DI TORINO
Repository ISTITUZIONALE

Implementation and optimization of Burg’s method for real-time packet loss concealment in networked
music performance applications

Original

Implementation and optimization of Burg’s method for real-time packet loss concealment in networked music
performance applications / Sacchetto, Matteo; Rottondi, Cristina; Bianco, Andrea. - In: PERSONAL AND UBIQUITOUS
COMPUTING. - ISSN 1617-4917. - ELETTRONICO. - (2024), pp. 1-17. [10.1007/s00779-024-01806-8]

Availability:
This version is available at: 11583/2991429 since: 2024-08-02T09:29:57Z

Publisher:
Springer

Published
DOI:10.1007/s00779-024-01806-8

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

12 September 2024

Personal and Ubiquitous Computing
https://doi.org/10.1007/s00779-024-01806-8

ORIGINAL ARTICLE l')

Check for
updates

Implementation and optimization of Burg’s method for real-time
packet loss concealment in networked music performance applications

Matteo Sacchetto'® - Cristina Rottondi'® - Andrea Bianco’

Received: 24 March 2023 / Accepted: 3 May 2024
© The Author(s) 2024

Abstract

In networked music performance (NMP) applications, which entail real-time audio streaming over the Internet, strict latency
requirements are needed to ensure a realistic interaction between geographically dispersed musicians. Thus, NMP applications
typically leverage uncompressed audio and unreliable transport protocols to avoid unnecessary processing and re-transmission
delays. Given that no guarantee on packet delivery is offered, NMP applications must deal with late/lost audio packets to
mitigate the impact of the resulting audio artifacts on the quality of the playback audio stream. This paper explores an audio
packet loss concealment (PLC) technique based on autoregressive (AR) models. In particular, it investigates the algorithmic
implementation of Burg’s method and the parameters configuration that offers the best trade-off between prediction error
and computational time requirements. The purpose is to find the most suitable solution capable of running on a Raspberry
Pi 4B within the real-time audio boundaries imposed by NMP applications. Additionally, we analyze the computational time
required to fit the model and predict future samples by considering six implementations and various compilation flags. Results
confirm that AR models can predict future audio samples more accurately than traditional PLC approaches, which consist of
filling audio gaps with silence or repeating the last received audio segment. Furthermore, results demonstrate the effectiveness
of the proposed solution in meeting the strict latency requirements when deployed on a Raspberry Pi 4B.

Keywords Networked music performance - Packet loss concealment - Autoregressive models - Embedded processors

1 Introduction

Networked music performances (NMPs) entail real-time
musical interactions among geographically dispersed musi-
cians by means of low-latency streaming of audio data over
the Internet. NMP is a growing research field which gained
a lot of interest in recent years, fostered by the COVID-19
pandemic. During lockdown periods, traditional videocon-
ferencing tools started to be adopted also for music-related
activities, such as remote music teaching and rehearsing,
thanks to their ease of use, especially when compared to

X Matteo Sacchetto
matteo.sacchetto @polito.it

Cristina Rottondi
cristina.rottondi @polito.it

Andrea Bianco

andrea.bianco@polito.it

Department of Electronics and Telecommunications,
Politecnico di Torino, Corso Duca degli Abruzzi 24,
Turin 10129, Italy

Published online: 17 May 2024

the complexity of setting up and using NMP solutions avail-
able at that time. However, since videoconferencing tools
are designed to ensure satisfactory conditions for traditional
voice/video calls, their limitations when used in a musical
context immediately emerged. Indeed, due to the exces-
sive mouth-to-ear latency and the use of audio processing
techniques specifically tailored for voice and speech [1],
they yielded unacceptable quality of experience during real-
time interactions between remote musicians. Therefore, the
implementation of NMP applications has recently gathered
increasing attention in both artistic and academic communi-
ties.

To ensure arealistic interaction between performers and an
adequate musical interplay, the mouth-to-ear audio transmis-
sion latency should be kept below a few tens of milliseconds
[2]. To reduce latency contributions due to audio pre-/post-
processing, a common solution among NMP applications
is the use of uncompressed pulse code modulation (PCM)
audio, which avoids encoding and decoding delays intro-
duced by state-of-the-art audio codecs. Furthermore, PCM
audio streams are transmitted over the network leveraging

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-024-01806-8&domain=pdf
http://orcid.org/0000-0001-8795-9027
http://orcid.org/0000-0002-9867-1093
http://orcid.org/0000-0002-5903-3558

Personal and Ubiquitous Computing

the user datagram protocol (UDP) at transport layer, which
avoids re-transmission and reordering delays introduced by
the transmission control protocol (TCP) at the price of sac-
rificing data-transfer reliability. Thus, no guarantees on the
actual delivery of a packet or on its delivery time are pro-
vided. Note that, since NMP has strict latency requirements,
packets which are received too late to be reproduced by
the audio playback process are logically equivalent to lost
packets, so they are discarded at the receiver. Lost packets
cause gaps in the playout buffer, which in turn generate audio
artifacts/glitches in the reproduced sound. Since packet loss
cannot be avoided, and since retransmissions are not possible
due to delay requirements, alternative packet loss conceal-
ment (PLC) mechanisms are needed to fill the audio gaps in
the playout buffer with reconstructed audio segments, with
the aim of mitigating the perception of audio artifacts.

In this paper, we propose a PLC method designed to run on
embedded devices, that leverages autoregressive (AR) mod-
els based on Burg’s method [3]. AR models are a special case
of multilinear regressive models in which a forecast variable
is obtained as a linear combination of its past values. The idea
is to fit an AR model on the past samples of a given audio
signal to predict missing samples in the playout buffer before
playback. This process is repeated every time the soon-to-be-
reproduced audio section does not contain any data, due to
one or multiple missing audio packets.

A preliminary version of this study appears in [4], where
we investigated whether using AR models could improve
audio quality over traditional PLC solutions used in NMP,
such as silence substitution, i.e., filling the audio gaps with
silence, and pattern replication, i.e., filling the audio by
replicating the audio samples contained in the last correctly
received packet [5]. In [4] we performed quantitative mea-
surements as well as subjective tests to evaluate whether AR
models were able to improve the overall quality w.r.t. tradi-
tional PLC solutions used in NMP. In this paper instead, we
focus on the study of the algorithmic implementation of AR
models and the configuration that provides the best trade-off
in terms of prediction error and computational time require-
ments while running the predictive model on a Raspberry Pi
4B within the NMP real-time audio boundaries, i.e., in the
order of few milliseconds. Furthermore, we perform an anal-
ysis of the computational time required to fit the model and
predict future samples, by considering six different algorithm
implementations and different compilation flags.

Results confirm that AR models, even with low orders and
a relatively short history of past audio samples, can predict
future audio samples more accurately than traditional PLC
solutions. We also show that running AR models in real-
time on an embedded device such as the Raspberry Pi 4B is

@ Springer

feasible with a wide enough range of configurations, which
gives the system designer freedom of choice in either provid-
ing higher audio quality with higher computational cost or
favoring scalability by reducing computational costs at the
expense of slightly lower audio quality.

The remainder of this paper is organized as follows: after
briefly reviewing the related literature in Sect. 2, some back-
ground notions on AR models and specifically on Burg’s
method are provided in Sect.3. The considered algorithms
are detailed in Sect.4, with experimental setup, numerical
results, and considerations on potential limitations of the
proposed method presented in Sect.5. Finally, conclusive
remarks appear in the last section.

2 Related work

The adoption of AR models has been widely explored
and proven to be successful for audio PLC of speech sig-
nals (see, e.g., [6]), but not yet applied in NMP scenarios.
However, in music-related contexts, AR models have been
applied for a variety of tasks. For example, they have been
leveraged in combination with N-gram models to predict
beat-synchronous Mel-frequency cepstral coefficients and
chroma features in musical audio streams [7], and for online
prediction of the tempo curve [8], where the parameters of the
AR model are determined by a deep convolutional neural net-
work fed with the history of the tempo curve and the music
score of the piece being performed. An AR self-attention-
based model for music score infilling is described in [9], to
generate a polyphonic music sequence that fills in the gap
between given past and future excerpts. In [10], the authors
discuss how to apply Burg’s method to estimate the short-
term coefficients of the linear-predictive coding analysis of
the OPUS codec for speech and audio. Burg’s method imple-
mentation used in the OPUS codec is described in [11].

Many NMP solutions are available today (e.g., JackTrip,'
Sonobus? and ELK3), most running on embedded devices
such as Raspberry Pi Single Board Computer, due to its eas-
iness of portability and deployment. Therefore, in this study,
we focus on the implementation of AR models for PLC that
can be executed also on a Raspberry Pi processor.

The majority of the studies on PLC in NMP applications
focus on recovery methods for the transmission of audio sig-
nals in MIDI format. The authors of [12] proposed a PLC
method leveraging a recovery journal section within RTP

! https://github.com/jacktrip/jacktrip
2 https://sonobus.net/
3 https://www.elk.audio/

https://github.com/jacktrip/jacktrip
https://sonobus.net/
https://www.elk.audio/

Personal and Ubiquitous Computing

packets, which encodes the most recent variations of the sys-
tem status, so that a receiver can recover from a wrong status
induced by the non-reproduction of MIDI events and/or com-
mands contained in previously lost packets. Other recovery
approaches rely on auxiliary reliably connected channels to
transmit critical MIDI events [13] or on acknowledgment
mechanisms to permit the re-transmission of lost music data
[14].

Differently, in [15], a deep convolutional neural network
is adopted to conceal the missing audio fragments in PCM
format. The proposed ML-based framework is shown to
outperform the predictive capabilities of AR models, but
would require GPU-accelerated hardware to ensure accept-
able execution delays, which is unlikely to be deployable in
embedded devices like the Raspberry Pi 4B.

Finally, it is worth mentioning that there is a rich litera-
ture on ML-based generative models for raw audio, though
not necessarily focused on NMP applications. The interested
reader may refer to [16] for a comprehensive survey of the
most relevant studies on such topic.

3 Background
3.1 Autoregressive models

The basic assumption behind time series regression mod-
els is the existence of a linear relationship between the time
series of the variable of interest y; and another time series x;.
The y; variable is usually called a forecast variable, regres-
sand, dependent, or explained variable. The x; variable is
usually called a predictor variable, regressor, independent,
or explanatory variable. A linear regression model can have
multiple regressor variables x; ;. In such cases, it is called
a multiple linear regression model. The general form of a
multiple linear regression model with k regressor variables
is expressed as follows:

k
o =Po+ Y Bixiite = o+ Bixri+ ..+ Bixes+e (1)

i=1

where ¢; is the error term. The coefficients By... 8k define the
linear relationship between each regressor x; ; and the fore-
cast variable y;. These coefficients are estimated by fitting
the model over the observed data. AR models are a special
case of multiple linear regression models, where the forecast
variable y; can be expressed as a linear combination of its
past values. The past values of the forecast variable are also
called lags or lagged values. The number of lags, usually

denoted as p, defines the order of the AR model, i.e., the
number of past values of the time series that need to be used
to predict the next sample. An AR model of order p, denoted
as AR(p), is defined as follows:

P
Y=c+ Y apivi-it+e)
i=1

=c+ap1yi—1 + ...+t appYi—p t+ €

where ¢; is typically modelled as white noise and c is a con-
stant. The order of the model can be either chosen as a fixed
value, estimated while fitting the model using a given crite-
rion (such as the Akaike information criterion (AIC) [17]),
or selected for example by extracting the number of most rel-
evant terms from the partial autocorrelation function of time
series used to fit the model.

Data stationarity is a key issue: an AR model is stable
if and only if the time series is stationary; otherwise, for
non-stationary time series, the model could diverge or have a
biased trend. Since for audio traces none of the two scenarios
is desirable, we should check if the considered time series is
stationary before using AR models for audio PLC. If the time
series is not stationary, we can not use AR models, and we
must rely either on simple, traditional methods or on more
complex alternative strategies, which are not covered in this
paper. The stationarity test on the time series is not covered in
this paper, as it is thoroughly discussed in [4], where details
on the implementation of stationarity tests are provided.

3.2 Burg’s method

The main idea behind Burg’s method for maximum spectral
analysis [3] is that we can estimate a set of autoregressive
parameters (ki, ..., k), also referred to as reflection coeffi-
cients, that minimize the sum of the squared forward and
backward prediction errors over a given section of the time
series. These coefficients are proven to satisfy the inequal-
ity |k;| < 1, which guarantees the stability of the model.
In [3], Burg also demonstrated that there is a one-to-one
correspondence between these reflection coefficients and the
coefficients of the autocorrelation function, which allows us
to specify the second-order statistics of the time series. So, by
directly estimating the reflection coefficients through Burg’s
method, we obtain a representation of the second-order statis-
tic of the time series. Then, by using Levinson’s recursion
[18], we can compute the coefficients of the AR model.

We can define the i-th order forward and backward prop-
agation errors at time n (respectively indicated as f; , and

@ Springer

Personal and Ubiquitous Computing

b; ») for a time series x, of length N as follows:

fin=aioxn +ai1Xp—1+ ...+ Qi i—1Xn—ip1 + 4 iXp_i

i
=Y aijxn-j
j=0

bin =a;0xn—i +ai 1Xp—ix1+ ... +aji—1X0-1 + a; i Xy
i
= E Qi jXn—i+j (3
j=0

witha; o = 1,i <n < N. The coefficients g; ; are used for
the calculation of both forward and backward errors, but in
reversed order. Then, we can define the sum of the forward
and backward error energies as follows:

N-1

1
Ei =5 D Ui+ 50 @

This sum of errors is then minimized with respect to the
AR coefficients, under the constraint that the coefficients sat-
isfy Levinson’s recursion [18]:
aij=aj—1,j+a;a1i-; 1<j<i ()
The minimizing value of (4) is obtained by setting the

derivative of E; w.rt. a; ; equal to zero, obtaining Burg’s
relation for the i-th reflection coefficient k;:

N—1
=2 > fi—tnbicin—1
num; n=i

ki=ai; = den: — NI i) (6)
2 At b)
n=i

By computing the reflection coefficients k; as shown in (6),
we can derive the AR coefficients using Levinson’s recursion
[18] as follows:

laio,ai1,....aii]l =lai-1,0,ai-1,1, ..., ai—1,i—1, 0]
+ k[0, ai—1,i—1, ai—1,i=2, ..., ai—1,01 (7)

with a; o = 1. Let p be the model order, we compute the
o reflection coefficients (ky,..., k,), and for each reflection
coefficient k;, 1 < i < p, we iterate Levinson’s recursion,
ultimately obtaining the AR coefficients (a, 1, ..., ap). The
AR model coefficients are then used to predict the next ele-
ment of the time series through the following:

0

Xp= Y —apiXii ®)

i=1

@ Springer

It is worth mentioning that the original Burg method [3] is
defined in terms of complex numbers. Since we are applying
it to audio signals, the imaginary part is not present. Thus, the
above formalization has been adapted to real-valued inputs.

4 Algorithmic framework
4.1 Notation

We introduce some definitions and symbols that will be used
in the description of the algorithm that implements Burg’s
method:

e Training set (D): The section of the time series used for
fitting the AR model. It contains the past data samples,
based on which the model predicts the missing ones. The
training set size is defined by n = |D]|, expressed in
number of samples.

o Test set (Dyegr): This section of the time series contains
the actual future values, which will be used as ground
truth to compute the prediction accuracy metrics. The
size of the test set is denoted by ns05r = | Dyest|.

e y: The index of the first value (sample) in the time series
that we want to predict. Starting from this index, we
define the training set (D) as the samples in the inter-
val [y — n, y), and the test set (D;,y,) as the samples in
the interval [y, ¥ + nzegr).

4.2 AR model implementations

We discuss the implementation of the fit and predict functions
of the AR models considered in this study. In Sect.4.2.1, a
general pseudocode of an AR model based on the traditional
Burg’s method [3] for parameters estimation and prediction
of future samples is presented. Section4.2.2 presents the
pseudocode of the optimized version of traditional Burg’s
method based on the order recursion formula for the denom-
inator of (6), proposed by L. J. Faber in [19]. In Sect.4.2.3, a
novel implementation is introduced, based on the combina-
tion of both the traditional Burg’s method and the recursive
denominator method. Lastly, in Sect.4.2.4, we introduce a
variant of these algorithms based on error-free floating-point
transformations.

4.2.1 Traditional Burg’s method

The implementation of Burg’s method for estimating the AR
model parameters introduced in Sect. 3.2 is illustrated in Alg.
1. The algorithm starts by initializing the forward and back-
ward prediction errors with the samples in the training set D
(lines 1-2). Then, it initializes the array containing the AR

Personal and Ubiquitous Computing

model parameters (a) and sets its first element to 1 (lines
3-4). This is needed to compute the other model parameters
through Levinson’s recursion. Then, the main loop (lines 5—
31) repeats until the desired order (p) is reached. In each
iteration (7) of the loop, the reflection coefficient for the cur-
rent iteration (k;) is computed. &; is then used to update both
forward and backward prediction errors (lines 11-18), as well
as the AR model parameters (lines 20-27). The coefficient
computed at the current iteration (k; = a; ;) is then added to
the array of the AR model coefficients (line 28).

Once the AR model coefficients ([0, ..., ap,,]) are com-
puted, they are used to predict the future values of the time
series by means of Algorithm 2. Since the sole purpose of
coefficient a, o = a[0] = 1 is to serve as starting point for
Levinson’s recursion, it is removed from the array of coeffi-
cients (line 1). The prediction loop (lines 5-12) is a simple
application of the AR model definition, shown in (8), where
the past samples are extracted either from samples in the
training set or from previously predicted samples.

4.2.2 Denominator optimization

Though Burg’s method is relatively easy to implement, it
requires computing three dot products for every iteration of

Algorithm 1 AR model - fit - Traditional Burg’s method.
1: f < training_set[0 : n]

2: b < training_set[0 : n]

3:a <]

4: al0] <1

5:0« 1

6: whilei < p do

7: num < =2f[i :n]-b[0:n—i]

8: den <« fli:n]l- fli :n]+b[0:n—1i]-b[0:n—1i]

9. ki <~ % > Calculate the reflection coefficient k;
10:

1. j=i

12: while j < ndo > Update b and f
13: tmpy < b[j —i]

14 mpy < flJ]

15: blj —i] < tmpp + kitmpy

16: fLj1 < tmpy + kitmpy,

17: j<—Jj+1

18: end while

19:

20 j=1

21: while j < L%J do > Levinson’s recursion
22: tmp, < alj]

23: tmpay < ali — j]

24 aljl < tmp, + kitmpgy,

25: ali — jl < tmpay + kitmpq

26: j<—Jj+1

27: end while

28: ali] < k;

29:

30 i<« i+1

31: end while
32: return a

Algorithm 2 AR model - prediction - Traditional Burg’s

method.
a<all:p+1]
: history < train_set[0 : n]
: pred <[]
tnp < n

1:
2
3
4
500« 0
6
7
8

> Remove a[0] = 1

: while i < ny.5 do

s < history[n, — p : np]
predlil=s-—a
historylny +i] = pred|i]
10: njp < np+1

11: i <—i+1

12: end while

13: return pred

> Predict the n,.5; samples

0 ®

the main loop of the fit phase. In [19], L. J. Faber demon-
strated that it is possible to rewrite the denominator of Burg’s
method as an order recursive formula, thus drastically reduc-
ing the complexity of the algorithm. So, according to [19],
the denominator of (6) can be rewritten as follows:

N-1
2 2
den; = Z JiZin + b1 0

n=i

N—1
P P P P
= |: Z fiZin +bil,nl:| = filric1 = bis No

n=i—1

= (1 —kf_pdeni—y — f7 1, = bl nyy ©))

This reduces the number of dot products to one product in
the initialization step (line 5 of Algorithm 3) to compute the
initial denominator and one product for each iteration (line 7
of Algorithm 1), to compute the numerator of k;. The initial
denominator is computed as follows:

N—1 N—1 N—1
deng = fo,+b5, =Y Di+Di=2% D (10)
n=0 n=0 n=0

So, the resulting algorithm is similar to Algorithm 1 with
the changes shown in Algorithm 3. Note that lines 7-33 of
Algorithm 3 are identical to lines 5-12 of Alg. 1, with the
only difference that line 8 of Algorithm 1 is replaced with
line 10 of Algorithm 3.

This optimization only affects the fit phase. The prediction
phase is identical to the one of traditional Burg’s algorithm
(Algorithm 2).

4.2.3 Hybrid denominator

A drawback of Burg’s method is that, due to the recursive
nature of the algorithm, an error on the computation of the
reflection coefficients (k;) during the first iterations propa-
gates progressively larger errors in the next reflection coeffi-
cients. So, since the traditional implementation (Algorithm 1)

@ Springer

Personal and Ubiquitous Computing

Algorithm 3 AR model - fit - denominator optimization.

1: f < training_set[0 : n]

2: b < training_set[0 : n]

3:a <[]

4: a[0] <1

5: den < 2(training_set[0 : n] - training_set[0 : n]) >
f =b=training_set

. k() «~0

i« 1

: while i < p do

e BN oY

b

10: den < (1 — k% den — | fli — 11> — |b[n — i]]?
11:

33: end while

34: return a

using the dot product for the denominator led to smaller
numerical errors on the value of k;, we propose a hybrid
approach where for the first m iterations, with 1 < m < p,
we compute the denominator with the traditional algorithm
(Algorithm 1), and then during the next p — m iterations, we
use the denominator optimized algorithm (Algorithm 3). In
our proposed version of the algorithm, by tuning the value
of m, it is possible to achieve a trade-off between accuracy
and computational complexity. After extensive testing, we
found that with m = |,/p], the errors on the coefficients
computed with the hybrid approach were similar to the ones
computed with the traditional method. However, a minimum
number of 8 iterations was found to be necessary to ensure
consistent results also for lower model orders. So, in the final
implementation, we set m = max([./p], 8).

The resulting algorithm is shown in Algorithm 4. Lines 6—
36 of Algorithm 4 are identical to lines 5-31 of Algorithm 1,
with the only difference that line 8 of Algorithm 1 is replaced
with lines 9-13 of Algorithm 4. Also, in this case, the pre-
diction phase is identical to the one of traditional Burg’s
algorithm (Algorithm 2).

Algorithm 4 AR model - fit - Hybrid denominator.

1: f < training_set[0 : n]
2: b < training_set[0 : n]

3:a <]

4: al0] < 1

5:m < max(L\/p],8)

6:1 <« 1

7: while i < p do

8 ..

9: if i < m then

10: den < fli:n]- fli :n]+b[0:n—1i]-b[0:n—1i]
11: else

12: den < (1 —k? den — | f[i — 11]* — |b[n —i]]?
13: endif

14:

36: end while
37: return a

@ Springer

4.2.4 Error compensation

In the implementation of Burg’s method in a computer
program, floating-point arithmetic is used. Due to the rep-
resentation of a real number on a limited number of bits, all
operations introduce a negligible approximation error. How-
ever, when combined in a recursive way, they can result in
a cumulative error which may become no longer negligi-
ble. Thus, to reduce the magnitude of the error, we propose
to implement all of the above-described variants of Burg’s
algorithm using error-free transformations in floating-point
arithmetic.

Error-free floating-point transformation is a concept that
makes it possible to compute accurate results within a
floating-point arithmetic. Ref. [20] describes a number
of error-free transformations for the sum and multiplica-
tion of floating-point elements, whereas Ref. [21] recalls
well-known error-free transformations for real and complex
numbers. Among those, we opted for the usage of TwoSum,
TwoProductFMA, and the Dot2, which allows performing
sum, product, and dot product with doubled precision. Thus,
we implemented all the variants of Burg’s method replacing
sums, products, and dot products with the transformations
mentioned above. The operations performed by the three cho-
sen error-free transformations are reported in Algorithms 5-7
for completeness. The interested reader is referred to the
aforementioned references for a thorough discussion.

Algorithm 5 TwoSum.

1: function TwWOSUM(a, b)

2: x <« flla+b)

3 7z« fl(x —a)

4 y<« fllla—(x—=2)+(®—2)
5: return X, y

6: end function

Algorithm 6 TwoProductFMA.

1: function TWOPRODUCTFMA(a, b)
2: x < fl(ab)

3: y <« FMA(a, b, —x)

4: returnx,y

5: end function

5 Numerical assessment

In this section, after a brief description of the experimental
setup and dataset, we present the metrics and the meth-
ods used for training and testing the AR models. Numerical

Personal and Ubiquitous Computing

Algorithm 7 Dot2.

1: function DoT2(v1, v2, N)

2: [p,s] < TwoProduct FMA(v1[0], v2[0])

3 fori < 1:N—1do

4 [h,r] < TwoProductFMA(v1[i], v2[i])
5: [p,q] < TwoSum(p, h)

6: s <« fl(s+(q+r))
7

8

9:

end for
return fI(r +s)
end function

results are then described, whereas the final subsection dis-
cusses the main limitations of AR models for PLC.

5.1 Experimental setup

As mentioned in Sect. 1, the goal of this study is to implement
a PLC solution for NMP based on AR models executable in
real-time on embedded devices, specifically on a Raspberry
Pi 4B. In our setup, the Raspberry Pi 4B is running the Rasp-
berry Pi OS lite version 64-bit edition and is configured to
turbo the four cores ARM cortex-a72 CPU to 2.1GHz, by
setting the following parameters in the /boot/config.txt.

over_voltage=6
arm_freg=2100

On the Raspberry Pi 4B, we run the three implemen-
tations of AR models based on Burg’s method described
in Sect.4.2. For each implementation, we consider multi-
ple parameter configurations. The considered AR models
are benchmarked against the two most commonly used PLC
solutions in the NMP field: silence substitution and pattern
replication. Furthermore, we measure the computational time
that each model requires for both fitting and predicting the
missing packets. Tests are run considering several audio files,
grouped into six different categories based on the musical
instrument(s) involved. Finally, an analysis of the perfor-
mance of the various models on longer prediction periods
is presented, to show the limitation of the model and how the
error propagates in the different implementations.

5.2 Dataset

The dataset we used is a collection of 29 audio files. Among
those, 23 audio files contain individual instruments or human
voices, while 6 audio files contain full songs. We grouped the
audio files in six categories, based on the audio type they con-
tain. The first four categories are Violin, Drums, Piano, and
Guitar, each containing 4-5 audio files. These four categories
contain only audio files associated with a single instru-
ment. The fifth category, named Generic, contains audio files

relative to single audio sources which were randomly chosen
and did not fit in any of the other five categories. In this cat-
egory, audio files contain either a spoken/singing voice or a
horn. The last category is named Songs and encompasses six
audio files with full songs, containing a mixture of different
instrumental sources. This division in categories allows us
to have a more general representation on the behavior of the
PLC techniques when applied in different scenarios.

Since in NMP the most common scenario involves send-
ing one or multiple mono audio channels, each one related
to a different instrument (e.g., guitar and voice), to reduce
the required bit-rate and the amount of equipment needed,
we decided to perform a pre-processing step to convert all
audio files from stereo to mono. This allows us to evaluate the
performance of AR models when used to recover individual
mono audio channels and makes the proposed approach gen-
eralizable to any audio channel configuration (mono, stereo,
multichannel), since we can run an AR model individually for
each audio channel. Alternative approaches based on vector
autoregressive (VAR) models [22, 23] could be considered
to jointly work on multiple channels. The inclusion of such
approaches in our implementation is left for future work.
Moreover, to standardize the audio file format and simplify
the loading of audio files in the specific programming lan-
guage we used (i.e., C++), we converted these files to WAV
files with a sample rate of 44,100 Hz, commonly used in
NMP applications. The pre-processing was performed using
FFmpeg.4

5.3 Performance metrics

We evaluate the performance using two different metrics:
mean absolute error (MAE) and root mean square error
(RMSE). In the context of time series analysis, MAE is a
model evaluation metric which measures the mean absolute
distance between predicted values and target values of a time
series y. Given a section of the time series, which we define
as test set (Dyest), the MAE is defined as the sum of per-
sample absolute errors divided by the number of samples
in the test set. Defined as y; the true target value of the time
series at timet, y,’ the predicted value at the same time instant,
and n;.; the size of the test set, we can define the MAE as
follows:

Rtest , Rtest
olyi=yl o X el
MAE(y,y) == = =l (11)
Htest Ntest

4 https://ffmpeg.org/

@ Springer

https://ffmpeg.org/

Personal and Ubiquitous Computing

The RMSE instead is defined as the square root of the mean
square error (MSE), which measures the quadratic distance
between predicted values and target values of the time series.
The MSE is defined as the sum of per-sample quadratic errors
divided by the number of values in the test set. The RMSE
is simply the square root of that ratio. So, given the same
notation previously introduced, we can define the RMSE as
follows:

Nrest

Z (yz/ - yt)2
RMSE(y,y) = JMSE(y.y) = | =

Niest

Z (ft)2
t=1

12)

Ntest

Ntest
5.4 Training and testing the AR models

A typical UDP packet size for NMP accommodates 128
audio samples per audio channel. Smaller sizes may result in
excessive overhead. Instead, larger sizes would increase the
mouth-to-ear latency due to the increase in the time needed
to initially fill the playout buffer before starting the audio
playback. Since our PLC is designed specifically for NMP
scenarios, we set n;.5; = 128. Notably, this value allows for
potential future generalization of the proposed PLC solution
to NMP web applications. Those applications take advan-
tage of the Web Audio APIL?> in particular the AudioWorklet
component,® for audio processing, which operates on buffers
of 128 samples. The interested reader is referred to [1]
for technical details regarding NMP with web technologies
(WebRTC, WebAudioAPI). Regarding n, i.e., the size of the
train set (D), since we are working with packets of 128 audio
samples per audio channel, we set it as an integer multiple
of that size, i.e., n = m - 128, m € N, m > 0. The actual
values we used for n are 512, 1024, 2048, 4096, and 8192.
Finally, since we aimed at predicting 128 samples, for the
model order p, we explored as values all powers of 2 in the
range [1, 128],ie., p =2° e e N,0<e <7.

Firstly, we want to evaluate the performance of every algo-
rithm in terms of the MAE and RMSE metrics, for each of
the six dataset categories. For every audio file, after loading
all the samples, we extract 100 distinct random positions y,
multiple integers of nyesr, ¥ = m-nsesr, m € N, m > 0. This
number was selected to have the same number of predictions

5 https://developer.mozilla.org/en-US/docs/Web/ API/Web_Audio_
API

6 https://developer.mozilla.org/en-US/docs/Web/ API/
AudioWorkletProcessor

@ Springer

per audio file. Extracting random positions multiples of 7.
allows us to simulate a packetized audio stream. For each
y, we fit the AR model on the n previous samples, i.e., on
set D, and then we use the fitted AR model to predict the
next n;.s; samples. Next, we compute the two metrics over
the predicted samples and the actual samples, i.e., Dyesr. We
also compute MAE and RMSE for the two benchmark PLC
methods. Algorithm 8 provides the pseudocode that imple-
ments the above-described procedure. This algorithm needs
to be run for every AR model implementation.

Secondly, we want to evaluate the computational require-
ments of the different algorithms presented in Sect.4.2. To
do so, we need to measure the time required to run the fit
and predict methods for each algorithm, for every value of
p and n. Algorithm 8 already includes instructions for the
measurement of the computational time of the fit and predict
phases.

Finally, we want to investigate how the different models
perform on longer predictions. This is helpful to understand
how error propagates in the three considered implementa-
tions. This test is carried out by considering a sine wave with
a fixed frequency of 2 kHz and an amplitude covering the
whole audio range. For each model and every value of p and
n, we train the model on D and then predict the next 20 pack-
ets, i.e., nesy = 20 - 128. Every run of this algorithm uses
the same value of y, set to the max value of n, i.e., 8192. We
then compute the MAE to compare the predicted samples to
the actual samples, i.e., D;eqr.

5.5 Implementation details

The implementation of all the algorithms described in
this paper is done in C++, using the C++17 standard. As
already noted in [19], a double-precision floating point was
found to be necessary. Thus, we run all the algorithms
with double-precision floating-point (double) data type
and quadruple-precision floating-point (long double)
data type. Note that the error-compensation techniques
explained in Sect.4.2.4 are applied only when using the
double-precision floating-point data type. For the quadruple-
precision floating-point data type, since already working
with twice the working precision of the double-precision
floating-point data type, additional error compensation is not
necessary.

The C++ code was compiled directly on the Raspberry Pi
4B using g++ 10.2.1 on aarch64, the ARM 64 bit architecture.
Compilation was performed using the gcc compilation flags
-03 and -mtune=cortex-a72. The -03 flag enables
the highest compiler optimization level (3), which allows the
compiler to perform operations that reduce code execution
time. The -mtune=cortex-a72 hints the compiler the

https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/AudioWorkletProcessor
https://developer.mozilla.org/en-US/docs/Web/API/AudioWorkletProcessor

Personal and Ubiquitous Computing

Algorithm 8 Training and testing.

I: ngy < [512, 1024, 2048, 4096, 8192]
2: ps < [1,2,4,8, 16,32, 64, 128]

3 Npest < 128

4:

5: for category in categories do

6: for filein audio_files do

7: samples < load_samples(file)

8: is < generate_100_random_indexes(samples)

9:

10: for i in iy do

11: silence < zeros(Niest)

12: previous < samples[i — nyest @ 1]

13: Diest < samples[i : 1 + nyegt]

14:

15: store(M AE (Dyeyt, sSilence)) > Store the benchmark
results

16: store(RM SE (Dyeg;, silence))

17:

18: store(M AE (Dyest, previous))

19: store(RMSE (D;egt, previous))

20: end for

21:

22: for n in n; do

23: for p in ps do

24 for i in iy do

25: D <« samplesli —n,i]

26: Diest < samples[i,i + nyegst]

27:

28: AR_model < AR(n)

29:

30: start < start_timer()

31: a < AR_model.fit(D, p)

32: store(stop_timer() — start) > Store fit time

33:

34 start < start_timer()

35: pred <— AR_model.predict(D, a, niegr)

36: store(stop_timer() — start) > Store predict time

37:

38: store(M AE (Dsest, pred)) © Store the AR results

39: store(RM SE (Djest, pred))

40: end for

41: end for

42: end for

43: end for

44: end for

specific processor architecture for which the code has to be
built.

During the testing, we experimented with another com-
piler flag: -ffast-math. This flag is useful in programs
using floating-point mathematical operations, to allow the
compiler to perform additional optimizations, by skipping
some checks and making assumptions on the code. We report
an extract of some of the optimizations it enables, taken
from the documentation’: “This mode enables optimiza-
tions that allow arbitrary reassociations and transformations

7 https://gcc.gnu.org/wiki/FloatingPointMath

with no accuracy guarantees. It also does not try to preserve
the sign of zeros,” thus breaking strict IEEE compliance on
floating-point representation. It follows that its use may not
be appropriate for all applications. One thing to note about
-ffast-math is that, since it allows for “arbitrary reasso-
ciations and transformations with no accuracy guarantees,”’
it can not be applied to the error-compensated versions of
the algorithms, since the error-free floating-point transforma-
tions shown in Sect.4.2.4 are based on a specific execution
order of the provided instructions.

For details on the optimization flags, please refer to section
“Optimize Options” of the online documentation.® Instead,
for details on compilation flags specific to the ARM processor
architecture, please refer to section “ARM Options”of the
online documentation.’

The experimental datasets and all the code developed and
used for the purpose of this study are publicly available on
GitHub.'?

5.6 Numerical results
5.6.1 Evaluation of the prediction error

Figures 1 and 2 show, for each audio category, the MAE and
RMSE trend of the AR models compared to that of the two
benchmarks, for multiple values of p. The plots shown in
Figs. 1 and 2 are obtained with the traditional Burg’s method
(Sect.4.2.1), but identical results were observed for the other
two algorithms (Sects.4.2.2—4.2.4). Thus, in this subsection,
we will adopt the general term “AR models” instead of refer-
ring to each individual algorithm.

Since the two benchmarks do not have any dependency on
n and p, their MAE/RMSE values are displayed as horizon-
tal lines, with shaded bands to indicate confidence intervals.
The gray line represents the error obtained using the silence
substitution technique, whereas the yellow line represents
the error obtained with the pattern replication technique.
The other lines, instead, display the error measured with
AR models for different values of n. The error of the pat-
tern replication technique is generally higher than the one of
silence substitution, coherently with results reported in [4],
due to phase offsets created by replicating the previous 7;g;
samples. Furthermore, the variation of n only mildly affects
the prediction error, with lower values of n resulting in a
slightly lower error. This has two main effects. First, the pos-
sibility of using lower values of #n limits the number of past

8 https://gcc.gnu.org/onlinedocs/gec/Optimize-Options.html
9 https://gce.gnu.org/onlinedocs/gcc/ ARM-Options.html

10 https://github.com/matteosacchetto/burg-implementation-
experiments

@ Springer

https://gcc.gnu.org/wiki/FloatingPointMath
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/ARM-Options.html
https://github.com/matteosacchetto/burg-implementation-experiments
https://github.com/matteosacchetto/burg-implementation-experiments

Personal and Ubiquitous Computing

0.25 0.25 0.25
0.20 0.20 0.20
0.15 0.15 0.15
w w w
< < <
= = =
0.10 0.10 0.10
—_ —
0.05 = 005 s —%_5 3 3 0.05 4=
*‘i\ .
0.00 0.00 0.00
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Order Order Order
(a) Violin (b) Drums (c) Piano
0.25 0.25 0.25
0.20 0.20 0.20
0.15 0.15 0.15
w w w
g E E\ S
0101 5 0.10 0.10 —
0.05 s\iﬁﬂﬂ\ 0.05 0.05
0.00 0.00 0.00
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Order Order Order
(d) Guitar (e) Generic (f) Songs

—— silence substitution
——— train_size=512
—4— train_size=2048
—4— train_size=8192

Fig.1 Performance of AR models in terms of MAE

packets to be memorized, which reduces memory consump-
tion. Second, in Burg’s method, to calculate the numerator
and denominator of (6), we compute the dot products of f
and b. Since f and b depend on n, smaller » means smaller
size vectors to multiply, hence lower computational cost.
Results show that p is the most impacting parameter to
tune: generally, the higher p, the lower the error. However,
increasing p means increasing also the computational cost of
both fitting the model and predicting the next samples. Thus,
in a real scenario, a trade-off emerges between prediction
quality and computational cost. Note that, depending on the
input signal, it is not always necessary to select high values of
p, since in some cases the improvement in prediction quality
is negligible, while the increase in computational cost is sig-
nificant. Thus, to use AR models for PLC, we first need to find
the best configuration of n and p, according to our specific

@ Springer

pattern replication
—+— train_size=1024
——— train_size=4096

runtime context (i.e., computational resources, timing con-
straints). Then, we could use a criterion such as AIC [17]
to allow for a potential early stop of the fitting phase, with
the aim of reducing computational cost for easy-to-predict
signals.

In general, we can see that, the more sustained the sound
is, the better AR models are able to reconstruct missing sam-
ples. Conversely, the more transient-oriented the sound is,
the less effective AR models are, showing a trend very sim-
ilar to the one obtained by silence substitution. This can
be clearly observed in Figs.1 and 2, where in the cate-
gories Violin, Piano, and Generic, all of which contain more
sustain-oriented sounds with less abrupt transitions, AR mod-
els show a greater improvement w.r.t. silence substitution
and pattern replication. Instead, transient-oriented sounds
like those in the categories Guitar (which contains some

Personal and Ubiquitous Computing

030 0.30 0.30
025 0.25 0.25
0.20 0.20 0.20
015 ¢ 015 2 015
o o o
0.10 0.10 0.10
;\,_ — - - = = -2 = LN
0.05 j"’\- 0.05 —r—i 0.05 ~—
0.00 0.00 0.00
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Order Order Order
(a) Violin (b) Drums (c) Piano
030 030 0.30
025 0.25 0.25
0.20 0.20 0.20
@ I} I >
£ 015 = 2 015 I\: 2 015 &; —
=
0.10 W 0.10 0.10
s . T*N o
0.00 0.00 0.00
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Order Order Order
(d) Guitar (e) Generic (f) Songs
—— silence substitution pattern replication
—4— train_size=512 —4— train_size=1024
—4— train_size=2048 —4— train_size=4096
—4— train_size=8192
Fig.2 Performance of AR models in terms of RMSE
AR fit time AR predict time
64 0.06 1
—4— train_size=512
51 —4— train_size=1024 0.051
= 4 —o— train_size=2048 —~ 0.041
€ —$— train_size=4096 S
0 31 —%— train_size=8192 0 0.031
F 29 F 0.021
11 0.011
014 : : : : : : : ool b ¢ O
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Order Order

(a) Fitting time trend for the traditional
Burg’s method (Sec 4.2.1) with doubles
and no additional compilation flags

Fig.3 AR models—computational time trend

(b) Prediction time trend for the tra-
ditional Burg’s method (Sec 4.2.1) with
doubles and no additional compilation
flags

@ Springer

Personal and Ubiquitous Computing

Table 1 Time (ms) required to
fit the specified algorithm on a
training set of size n, with p set

to 64 and data type set to
double

strumming tracks), Songs (which features multiple instru-
ments, among which drums), and, most notably, Drums (i.e.,
the most transient-oriented sources), the improvement is far
less noticeable. Especially in Drums, we can see that AR

Fit time (ms)

Algorithm n=512 n=1024 n=2048 n=4096 n=8192
Burg’s method 0.178 0.362 0.746 1.520 3.024
Denominator optimization 0.091 0.182 0.378 0.771 1.528
Hybrid denominator 0.102 0.205 0.424 0.866 1.720
Burg’s method (-ffast-math) 0.114 0.228 0.477 1.007 1.985
Den. opt. (-ffast-math) 0.069 0.136 0.292 0.624 1.227
Hybrid den. (-ffast-math) 0.075 0.148 0.315 0.672 1.320
Burg’s method (compensated) 0.795 1.628 3.327 6.706 13.385
Den. opt. (compensated) 0.473 0.962 1.967 3.945 7.878
Hybrid den. (compensated) 0.515 1.049 2.139 4.292 8.567

generated/consumed, we can simply divide ng by f:

= (13)

s =

f

models have a trend very close to that of silence substitution.
This is due to the fact that AR models are not able to learn any
significant pattern, and the resulting predictions often quickly
decay to zero. For a thorough discussion on these aspects, as
well as for a presentation of the results of subjective tests
comparing the performance of AR models to that of the two
traditional PLC methods used in NMP, the interested reader
is referred to our previous work [4]. The dataset used is the
same one used in this paper. While the parameter estimation
method for AR models adopted in this study is slightly differ-
ent, results are rather similar. Additionally, the reconstructed
audio files using the three PLC techniques (silence substi-
tution, pattern replication, and AR models with the hybrid
denominator implementation, n=2048 and p=[64, 128]) are
stored in the publicly accessible GitHub repository.'!

Notably, Figs. 1 and 2 show that, while the improvement
in prediction quality varies from category to category, AR
models tend to outperform the two benchmark approaches
already with p = 4. This means that, in a real scenario,
there is a fairly wide range of configurations we can choose
from; in other words, we can adapt in real time the AR model
parameters to the current runtime conditions.

5.6.2 Evaluation of computational requirements

Given a number of samples ny and a sampling rate f,
to compute the time interval in which the ng samples are

1T https://github.com/matteosacchetto/burg-implementation-
experiments

@ Springer

In our specific case, ng = nsesr = 128 and f = 44100Hz.
Thus, the NMP application generates and consumes packets
every 441’% s &~ 2.90 ms. This means that, in order to apply
our PLC solution, we need to fit the AR model and predict
the next n.s; samples within 2.90 ms.

The general trend is shown in Fig. 3a, in terms of compu-
tational time for fitting the model, and in Fig.3b in terms
of computational time for predicting the next n;es; sam-
ples. Both plots were generated using the traditional Burg’s
method (Sect.4.2.1) with double-precision floating point and
no -ffast-math compiler flag, but similar trends were
observed for the other variants (Sect.4.2.2-4.2.4) and con-
figurations.

In general, replacing the traditional Burg method (Algo-
rithm 1) with Burg’s method with denominator optimization
(Algorithm 3) reduces the fitting time of a factor between
1.5 and 2. Instead, substituting the traditional Burg method
(Algorithm 1)) with our proposed hybrid method (Algorithm
4) reduces the fitting time by a factor between 1.3 and 1.8
forp > 16 and has the same fitting time for p < 8. As
expected, the prediction trend instead does not change among
the three variants.

The error-compensated versions of the algorithm are
4 to 5 times slower during the fitting phase than their
corresponding non-error-compensated version, and 2 times
slower during the prediction phase. The quadruple-precision
floating-point (Long double) version of the algorithms
instead is between 80 and 100 times slower during the fit
phase and about 40 times slower during the predict phase
than their double-precision floating-point (double) equiv-
alent.

https://github.com/matteosacchetto/burg-implementation-experiments
https://github.com/matteosacchetto/burg-implementation-experiments

Personal and Ubiquitous Computing

Table 2 Time (ms) required to
fit the specified algorithm on a
training set of size n, with p set

to 128 and data type set to
double

Fit time (ms)

Algorithm n=512 n=1024 n=2048 n=4096 n=8192
Burg’s method 0.335 0.703 1.466 3.009 5.996
Denominator optimization 0.172 0.352 0.743 1.519 3.018
Hybrid denominator 0.188 0.385 0.807 1.649 3.280
Burg’s method (-ffast-math) 0.216 0.444 0.939 1.994 3.933
Den. opt. (-ffast-math) 0.132 0.267 0.573 1.230 2.423
Hybrid den. (-ffast-math) 0.141 0.283 0.606 1.296 2.552
Burg’s method (compensated) 1.505 3.170 6.563 13.305 26.637
Den. opt. (compensated) 0.905 1.882 3.886 7.826 15.665
Hybrid den (compensated) 0.962 2.000 4.122 8.300 16.611

Regarding compilation flags, -ffast-math helped
reduce the computation cost by a factor between 1.2 and 1.4.
Note that this holds only for the double-precision floating-
point version of the algorithms, whereas for the quadruple-
precision floating-point version it had no impact. Since
on the Raspberry Pi 4B the quadruple-precision floating-
point data type is library provided, and it is not directly
backed by hardware, it is very expensive to operate on such
device, and additional compiler optimizations provided by
-ffast-math are not possible. In our tests, though using
quadruple-precision floating-point parameters may help the
AR models to reduce the prediction error, running them in
real-time on such devices is not feasible. With n = 512 and
p = 16, we already reached the 2.90 ms constraint, with
only Burg’s denominator optimized algorithm (Alg. 3) being
able to stay within our deadline, with a timing of 2.47 ms
for the fitting phase and 0.21 ms for the prediction phase.
The same algorithm, with the most demanding configuration
(n = 8192 ans p = 128), required 305 ms for the fitting
phase and 1.65 ms for the prediction phase. So, from now
on, we will focus only on the double-precision floating-point
version of the algorithms.

Table 3 Time (ms) required to predict the next n;.5 (128) samples,
with p set to 64 and 128 and data type set to double

Prediction time (ms)

Algorithm p=064 p=128
Burg’s method 0.028 0.058
Denominator optimization

Hybrid denominator

Burg’s method (-ffast-math) 0.022 0.050
Den. opt. (-ffast-math)

Hybrid den. (-ffast-math)

Burg’s method (compensated) 0.060 0.124

Den. opt. (compensated)

Hybrid den. (compensated)

Tables 1 and 2 show the computational time required to
fit the various models for different values of n, whereas p
is set to 64 and 128, respectively. Table 3 shows instead the
computational time required by the various models to predict
the next ns.5; (128) samples, with p set to either 64 or 128. All
results shown in the aforementioned tables have an absolute
error < £ 3%.

Numerical results show that 2048 is a good value for
the training set size, because it allows us to freely change
the value of p in the range 1 to 128 while not exceeding
the 2.90 ms deadline. The denominator optimized version
(Sect.4.2.2) and the hybrid version (Sect.4.2.3) are very
similar in terms of computational time and are about 40%
faster during fitting than the traditional implementation
(Sect.4.2.1), thus allowing for larger values of n. In terms
of compilation flags, - f fast-math showed to not be nec-
essary to meet the 2.90 ms deadline, but it is helpful in cases
where additional optimization is needed, at the expense of
breaking IEEE compliance on floating-point representation.

5.7 Evaluation of the prediction error on long
predictions

Figure4 shows, for every AR model algorithm and various
values of n, the MAE over a long prediction of 20 packets of
128 samples each (2560 samples in total), for different val-
ues of p. In the plots, where the MAE goes above the y-axis
range, the model diverged with that configuration, drastically
exceeding the interval [—1, 1] used for audio floating-point
representation. Based on the plots, it emerges that, while error
compensation may help on longer predictions, this effect is
not deterministic. For example, in Fig.4e, error compensa-
tion helped to avoid model divergence with n = 2048, which
was instead present in Fig.4b, but the error compensated
model ended up diverging for n = 1024. Thus, in general,
the benefits that error compensation may bring are negli-
gible when compared to the additional computational cost.

@ Springer

Personal and Ubiquitous Computing

0.6
0.5
0.4

MAE
MAE

0.3
0.2

0.1

0.0

1 2 4 8 16 32 64 128 1 2 4 8 16 32
Order Order

(b) Optimized den. (c) Hybrid denominator

0.6
0.5
0.4

0.3

MAE
MAE

0.2
0.1

0.0

1 2 4 8 16 32
Order

64 128

(d) Burg’s method (com- (e) Optimized den. (com- (f) Hybrid den. (compen-

pensated) pensated)

—e— train_size=512
—e— train_size=2048
—e— train_size=8192

Fig.4 AR models—Ilong prediction MAE

Moreover, depending on the implementation, the parameters,
and the training data, numerical stability may not be granted.

Figure4 b and e show another interesting effect. In Burg’s
denominator optimized algorithm (Algorithm 3), for every
value of n, the model does not improve the prediction error
beyond a certain value of p. This is a consequence of the
errors made in estimating the initial k; reflection coefficients,
which lead to progressively smaller improvements with the
increase of the model order. Interestingly, this does not hap-
pen for Burg’s hybrid denominator version (Fig.4c and f),
which follows more closely the trend of the traditional Burg
method (Fig.4a and d).

Thus, the proposed Burg hybrid algorithm (Algorithm 4)
has the advantage of following more closely the error prop-
agation trend of the traditional Burg method, for longer
predictions, while incurring in a computational cost only
slightly higher than that of Burg’s denominator optimized
algorithm (Algorithm 3), allowing for significant savings in
comparison to the traditional method.

@ Springer

sated)

—e— train_size=1024
—e— train_size=4096

5.8 Limitations

While AR models using Burg’s method proved to outperform
the two benchmark solutions, they have some limitations. The
first one is in terms of computational requirements: though
AR models are pretty light in terms of memory, they are more
demanding in terms of CPU, especially during the fitting
phase (the prediction phase is about one to two orders of
magnitude lighter). Through algorithm optimizations, like
the denominator optimization illustrated in Sect.4.2.2, and
the usage of the appropriate compilation flags provided by the
specific language compiler in use, CPU usage can be tamed.
However, even if optimized, they are still computationally
intensive, which means that the scalability of this solution is
not as good as the one of the two benchmark PLC solutions.
Thus, if used in the context of a NMP application, some trade-
offs emerge. In a real deployment, a possible approach could
be to set an upper bound on the maximum number of AR
models to be executed in parallel, associated with the network

Personal and Ubiquitous Computing

Burg's method 2048-32

0.5

0.0

Gain

-0.5

-1.0

-15
0 500 1000 1500 2000 2500

Sample

(a) Burg’s method with n=2048 and

p=32
Burg's method 1024-128

15

1.0

0.5
§ 00

-0.5

-1.0

-5 0 500 1000 1500 2000 2500

sample

(c) Burg’s method with n=1024 and
p128

Burg's method 1024-4

15

1.0

0.5

0.0

Gain

-0.5

-1.0

-15
0 500 1000 1500 2000 2500

Sample

(b) Burg’s method with n=1024 and p=4

Burg's method (compensated) 1024-128

15

1.0

0.5

0.0

Gain

-0.5

-1.0

-1
s 0 500 1000 1500 2000 2500

Sample

(d) Burg’s method (compensated) with
n=1024 and p=128

Denominator optimization 2048-8

15

1.0

0.5

0.0

Gain

-1.0

-15
0 100 200 300

400 500 600 700 800
Sample

(e) Optimized denominator with n=2048

and p=8

Fig.5 Resulting waveform for AR-based predictions of 2560 samples (20 packets of 128 samples) of a 2-kHz sine wave

channels that are more likely to experience packet losses (this
choice could be done based on packet loss statistics collected
over the past history and updated in real-time).

The second limitation, which is specific to Burg’s method
implementation, is that every time a new packet is received,
the whole model needs to be fitted again on the new train-
ing set. This can be mitigated, e.g., by fitting the model
upon detection of a lost packet and then using it to predict
the next M packets (without re-fitting the model on a per-
packet basis), where M should be carefully chosen so that

the signal stationarity is likely to be maintained within such
time window. The investigation of solutions that make possi-
ble incremental incorporation of new audio samples without
requiring a new fitting procedure from scratch on the whole
training set is left for future work.

The third limitation of AR models is that numerical sta-
bility may not be granted, as discussed in Sect.5.7, and it
depends on the implementation, the parameters, and the train-
ing data. To show this effect, we fit different implementations
and configurations on a sine wave with a fixed frequency

@ Springer

Personal and Ubiquitous Computing

of 2 kHz. We then used the various models to predict the
next 2560 samples (20 packets of 128 samples). In Fig. 5, we
report some examples of how the different implementations
and configurations behaved. Sometimes, error compensation
may help, as reported in Fig. 5c and d. These two plots were
obtained with the same algorithm and parameters, with the
only difference that in Fig.5d, error-compensated floating-
point transformations were adopted. Nevertheless, as shown
in Fig. 5a, b, and e, numerical divergence heavily depends on
the AR model algorithm and parameters used.

In Fig.5a, we obtained an almost perfect reconstruction
of the input signal, while Fig. 5b reports a sine wave which
exceeds the range [—1, 1], which, once played back, would
resultin auditory distortions due to audio converters clipping.
Figure Se, instead, shows that after 20 samples amplitude
values ultimately explode to [—o0, +0o¢], and after 800 sam-
ples, the algorithm aborted. Countermeasures to avoid the
numerical stability problems need to be applied. A possible
approach could be to pre-check the generated samples and,
if they exceed the range [—1, 1], but are still limited (like
in Fig.5b), an amplitude rescaling could be applied. Con-
versely, if they diverge to [—oo, +o00], a fallback solution
could be to use silence substitution, to avoid generating loud
distortions which could possibly damage the equipment or
the ears of the listeners.

The last consideration about AR models is that, while they
have the benefit of creating a prediction which ensures con-
tinuity with the past samples, they have no guarantees of
continuity with future samples. Thus, in order to avoid creat-
ing some discontinuities between the predicted sections and
the next actual section, which result in audio glitches, some
strategies need to be implemented. A well-known strategy to
smooth out the discontinuities is to predict a number of sam-
ples which is greater than the ones in the missing section and
then use a simple cross-fade on the overlapping samples to
fade out the predicted samples and fade in the actual samples
of the next section [24-26].

6 Conclusions

In this paper, we propose a PLC solution based on AR
models and targeted towards NMP applications. In partic-
ular, we focus on exploring different implementations of AR
models based on Burg’s method for AR model fitting and
propose a novel variant that mitigates error propagation dur-
ing the recursive execution of the prediction algorithm, while
preserving computational scalability. Since many NMP solu-
tions are also built to run on a Raspberry Pi SBC, the focus
of this paper is to propose a PLC solution which is able to
run on the latest Raspberry Pi SBC currently available (i.e.,
the Raspberry Pi 4B). Experiments were performed consid-
ering various categories of audio signals, exploring various

@ Springer

choices of parameters and different implementations. Results
showed that, even with small orders, AR models outper-
form the prediction performance of the two benchmark PLC
techniques in terms of MAE and RMSE. Concerning com-
putational timings, results showed that a training set of 2048
lags is the highest value which guarantees the completion
of the model fitting and prediction of the next 128 samples
within 2.90 ms, for model orders up to 128. Moreover, using
either the denominator optimization or the hybrid denomina-
tor versions of Burg’s method reduces the computation cost
by a factor of 1.3 to 2, thus increasing the scalability of the
proposed solution.

Finally, we want to acknowledge that, while this PLC
method and its implementation were optimized and tested
with NMP as target application, it could be employed in any
other scenario where low-latency streaming of music/audio
material is involved.

Funding Open access funding provided by Politecnico di Torino within
the CRUI-CARE Agreement. This work has been supported by the
Italian Ministry for University and Research under the PRIN program
(grant n. 2022CZWWKP).

Data Availability The dataset analyzed during the current study, all
the code developed for and presented in this study, results, and pro-
cessed audio files are publicly available on GitHub at https://github.
com/matteosacchetto/burg-implementation-experiments

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Sacchetto M, Gastaldi P, Chafe C, Rottondi C, Servetti A (2022)
Web-based networked music performances via WebRTC: a low-
latency PCM audio solution. J Audio Eng Soc 70(11):926-937.
https://doi.org/10.17743/jaes.2022.0021

2. Rottondi C, Chafe C, Allocchio C, Sarti A (2016) An overview on
networked music performance technologies. IEEE Access 4:8823—
8843. https://doi.org/10.1109/ACCESS.2016.2628440

3. Burg, JP (1975) Maximum entropy spectral analysis. PhD thesis,
Stanford University. Available at http://sepwww.stanford.edu/data/
media/public/oldreports/sep06/

https://github.com/matteosacchetto/burg-implementation-experiments
https://github.com/matteosacchetto/burg-implementation-experiments
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.17743/jaes.2022.0021
https://doi.org/10.1109/ACCESS.2016.2628440
http://sepwww.stanford.edu/data/media/public/oldreports/sep06/
http://sepwww.stanford.edu/data/media/public/oldreports/sep06/

Personal and Ubiquitous Computing

4.

10.

11.

12.

13.

14.

15.

Sacchetto M, Huang Y, Bianco A, Rottondi C (2022) Using
autoregressive models for real-time packet loss concealment in
networked music performance applications. In: Proceedings of the
17th international audio mostly conference. AM °22, pp 203-210.
Association for Computing Machinery, New York, USA. https:/
doi.org/10.1145/3561212.3561226

Sanneck H, Stenger A, Younes KB, Girod B (1996) A new
technique for audio packet loss concealment. In: Proc. of GLOBE-
COM’96. 1996 IEEE Global telecommunications conference, pp
48-52

Guogiang Z, Kleijn WB (2008) Autoregressive model-based
speech packet-loss concealment. In: 2008 IEEE International
conference on acoustics, speech and signal processing. inter-
national conference on acoustics speech and signal processing
(ICASSP), pp 4797-4800. https://doi.org/10.1109/ICASSP.2008.
4518730. QC20100830

Foster P, Klapuri A, Plumbley MD (2011) Causal prediction of
continuous-valued music features. In: ISMIR, pp 501-506
Maezawa A (2019) Deep linear autoregressive model for inter-
pretable prediction of expressive tempo. Proc SMC, 364-371
Chang C-J, Lee C-Y, Yang Y-H (2021) Variable-length music score
infilling via XL Net and musically specialized positional encoding.
arXiv:2108.05064

Vos K, Sgrensen KV, Jensen SS, Valin J-M (2013) Voice coding
with Opus. In: Audio Engineering Society Convention 135. Audio
Engineering Society

Vos K (2013) A fast implementation of Burg’s method. OPUS
codec

Lazzaro J, Wawrzynek J (2001) A case for network musical per-
formance. In: Proceedings of the 11th international workshop on
network and operating systems support for digital audio and video.
NOSSDAV "01, pp 157-166. Association for Computing Machin-
ery, New York, USA. https://doi.org/10.1145/378344.378367
Virolainen J, Laine P (2005) Methods and apparatus for trans-
mitting MIDI data over a lossy communications channel. Google
Patents. US Patent 6,898,729

Nelson JR, Heidorn AJ, Cox RJ (2017) Reliable real-time transmis-
sion of musical sound control data over wireless networks. Google
Patents. US Patent 9,601,097

Verma P, Mezza Al, Chafe C, Rottondi C (2020) A deep learning
approach for low-latency packet loss concealment of audio signals
in networked music performance applications. In: 2020 27th Con-

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

ference of open innovations association (FRUCT), pp 268-275.
IEEE

Briot J-P (2021) From artificial neural networks to deep learning
for music generation: history, concepts and trends. Neural Comput
& Applic 33(1):39-65

Akaike H (1969) Fitting autoregressive models for predic-
tion. Ann Inst Stat Math 21(1):243-247. https://doi.org/10.1007/
BF02532251

Levinson N (1946) The wiener (root mean square) error criterion in
filter design and prediction.] Math Phys 25(1-4):261-278. https://
doi.org/10.1002/sapm1946251261

Faber LJ (1986) Commentary on the denominator recursion for
Burg’s block algorithm. Proc IEEE 74(7):1046—1047. https://doi.
org/10.1109/PROC.1986.13584

Ogita T, Rump S, Oishi S (2005) Accurate sum and dot prod-
uct. SIAM J Sci Comput 26:1955-1988. https://doi.org/10.1137/
030601818

Graillat S, Ménissier-Morain V (2007) Error-free transformations
inreal and complex floating point arithmetic. In: International sym-
posium on nonlinear theory and its applications (NOLTA’07), pp
341-344

Sims CA (1980) Macroeconomics and reality. Econometrica J
Econometric Society 1-48

Zivot, E., Wang, J.: Vector autoregressive models for multivariate
time series. Modeling financial time series with S-PLUS®, 385-
429 (2006)

Wasem OJ, Goodman DJ, Dvorak CA, Page HG (1988) The
effect of waveform substitution on the quality of PCM packet
communications. IEEE Trans Acoustics Speech Signal Process
36(3):342-348. https://doi.org/10.1109/29.1530

Fink M, Holters M, Zolzer U (2013) Comparison of various predic-
tors for audio extrapolation. In: Proc. of the 16th Int. Conference
on Digital Audio Effects (DAFx-13), pp 1-7

Pedersen CS, Zhou M, Mgller MB, de Koeijer NEM, @stergaard
J (2023) AR model for low latency packet loss concealment for
wireless sound zones at low frequencies. In: Audio engineering
society convention 154. Audio Engineering Society

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1145/3561212.3561226
https://doi.org/10.1145/3561212.3561226
https://doi.org/10.1109/ICASSP.2008.4518730
https://doi.org/10.1109/ICASSP.2008.4518730
http://arxiv.org/abs/2108.05064
https://doi.org/10.1145/378344.378367
https://doi.org/10.1007/BF02532251
https://doi.org/10.1007/BF02532251
https://doi.org/10.1002/sapm1946251261
https://doi.org/10.1002/sapm1946251261
https://doi.org/10.1109/PROC.1986.13584
https://doi.org/10.1109/PROC.1986.13584
https://doi.org/10.1137/030601818
https://doi.org/10.1137/030601818
https://doi.org/10.1109/29.1530

	Implementation and optimization of Burg's method for real-time packet loss concealment in networked music performance applications
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Autoregressive models
	3.2 Burg's method

	4 Algorithmic framework
	4.1 Notation
	4.2 AR model implementations
	4.2.1 Traditional Burg's method
	4.2.2 Denominator optimization
	4.2.3 Hybrid denominator
	4.2.4 Error compensation

	5 Numerical assessment
	5.1 Experimental setup
	5.2 Dataset
	5.3 Performance metrics
	5.4 Training and testing the AR models
	5.5 Implementation details
	5.6 Numerical results
	5.6.1 Evaluation of the prediction error
	5.6.2 Evaluation of computational requirements

	5.7 Evaluation of the prediction error on long predictions
	5.8 Limitations

	6 Conclusions
	References

