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Featured Application: Numerical investigation on the damage behavior of CFRP laminates
subjected to low velocity impacts.

Abstract: Composite laminates are characterized by high mechanical in-plane properties and poor
out-of-plane characteristics. This issue becomes even more relevant when dealing with impact
phenomena occurring in the transverse direction. In aeronautics, Low Velocity Impacts (LVIs) may
occur during the service life of the aircraft. LVI may produce damage inside the laminate, which are
not easily detectable and can seriously degrade the mechanical properties of the structure. In this
paper, a numerical-experimental investigation is carried out, in order to study the mechanical behavior
of rectangular laminated specimens subjected to low velocity impacts. The numerical model that best
represents the impact phenomenon has been chosen by numerical–analytical investigations. A user
defined material model (VUMAT) has been developed in Abaqus/Explicit environment to simulate
the composite intra-laminar damage behavior in solid elements. The analyses results were compared
to experimental test data on a laminated specimen, performed according to ASTM D7136 standard,
in order to verify the robustness of the adopted numerical model and the influence of modeling
parameters on the accuracy of numerical results.

Keywords: CFRP; Low Velocity Impacts; Cohesive Zone Model (CZM); Finite Element Analysis
(FEA); VUMAT; inter-laminar damage; intra-laminar damage

1. Introduction

Composite materials are characterized by high mechanical properties values if compared to classic
metallic materials. However, their damage behavior is difficult to predict and control. As a matter of
fact, impact events on a composite structure are still a “hot topic” for research, nowadays. The different
impact phenomena can be divided into three main groups, based on the velocity of the impactor:
low velocity impacts, ballistic impacts, and hyper-velocity impacts. In particular, Low Velocity Impacts
(LVIs) often result in Barely Visible Impact Damages (BVIDs), which can be hardly detected by the naked
eye, but may relevantly decrease the material strength [1–3]. Damages occurring as a consequence
of low velocity impacts include both intra-laminar (fiber and/or matrix failure) and inter-laminar
damages (delaminations). Among the others, delaminations, which can growth under service loads,
can seriously reduce the load carrying capability of the overall structure [4,5]. For this reason, a large
number of studies, focused on the prediction of the damages (especially delaminations) induced by LVI,
can be found in the literature. In these studies, different approaches, both analytical–numerical and
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experimental, were considered [6–9]. Different techniques are available and presented in the literature,
able to predict and evaluate the damage and the residual strength during LVI phenomena. In [10],
an acousto–ultrasonic approach was used to characterize the material impact strength. Low velocity
analytical impact prediction models available in the literature are often characterized by a large degree
of simplification. However, despite the simplifications in the models, good results can be achieved.
In particular, the study in Reference [11] describes a numerical model for predicting the onset and the
propagation of damages arising from low velocity impacts induced by large and small impact masses.
A further evolution of the analytical model for predicting the behavior of a thin-walled composite
structure during a low velocity-high mass impact phenomenon was presented in [12]. An additional
analytical methodology based on the energy balance for the development of damage during a LVI
phenomenon with the help of a localized strain field was introduced in [13]. However, analytical
approaches, which can only be adopted for few particular conditions [1,6,7], cannot be generally
considered for a complete and detailed study of the impact event, due to inherent complexity of the
impact phenomenon itself [9,14–16]. A more comprehensive study of the impact phenomenon can
be surely obtained by means of numerical methods. Indeed, FEM (Finite Element Method) codes
can be adopted to model a low velocity impact event on a composite specimen, taking into account
both intra-laminar and inter-laminar damages [9,17–19]. In order to evaluate the intra-laminar and
inter-laminar damage onset and propagation during an impact phenomenon, progressive damage
methods have been presented by several authors, showing good results compared to the experimental
data. In [20], LVI tests were performed and the Puck criteria were adopted to analyze the composite
structure mechanical response. In the same work, an inter-laminar matrix crack density parameter
was introduced, in order to mitigate the computational cost, while decreasing, on the other side,
the analysis accuracy. In [21–23], a model capable of predicting the inter-laminar damage in a
unidirectional composite laminate was introduced. In particular, the proposed model took into
account a matrix non-linear shear behavior, focusing on the element characteristic length in order to
alleviate the mesh dependency. Actually, fracture mechanic is widely used to model inter-laminar
damage evolution through FE-based procedures such as Virtual Crack Closure Technique (VCCT) and
Cohesive Zone Model theory (CZM) [17,24–29]. In [29–31], the influence of intra-laminar damages
on the inter-laminar ones is assessed adopting CZM, while, in [26,31–33], the mesh-dependency
issue of both inter-laminar and intra-laminar prediction models, which may lead to an unrealistic
inter-laminar damage prediction, is emphasized. Low velocity impact events on composite specimens,
with different stacking sequences, were studied in several works, which implement the intra-laminar
and inter-laminar damages, respectively, by means of Continuum Damage Mechanics (CDM) and
CZM approaches [9,18,19]. In these works, good results, in terms of correlation between numerical
outputs and experimental data, were obtained for various impact energy levels.

In this work, we propose an analytical model to preliminary evaluate the response of a
unidirectional composite plate subjected to a low velocity impact. The analytical model has been
developed in accordance with [1,2,33]. Then, the results of the analytical model were compared with
those from a numerical model, which uses the analytical boundary conditions. Indeed, in the frame of
this first step, the introduced analytical model, based on Classical Laminated Plate Theory (CLPT),
was adopted as a benchmark for appropriately selecting the main numerical modeling parameters to
be used for the numerical procedure (element type, mesh density, element size, etc.). Subsequently, the
numerical model was improved, introducing the boundary conditions of the experimental test. Finally,
a further numerical model, which takes into account inter-laminar and intra-laminar damages, was
implemented and the results were compared with the experimental test ones. This final numerical test
was performed by adopting the numerical model, from the previous step, which best represents the
impact event. The low velocity impact phenomenon was numerically simulated by considering the
boundary conditions and the specimen size according to the ASTM (American Society for Testing and
Materials) D7136 standard [34]. The composite specimens were subjected to a 10 J low velocity impact.
A reduction of the computational time has been achieved by introducing global/local techniques [35]
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between the impacted area and the rest of the specimen. The results, in terms of intra-laminar and
inter-laminar damages, have been compared with the experimental ones, obtained by means of
Ultrasonic C-Scan tests. Further numerical–experimental correlations on the impactor displacement
and velocity, the internal energy, and the force exerted during the impact have been performed as well.

Numerical results, obtained considering different Abaqus element types, were compared to each
other. The Finite Element Model has been discretized by means of SC8R Continuum shell elements and
C3D8R Solid elements [36]. Inter-laminar damages were modeled by a Cohesive Zone Model based
approach, while intra-laminar damage was modeled by means of Hashin’s failure criteria and gradual
material properties degradation rules. However, the intra-laminar damage model was only provided
for Continuum shell elements in Abaqus. Since no intra-laminar damage model was provided for
Solid elements, a user-defined material model, able to take into account the intra-laminar damage,
was implemented in a user subroutine VUMAT.

In Section 2, the theoretical background on the analytical model and on the intra-laminar damage
model implemented in the VUMAT are presented. In Section 3, the test cases are introduced, while in
Section 4 the results are presented and discussed.

2. Theoretical background

2.1. Classical Laminated Plate Theory

A multi-degree of freedom analytical model [1,2,37] was introduced in order to study the impact
event. A simply supported plate was analytically solved by using the Classical Laminated Plate
Theory. The solutions for the analytical approach were obtained in terms of contact force, maximum
displacement, impactor velocity, and kinetic energy. Then, a system of ordinary differential equations
(ODE), representing the simply supported plate, coupled with a differential equation representing the
impactor motion, was obtained.

A laminated composite plate, with in-plane dimensions a and b, respectively, along the x- and
y-directions, was considered. The plate was considered simply supported along the four edges,
and a concentrated force was applied at the center (x0 = a/2, y0 = b/2). Under these assumptions,
the equation of motion along the transverse direction can be expressed as the following system of
ordinary differential equations [1]:

..
αmn +ω2

mnαmn =
4F

abI1
sin

(mπx0

a

)
sin

(nπy0

b

)
, (1)

In Equation (1), F is a concentrated applied force, while ωmn, which is the natural frequency of the
system for the strain modes m,n, is given by:

ωmn =

√
π4

a4I1
(D11m4 + 2(D12 + 2D66)m2n2r2 − 4D16m3nr− 4D26mn3r3 + D22n4r4), (2)

where Dij are the terms of the bending stiffness matrix, I1 is the mass per unit length, and r = a/b.
As reported in [1], when both values of m and n are negative, the effects of deflection in the plate

become negligible. The choice of high positive values for both values is related to the phenomenon
being analyzed: as the values of m and n increase, the rotary inertia and shear deformation effects
becomes significant.

Moreover, the following Equation (3), governing the impactor dynamic, has been considered:

M
..
z(t) + Fc(t) = 0, (3)

where M and
..
z(t) are, respectively, the impactor mass and acceleration, Fc(t) is the contact force, and t

is the time variable.
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A proper contact law has been chosen to couple Equations (3) and (1). In particular, the contact
force Fc(t) has been related to the indentation α = z(t) − w0(x0,y0,t), expressed as the difference between
the impactor displacement z(t) and the laminate central point displacement w0(x0,y0,t). In this work,
a linearized form of the Hertz Contact Law was adopted [37], therefore the contact force history, exerted
during the impact phenomenon, can be expressed as:

Fc(t) = kyα, (4)

where ky represents the linearized contact stiffness.
The boundary conditions of the system of ODEs are:

αmn(0) =
.
αmn(0) = 0, (5)

z(0) = 0
.
z(0) = V

(6)

where V is the initial velocity of the impactor.

2.2. Composites Damage Criteria

In order to account for the damage behavior of the laminate, a User Material was developed in the
ABAQUS FEM environment capable to consider the fiber and matrix damage mechanisms in tension
and compression [4,19,29]. Each failure mode consisted of two different phases. Initially, a linear
mechanical behavior is considered up to the damage initiation threshold. Then, the damage evolution
up to the complete damage is evaluated.

The criteria used for evaluate the damage initiation are based on Hashin’s (fiber and matrix tension
and fiber compression) and Puck–Shurmann [38] (matrix compression) failure criteria, as reported in
Equations (7)–(10).

F f t =
(
σ1

XT

)
≥ 1 i f σ1 ≥ 0, (7)

F f c =

(
σ1

XC

)
≥ 1 i f σ1 < 0, (8)

Fmt =
(
σ2

YT

)2
+

(
τ12

S12

)2

+

(
τ23

S23

)2

≥ 1 i f σ2 ≥ 0, (9)

Fmc =

 τnt

SA
23 − µntσnn

2

+

(
τnl

S12 − µnlσn

)2

≥ 1 i f σ2 < 0, (10)

where XT and XC are the fiber tensile and compressive strengths, YT is the matrix tensile strength, and
S12 and S23 are respectively the longitudinal and transverse shear strengths. Moreover, the parameters
introduced in Equation (10) have been defined with respect to the potential fracture plane; in particular,
SA

23 is the transverse shear strength in the potential fracture plane, µnt and µnl are respectively the
friction coefficients in the transverse and longitudinal directions, σnn is the normal stress, and τnt and
τnl are respectively the shear stresses in the transverse and longitudinal directions. Indeed, experiments
have demonstrated that unidirectional laminates experience shear fail [39] when subjected to transverse
compressive loads, with a fracture plane oriented with an angle θf = 53◦ ± 2◦ [21]. Hence, to correctly
evaluate the damage status of the laminate, the stress/strain components in the θf oriented fracture
plane have been considered, instead of the nominal 0◦ oriented nominal plane.
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Therefore, the stress components in the general fracture plane L-N-T oriented with a fracture
angle θf, as in Figure 1, can be obtained as a function of the stress components defined in the lamina
coordinate system 1-2-3:

σn = σ2 cos2 θ f + σ3 sin2 θ f + 2τ23 cosθ f sinθ f
τnl = τ23 cosθ f + τ31 cosθ f

τnt = (σ3 − σ2) cosθ f sinθ f + τ23
(
cos2 θ f − sin2 θ f

) . (11)
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Figure 1. Compressive matrix failure and fracture plane.

Hence, the parameters related to the fracture angle introduced in Equation (10) can be defined [40]:

φ = 2 · θ f − 90◦, (12)

µnt = tanφ, (13)

SA
23 =

YC(1− sinφ)
2 cosφ

, (14)

µnl = µnt ·
S12

SA
23

, (15)

where YT is the matrix compressive strength.
Each mode is characterized by the failure behavior reported in Figure 2. In particular, a linear

elastic behavior with an initial stiffness K can be observed up to location A, which identifies the damage
onset. Then, each location B on the segment AC identifies a partial damage condition characterized by
a degraded stiffness Kd, up to location C, where the complete failure can be observed.
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To take into account the material stiffness degradations in locations B, the damage coefficients
di [36] are introduced for each failure mode:

di =
δt

i,eq

(
δi,eq − δ

0
i,eq

)
δi,eq

(
δt

i,eq − δ
0
i,eq

) ; δ0
i,eq ≤ δi,eq ≤ δ

t
i,eq; i ∈ ( f c, f t, mc, mt). (16)

Indeed, the damaged stiffness matrix CD can be expressed as a function of the damage
coefficients as:

CD =
1
D


(
1− d f

)
E1

(
1− d f

)
(1− dm)ν21E1 0(

1− d f
)
(1− dm)ν12E2 (1− dm)E2 0

0 0 D(1− ds)G12

, (17)

where D = 1 − (1 − df)(1 − dm)ν12ν21, and df, dm, and ds are respectively the fiber, matrix, and shear
damage coefficients:

d f =

{
d f t if σ̂11 ≥ 0
d f c if σ̂11 < 0

dm =

{
dmt if σ̂22 ≥ 0
dmc if σ̂22 < 0

ds = 1−
(
1− d f t

)(
1− d f c

)
(1− dmt)(1− dmc)

(18)

However, this methodology has been found strongly dependent on the domain discretization.
Hence, to reduce mesh dependencies, the element characteristic length LC has been introduced. In this
work, the solution proposed by Bazant and Oh [39] and reported in Equation (19) has been adopted:

LC =

√
Aip

cosθ
, (19)

where Aip is the Area of the element corresponding to the ip-th integration point and θ is the fracture
angle. Then, the equivalent displacements was computed as a function of the element characteristic
length LC:

δ0
mt,eq =

√
(ε2 · LC)

2 + (γ12 · LC)
2 + (γ23 · LC)

2

√
Fmt

, (20)

δ0
mc,eq =

√
(γln · LC)

2 + (γtn · LC)
2

√
Fmc

, (21)

δ0
i,eq =

√
(ε1 · LC)

2

√
Fi

; i ∈ ( f c, f t), (22)
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δt
f t,eq =

2GT
IC

σ0
f t,eq

, (23)

δt
f c,eq =

2GC
IC

σ0
f c,eq

, (24)

δt
mt,eq =

2GT
IIC

σ0
mt,eq

, (25)

δt
mc,eq =

2GC
IIC

σ0
mc,eq

, (26)

where GT
IC and GC

IC are the tensile and compressive Mode I fracture toughness, GT
IIC and GC

IIC are
the tensile and compressive Mode II fracture toughness, and:

γnt = γ12 cosθ f + γ13 sinθ f , (27)

γnl = −ε2 cosθ f sinθ f + ε3 cosθ f sinθ f + γ23
(
2 cos2 θ f − 1

)
. (28)

3. Test Cases Descriptions

3.1. Analytical Set-Up

The analyzed test case is a simply supported laminated plate impacted by a 3.58 kg mass steel
sphere. A 10 J impact energy is considered, leading to an impactor initial velocity equal to 2.364 m/s.
The plate is made by a unidirectional carbon-fiber laminate, with in-plane dimensions in the x- and
y-directions, respectively, a = 150 mm and b = 100 mm. The stacking sequence of the laminate is
[45/-45/0/0/90/0]2S, while the mechanical properties of the adopted material system and the ply thickness
are reported in Table 1.

Table 1. Lamina mechanical properties.

Property [unit] Value

ρ [kg/m3] 1600
E11 [MPa] 149,500

E22 = E33 [MPa] 8430
G12 = G13 [MPa] 4200

G23 [MPa] 2520
υ12 = υ13 [-] 0.3

υ23 [-] 0.45
υ21 [-] 0.0186

XT [MPa] 2143
XC [MPa] 1034
YT [MPa] 75
YC [MPa] 250

S12 = S13 [MPa] 108
S23 [MPa] 95

GT
1c [kJ/m2] 30.72

GC
1c [kJ/m2] 7.15

GT
2c [kJ/m2] 0.667

GC
2c [kJ/m2] 7.41

Ply thickness [mm] 0.186

A spherical impactor with an 8 mm in radius was considered. The linear contact stiffness was set
equal to ky = 7.8755 × 103 N/mm, according to the equations reported in [34]. In these analyses, aimed
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to preliminary assess the elastic behavior of the structure under impact loading conditions, only the
elastic behavior has been taken into account. Therefore, no damage has been considered.

3.2. Experimental Set-Up

The experimental impact test was performed according to the ASTM D7136 standard [34], as shown
in Figure 3.
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Figure 3. Experimental set-up.

The three tested specimens were cut from a single CFRP plate by using the waterjet technique.
The CFRP plate is composed of prepreg high modulus carbon fiber and thermoset epoxy resin, cured in
autoclave. The test was performed with the CEAST Fractovis plus drop tower test machine. The plates
were normally impacted at the center. The impactor was a 16 mm diameter hemisphere made of
hardened steel, with a mass of 3.58 kg. A 10 J impact energy was considered. Ultrasonic inspections
were performed on the specimen prior to the impact test to assure the lack of manufacturing defects,
and after the experimental test to evaluate the damaged area.

4. Results and Discussion

4.1. Preliminary Analyses

The analytical approach results expressed in terms of impactor displacement, contact force,
impactor velocity, and kinetic energy versus time are shown respectively in Figures 4–7. The results
were obtained by considering an increasing number of modes.Appl. Sci. 2019, 9, x 9 of 22 
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Figures 4 and 5 highlight that lower values of m and n results in higher values of stiffness. Indeed,
increasing the m and n values led to a decrease of the peak force and to an increase in the maximum
deflection of the plate central point. Additionally, according to Figures 4 and 5, the panel response in
terms of impact force and maximum deflection tended to converge as the values of m and n increased.
Figure 6 shows the trends of the impact velocity considering different m and n values. Although
the velocity had the same initial and final values, different m and n led to different velocity trends.
Moreover, as a direct consequence of the variation of the impact velocity, the kinetic energy, shown in
Figure 7, showed different behavior when low values of m and n were considered. However, as m and
n increase, the graphs shown in Figures 4–7 appear to be perfectly overlapped.
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Then, the numerical results were compared with the analytical ones. The m,n = 10 analytical
results were chosen as the reference analytical solution.

In order to define the numerical model which best-fit the analytical results, several parameters
were investigated, such as the element type (reduced integration continuum shell elements SC8R
and reduced integration solid elements C3D8R), the in-plane element size (1 mm, 2 mm, and 4 mm),
and the number of elements along the thickness direction. In particular, Continuum Shell elements
were discretized with 1, 12, and 24 elements in the thickness direction, while Solid elements were
discretized with 24 elements in the thickness direction (one element per ply). Hence, more than one
orientation is associated to the continuum shell elements belonging to the models characterized by less
than 24 elements in the thickness direction.

In the numerical analyses, the plate was considered simply supported on the edges, as reported in
Figure 8. In the framework of preliminary analyses, aimed to compare the analytical model with the
numerical ones to determine the numerical parameters which best represent the mechanical behavior
of the plate subjected to low velocity impact, both the inter-laminar and intra-laminar damages
were neglected.
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In Figures 9–13, the numerical and analytical results, in terms of displacement of the impactor
and contact force, are compared. In particular, the results shown in Figure 9 were obtained by using
a shell element formulation, while the results in Figures 10–12 were obtained by using a continuum
shell formulation considering, respectively, 1, 12, and 24 elements in the thickness direction. Finally,
in Figure 13, the results obtained by using a solid element formulation, with 24 elements in the thickness
direction, are introduced.
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Figure 9. Shell elements: analytical–numerical comparison. (a) Central point displacement;
(b) contact force.
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Figure 10. Continuum shell elements with one element in the thickness direction: analytical–numerical
comparison. (a) Central point displacement; (b) contact force.
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Figure 11. Continuum shell elements with 12 elements in the thickness direction: analytical–numerical
comparison. (a) Central point displacement; (b) contact force.
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Figure 12. Continuum shell elements with 24 elements in the thickness direction: analytical–numerical
comparison. (a) Central point displacement; (b) contact force.
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Figure 13. Solid elements with 24 elements in the thickness direction: analytical–numerical comparison.
(a) Central point displacement; (b) contact force.

According to the Figures 9–13, Shell and Solid elements’ models were not particularly influenced
by the in-plane element size. On the other hand, Continuum shell elements’ models were more sensitive
to the in-plane element size as the number of elements in the thickness direction increased. In particular,
the numerical results of the Continuum shell model with 12 and 24 elements in the thickness direction
associated to coarser mesh (size 2 mm or 4 mm) differed noticeably from the analytical results. This is
mainly due to hourglass problems, which can be relevant for the reduced integration scheme elements.
Unfortunately, the reduced integration scheme is mandatory in Abaqus/Explicit when Continuum
shell elements were adopted. To alleviate hourglass deformation problems that could arise in the
numerical models, the default hourglass controls available in Abaqus/Explicit [36] was adopted.

In general, the results highlight that the best results were obtained by the Solid element model
discretized with one element per ply and an in-plane element size equal to 1 mm; however, a good
numerical–analytical correlation was obtained also by the Continuum shell mode, discretized by
12 elements in the thickness direction and an in-plane element size equal to 1 mm. Indeed, this last
configuration was chosen for the analysis presented hereafter due to its excellent compromise between
low computational cost and agreement with the analytical solution.

Despite their simplifications, the analytical models available in the literature well describe the
behavior of a CFRP plate subjected to impact loading conditions. Hence, the numerical model was
validated by comparisons with the analytical one, and the used modeling approach, neglecting in this
preliminary phase the damages, has been assessed. Once the accuracy of the impact numerical model
is verified, some considerations should be made about the relevant difference between the boundary
conditions implemented in the analytical model and the ones implemented in the experimental
test. Actually, simply supported conditions have been considered in the analytical and preliminary
numerical models; however, the boundary conditions of the experimental test, suggested by the ASTM
standards and reported in Figure 14, are substantially different. These boundary conditions are a
consequence of a support fixture whose degrees of freedom are restrained and four rigid clamps,
also modeled as rigid bodies, which hold the specimen still during impact and avoid any rebound.
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A further numerical model obtained with the implementation of the Experimental boundary
condition (BC-E) was introduced to understand the effects of boundary conditions on the numerical
results. In Figure 15, the analytical, experimental and numerical results of the shell model obtained by
considering both analytical (BC-A) and experimental (BC-E) boundary conditions were compared.
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Figure 15. Contact force comparison between analytical and numerical boundary conditions.

In Figure 15, a comparison between experimental, analytical, and numerical results, in terms of
force as a function of the time, is reported. The comparison shows that in the first part of the curve
both numerical and analytical models were in agreement with the experimental results. However,
after a first phase, the analytical model and the FEM BC-A numerical model greatly differed from
the experimental result. On the other hand, the FEM BC-E numerical model was characterized by
the same mechanical response in terms of stiffness of the laminate, up to the maximum force peak.
Indeed, neglecting the damages in the numerical model resulted in grater force peak, if compared
with the experiment. Once the accuracy of the numerical model, in terms of elastic response, was
established, the numerical models which provided the best results compared to the analytical solution
was considered for the final impact test: final Continuum shell model and Final 3D solid model.
Since Abaqus does not provide any intra-laminar damage models for Solid elements, a VUMAT was
introduced. On the other side, Abaqus built-in Hashin’s criteria were used for model discretized by
means of Continuum shell elements. For both the final continuum shell model and the final solid FEM
model, gradual material properties degradation rules have been adopted for intra-laminar damage
progression and inter-laminar damage were implemented through cohesive elements layers placed at
plies interfaces.

4.2. Final Solid Model

This Final Solid model was created by introducing two different meshed areas connect by a
global–local conditions. Indeed, in the specimen impacted area, where most of the damage is supposed
to develop (Figure 16) a ply-by-ply refined discretization was considered with each ply represented by a
single layer of 3D solid elements C3D8R with a reduced integration scheme. On the contrary, the external
global domain has been modeled with a coarser continuum shell mesh. With this discretization scheme,
an accurate study can be performed by reducing, at the same time, the computational effort [40].
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For 3D solid elements, the intra-laminar damage model introduced in Section 2.2 was applied
by means of a VUMAT. Moreover, since the inter-laminar damages are likely to occur only between
plies with different fiber orientation, zero-thickness cohesive layers were placed only in these locations.
As highlighted in Figure 17, cohesive layers were connected to the adjacent layer by means of
tie-constraint. Table 2 reports the mechanical properties of the cohesive material system, which were
experimentally evaluated by means of three-point bending (En, Et, Es), double cantilever beam (Nmax,
GIc), and end notched flexure tests (Tmax and Smax, GIIc and GIIIc).
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Table 2. Cohesive mechanical properties.

Property [unit] Value

En [MPa/mm] 1.155 × 106

Et [MPa/mm] 6 × 105

Es [MPa/mm] 6 × 105

Nmax [MPa] 62.3
Tmax [MPa] 92.3
Smax [MPa] 92.3
GIc [kJ/m2] 0.18
GIIc [kJ/m2] 0.5
GIIIc [kJ/m2] 0.5

Both solid and cohesive elements have been discretized by 1× 1 mm2 elements. The external global
domain, which has been modeled by one layer of Continuum shell SC8R elements along thickness
direction, has been discretized with an element in-plane size of 4 mm. The specimen is constrained
by a fixture and four clamps, modeled with R3D4 rigid elements. The impactor was modeled as a
sphere of 16 mm diameter modeled with 3D Solid C3D8R elements. A surface-to-surface contact was
used between the impactor and the specimen. During the analysis, the completely damaged elements
were removed from the model to increase the computational efficiency. In particular, when cohesive
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elements were removed, plies can touch each other at the interfaces. Hence, a general contact on the
whole model was defined (except for the already defined impact surfaces) to take into account this
behavior. A friction coefficient with a value of 0.5 was introduced for both impactor-to-ply contact and
ply-to-ply contact. Enhanced hourglass control was set to decrease hourglass problems related to the
reduced integrated elements.

4.3. Final Continuum Shell Model

In the Final Continuum shell model, 12 continuum shell elements along thickness direction were
used to model the specimen (Figure 18). For each element, a composite layup composed of two plies
was defined.
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The intra-laminar damages have been accounted by means of Hashin’s failure criteria, while
cohesive layers placed at plies interfaces and introduced in Table 2 were used to model inter-laminar
damage. The contact laws introduced in Section 4.2 were adopted.

4.4. Numerical–Experimental Correlation

In this section, a comparison between the experimental results and the numerical ones for the both
investigated configurations (continuum shell element and solid elements) is performed considering
both intra-laminar and inter-laminar damages. Three 10 J impact experimental tests were performed.
The damaged area was acquired by means of the ultrasonic C-Scan. Figure 19 shows the C-scan of one
representative specimen.Appl. Sci. 2019, 9, x 16 of 22 
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A linear pattern obtained by means of Abaqus/Viewer was used to evaluate the experimental
damaged area. The tested specimens were comparable in terms of force, displacement, and kinetic
energy as a function of the time, and inter-laminar damages. In particular, the experimental damaged
area was about 250 mm2, while the numerical damaged area, evaluated by using different numerical
models, was in the range 166–609 mm2.
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The continuum shell model uses a lower number of interfaces between the plies, if compared
with the solid element discretization model, and two plies with different orientations are discretized
with only one element through the thickness. This assumption could influence the plate mechanical
response, leading to different results in terms of delaminated area.

In Figures 20 and 21, the numerical results of the final Continuum shell model in terms of
inter-laminar and intra-laminar damages are respectively reported.
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According to Figure 20, the simulation over predicts the size of the delamination.
This over-prediction can be related to the shell formulation, which is not able to correctly predict
the forces acting in the out-of-plane direction, and to the discretization in the thickness direction.
Indeed, assuming 12 elements in the thickness direction reduces the number of interfaces where the
delamination can occur, leading to larger inter-laminar damages in the remaining interfaces.

Figures 22 and 23 show the predicted and measured contact force, impactor displacement,
internal energy, and impactor velocity as a function of the time.
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Figure 22. Shell element model. (a) Contact force history; (b) impactor displacement.
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Figure 23. Shell element model. (a) Internal energy; (b) impactor velocity.

According to Figure 22a, the numerical curve deviates from the experimental one at about 0.3 ms
due to anticipated numerical prediction of the onset of delaminations, resulting in a longer contact
duration. This effect can be due to the lower number of interfaces. Moreover, the numerically
overestimated impactor displacement (6.77% as reported in Figure 22b) and the underestimated
residual internal energy of the numerical model (−28.52% as reported in Figure 23a), confirm the
over-prediction of damages observed in the simulation. Hence, in the adopted numerical model,
significant differences can be observed between the numerical and experimental inter-laminar and
intra-laminar damages, as shown in Figures 20 and 21. In particular, the stiffness of the continuum shell
element is underestimated if compared with experimental results. Indeed, the maximum displacement
of the numerical result is lower than the experimental result in conjunction with a lower peak force.

The numerical results of the solid element model in terms of inter-laminar and intra-laminar
damages are reported in Figures 24–27.
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Figure 27. (a) Transversal Shear damage; (b) specimen section detail.

Figure 24 shows a good agreement between the predicted numerical delaminated area (267 mm2)
and the experimental one. Moreover, the delaminations through the specimen sections are reported
in Figure 27b. A good agreement between numerical and experimental results has been reached in
terms of displacement-time, energy-time, and impact velocity-time as highlighted in Figure 28a,b
and Figure 29b. The numerical model with solid element approach is able to predict with good
approximation the maximum peak force, with a deviation of −8.90% with respect to the experiment,
although it is not able to accurately predict the entire load history. Moreover, the proposed numerical
model better predicts the maximum displacement (deviation of 0.37%) and reproduces the overall
stiffness of the whole plate. According with Figure 29a, a good correlation in terms of internal energy
vs time has been reported. In particular, the solid model compared to the shell one reproduces, in a
good way, the amount of energy dissipated in the form of friction, viscosity, and especially due to
breakages, is better computed by the solid model (−15.41%) respect to the shell one (−28.52%).
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Figure 28. (a) Contact force history; (b) impactor displacement.
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Figure 29. (a) Internal energy; (b) impactor velocity.

5. Conclusions

In this work, the influence of modeling parameters on the accuracy of results in simulating the
impact response of a composites plate subjected to low velocity impact was investigated. Indeed,
a numerical procedure has been introduced, able to assess the relevance of modeling parameters for
the simulation of intra-laminar and inter-laminar damage onset and progression. In the first stage,
an analytical procedure for the prediction of the impact event has been introduced. The results have
been used to calibrate the numerical models in terms of element types, element size, and element
discretization along the thickness. Continuum shell and solid elements formulations have been
analyzed. After this first screening based on analytical–numerical comparisons, continuum shell
element model (12 elements through the thickness) and a solid element model (24 elements through the
thickness, therefore one element for ply) were selected as the most suitable combination to represent
the impact behavior of the specimen. The built-in Abaqus intra-laminar damage model has been
used for Continuum Shell elements, while a user defined material model has been developed to
simulate the intra-laminar damages in Solid elements, by means of Hashin’s failure criteria and gradual
material properties degradation rules. Cohesive zone model elements were adopted to simulate the
inter-laminar damage for both the FEM models. The results obtained highlight some important aspects.
The firstly introduced analytical method provides a very fast approach in terms of computational costs
to preliminary assess the impact behavior of the composite plate. In the secondly introduced numerical
model, which neglects the damages and uses a plain strain formulation, the best ratio between accuracy
of the results and computational costs is represented by a reduced number of elements in the thickness
direction. Then, Abaqus built-in failure criteria for intra-laminar and inter-laminar damage onset and
propagation have been used to preliminary assess the damage behavior of the impacted panel. Finally,
the solid element formulation, considering both intra-laminar and inter-laminar damages, has been
introduced. In particular, user-defined intra-laminar failure criteria (Hashin’s for fiber and tensile
matrix, Puck–Shurmann for compressive matrix, and a non-linear behavior of the matrix shear) have
been considered, allowing a more accurate prediction of the impact response of the plate. All the
presented models provide an increasing degree of accuracy, starting from the analytical to the numerical
solid model, being characterized, however, by increasing computational cost.

The results demonstrate the superior capabilities of the solid element model in conjunction
with the user material model to simulate the low velocity impact phenomenon on the composite
plate, with respect to the shell element model which substantially anticipate the damage onset and
overestimates the damages. In conclusion, the solid elements model gives a more realistic representation
of the impact behavior of the panel. Indeed, the shell elements formulation does not allow to accurately
evaluate the stresses in the normal direction of the plane (which is the predominant direction of
deformation during an impact phenomenon) and neglects the effects of the shear.
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