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Abstract—In this work the calibration of the magnitude error
and the noise response of a digital lock-in amplifier are presented.
A simple but effective calibration setup developed at INRIM is
used to assess the magnitude error of a recent model of lock-in
amplifier. The noise response of the instrument is analyzed in
terms of Allan deviation for different filter orders.

Index Terms—Metrology, signal detection, noise measurement,
digital filters, calibration.

I. INTRODUCTION

Lock-in amplifiers (LIAs) are the most popular signal
recovery instruments. They are employed in countless physics
and engineering laboratory experiments involving small elec-
trical signals. A number of measurement setups use LIAs
as small voltage (or current) vector meters, the instrument
reading being related to the value of the physical quantity
of interest. The specified base accuracy of a commercial LIA
is typically around 1%, which can have a significant impact
on the measurement uncertainty of the quantity of interest.
A calibration of the instrument, and the characterisation of
its noise response, is the proper route to improve the overall
measurement accuracy and the evaluation of the uncertainty.
In recent years, National Metrology Institutes have been de-
veloping techniques [1]–[3] for the traceable calibration of the
magnitude error of LIAs in the voltage reading mode. In 2020,
INRIM and METAS performed an inter-comparison [2], [4]
to mutually validate their calibration capabilities. A popular
LIA model [5], available since the 1990s, was employed as
transfer standard. In this work, we describe the progress made
on the characterisation of LIAs. The focus is on a more recent
instrument model, a Zurich Instruments (ZI) MFLI 500 kHz,
with the determination of its magnitude error in presence of
a phase shift between the calibration signal and the reference
signal, and of the instrument noise response as a function of
its low-pass filter order.

II. MAGNITUDE ERROR

The LIA under test (DUT) has a specified input gain accu-
racy within 1% [6]; the lowest input voltage range is 1mV.
To assess the DUT magnitude error, a reference signal and a
calibration signal are generated by a two-channel AC digital
voltage source [7]. The reference signal REF is generated by
channel 2. Channel 1 generates a large and stable sinusoidal
signal VS with a nominal RMS value of 1V which is then
scaled down by an inductive voltage divider (IVD) cascaded
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Fig. 1. Magnitude error δR for the 1mV measurement range with |VCAL| up
to 10 µV at f = 111Hz. To compare the outcome of this calibration with
the instrument specifications, note that the DUT specified gain accuracy of
1% would be 10mV/V on this plot.

with a resistive voltage divider (RVD) to yield the calibration
signal

VCAL = kIVDkRVDVSe
jϕ, (1)

where kIVD is the ratio of the IVD, kRVD is the ratio of the RVD
and ϕ represents the phase between REF and VCAL. The IVD
has a programmable ratio kIVD = 0, 0.01, . . . , 0.1. The RVD is
composed of resistors R1 = 100 kΩ and R2 = 10Ω yielding
kRVD = 10−4. The combined ratio allows for a magnitude
of VCAL up to 10 µV. The reference signal REF drives the
reference input of the DUT. The magnitude error δR of the
DUT relative to VCAL is defined as

δR =
|V read

CAL| − |VCAL|
|VCAL|

, (2)

where V read
CAL is the value of VCAL measured by the DUT.

For these measurements, the DUT input filter was set to
the 4th order with time constant TC = 136ms. For each VCAL
measurement point, V read

CAL was sampled with the DUT at a
frequency of 2Hz, while at the same time VS was sampled
by means of a 3458A voltmeter in ACV SYNC sampling
mode. Each measurement took approximately 150 s, making
available about 50 readings of VS and 300 readings of V read

CAL
per calibration point to estimate the type A uncertainty. Fig. 1
reports the magnitude error δR for |VCAL| ranging from 1 µV
to 10 µV at a frequency of 111Hz, with phase shifts ϕ = 45◦

and ϕ = −135◦. The bars represent the combined expanded
uncertainty (k = 2), dominated by the type A component.

III. NOISE RESPONSE

The knowledge of the noise response of an LIA is usually
necessary in the evaluation of the uncertainty of measuring



systems employing LIAs, either as zero detectors or as vector
meters. Reference [8] reports a detailed analysis, both theoret-
ical and experimental, of the Allan variance of an LIA with
moving-average filter up to the fourth order when the input is
driven by a white noise source. The ZI MFLI operates instead
with an autoregressive (AR) filter up to the eighth order [6],
and its noise response is analyzed here. In general, the output
from each LIA channel is recorded with sampling frequency fs
and period Ts = 1/fs. Let us represent the samples recorded
from channel X by the time series Xk, k integer, and let
SX(f) be its one-sided spectral density function. The Allan
variance of the Xk’s is given by [9]

σ2
X̄(τj) = 2

∫ fs/2

0

sin4(πfτj)

(τj/Ts)2 sin
2(πf)

SX(f) df, (3)

= 2

∫ fs/2

0

sin4(πfτj)

(τj/Ts)2 sin
2(πf)

|H(f)|2Sin
X(f) df. (4)

where H(f) is the LIA filter transfer function, Sin
X(f) is the

spectral density function of the X component of the noise
at the input of the filter (the LIA is referenced at frequency
fref, and f can thus be considered as an offset from fref) and
τj = 2jTs, j = 0, 1, 2, . . ., is the averaging time, for simplicity
assumed to be a power of two of the sampling period. For an
AR(n) filter of order n with coincident poles and time constant
Tn, the transfer function is

H(f) =

(
1− e−Ts/Tn

1− e−Ts/Tne−2iπfTs

)n

. (5)

If the LIA input is driven by the white noise generated by a
resistor R at thermodynamic temperature T , Sin

X(f) = 4kBTR,
where kB is the Boltzmann constant. The integral in (4)
together with (5) can be solved numerically.

Fig. 2 reports the computed and measured Allan deviations
of the LIA X channel for the filters of order 1 and 8, with
fref = 400Hz, Tn ≈ 0.9982 s and fs ≈ 104.6Hz, when the
input is driven by the white noise generated by a 100 kΩ
resistor at about 26 ◦C, with Sin

X(f) ≈ 1.64 × 10−15 V2/Hz
(the effect of the LIA input noise, whose spectral density
function is about 6.3×10−18 V2/Hz above 1 kHz, is practically
negligible). The sampling frequency is such that the filter
output is sampled with negligible aliasing. The solid lines
represent the theoretical Allan deviations computed according
to (4). The circles with uncertainty bars represent the values
estimated from the measurements. These values and their
uncertainties were determined from the estimated values of the
Haar wavelet variance, according to the relationship between
the Allan variance and the Haar wavelet variance described
in [10]. The dashed line represents the Allan deviation ex-
pected for an unfiltered white noise of the same level. As
can be seen, the measured values are compatible with the
theoretical values. The Allan deviation behaviour shown in
Fig. 2 is typical of an LIA: for τ much less than TC, the
Allan deviation, and hence the type A uncertainty, increases
because the readings are strongly correlated; at higher τ , the
readings become uncorrelated and the Allan deviation follows
the behaviour for white noise. For Fig. 1, Ts and τ are such
that the Allan deviation follows the white noise behaviour.

Fig. 2. Calculated (solid lines) and measured Allan deviations of the DUT
X channel for the filters of order 1 and 8 (the parameters are given in the
text), when the input is driven by white noise. The dashed line represents the
Allan deviation of the unfiltered white noise.
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V. CONCLUSION

We reported a rather simple method to improve the mag-
nitude error of an LIA (in this case by about a factor of 10)
and the analysis of the noise response of the instrument with
respect to its filter transfer functions. At the conference we
will present the calibration of δR at frequency up to 10 kHz
(including phase effects on both the AC source and the voltage
dividers) and a more detailed derivation of the Allan deviation
in different operating conditions (e.g. for different Ts/Tn and
in presence of aliasing).
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