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Abstract

Core War is a game where two or more programs, called warriors,
are executed in the same memory area by a time-sharing
processor. The final goal of each warrior is to crash the others by
overwriting them with illegal instructions. The game was
popularized by A. K. Dewdney in his column on Scientific
American in mid-1980s. In order to automatically devise strong
warriors, uGP, a test program generation algorithm, was extended
with the ability to assimilate existing code and to detect clones,
furthermore, a new selection mechanism for promoting diversity
independent from fitness calculations was added. The evolved
warriors are the first machine-written programs ever able to
become King of the Hill (champion) in all the four main
international Tiny Hills. The paper shows how playing Core War
may help generate effective test programs for validation and test of
microprocessors. Tackling a more mundane problem, the
described techniques are currently being exploited for the
automatic completion and refinement of existing test programs.
Preliminary experimental results are reported.

1 Introduction

The incredible advances in microelectronics technologies that allow semiconductor
manufacturers to deliver chips with ever-shrinking form factors and ever-increasing
switching frequencies, enabled hardware architects to develop extremely complex
integrated circuits and required the invention of sophisticated architectures to be able to
best exploit the available silicon and computing power.

Only few years ago, testing and verification costs represented a small percentage
of the total cost in the whole manufacturing budget, but these costs approach 70%. These
problems are especially critical in the case of microprocessors. Such devices contain
extremely complex architectures taking full advantage of the latest technological
advances, and competitive pressure enforces this trend.

This paper tackles the problem of automatic test program generation for
microprocessor test and validation. The innovative approach consists in using competitive



games to emulate the complexity of real-world problems. In particular, a game where the
goal is to produce assembly-level programs, and these programs have to exploit very
peculiar characteristics of a (multithreaded) execution engine, and execution times and
program length are limited resources.

The goal of this paper is twofold. We seek to explain the similarity between the
microprocessor validation and test problem and the chosen game, and to justify the
reasons why an optimizer devised for winning a game can be successful in a different and
more down to earth domain.

This paper is organized as follows: the next section details the test program
generation problem. Section 3 introduces the game, motivating the choice and identifying
similarities with microprocessor validation and test. Section 4 describes the original uGP
algorithm; readers already familiar with puGP may skip this section. New algorithms and
strategies that empowered the pGP are described in detail in Section 5, while Section 6
describes the experimental evaluation and comments on the performance reached by
uGP-generated warriors. Section 7 concludes the paper, and sketches the initial promising
results observed on real microprocessor test program generation. Section 8 outlines some
possible future directions of the research.

2 Automatic Test Program Generation

Chips of a hundred million transistors and running at clock frequencies of several GHz
pose exceptional design challenges [1]. Designers are currently exploiting these chips in
two directions: building systems on chip (SOC) or building more powerful
microprocessors. In a SOC [25], the available on-chip area is used to integrate more and
more functions (subsystems) in the same chip, resulting in a net decrease of the number
of different chips in a system (and thus of the system cost) and in faster communications
between subsystems, since no slow off-chip data exchange is needed. On the other hand,
modern microprocessors [30], on which this paper focuses, use the available silicon
headroom to increase the number of instructions executed per clock cycle, through the
adoption of highly parallel computation and the integration of on-chip cache memories.
In particular, higher parallelism is achieved by replicating several execution units, each
capable of executing a subset of the available instructions, and by letting an instruction
scheduler assign to different units the assembly instructions to be executed in the
program. In this execution model, instructions are often executed speculatively (i.e., an
instruction is executed before knowing if it needs to be executed, usually because it is
beyond a conditional branch that has not been evaluated yet) and their results might be
invalid (i.e., the computed value depends on the result of other instructions executed in
parallel, and if it turns out to be invalid the instruction must be re-executed). Exact details
of instruction execution (i.e., predicting the execution unit to which an instruction will be
assigned, or predicting the completion time of an instruction) is becoming nearly
impossible, due to the speculative nature of execution, to the latency time of the memory
subsystem, whose values depend on the current status of the caches, and to the interrupts
or exceptions that can happen during the normal execution flow, to service external
peripherals or to handle context switches or demand paging.



These kinds of advanced architectures are very complex to conceive and design,
but even more complex to validate and test. Validation [29] [11] is a step in the design
process where the design is checked against its specification. In the case of a
microprocessor, the specification is usually expressed by the “Instruction Set
Architecture,” i.e., the intended behavior of all assembly instructions, and validation
consists in verifying that the correct result is always obtained for any sequence of valid
instructions. Test [10] [19] is the final step, where a just-produced microprocessor chip is
tested to check possible production errors, i.e., defects in the production process
(diffusion, packaging, handling, soldering, etc.). Also in this case, the microprocessor
under test must be shown to execute all instructions correctly, and to operate within the
timing constraints given by the specification. validation and test are related activities,
because they both consist in checking the result of a step in the design process (the circuit
architecture, or the produced chip) against the specifications, aiming at detecting possible
errors (design errors in validation, production errors in test). Manufacturers report that
more than 60% of the chip cost can be attributed to validation and test, and it is evident
that the quality of the shipped products is related directly to the quality of the checks
during validation and test. As an example, the famous Pentium FDIV bug was uncovered
due to insufficient Validation [22].

While single sub-components in the microprocessor may be validated or tested
individually (by accessing their inputs and outputs directly through the simulator or
through specific fest buses built in the chip, and by applying specific test patterns), the
most critical verification level is the system integration test, where the whole processor is
checked. At this level, the only practical possibility is to let the processor execute
carefully crafted fest programs. A test program is a valid sequence of assembly
instructions, that is fed to the processor through its normal execution instruction
mechanism (i.e., the processor executes it as it would execute any other “normal”
program), and whose goal is to uncover any possible design or production flaw in the
processor under test.

The quality of the validation and test process thus relies heavily on the quality of
the utilized test programs. We should also point out that, in this context, the quality of a
test program is measured by its “coverage” of the design errors or production defects, by
its code size, and by the text execution time.

When considering the problem of test program generation, we should recall the
complexity of current microprocessors: architectural solutions are pipelined, superscalar,
speculative, hyper-threaded, emulate several virtual processors, rely on several memory
caching layers, and new features appear every quarter. Each of these keywords implies a
complexity degree in the processor architecture, and test programs should be able to test
all these advanced features. Incidentally, it makes no sense to test individual instructions,
since the context in which an instruction executes (i.e., its preceding and following
instructions) modify the processor state and modify the execution path taken by the
instruction. This observation rules out exhaustive test programs, since developing and
executing all possible sequences of instructions is combinatorially unpractical.

Manual generation of test programs is also impossible with current processors,
due to the number of specific cases and instruction interactions. Manually written



instructions are useful to check some specific behavior that is known to be critical and is
known to be difficult to be covered by test programs built with other techniques. In
particular, one class of manually developed test programs is that of systematic test
programs that execute an array of similar operations with small variations (e.g., to test an
arithmetic unit with different values of the operands).

The only general solution for a high-quality test program is to devise an automatic
generation method. In 2002, a new test program generation algorithm called pGP [31]
was proposed; later, it has been shown to be very effective for testing simple
microprocessors like the 18051 [14], medium-size ones like the SPARC v8 [15], and even
an Intel” Pentium® 4 microprocessor [24]. pGP is a general and versatile assembly-level
test program generator, and may be used for different microprocessors as long as their
Instruction Set Architecture is described in the form of an instruction library, and as long
as a fitness function can be defined and computed.

As with all optimization approaches, taking the initial pGP algorithm and
improving it until it generates useful and high-quality test programs for complex
microprocessors requires several intermediate research steps. However, the difference
between simple processors (where little or no parallelism is present) and current chips
prevents generalizing the results. Improving the pGP performance on simple processors
simply does not produce improvements to the results on complex ones, due to the
intrinsically different architecture. On the other hand, developing uGP improvements or
testing new techniques directly on complex processors is impossible: the computational
effort required to simulate the processor models and extract the results coupled with their
architectural complexity, would make an experimental analysis of proposed innovations
practically infeasible.

A complementary approach was used to reach the same goal: instead of fighting
with the barrier between simple processors (easy to test, but of no practical use) and
complex ones (the real target, but unusable during algorithm development), find a
different problem, with characteristics similar to microprocessor verification, but with a
simpler definition and with a faster execution engine for fitness computation.

A game whose high-level characteristics resemble clearly the arduous
microprocessor test program generation problem is the Core War game popularized by
Dewdney [20]. In Core War, two or more programs are executed in the same memory
area by a time-sharing processor, and the goal of each program is to crash the others by
having them execute illegal instructions. Programs are written in an assembly language
called redcode.

The redcode interpreter is fast enough to simulate the battles fought by two
programs in seconds, and is perfectly suitable to quickly compute the metrics needed by a
fitness function.

A set of uGP strategies was optimized to generate a strong program for the Core
War game (in Core War terminology, “a strong warrior”). The simple definition of the
problem, the quick evaluation, the availability of Internet servers where other powerful
warriors could be met, allowed for greatly improving the uGP system, and in fact the
latest versions of uGP evolved warriors are able to defeat both machine-generated and



hand-written warriors. Indeed, pGP-generated warriors are the first machine-written
programs ever able to top some Core War international competitions.

Using the Core War game, we could conceive, implement, evaluate, and fine tune
several mechanisms that assist the evolutionary core in pGP. Such techniques include
assimilation of existing code, detection of clones, and analysis of gene-level entropy to
improve the selection operator and favor diversity. The combination of these new
techniques, coupled with the previous puGP architecture, which already featured generic
instruction library, weighted instruction fragments, and self-adaptive endogenous
parameters, allowed uGP to generate strong Core War warriors.

3 Core War

Core War is a game played by two or more programs written in an assembly language
called redcode running in a virtual computer called memory array redcode simulator
(MARS). The object of the game is to cause all processes of the opposing programs to
terminate, leaving the winner in sole possession of the machine. This is eventually
accomplished by overwriting the opponents’ code with illegal instructions. MARS
memory is named “core”, and, to stress the aggressive nature of the task, redcode
programs are commonly called “warriors.”

Core War was popularized by Dewdney in his column in Scientific American
[20]. The “Core War Guidelines,” a formalization of the rules, were written in the same
year by Jones and Dewdney himself. It must be recalled that the idea of programs
fighting in a computer memory, trying to overwrite the opponents, dates back to the early
1960s with the game Darwin devised at Bell Labs by Vyssotsky, Morris, and Ritchie.

Since its appearance, Core War attracted a huge interest from both the scientific
community and from hobbyists. The International Core War Society (ICWS) was
established in 1984 for the creation and maintenance of Core War standards, and for
running tournaments. In the following years, there have been six annual tournaments and
two new standards (ICWS’86 and ICWS’88). Several enthusiasts devised impressive
warriors and developed subtle strategies, most labeled with evocative names such as
scanner, vampire, dwarf, and stoner. A big community appeared suddenly.

In 1994, the ICSW proposed the new Core War standard, named ICSW’94.
However, the golden era of Core War was almost ended and interest was swiftly
decreasing. Today, despite several Core War tournaments run every year, the official
Core War FAQ still maintains that the ICSW’94 “is currently being evaluated.”

3.1 Core War and Validation

As stated in the Introduction, the choice of Core War was inspired by the necessity of
finding a simple enough problem, with strong similarities to the microprocessor test
program generation.



The MARS virtual machine is extremely abstract and atypical when compared
with current microprocessors’ Instruction Set Architectures. However, striking
similarities can be identified to motivate our choice:

e In both cases the goal is to generate an assembly-level program, whose
“performance” may be assessed by running it on a (virtual) processor in a
partially unknown environment.

e In both cases it is not possible to evaluate a program without explicit
simulation. Except in trivial cases, the fitness of an individual cannot be inferred
with a syntactical analysis.

e The MARS virtual machine is a multithreaded concurrent environment, with
some undetermined behavior due to the ignorance about the opponent’s memory
location and functionality. This resembles the concurrent speculative execution
1IN MICroprocessors.

e Successful Core War warriors must exploit all aspects of the available
instruction set, and usually must rely on weird side-effects specified by the
redcode language. This resembles the need for test programs to find corner
cases to be able to test all functionalities of the microprocessor.

e In MARS, memory size and execution time are limited resources: the memory
is of fixed size, and faster warriors have a competitive advantage over slower
ones. This polarization towards compact and fast programs resembles the
quality requirements for microprocessor test programs.

3.2 Evolutionary Core War

Core War also attracted the interest from the evolutionary algorithm community. The
idea of competing entities struggling in an artificial environment for survival is
appealing, and it is illustrated clearly by the imaginative terminology developed.
Moreover, redcode is a simple and completely orthogonal assembly language (all
addressing modes are utilizable with all instructions, and all instructions are exactly in the
same format), and the implementation of genetic operators is simplified.

In 1991, Perry [27] showed how random code can evolve into successful Core
War warriors in only a few generations. In the following years, several interesting
approaches were devised. Major contributions include: Newton’s Redmaker [8], an
experimental warrior evolver based on a grid-shaped evolution pool; Ankerl’s Yace (Yet
Another Corewar Evolver) [4]; and Hillis’s RedRace (Red Queen’s Race) [5]. Both the
latter approaches start with a random population. In Yace, warriors fight against each
other and the losers are replaced by slightly modified versions of the winners. In
RedRace, on the other hand, all warriors in the population compete against all warriors on
a target hill. RedRace also includes sharp techniques for speeding-up the search process,
saving and restoring effective warriors (Valhalla and Resurrection), and handling
multiple populations.

In 2002, Blaha and Wunsch [12] presented a study on automatic assembly
program optimization using Core War as a case study. They analyzed different



techniques and attained interesting results, although, in the authors’ own words, the
investigation was unable to devise really effective warriors.

In 2003, we [17] started using Core War as a test bench to enhance pGP, a
generic assembly-level program generator. The game was exploited to evaluate the
effectiveness of new evolutionary methodologies: the results attained by evolved warriors
were used as a feedback for the adopted selection schemes and operators. The experience
yielded an effective modified island model. However, despite the effort, no evolved
warrior was ever able to attain good results on international Core War competitions.
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Figure 1: uGP system architecture. The characteristics of the assembly language are stored in the
instruction library. The evolutionary core evolves a population and may exploit different fitness
functions for different problems through the external evaluator.

In 2004, the approach was improved with a new migration model that exploits the
polarization effect and a new hierarchical coarse-grained approach applicable whenever
the final goal can be seen as a combination of semi-independent subgoals [18]. The uGP
warrior eventually managed to be ranked 18" in an international competition among
other evolved warriors.

4 nGP

This paper exploits pGP [31], a system for automatically devising and optimizing a
program written in assembly-like languages. While features of pGP stem from standard
genetic programming [23], uGP was deigned for generating syntactically correct
assembly programs of variable size and fully exploiting the available assembly syntax
(e.g., different addressing modes, instruction set asymmetries, subroutines, interrupt




calls). Moreover, pGP was planned specifically to be versatile and usable with different
microprocessors and different goals, and it has already been used for many different tasks
[14] [15][16] [24].

Individual Assembly Program

-text
.global _start

_star
Tov 390, Swim

nop.
set 0x80000000, gl

call n5311, 0
subx $g0, -2371, %14
dec $i3, $r2, $r12

n1258:

inc %i0
addxcc %r30, %r26, tfp
nop
nop
nop
ta 0x80
nop
nl279:
1 $PROLOGUEY 0
save $sp, -104, %sp
! #PROLOGUE# 1
andcc %r25, -7311, %16

ret
restore

ns311:
! #PROLOGUE# 0
save  %sp, -104, %sp
! #PROLOGUE# 1
andcc r18, %g3, 3
xnor %14, 7640, %26
et

restore

Figure 2: A genotype (left) and the corresponding phenotype (right).
Arrows show how nodes are mapped to different fragments of assembly code. From top to
bottom: the prologue; a single instruction; a node referring to an outer label (subroutine call); a
node referring to an inner label (conditional branch); the epilogue.

LGP is composed of clearly separated blocks (Figure 1): an evolutionary core, an
instruction library, and an external evaluator. The evolutionary core cultivates a
population of individuals. It uses self-adaptation mechanisms, dynamic operator
probabilities, dynamic operator strength, and variable population size. The instruction
library is used to map individuals to valid assembly language programs. It contains a
highly concise description of the assembly syntax or more complex, parametric fragments
of code. The external evaluator evaluates the assembly program exploiting a simulator or
other tools and eventually provides the necessary feedback to the evolutionary core.

Briefly, programs are represented internally as directed graphs (Figure 2). Graphs
are composed of nodes, each one mapped to a macro (a generic fragment of code,
possibly with parameters) (Figure 3).

Test programs are generated by an evolutionary algorithm implementing a (u+X)
strategy modifying graph topologies and mutating parameters inside nodes. A population
of n individuals is cultivated, each individual representing a test program. In each step, A
new individuals are generated. Parents are selected using tournament selection with
tournament size t (i.e., T individuals are selected randomly and the best one is picked).
Each new individual is generated by applying one or more genetic operators. After

creating A new individuals, the best p programs in the population of (u+A) are selected to
survive to the next generation.




The fitness evaluation is intentionally external to pGP. The external evaluator is
requested to compute a fitness value for each program, exploiting all the required tools.
To further extend the usability, wGP was enhanced to handle a fitness value

F=(1,,f.-..,f;) composed of T terms of strictly decreasing importance, i.e., F' > F’
if EIiST:((j<i:>fj] =fj2)/\f[l >f,,2). The parameter 7 must be selected at the

beginning of the evolution process.

o

()

S
sub $1, $2 .
jz $3 $1: R1
.parameter constant R1 R2 $2: 12
.parameter integer 1 15 $3:
.parameter inner backward label

ST

{ A

| i

N

Figure 3: A short program with a one node implementing a 2-line, 3-parameter macro. The
highlighted node contains the actual values of the parameters: the constant string R1, the integer
number 12, and a reference to a preceding node.

The average strength of mutations and the activation probabilities of all genetic
operators are endogenous parameters and are self-adapted by the algorithm. More details
on uGP may be found in [31].

S Advanced pGP

5.1 Exploitation of Existing Program

A significant limitation of uGP was its inability to reuse of existing material. In the
current industrial practice, designers and test engineers write a relevant number of test
programs for functional testing and for checking specific corner-case events. It would be
useful to modify them automatically, possibly extending and enhancing the efficacy of
existing test cases. Moreover, it would be extremely beneficial to start the evolution from
a “soup” containing fragments of code already able to excite infrequent behaviors.

To allow the reuse existing code, nGP was extended by adding the ability to
analyze a set of existing programs and, according to the instruction library, to translate
them back to a possible internal representation. However, since uGP was given the ability
to generate almost any fragment of code, translating generic programs (phenotypes) back

9




to their originating graphs (genotype) leads to several, non-trivial practical problems.
Moreover, the mapping from genotypes to phenotypes is problem-dependent: depending
on the instruction library, a single fragment of code may correspond to different sets of
macros (the representation may be non-univocal), or a given fragment of code may be
even impossible to generate.

The whole assimilation process is sketched in Figure 4. It is composed of four
main phases. First of all, the instruction library is read and each macro is translated into a
regular expression [21]. Concurrently, the program is analyzed to identify different
blocks (sections) showing syntactical uniformity. In this phase, different heuristics are
exploited to handle generic hand-written code. Then, in each section, the set of potential
labels (reference points) is identified. Finally, the section is partitioned in a list of
macros. The last phase massively exploits the regular expressions built from the
Instruction Library. After a preliminary pattern matching operation, the macros are
validated assessing each parameter and label. Whenever a fragment of code cannot be
generated by the original instruction library, the instruction library itself is modified.

Existing
Programs

Instruction
Library

¥ D

New Instruction
Library

Population

Figure 4: Assimilation Process. The existing programs are analyzed using different heuristics,
and the Instruction Library transformed in a set of regular expressions in order to discover a
possible mapping. The result is a Population and a new Instruction Library.

As a result of the whole process, the existing code is fully assimilated by pGP.
The evolutionary core is able to modify the code, or mix fragments of codes originally in
different programs exploiting a process that is akin to sexual recombination.

The result of assimilating a test set is a population of individuals and a new
instruction library.
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5.2 Diversity in pGP

While diversity is a key element of the biological theory of natural selection and
maintaining high diversity is supposed to be generally beneficial [13], in a test-program
generation problem, maintaining a high degree of diversity in the population is critical.

First of all, in a test-program generation problem the fitness function is requested
to condense the whole behavior of a program into a manageable numeric amount and the
loss of information may be relevant. While uGP allows the use of fitness values with an
arbitrary number of terms, the result is always highly succinct compared to a hypothetical
execution trace with all the values stored in memory and registers at different times. For
example, the loss of information is evident when a coverage metric such as statement
coverage or expression coverage is used: there is no guarantee that two programs are
related by any means simply because they both excite the same percentage of the
functionalities of a microprocessor. Thus it is possible that two programs attaining the
same result on a code-coverage metric share no common parts and exploit different
functionalities in the microprocessor. Indeed, it could be highly beneficial to combine
such programs with a crossover operator, and conventional wisdom suggests that the
diversity of the programs should not be overlooked during evolution. Such a situation is
common to a large number of different scenarios and metrics.

The problem is intensified by the assimilation mechanism: adding hand-written
code into a population of random individuals is likely to produce a very unbalanced
situation where few individuals are significantly fitter than the vast majority. Such a
population can be invaded quickly by individuals that are identical or almost identical to
the fittest ones, reaching a premature steady-state condition.

The genetic programming literature consistently cites the importance of
maintaining diversity as being crucial in avoiding convergence toward local optima and
there are several different possible strategies to promote diversities, including non-
standard selection, mating, or a replacement strategy. Indeed, nGP performances were
already enhanced exploiting coarse-grained approaches, and such geographical
distributions of individual are known to promote diversity [17] [18].

A qualifying aspect of uGP is the loose relationship between evolutionary core,
phenotypic representation (controlled by the instruction library), and fitness calculation
(performed through the external evaluator). Therefore, the adopted method for promoting
diversity must not be based on the phenotypic appearance of individuals (the assembly
programs), nor their fitness.

Two approaches are proposed to tackle the problem: clone scaling and delta-
entropy fitness holes. The former technique is used to detect identical individuals and
assigning them a fitness value without the need of running the evaluation. Such an
assigned fitness value may be scaled down by a predefined factor. The latter technique is
a mechanism to promote diversity in the population acting on the selection process.

11



5.2.1 Clone Scaling

Before evaluating an individual, pGP checks if identical individuals (clones) are
already present in the population. When the number of clones C is greater than zero, the
actual fitness assigned to the individual is multiplied by S°. The parameter S is called the
clone-scaling factor. While a continuous range of values is possible, usually S is set
either to one (no clone scaling) or to zero (clone extermination). The clone-scaling factor
is not self-adapted.

It must be noted that identical individuals at the genotypic level may not be
mapped to identical programs at the phenotypic level. All labels, for instance, are
translated to unique strings. Also, unique tags are designed intentionally to be distinctive.
Moreover, different individuals at the genotypic level may be clones since the actual
value of the constants is considered and not the index.

To speed-up the search for clones, a hash value is computed for each individual.
uGP exploits state-of-the-art algorithms for calculating the hash functions of different
portions of the graph such as string constants, pointers, and integers. The explicit
comparison of two individuals is performed only if two individuals have the same hash
value, making the process extremely efficient.

Clone scaling is particularly useful to discard duplicates after assimilating a large
number of existing test sets or merging different populations.

5.2.2 Entropy and Delta-Entropy

Before defining the delta-entropy fitness hole, this section introduces some background
definitions, in particular the concept of entropy in uGP. The purpose of the entropy value
is not to rank a population in absolute terms, but to detect whether the amount of genetic
diversity in a set of individuals is increasing or decreasing.

Let us define a symbol s as an instance of a macro, i.e., a macro and the value of
its parameters (Figure 3). As for clone detection, the actual value of the constants is
considered (the order of the list of possible alternatives has no influence); inner labels
(labels inside the same section) are transformed to relative offsets; and outer labels are
ignored completely. With this definition, just for the sake of entropy computation, the
individuals in the population may be represented by the corresponding set of symbols.

The number of possible symbols, according to the given definition, is quite large:
integer and hexadecimal parameters easily bloat the space of possible values. Moreover,
the calculation may include tricky choices: some macros may be listed in the instruction
library with a null probability, and some of them may be present in the actual population;
the number of possible values for inner labels depends on the size of programs.

To overcome these difficulties, pfGP simply measures the frequency of a given
symbol in the universe of actually used symbols. Given a set Q of n individuals, /, , in the

population, Q = {I ! Vi ko "/ L } , we define the Q-Universe of Symbols, X, as the set of

all symbols appearing in at least one individual in Q. Formally,

12



ZQ:{S|EI[:SGI/\IGQ}. The frequency sz (s) of a symbol s in the set X, is

occurrences(s)

fs (5)= . With a formula similar to the calculation of entropy in
Zo

z occurrences(s")
s'eZq

information theory, the entropy of the set of individuals Q is defined as

HQ) == f;, () In(f;, () (1)

s€Xq

In a population, P = (10,11,...,Ix), individuals are considered ordered according

to their fitness (fitness(/,) = fitness(/,) >... > fitness(/, )). The partial entropy function
PH(x) (with 0 <x < A1) is defined as

PH(x)=H({I,.1,,....1,}) 2)

X

i.e., the entropy of the subpopulation composed of the x fittest individuals of the original
population. Clearly, PH(A) = H(P).

Given the above definition, each individual /; (i = 0,1,...,A) can be associated with
a delta entropy value AH.,:

{AHO =PH(0) )

AH, =PH(i)-PH(@{-1) (i>0)
The delta entropy associated with an individual is an approximate and qualitative

measure of the amount of new genetic information brought by the individual in the actual
population.

Intuitively, a high delta entropy value, AH,, indicates that the individual i brings

effective fragments of code in the population. Thus, the individual is valuable and should
be preserved. On the contrary, a low or negative AH. suggests that individual i does not

introduce enough unique symbols considering its fitness value. Theoretically, such an
individual could be generated merely by applying the appropriate genetic operators to
fitter parents, and thus may be safely discarded.

5.2.3 Delta-Entropy Fitness Holes

uGP selection is based on tournament selection of size 1. When two individuals are
compared, with a probability 4 their delta entropy values are considered instead of their
fitness values. This corresponds to a hole in the fitness function, where individuals are
not chosen according to their direct ability to solve the specified task, but to a different
measure. Thus, fitness holes bias evolution without affecting the fitness calculation.
Delta-entropy fitness holes favor individuals containing new genetic material, and
promote genetic variability in the population.

The fitness holes technique has been proposed by Poli [28] for solving the
bloating problem. It must be noted that delta-entropy values are deeply related to fitness
(in the definition of AH,, the order in which individuals are considered is significant).
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Moreover, the fitness calculation is external to the evolutionary core leading to additional
difficulties. While a mathematical analysis is out of the scope of this paper, from a
practical point of view the main effect of delta-entropy fitness holes is to disfavor almost
identical individuals. If a genetic operator slightly mutates an existing individual
enhancing it, while the fitness values of the two individuals may be similar, the delta-
entropy value of the descendant is likely to be much higher than the delta-entropy value
of the parent (almost all symbols of the parent are also present in the offspring).

6 Experimental Evaluation

The experiments report two lineages of warriors: RedBorg and White Noise. The former
were the first Core War warriors evolved exploiting an assimilation process and are
reported here for completeness. White Noise, on the other hand, was cultivated exploiting
all the techniques reported in this paper.

6.1 Core War Hills

Core War competitions are usually called hkills, and the champion of a Core War
competition is therefore called king of the hill (KOTH). Most hills are a repositories of N
warriors. When a new program is submitted, it plays a certain number of one-on-one
games against each of the N programs currently on the hill. In each game the two
opponents are put in random positions in the core. The new warrior gets W (usually 3)
points for each win and 7 (usually 1) points for each tie. In each game, the two warriors
are put at a pseudo-random distance inside the MARS memory. The pseudo-random
sequence is usually seeded with a number calculated from the source code of the warriors
themselves. Thus all matches are reproducible, but distances are unpredictable by
warriors’ authors as long as sources are undisclosed.

Existing programs never replay each other. On some hills their previous battles
are recalled and the score s updated exactly, while on other hills the new score s is
calculated with a formula such as:

5 - S,y - (N=1)+W -victories +T - ties @)
N

Both these scoring systems are called flatz. Some hills instead of ranking warriors
with flat scores use a so-called recursive scoring, where flat scores are weighted, and
these weights modified repeatedly until a steady state is reached. The least warrior is
usually pushed off the hill, except from infinite hills which grow indefinitely (no warrior
is ever discarded from an infinite hill). Typically, infinite hills use recursive scores.

Several hills are available on the Internet, each one accepting a specific redcode
style (e.g., instruction set or program length) and running games with certain parameters
(e.g., number of matches, maximum number of concurrent warriors or scoring systems).
The oldest and most famous server is simply named KOTH [6] and still hosts seven hills
with different settings, including two multi-warrior melee hills and two hills using the
older redcode °88 standard. New servers appear and close frequently.
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The core size ¢ (the dimension of the MARS memory) is a crucial parameter and
may profoundly influence warrior strategies. The most common core size is ¢ = 8,000,
followed by ¢ = 8,192, ¢ = 55,400, and ¢ = 800 (all of them divisible by 4). Hills running
core of size ¢ =800 are called tiny hills, and usually do not accept warriors containing
more than 20 instructions.

Due to this limited search space, most approaches exploiting evolutionary
techniques have focused on climbing tiny hills. These hills are also practical for the
purpose of this paper: test programs are required to be extremely short, and being able to
optimize the size of a test program is a required capacity. While unnecessary code in the
validation process may lead to overlong simulations and force checking irrelevant data, it
could cause significant loss of money in the test process. Moreover, some test procedures,
such as on-line testing, require firm limits to test programs size.

The most active tiny hills are available currently on SAL [3], Sourceforge [2], and
Koenigstuhl [7]. SAL is hosted at the Department of Mathematical and Statistical Science
of University of Alberta, Canada. The server runs five different hills, including a tiny hill
(¢ = 800) and a nano hill (¢ = 80). Sourceforge server runs nine hills, two of which are
tiny: the Tiny (evolved) Hill limited to evolved (non-handwritten) warriors, and the Tiny
(all) Hill accepting all types of code. The Koenigstuhl (King’s Chair) server hosts ten
infinite hills, one of them, called Tiny-Koenigstuhl, using a core size of ¢ =800. The
infinite tiny hill lists more than 250 strong programs collected over the years.

Differently from other hills, the source code of warriors posted to SAL is not
visible to all users. Thus, many authors who are not willing to expose their strategies send
their latest warriors to this server only, making its hills particularly active and hard.

6.2 RedBorgs

For devising RedBorgs, uGP was set to evolve a population of u=20 and A =80
individuals through 100 generations. Cultivation did not exploit clone scaling and delta-
entropy fitness holes. The adopted instruction library is described in [18].

RedBorg v1.0r6 started from a population composed of all the warriors in the Tiny
(evolved) Hill of Sourceforge and easily attained the selected goals, getting KOTH of
both Sourceforge tiny hills in May 2004. When new warriors became KOTH on Tiny
(all) Hill, they were assimilated and a new RedBorg (RedBorg v1.0r7) was quickly
cultivated to defeat them. This warrior was not submitted to the Tiny (evolved) Hill since
it is likely to exploit handwritten code.
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Rank | Warrior Score
1 RedBorg v1.0r6 8,029
2 Maria s Kiss 947651080 x 500 | 7,175
3 Evolution Strikes Back 7,138
4 PanGenetic Gargle Blaster 111 | 5,414
5 2119-6757-xt430-0-tiny-eve86 | 5,289
6 I, Robot 5,279
7 rdrc: Dementia Minnie 5,191
8 Redrace 5,130
9 SjHn (2/22/03) 5,092

10 | 211.red 09-05-2003 5,060

Table 1: Top 10 warriors of Tiny (evolved) Hill at Sourceforge.
Programs devised by uGP are shown in boldface.

Table 1 shows the top 10 warriors on the Tiny (evolved) Hill, while Table 2 shows
the top 10 warriors on Tiny (all) Hill in August 2004. Warriors devised by uGP are
shown in boldface (PanGenetic Gargle Blaster Il is a warrior previously evolved by
uGP without exploiting the assimilation process, the details are out of the scope of this
text).

Rank | Warrior Score
1 RedBorg v1.0r7 6,077
2 Tiny Blowrag 5,746
3 Digital Swarm 5,707
4 Snufkin 5,580
5 Easter Egg 5,532
6 RedBorg v1.0r6 5,447
7 Where's Giles? 5,443
8 Dark Skies 5,359
9 801-948-xt642-3-tiny-eve86 | 5,333
10 | E-clear 5,321

Table 2: Top 10 warriors of Tiny (all) Hill at Sourceforge.
Programs devised by uGP are shown in boldface.

RedBorg v1.0r6 initially ranked 4™ on SAL Tiny Hill, neither RedBorgs was
posted to infinite hills.

6.3 White Noise

A more interesting genetic experiment started assimilating all possible warriors from all
accessible tiny hills, such as Tiny-Koenigstuhl and Sourceforge. Several additional
warriors were taken from the usenet or enthusiasts’ web pages over the Internet. Overall,
uGP assimilated over 2,000 different warriors. Relying on clone scaling and delta-
entropy selection, no pre processing of any type was performed on the initial set of
programs. All programs previously evolved by pGP in [17] and [18] were also
assimilated. A minimal instruction library, limited to a single macro was used (Figure
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5). It must be noted that due to the simplicity of both redcode language and instruction
library only a subset of the features in the assimilation mechanism was exploited
effectively.

.type INST constant add sub mul div mod jmz jmn djn seq sne slt mov dat nop spl jmp
.type INST MOD constant a b ab ba f x i

.type INT integer 0 799

.type ADDR constant # $$ @ * { } < >

.macro

$1.82 $3%4+85, $657+$8
.parameter type INST
.parameter type INST MOD
.parameter type ADDR
.parameter inner generic label
.parameter type INT
.parameter type ADDR
.parameter inner generic label
.parameter type INT
.endmacro

Figure 5: The instruction library exploited for evolving White Noise. A single macro is sufficient
to describe the whole Redcode syntax since instructions are completely orthogonal to addressing
modes, and there are no subroutines, nor interrupts.

After the assimilation, nGP was started with a population of p =200 and A = 800
individuals. The maximum number of generations was set to 1,000. No problem-specific
enhancements of any kind were exploited, since the goal was to test the enhancements of
the evolutionary core.

Warriors were cultivated against a hill of 50 programs taken from the 7iny-
Koenigstuhl and exploiting different strategies. To remove the bias introduced by the
pseudo-random distance calculation, all matches starting at a valid distance (i.e., all
possible matches) for each couple of warriors were run.

Moreover, to favor an aggressive behavior, the main contribution to the fitness
value was the number of victories followed by the score attained on the hill (W =3,
T'=1). Practical considerations helped in setting the dimension to the fitness hole to
h=0.3, thus 30% of the parents were chosen by comparing their delta-entropy
contributions rather than their fitness values.

The evolved warrior was called White Noise (Figure 6) and on August 2004
became the first KOTH ever devised by a machine on the SAL Tiny Hill. It was also
submitted to the Koenigstuh! Infinite Tiny Hill, and became KOTH of the infinite hill.
The evolved warrior was posted immediately on the newsgroup rec.games.corewar
asking the community for comments, and exposing it to targeted attacks.
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;redcode-tiny
;name White Noise (RBv1.5r10)

org n3262515

n3262514:

add.f $n3262517+0, @n3262518+0 ;scan loop
n3262515:

sne.i }n3262515+733, $n3262515+727
n3262516:

djn.f $n3262514+0, {n3262516+50
n3262517:

spl.b #n3262517+774, {n3262517+774 ; core clear (endgame routine)
n3262518:

mov.i @n3262521+0, >n3262515+0 ; first bombing on detected opponent
n3262519:

mov.i @n3262521+0, >n3262516+0 ; more bombing

mov.i @n3262521+0, >n3262516+0
n3262521:

djn.x $n3262519+0, {n3262523+0
n3262522:

dat.f #n3262522+619, }n3262530+0 ; bomb (to kill the opponent)
n3262523:

spl.b #n3262523+775, $n3262518+17 ; bomb (to stun the opponent)
n3262524:

spl.x #n3262524+1, $n3262524+1 ; probably a decoy

mov.i @n3262527+0, >n3262522+148
spl.b #n3262516+480, >n3262524+396

n3262527:
spl.b #n3262517+248, >n3262527+396 ; mysterious code
n3262528: ; may become effective when attacked
spl.x $n3262528+1, $n3262528+1 ; by other warriors
n3262529:
spl.x #n3262529+1, $n3262529+1
n3262530:
mov.i @n3262532+0, >n3262527+148
n3262531:
spl.x #n3262531+1, $n3262531+1
n3262532:
spl.x $n3262532+1, }n3262532+1
n3262533:
spl.x $n3262533+1, $n3262533+1
end

Figure 6: White Noise source code. Comments have been inserted by hand.

White Noise resembles Tiny BiShot 2.0 by Schmidt: it scans the MARS memory
seeking for its opponent, and starts the attack as soon as a suspicious memory location is
detected. This approach is called one-shot scanning, and it is possible because the
memory is initialized with a special value before each match.

More precisely, White Noise compares pairs of memory locations and conjectures
the presence of an opponent if they are not equal, regardless of their actual content. Since
the attack starts as soon as a difference is found, it can be mystified by spurious code or
randomly modified memory locations. This is a drawback common to most one-shot
scanners. Indeed, White Noise does modify the memory while scanning creating a decoy
track against other scanners.

The aggression is performed in two steps. First, White Noise stuns the other
warrior by throwing inside the opponent code special instructions that, although legal,
have the effect of slowing down the execution. Then, it crushes the other program by
completely overwriting it with illegal instructions. The second attack phase, called core
clear, 1s particularly robust, and could remain operative even if damaged.
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White Noise scans the memory backwards using uncommonly big and irregular
steps. Remarkably, when it finds a suspicious memory location, it focuses its attack both
on it and 50 locations away. The overall effects of this strategy are unclear:
commentators suggest that it could help finding certain type of opponents (the so-called
papers) faster, but it may also be a penalizing factor against different ones, especially
small warriors, or frontward one-shots. As a result, some authors wrote short, frontward
one-shots and submitted them to the SAL tiny hill, but did not manage to defeat White
Noise.

Rank | Warrior Score
1 White Noise 173.5
2 Tinyshot 170.1
3 Provenance 170.0
4 Tiny BiShot 2.0 169.2
5 Holograph 168.7
6 Seek and Destroy 168.6
7 Four Winds 166.9
8 Cream and Chocolate | 165.7
9 Betadine 165.5
10 | Tinyboss 111 165.3

Table 3: Top 10 warriors of Infinite Tiny Hill at Koenigstuhl.
The program devised by uGP is shown in boldface.

Table 3 reports the top of Tiny-Koenigstuhl. White Noise scores more than 4
points higher than the closest opponents.

Rank | Warrior Score
1 White Noise 149.4
2 Endless pain 148.0
3 Digital Swarm | 145.7
4 Muskrat 144.9
5 Sneaky Spike 2 | 144.3
6 Hired Sword 142.9
7 tiny Blowrag 142.8
8 Four Winds 141.0
9 Moomintroll 139.8
10 Soft as Silk 139.7

Table 4: Top 10 warriors of Tiny Hill at SAL.
The program devised by uGP is shown in boldface.

Table 4 reports the top of the Tiny Hill at SAL after challenge #393, nine months
after the submission of White Noise. Even if its source code was publicly available, the
evolved warrior defeated more than 70 human-written challengers, remaining KOTH on
SAL. Indeed, White Noise also entered the Tiny Hall of Fame at corewar.co.uk [9], the
record of the warriors that have survived longest on SAL, and, in the May 2005 list, it
ranks 25", Remarkably, White Noise is also the only evolved warrior on such list.
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Challenge #394 eventually modified the situation, pushing Endless pain by
Labarga to the top. Recall that this is probably the hardest and most active tiny hill
available today, and all scores are updated whenever a new warrior challenges it.

Not being able to access the source code of warriors is a double handicap for
uGP. Firstly, as showed by RedBorg warriors, assimilating a hill is an easy and simple
way to get KOTH. Secondly, when all warriors on a hill are exposed, it is possible to use
the real results that the programs would attain as fitness values, focusing the optimization
process. Differently, to challenge SAL the aim was to evolve generic warriors.

The ending instructions of White Noise are unclear, but, since the behavior of the
program cannot be studied against the opponents, a detailed analysis is difficult. It can be
maintained, however, that they are effective against other warriors since removing them
reduces the effectiveness of the warrior: a version of White Noise without such code has
been submitted to the hill under the name of Blue bubble, and its score was 3.8 points
lower than the original one.

It should be noticed that Tiny BiShot 2.0 is the second strongest warrior on 7iny-
Koenigstuhl. Indeed, since White Noise was evolved against a subset of this hill, it looks
reasonable that pGP favored strategies similar to Schmidt’s. Differently, on SAL (after
challenge #393), Tiny BiShot 2.0 was ranked only 23"
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Figure 7: Effects of delta-entropy fitness holes in a Core War experiment

Lastly, Figure 7 shows the score attained by the best warrior against the test hill
during the 1,000 generations of the experiment. The effect of a delta-entropy fitness hole
(h=0.3) was compared against the standard selection mechanism (no hole, £=0.0). All the
other settings were identical and are described above. The practical effect of the delta-
entropy fitness hole is evident.
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7  Preliminary Results on DLX/pII

The described techniques are also being exploited for the automatic completion and
refinement of existing test programs.

In the design cycle of a microprocessor core, the unit is usually refined through a
series of subsequent steps. To deliver a flaw-free unit at the end of the process, a
verification step is required in each stage, and it would be useful to automatically develop
the set of test programs for verification concurrently to the design, the automatic process
exploiting assimilation and uGP would require both less human intervention and less
computational resources. Preliminary experiments targeted the DLX/pll, a pipelined
microprocessor [26] and showed how the test programs developed by designers can be
enhanced automatically and completed to build a set able to maximize a given
verification metric.

An iterative process was then run: a set of test programs was cultivated
automatically by the nGP to maximize a given coverage metric. It was assimilated and
used as a starting point to maximize a more complex metric. The assimilation process
allows tweaking the instruction library in each step, modifying it, and permits the
inclusion of hand-written code for covering rare corner cases.

The five considered coverage metrics were: statement coverage (the percentage of
executable statements in the model that have been exercised during the simulation);
branch coverage (the percentage of Boolean expressions evaluated to both true and
false); condition coverage (the percentage of Boolean subexpressions evaluated to both
true and false); expression coverage (as condition coverage, but calculated against
concurrent signal assignments); toggle coverage (the percentage of bits that toggle at
least once from 0 to 1 and at least once from 1 to 0 during the simulation).

Program Evaluation metric

Set Statement | Branch | Condition | Expression | Toggle
Initial 68.91% | 52.40% 43.01% 26.93% | 30.34%
wGP-Statement 99.65% | 98.43% 77.20% 36.96% | 43.28%
wGP-Branch 99.23% | 98.59% 76.17% 33.50% | 39.39%
nGP-Condition 77.29% | 68.69% 77.20% 25.11% | 26.33%
wGP-Expression 93.07% | 88.09% 55.44% 43.71% | 44.02%
uGP-Toggle 96.31% | 92.29% 62.18% 38.72% | 78.28%
Total 99.65% | 98.81% 79.79% 46.32% | 80.31%

Table 5: Experimental Results on DLX/pll.

Results are summarized in Table 5. The set of functional programs devised by the
designer to validate the main functionalities of the core is used as a starting point. The
different rows contain the results for the different set of test programs: the initial one and
the 5 generated by the pGP maximizing specific metrics. The values attained by each set
on all possible metrics are also reported. The grayed cells represent the value on the
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metric that the set was intended to maximize. The last row contains the results of the
complete set including the manually generated program.

Significantly, the uGP was always able to maximize the coverage it targeted (the
grayed cells), but it is interesting to notice the relationship between the different
verification metrics. For instance, maximizing toggle coverage yields the second highest
statement coverage, showing that a high activity on data can cause a large number of
statements to be exercised. On the other hand, maximizing the condition coverage does
not yield impressive results compared with the branch coverage, while, in theory, the
former metric is an extension of the latter.

While the number of assimilated test programs for the DLX/pII is considerably
smaller than the number of warriors assimilated to cultivate White Noise, the complexity
of the assembler is higher. New experiments on more complex microprocessors are
currently being performed.

8 Conclusions

This paper showed how playing the computer game called Core War may help devise
effective test programs for validating and testing microprocessors. To devise effective
warriors, new techniques were integrated in nGP: the ability to assimilate existing code,
detect clones, and a selection mechanism for promoting diversity completely independent
from fitness calculations.

Using such techniques, nGP evolved the strongest Core War warriors in the four
main international competitions: the 7Tiny (evolved) Hill and the Tiny (all) Hill at
Sourceforge; the tiny hill at SAL; the infinite tiny hill at Koenigstuhl. pGP-generated
warriors are the first machine-written programs ever able to become King of Hill
(champion) in all these competitions.

Described techniques are now being applied on the original real-world problem.
First results are very promising, showing that the improvements that could be developed
to the optimization algorithm while working with a game problem are equally useful in a
totally different domain. Thus, we legitimized the use of games as useful conceptual and
practical tools to foster the advance in the evolutionary computation community to tackle
industry-strength problems.

We are currently extending the evolutionary core of uGP enhancing the self-
adaptation mechanism and adding new genetic operators. More specifically, we are
turning p, A, and 1 into endogenous parameters, and we are analyzing the effects of
extremely small mutations to fine tune the programs.
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