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Unsupervised Active Visual Search With Monte
Carlo Planning Under Uncertain Detections

Francesco Taioli
Alberto Castellini

, Francesco Giuliari
, Alessio Del Bue

Abstract—We propose a solution for Active Visual Search of
objects in an environment, whose 2D floor map is the only known
information. Our solution has three key features that make it more
plausible and robust to detector failures compared to state-of-the-
art methods: i) it is unsupervised as it does not need any training
sessions. ii) During the exploration, a probability distribution on
the 2D floor map is updated according to an intuitive mechanism,
while an improved belief update increases the effectiveness of the
agent’s exploration. iii) We incorporate the awareness that an
object detector may fail into the aforementioned probability mod-
elling by exploiting the success statistics of a specific detector. Our
solution is dubbed POMP-BE-PD (Pomcp-based Online Motion
Planning with Belief by Exploration and Probabilistic Detection).
It uses the current pose of an agent and an RGB-D observation
to learn an optimal search policy, exploiting a POMDP solved by
a Monte-Carlo planning approach. On the Active Vision Dataset
Benchmark, we increase the average success rate over all the
environments by a significant 35% while decreasing the average
path length by 4% with respect to competing methods. Thus, our
results are state-of-the-art, even without any training procedure.

Index Terms—Active vision dataset benchmark, active visual
search, object goal navigation, online policy learning, partially
observable Markov decision process, partially observable Monte
Carlo planning.

I. INTRODUCTION

MONG the most interesting areas of robotics is the
problem of Active Visual Search (AVS) [1], in which
an intelligent robotic agent must autonomously find an object
located far from it, moving and exploring its surroundings
through egocentric visual sensors. AVS applies in many different
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Fig. 1. Anagentis initialised in a known environment with the task of visually
searching for a target object, i.e., to localise the object and approach it. (a) 3D
reconstruction of the environment; the agent has to navigate toward the target
(yellow star) through the possible shortest path (highlighted in green) while
avoiding longer trajectories (in orange) without missing entirely the target (in
red). (b) Corresponding 2D grid map of the scene in our POMCP modelling:
blue dots are the possible object locations, purple crosses are the possible robot
poses.

contexts, such as the domotic field [2], [3], [4], personal assis-
tance [5], search and rescue [6], [7], and the very intriguing Mars
exploration [8]. In this paper we focus on the AVS problem in an
indoor environment [9], where the only available knowledge is
its 2D map. We propose a method for learning a motion planning
policy that decides how to move an agent based on a perception
module to visually detect and approach a specific object, i.e., the
target (see Fig. 1).

AVS in real-world scenarios with egocentric camera views
is a very challenging problem due to the unpredictable quality
of the observations —i.e., object in the far field, motion blur
and low resolution—, partial views and occlusions due to scene
clutters and generalisation to new environment. This has an
impact not only on the object detection but also on the planning
policy. To address this challenge, recent efforts are mostly based
on deep Reinforcement Learning (RL), e.g., deep recurrent
Q-network (DRQN), fed with deep visual embedding [10], [11].
To train such DRQN models, a large amount of data is required,
which are sequences of observations of various lengths, covering
successful and unsuccessful search episodes from multiple real
scenarios or simulated environments.

In this paper, we take a different perspective and propose
an online reinforcement learning method for AVS. The basic
idea is not to learn a complete policy by using a vast amount
of training data, instead to use an advanced planning approach
to learn a policy that can select the best action based on
the environment configuration which is built starting from the

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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Fig. 2.

Overall architecture of our proposed method POMP-BE-PD. The red box represents prior knowledge pushed into the POMCP module, the grey box

represents the exploration strategy to detect the target object, the yellow box represents the probabilistic docking strategy to reach the destination pose and the
green box represents the probability distribution over the locations. Math notation: state s¢, action a¢, pose py, observation o, POMCP state sequence s(q.. 1,1,

docking state sequence s, 41T} complete state sequence s(g_.T}-

observations gathered in the environment. This fundamental
shift in the methodology is carried out considering the Partially
Observable Monte Carlo Planning (POMCP) method [12]. In the
following, we will use the term learning referring to the process
of Q-value approximation from simulations performed using the
model of the environment, instead of referring to a process of
function parameter tuning from data. POMCP has been applied
to benchmark problems, such as rocksample, battleship and
pocman (partially observable pacman) with impressive results,
however, its use for robotic applications is an open and chal-
lenging research problem.

In our previous work [13], we introduced POMP, an online
reinforcement learning method, that uses as input the current
pose of an agent and an RGB-D frame to plan the next move
that brings the agent closer to the target object. We modelled
the problem as a Partially Observable Markov Decision Process
solved by a Monte-Carlo planning approach, allowing us to
explore the environment and search for the object at the same
time. The main benefit of this approach is that POMP does not
require a training phase, so being very agile in solving AVS in
small and medium real scenarios. Despite achieving results close
to the state-of-the-art without using any training data, POMP
uses real object detectors that are inaccurate with false positives
and miss-detections. As a consequence, an agent could terminate
the exploration in wrong locations, fooled by the detector, thus
decreasing the overall success rate.

To overcome these problems, in this paper we propose
POMP-BE-PD, an extension of POMP that defines the obser-
vation model in probabilistic terms, allowing us to better handle
the false positives of object detectors, as well as improving
the effectiveness of the agent’s explorations. A visual repre-
sentation of our approach is shown in Fig. 2. At each time
step, we feed our model with the agent pose —i.e., position
and orientation— in a known 2D map and an RGB-D frame
given by a sensor acquisition. An off-the-shelf object detector
is applied to the RGB image to identify the bounding box of

the target object, if present. The depth channel of the candidate
target proposal is further exploited to obtain the candidate’s
position in the floor map. We use this information to build a
probability distribution over all the candidate locations of the
target object. The policy is learned online by Monte Carlo
simulations, therefore the proposed framework is general and
easy to deploy in any environment. The POMCP exploration
terminates when one location within the belief space exceeds
a threshold.

Crucially, our approach exploits the model of the environment
to consider the sensor’s field of view and all the admissible
moves of the agent in the area. For our active visual search
scenario, such a model can be easily obtained by building a map
of the environment to include the position of fixed elements,
such as obstacles, walls or furniture. Our motion policy explicitly
exploits the knowledge of the environment for the visibility mod-
elling, instead other RL-based strategies [10], [11] implicitly
encode such environment knowledge in a data-driven manner.
Once the exploration phase is over, the probabilistic docking
module guides the agent to approach the target location —i.e.,
the closest pose with a frontal-facing viewpoint to the target— as
quickly as possible. First, we estimate the shortest path [14] on
the graph of all possible robot poses, and then a path replanning
is used to improve robustness.

With respect to our previous work [13], the main contributions
we make in this paper are:

® anew strategy for improving the robustness with respect to

false positives and miss-detection when using a real object
detector in which we substitute the deterministic detection
with a probabilistic one through a Bayesian inference con-
sidering a probability distribution over all possible object
locations;

® anew strategy for the belief update of POMCP that allows

us to lower the total path length of the exploration and
increase the effectiveness with large state-space environ-
ments;
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¢ a new approach for docking, considering the information
gathered during the exploration to improve the robustness
to the problems discussed above;

® adeeper experimental analysis and results discussion, pro-
viding results for all the scenarios of the Active Vision
Dataset;

e an extended description of the POMCP visual search
method, with more mathematical details and discussion.

II. RELATED WORK

The two main research topics related to this work are AVS
and planning with Partially Observable MDPs. The main works
of both topics are briefly surveyed in the following and original
elements of our contribution with respect to the state-of-the-art
highlighted.

A. Active Visual Search

Active Visual Search, often referred to as Object Goal Naviga-
tion, is a specific task of Embodied Al research field. Embodied
Al, which learns through interactions with the environment from
an egocentric perspective, is an emerging field of study. Within
this field, AVS is a task focused on detecting and approaching
a specific object [15]. Early approaches exploit intermediate
objects —e.g., the relation between a sofa and a television— to
restrict the search area for the target object. Although interme-
diate objects are usually easier to detect because of their size,
their spatial relation w.r.t.the target may be not systematic. A
probabilistic approach is proposed in [16], where the likelihood
of the target increases when objects which are expected to be
co-occurring are detected.

AVS with deep learning is viable using Deep Reinforcement
Learning techniques [10], [11], [17], where visual neural embed-
dings are often exploited for action policy training. Han etal. [17]
proposed a deep Q-network (DQN) where the agent state is
given by CNN features describing the current RGB observation
and the bounding box of the detected object. However, this
work assumes that the object must be detected initially. To
address the search task, EAT [10] performs feature extraction
from the current RGB observation, and the candidate target crop
generated by a region proposal network (RPN). The features are
then fed into the Action Policy network. Similarly, GAPLE [11]
uses deep visual features enriched by 3D information, from the
depth channel, for policy learning. Although GAPLE claims
to be generalised, expensive training is the cost to pay as
GAPLE is trained with 100 scenes rendered using a simulator
House3D based on the synthetic SUNCG dataset. This limitation
is shared with other approaches that learn optimal policies using
Asynchronous Advantage Actor Critic (A3C) algorithm [18],
Long Short Term Memories (LSTM) architectures [19], and
Transformer networks coupled with deep Q-Learning [20].

Recent efforts from the community include also benchmark-
ing the AVS task. Challenges including Habitat ObjectNav [21]
encourage methods for enabling an agent initialised at a random
starting pose in an unknown environment to find a given instance
of an object category using only sensory inputs to navigate,
where large-scale datasets of 3D real-world spaces with densely
annotated semantics are also made available to facilitate training
and testing the models [22]. As the scene map is unknown, most
methods aim to learn the policy by joining the objectives of both

11049

semantic exploration and object search [23]. On top of such
semantic exploration, the perception skills in terms of where
to look and the navigation can be further disentangled [24] for
an improved success rate. Moreover, spatial relations among
objects have also been formulated as graphs and embedded
via Graph Convolutional Networks to guide the navigation
policy [25], where external commonsense knowledge has also
shown advantages for the object localisation via spatial graph
learning [3]. In general, RL-based strategies are dependent
on training with a large amount of data in order to encode
the environmental modelling and motion policy. Differently,
our proposed POMCP-based method makes explicit use of the
available scene knowledge and performs efficient planning for
the agent’s path online without additional offline training.

B. Monte Carlo Planning

As for optimal policy computation, Partially Observable
Markov Decision Processes (POMDPs) are a popular framework
for representing dynamical processes in uncertain environments
and solving related sequential decision making problems [26].
Computing exact solutions for non-trivial POMDPs is often
computationally intractable [27], but in the recent years impres-
sive progress was made to develop approximate solvers. One
of the most recent and efficient strategies for solving POMDPs
in an approximate way is Monte Carlo Tree Search (MCTS)
[28], [29], [30]. The main advantage of using MCTS for solving
POMDPs is scalability. MCTS-based strategies compute the
policy online, i.e., only for the specific states (or beliefs, in case
of partially observable environments) the agent visits in its
trajectories. This is fundamental in domains with very large state
spaces and in partially observable environments where the di-
mension of the belief space is infinite, since beliefs are prob-
ability distributions over states. In MCTS system states are
represented as nodes of a tree, and actions/observations as edges.
Monte Carlo simulations are performed to generate the tree using
specific action selection strategies, such as the algorithm called
Upper Confidence bounds applied to Trees (UCT) [31], that
efficiently balances exploration and exploitation.

The most influential solver for POMDPs which takes advan-
tage of MCTS is Partially Observable Monte Carlo Planning
(POMCP) [12] which combines a particle filter representation
of the belief, a MCTS-based strategy for computing action Q-
values, and an efficient way to update the agent’s belief. Several
extensions of POMCP have been realised. BA-POMCP [32]
extends POMCP to Bayesian Adaptive POMDPs, allowing the
model of the environment to be learned during execution. A
version of POMCEP for scalable planning in multiagent POMDPs
is presented in [33], which it introduced model learning in
POMDPs considering also the uncertainty about model param-
eters in the belief. A scalable extension of POMCP for dealing
with cost constraints is presented in [34]. Very recent work
focused on the introduction of prior knowledge about the envi-
ronment and the policy in POMCP. In [35] known state-variable
relationships are used to improve the performance of POMCP,
in [36] policy improvement is performed with safety guarantees.
In [37] logical rules representing parts of the POMCP policy
are generated using Satisfiability Modulo Theory (SMT) to
improve the explainability of the policy and identify anomalous
action selections due to wrong parameter tuning. Again, in the
research line of merging probabilistic planning and symbolic
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approaches, [38], [39] allows to generate shields based on logical
rules to improve the safety of POMCP. The technique has been
further improved in [40], [41] where active approaches and
methods based on Inductive Learning of Answer Set Programs
are used to learn the logic rules. In [42], the authors presented
a probabilistic technique for solving the learning motion plan-
ning problem in static environments. A dynamic probabilistic
environment is considered in [43], incorporating perception un-
certainty and incompleteness into the planning process through
a probabilistic approach.

Applications of POMCP can be found in several domains. A
few of them are related to the exploration of partially known
environments [44] and the find-and-follow of people [45] with
robots. Others [46], [47] concern robot navigation using only
POMCEP or hierarchical methods approaches with POMCP for
high-level control and neural networks for low-level control.
Popular MCTS-based approaches have been recently used also
for developing agents with superhuman performance in the game
of Go [48], [49]. The approach proposed in this work differen-
tiates from all works mentioned above because it specialises
POMCEP to the AVS domain and introduces methodological
improvements to belief update, probabilistic detection of objects
and docking that are not present in the literature. To the best of
our knowledge, the only works available in the literature about
AVS with POMCEP are [13], [50]. The differences between these
works are substantial since [13] uses standard belief update, as-
sumes exact object detection and employs a naive docking proce-
dure, while [50] focuses on completely unknown environments.

III. METHOD

We consider an agent navigating through known environment
with the goal of locating and approaching a specific object. The
agent explores the environment to identify the target object,
determines its location on the map and then moves closer to it.
To be coherent with the related literature, the agent’s pose at
time step tis p; = {x¢, ys, 0+ }, where 2 and y are the coordinates
on the floor plane, and 6 is the orientation. At each time step the
agent takes an action a; from a predefined set A: specifically,
the agent can move_forward, move_backward,
rotate_clockwise, rotate_counter_ clockwise.
Rotations are defined by a fixed angle. When the agent reaches
a new pose py, it receives an observation which is the output of
an object detector applied to the image acquired by an RGB-D
camera. We model the search space as a grid map (see Fig. 1(b)),
in which each cell can be either: i) “visual occlusion”, if the cell
is occupied by obstacles, such as a wall or a piece of furniture,
that prevent the agent to see through; ii) “empty”, if the agent is
allowed to enter the cell and thus no objects can be located in
there; or iii) “candidate”, if none of the above, thus the cell is
a possible object location for the target object.

A. Partially Observable Markov Decision Processes

We formulate the AVS problem as a Partially Observable
Markov Decision Process (POMDP), which is a standard
framework for modeling sequential decision processes under
uncertainty in dynamical environments [26]. A POMDP is a
tuple (S, A,0,T,Z, R,~), where S is a finite set of partially
observable states, A is a finite set of actions, Z is a finite set of
observations, T: S x A — TI(S) is the state-transition model,
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0: S x A — II(Z) is the observation model, R: S x A — Ris
the reward function and y € [0, 1) is a discount factor. Agents
operating POMDPs aim to maximise their expected total dis-
counted reward E[>",7 ;7" R(s¢, at)], by choosing the best ac-
tion a; in each state s;, where ¢ is the time instant; v reduces
the weight of distant rewards and ensures the (infinite) sum’s
convergence. The partial observability of the state is modelled
by considering at each time-step a probability distribution over
all the states, called the belief B. POMDP solvers are algo-
rithms that compute, in an exact or approximate way, a policy
for POMDPs, namely a function 7: B — A that maps beliefs
to actions.

B. Partially Observable Monte Carlo Planning

POMCP [12] is an online Monte-Carlo based solver for
POMDPs. It uses Monte-Carlo Tree Search (MCTS) for select-
ing, at each time step, an action which approximates the optimal
one. Given the current belief, represented by an unweighted
particle filter, the Monte Carlo tree is generated by performing a
certain number of simulation from the current belief. These sim-
ulations generate, in an efficient way, estimates of the Q-values
of all actions from the current belief. The action with the highest
estimated Q-value is selected and performed in the environment.
A big advantage of POMCP is that it enables to scale to large
state spaces because it never represents the complete policy but
it generates only the part of the policy related to the belief states
actually seen during the plan execution. Moreover, the local
policy approximation is generated online using a simulator of the
environment, namely a function that given the current state and
an action provides the new state and an observation according
to the POMDP transition and observation models.

The main phases of the POMCP algorithm are summarized
in the following. i) Particle initialization. POMCP starts with a
MCTS containing only the root node representing the empty his-
tory h (i.e., no action performed and no observation observed).
The belief state is represented by a particle filter initialized with
a certain number of particles. The particles in the root node are
initialized by a procedure that selects random hidden states (e.g.,
target object positions in our application domain) from a uniform
distribution over all possible hidden states; ii) Simulations and
node statistics update. At each step, POMCP performs a certain
number of simulations from the current history h to generate
(online) a policy for that specific step (i.e., belief). A particle,
representing a state s of the system, is randomly chosen from
the particle filter of node h which represents the belief state of
the agent. From state s a set of simulation steps' is performed.
At each step, an action a is selected using UCT when the
current history is inside the tree, and a uniform policy when the
current history is outside the tree. A black-box model M(s, a)
is used to perform each simulation step, returning a simulated
observation and a simulated reward. When all simulation steps
are performed, the total reward of the simulation is used to update
node statistics about the average return of all simulations passing
through h; iii) Action selection in the environment. The action
that maximizes the Q-value of the initial node A is selected and
performed in the environment; iv) Belief update. The observation
o obtained from the environment after performing action a is

I'The term step is used to identify steps in the environment; the term simulation
step to identify steps in the simulation phase.
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used to update the belief. In particular, the next history node
h' = haois selected in the tree with the related particle filter, and
the rest of the tree is pruned; v) Particle reinvigoration. If a lack
of particles is experienced in i/ (because some particles moved
to other branches of the tree rooted in h), then new particles are
generated in 1/ by computing local transformations on current
particles and using a rejection sampling strategy to decide if
the new particles are compatible with the belief in h'. These
particles must contain states reachable from the previous belief
h after performing action @ and observing observation o.

C. Exploration, Localisation and Approach

The methodology here proposed is a specialisation of POMCP
for the AVS problem. It is based on three main elements, defined
in the following, that are used altogether by POMCP to perform
the search of an object in the environment. We assume that 7 is
the number of possible poses that the agent can assume in the
environment, m is the number of objects in the environment,
and £ is the number of locations in which each object can be
positioned.

i) The first element of the proposed framework is a pose
graph G in which nodes represent the n possible poses of the
agent and edges connect only poses reachable by the agent with
a single action. Thus, G is used to constrain the actions that
cannot be performed in the environment. ii) The second element
is the set H = {1,...,k} of all possible indices of locations
that each object can take in the environment. Each index in
‘H corresponds to a specific position in the topology of the
environment where the search is made. iii) The third element is
a matrix of object observability L = (I; ;) € {0,1}™**, where
l; ; = 1if the location j is visible from pose 7 —i.e., location j is
in the field of view of the agent positioned in 7. Matrix L can be
deterministically derived from G and H by a visibility function
fr which computes the visibility of each object from each agent
pose, considering the physical properties of the environment.
This matrix is used in the observation model employed in the
simulations. Namely, the observation model returns 1 if the
target object is observed from the current pose, O otherwise.
More formally, it returns 1 if the agent is in position i€ G and
the target object is in a position j € # for which I; - = 1. Notice
that the position of the target object in each SpeCff'ZlC simulation
is known because it is defined in the particle sampled at the
beginning of the simulation.

On the other hand, observations in the environment are based
on the object detector. Both for the environment and in the
simulator, we give a positive reward if the object is observed,;
otherwise, a negative reward is provided (corresponding to the
energy spent to perform the movement) and the POMCP-based
search is continued. To prevent the agent to visit the same poses
more than once, the agent maintains an internal memory vector
that collects all the poses already visited during the current run.
Every time the agent re-visits a pose it receives a high negative
reward. After every step in the environment, the agent receives
from the object detector an observed value 1 if the target object
has been observed, 0 otherwise.

The belief of the agent at each time step is an approximated
probability distribution over all the candidate object locations
in the environment, that represents the POMCP hidden state. If
the object is not observed within a fixed amount of moves, the
method terminates and reports a search failure.
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1) Belief Update: In our original formulation of POMP [13],
belief is updated using the standard POMCP strategy. A problem
with this approach is related to the cardinality of our state space.
In AVS, the state space describes both the agent’s pose and the
target’s location. Because the object can be in any location,
and the number of simulations is limited, it may happen that
some states are not considered during the simulation phase
and can only be recovered during reinvigoration. If they are
not recovered, they are removed from the belief and cannot be
recovered anymore, even if they are valid positions. Another
issue with this approach is that, during reinvigoration, the new
particles are sampled from the previous belief. This creates a
feedback loop in which particles that survive the belief update,
have a higher chance of being chosen during reinvigoration.
Thus, in situations where the number of simulations is limited,
it is possible for the belief to become confined to a sub-space
within the state space. In POMP-BE-PD, we change the belief
update and resampling procedure to overcome these issues. The
belief is initially generated by sampling particles from a uniform
distribution over all states —i.e., candidate object locations. An
auxiliary variable pp stores the current list of object locations not
been observed yet, where pp = {j € H | j not yet observed}.
The set is initialised as pp = H. At each time step, the agent
acquires observations about the locations within the current
FOV through the object detector, and it updates pp removing the
observed positions that do not contain the searched object. The
new belief is sampled from a uniform distribution over locations
satisfying the pp constraint —namely, having the searched object
in positions belonging to  \ pp. This way to update the belief is
beneficial in terms of performance, as shown in our experiments
below.

Notice that the belief update strategy used in POMP (which
is inherited by the standard strategy used in POMCP [12]) is
based on rejection sampling [51]. This strategy is known to be
suboptimal in large state spaces [52]. In fact, rejection sampling
in POMP reinvigoration considers only the states related to the
ones in the belief of the previous step. Local transformations
of those states are generated and only new states compatible
with the previous belief are kept in the particle filter. However,
during the reinvigoration process, the random nature of the sam-
pling procedure can lead to losing certain particles’ belief (i.e.,
possible object positions). To cope with this issue, alternative
sampling strategies were designed [52], whose effectiveness
was measured by empirical analysis (since general mathematical
analyses are nontrivial, being the relationship between sam-
pling and outcomes very complicated). For example, in [52],
importance sampling [51] is used instead of rejection sampling.
Our new approach, instead, re-samples at each step from a
set of states explicitly considering all possible positions of the
object not observed so far. This novel sampling mechanism,
which is not based on state transformations but on the explicit
consideration of all possible positions not yet observed, gives a
general improvement in most of the experiments. The rationale is
that the agent considers all possible unobserved object positions
to select an optimal action, instead of focusing on the positions
that are related to previously visited states.

2) Probabilistic Detection: We equipped our agent with the
Target Driven Instance Detector (TDID) presented in [53], an
architecture designed to recognise and classify specific instances
of object classes. Given an image, TDID returns a list of co-
ordinates representing the associated bounding box (if any), a
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Fig.3. Thetwo cases considered when creating the vector D. Example derived
from Home_003_2. In case (a) the objective is to determine the location of the
object and assign probabilities in the form of a multivariate normal distribution.
In (b), we assign low probabilities to the locations inside the FOV, and high
probabilities to the locations outside it. Note: we assign different scales to the
colorbar for ease of visualisation.

score s € [0, 1] and the corresponding class ¢. In our work, we
consider only detections with an associated score greater than
0.9. Moreover, given the rate of TP (True Positive), F/P (False
Positive) and FN (False Negative), we define:

TP
TP+ FP
On top of that, we define the F score as:

TP

Recall = m

Precision =

Precision x Recall

Fy-score =2 Precision + Recall ’
where F € [0, 1] can be interpreted as the harmonic mean of
Precision and Recall.

In POMP [13], the planner terminates the exploration phase
when the object detector identifies the target object inside the
FOV. As a consequence, even a single false positive would
terminate the exploration, thus not bringing the agent to the
target object. In POMP-BE-PD we aim to reduce the impact of
this problem by considering the current observation, as well as
incorporating the whole history of observations.

We first define a vector D = {dj, . .., dy } for the probabilities
to have the target object in location j considering the output of
the object detector with the observation at the current time step.
In other words, at each step in the environment, we reset all d;
with 7 = 1,..., k. We then consider two cases: i) if the object
is found by the object detector inside the current FOV, we set
d; = Oinlocations j outside the FOV and we set the probabilities
d; of locations inside the FOV according to a multivariate normal
distribution with mean in the location j where the object is
localised by the detector (see Fig. 3(a)); ii) instead, if the object
is not found by the object detector inside the FOV, then we
set d; = F} in locations j inside the FOV and d; =1 — F}
in locations j outside the FOV (see Fig. 3(b)). In both cases,
we normalise D so that 211 d; = 1. Notice that F} is class
specific, i.e., it accounts for the performance of the object
detector for the specific object class.

As a second auxiliary data structure, we define a vector
R ={p1,...,pr} of probabilities to have the target object in
location j considering the whole history of observations, i.e.,
this represents a global probability using information also from
previous steps. We initialize a uniform probability at time ¢t = 0
as p?- = 1/n, where n is the number of candidate object loca-
tions. For all the subsequent time steps ¢ > 1, the probability is
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updated according to the following rule:
e
Zkfl pt_l . dt

forall j € H. Finally, we define a threshold 7 = ﬁ, wherec € N
is a constant that allows us to increase the confidence of our
probabilistic detection. We terminate the POMCP exploration
phase when in the FOV of the current pose we have an object
location j whose probability p; exceeds the threshold. More
formally, the following exit condition must be verified:

(j = 7) A (Lij =1). 2

Updating the probabilities in a Bayesian way (see (1)) falls
into the general case of Bayesian inference, in which the param-
eters of a distribution are estimated by considering subsequent
observations of the environment. Our formulation does not
assume any specific form of the probability distribution, thus
the parametrization is the distribution itself, i.e., the values of
the pdf in each potential location of the object. In this setup,
Bayesian inference is proved to be optimal in the sense that
it guarantees to minimize the overall risk of making incorrect
decisions. According to this procedure, if the object is not in the
current FOV, we assume that it must be in some other location,
thus we increase the corresponding probabilities. Instead, if it is
in the current FOV, we increase the probabilities of the locations
near the 3D position of the object and lower the other ones.
Moreover, we do not rely merely on the object detector output,
we rather accumulate knowledge over time by leveraging the
old and current state of the environment. In Fig. 4 we report
an episode in which we can appreciate the evolution of the
probabilities inside an environment.

3) Probabilistic Docking: Given the object location j € H
satisfying the exit condition of (2), we first identify the destina-
tion pose —i.e., the agent’s pose 7 € G that is closest to the target
location and points towards it. Then we use the Dijkstra algo-
rithm [14] to compute the shortest path between the current pose
1 € G and the estimated destination pose ic G. While the agent
navigates towards the destination pose, the object detector is not
used since we are confident enough that the target object is in lo-
cation j. This strategy achieves better performance than the Ro-
bust Visual Docking introduced in [13]. A key distinction is that
in Robust Visual Docking the object detector is used along the
path, thus, in case of poor performing detectors, miss-detections
and false positives can easily distract the agent from the final
goal, having fatal consequences in the approaching phase.

p; = ey

IV. EXPERIMENTS

We tested our approach on the Active Vision Dataset Bench-
mark [9], a public benchmark for active visual search that
contains more than 30,000 RGBD images taken in 15 dif-
ferent indoor environments and 33 different target objects.
Consistently with [10], we classify each scene in the dataset
as simple, medium, or hard for the visual search task, where
we define a simple environment consisting of a single small
room, a medium difficult apartment with a large room or with an
additional small room —e.g., a bathroom or an open space—, and
finally a hard apartment with multiple large rooms. We use in our
experiments two simple (Home_005_2 and Home_015_1), three
medium (Home_001_2,Home_016_1,Home_014_2), and three
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Evolution of the probabilities p; inside Home_016_1 using the proposed approach POMP-BE-PD. In step (a) we initialise the agent in the environment;

we highlight the target position and a false positive area. From step (b) to (c) the robot explores the top area; in step (d) we show the robustness of our approach to
a false positive; finally, in step (e) we identify high probable locations, locating the target in step (f).

(a) Home_005_2 [97]

(e) Home_016_1 [215]  (f) Home_003_2 [560]

Fig. 5.

(g) Home_004_2 [490]

(h) Home_013_1 [490]

Corresponding 2D floor maps (not in scale) for the test scenes from AVBD of 3 different difficulty levels (as in [10]). For each environment, we report

the name and, in parenthesis, the number of possible object locations. As the difficulty increases, we can note an increment of possible object location and more

difficult spatial layouts.

hard apartments (Home_003_2, Home_004_2, Home_013_1).
Some examples of these scenarios are shown in Fig. 5.

We consider three metrics: Success Rate (SR) [56] is consid-
ered the main metric of this work, and it is defined as the percent-
age of times the agent successfully reaches one of the destination
poses (as provided in AVDB) over the total number of trials (a
larger value indicates a more effective search); Average Path
Length (APL) defined as the total number of poses visited by the
agent, among the successful episodes, divided by the number of
successful episodes (a lower value indicates a higher absolute
efficiency); and Success weighted by Path Length (SPL) [56]

defined as:
N

1 l;
SPL= N ; 5 max (p;, ;) ©

where IV are the test episodes, /; is the length of the shortest
path between the goal and the target for an episode, p; is the
length of the path taken by an agent in an episode and S; is
a binary indicator of success in episode ¢ . In general, a larger
value indicates a higher absolute efficiency. In this work, the term
“efficiency” refers to the effectiveness of the agent’s exploration
strategy, aimed at finding the target goal with the shortest path
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TABLE 1
RESULTS ON THREE SCENES FROM AVDB USING GT OBJECTS ANNOTATIONS

Method Easy (Home_005_2) Medium (Home_001_2) Hard (Home_003_2) Avg.

SRt APL| SPL{ SR+ APL| SPL1{ SRt APL| SPL1{ SR+ APL| SPL1{
Random Walk 0.32  74.00 0.06 0.11 74.48 0.02 0.10  79.27 0.02 0.18 7591 0.03
EAT [10] 0.77 12.20 0.42 0.73 16.20 0.56 0.58 22.10 0.41 0.69 16.80 0.46
DQN(*) [54] 1.00  11.06 - 0.69 1815 - = - - - - -
DQN-TAM®) [55]  0.98  17.85 - 0.60 24.19 - = - - - - -
POMP [13] 0.98 13.60 0.71 0.73 17.10 0.58 0.56  20.50 0.40 0.76 17.07 0.56
POMP-BE-PD 0.98 11.93 0.71 0.80 17.86 0.60 0.92 2452 0.58 0.90 18.10 0.63

All methods are compared using the protocol defined in [10]. The asterisk (*) indicates that the evaluation is performed on a different subset of objects.

The bold values indicate state-of-the-art (SOTA) results considering the main metric.

possible. An episode is considered successful if the agentreaches
the destination pose given by AVDB in a fixed number of steps
(200 in our experiments), using the initial pose definition given
by [9].

A. Quantitative Results

We compare our proposed approach POMP-BE-PD against a
random walk baseline —i.e., we allow the agent to randomly se-
lect an action among all the feasible ones at each time step—, and
four state-of-the-art approaches, namely: EAT [10], DQN [54],
DQN-TAM [55], and our previous work POMP [13]. The latter
is the only unsupervised method, while the former three need
training data to learn the policy. Since no official code for
published methods is available, except for EAT, we are only able
to compare results with them following the protocol proposed
in [10]. With respect to the standard protocol defined in the
benchmark paper [9], this protocol provides results only using
GT annotations for object detection, and on a limited number of
scenes. Moreover, it uses only a subset of target objects. DQN
and DQN-TAM use only two scenes (one easy and one medium),
thus the average column is not meaningful for a fair comparison.
Additionally, DQN and DQN-TAM use a different subset of
objects in their evaluation. From results reported in Table I we
can clearly see that our approach POMP-BE-PD outperforms
EAT in terms of SR, with a little increment in APL, which
is reasonable since we are now considering more challenging
situations, as we will deeply explore in Section IV-C. As for the
comparison between POMP-BE-PD and DQN, we note that the
DQN approach outperforms our method in the easy scenario, but
in the medium case we outperform the competitor in SR with
a comparable APL. It is worth noting that for achieving these
results both DQN approaches require 13 scenarios for training
the best policy, while our method requires no training at all.

Results using the object detector provided by [53] are reported
in Table III for POMP and POMP-BE-PD. Again, we can appre-
ciate a strong increment of 35% of both SR and SPL, mostly due
to the ability of our proposed method to handle more complex
cases.

B. Ablation Studies

We provide also an ablation study to deeply analyse the
contributions of the different terms in our model. In the following
we will answer some questions by comparing the proposed
method with some partial versions of it considering only the
new belief update (called POMP-BE) and considering only the
probabilistic detection (called POMP-PD).

TABLE 11
RESULT OF DIFFERENT VERSIONS OF IMPROVED POMP WITH MORE SCENES
PER DIFFICULTY LEVEL IN AVD

Difficulty Scene POMPII3] POMP-BE
SRt APL| SPL{ SRt APL| SPL1
Home_005_2 094 1296 073 093 1226 072
Easy Home_015_1 075 23.66 045 073 17.04 052
Avg. 084 1831 059 083 1465 0.62
Home_001_2 080 1820  0.57 081 1995 055
Medium  Home 0142 076 4107 038 090 19.99 055
ediu Home_ 016_1 071 29.64 039 0.83 3655  0.50
Avg. 076 29.64 045 085 2550 053
Home_003_2 043 2190 027 079 3193 045
Hard Home_004_2 045 6620  0.17 057 4771 028
Home 013_1 055 4972 027 074 5311 041
Avg. 048 4594 024 070 4425 038
Average 0.67 3292 0.40 079 2982 050

POMP-BE is POMP with the improved Belief Update. Result using the ground truth
annotations instead of the detector, using 2'° simulations during the planning phase. The
new Belief Update consistently increase the efficiency of the exploration phase, thus
reducing the Average Path length, and increasing the SR and SPL.

The bold values indicate state-of-the-art (SOTA) results considering the main metric.

Belief update: Does the new belief update reduce the episode
length? What are the benefits of the new belief update when
navigating difficult scenarios?

InFig. 6 we aggregate the episodes by their difficulty, grouped
by the minimum path length for the episode to reach the tar-
get. In Fig. 6(a) we aggregated the results for the easy sce-
nario (Home_005_2 and Home_015_1); in Fig. 6(b) for the
hard scenario (Home_003_2, Home_004_2, Home_013_1); in
Fig. 6(c) for the medium one (Home_001_2, Home_014_2 and
Home_016_1); finally for Fig. 6(d) we aggregated the results
for all the scenario present in AVDB. From these charts we
can derive that, by removing from the belief update locations
already observed, we can optimize the exploration phase, thus
increasing the effectiveness. Furthermore, Table II analyzes the
impact of the new belief update isolating all the possible causes
of error, i.e., we swap the object detector with the ground
truth annotations eliminating the source of false positive and
miss detection both during the planning and docking phases.
In the easy scenario, we have a marginal reduction in SR (0.01)
while reducing the APL and increasing the efficiency (i.e., SPL).
We hypothesise that the simple layout (Fig. 5(a) and (b)) and the
concentration of minimum path length (Fig. 6(a)) do not allow
the belief update to be beneficial. However, the more difficult the
scenario, with more possible object locations and complicated
spatial layouts, the higher the improvement in performance.
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We aggregated the episodes by the minimum number of steps to reach the object, thus incorporating the difficulty of the episode. In Figure (a) the results

for the Easy scenarios; in Fig. (b) Hard Scenarios; in Fig. (c) the Medium ones and finally, in Fig. (d), the sum of all scenarios. Results using the object detector
provided by [53], both during planning and docking. Focusing on the POMP-PD method (yellow bar), we can observe the increment of efficiency and efficacy due
to the introduction of the Belief Update (green bar), since both methods do not change the exit condition during planning (Probabilistic Detection).

Starting from the medium scenario, we increase the SR from
0.76 to 0.85 while decreasing the APL from 29.64 to 25.50,
with an increment of the total efficiency from 0.45 to 0.53. A
similar result can be seen for the hard scenario.

Probabilistic Detection & Docking: Does Probabilistic De-
tection reduce the number of false positives? Is there a way to
improve the docking, also considering the knowledge gathered
during the planning?

To answer the first question, we analyze the different types of
failure that can occur during the episodes. More specifically, we
consider three types of errors: i) Localisation, if during POMCP
exploration the exit condition is verified, but the target object is
not actually present in the FOV. ii) Docking, if in the last pose
of the POMCP exploration the agent correctly detects the target,
but it fails to reach the successful destination poses defined by
AVDB; iii) Other, if the error is not categorized as Docking
or Localisation, and if the agent is unable to detect the target
object within the time limit or the agent performs action not

allowed during the path. In Fig. 7 we provide the percentage of
error for each planner, averaged over all scenarios. First of all, we
can notice a significant reduction (~32% decrease) of false pos-
itives when introducing the Probabilistic Detection approach,
thus increasing the robustness of our method. The new Belief
Update, instead, greatly reduces the error categorized as “Other”
(~30% decrease), thus increasing the efficiency of our method.
Moreover, using the knowledge gathered during the planning
provides a reliable mechanism to increase the robustness during
the docking phase. Indeed, if we look at Fig. 7 we can appreciate
a ~35.7% decrease of Docking error.

To measure the impact of Probabilistic Detection, in Table III
we conduct an ablation study isolating the Probabilistic approach
from the belief update, both using the detector during the plan-
ning and docking. In all the scenarios, POMP-PD increments the
SR by a large margin (19% - 25%) over our previous formulation
POMP, while maintaining, on average, the same SPL. However,
we note an increment of the APL. This is not surprising: indeed,
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TABLE III
RESULTS OF POMP AND VARIATIONS OF POMP-BE-PD WITH MORE SCENES PER DIFFICULTY LEVEL IN AVD USING THE REAL DETECTOR PROVIDED BY [53]

. POMP[13] POMP-BE POMP-PD POMP-BE-PD (Proposed)
Difficulty Scene

SRt APL| SPL1? SRT APL| SPL? SRT APL| SPL? SRT APL | SPL 1

Home_005_2 0.60  17.90 0.40 0.58  16.18 0.41 0.81  26.08 0.42 0.79  22.70 0.45

Easy Home_015_1 049  34.76 0.22 045  38.76 0.23 0.55 3534 0.23 0.54 3050 0.26
Avg. 0.54 2633 0.31 052 2747 0.32 0.68 30.71 0.33 0.67  26.60 0.35

Home_001_2 040  20.73 0.24 039 1936 0.24 0.50  31.00 0.24 0.57  28.50 0.31

Medium Home_014_2 0.53  47.60 0.25 0.60  18.52 0.38 0.60  45.79 0.24 0.66  21.38 0.37
1 Home_016_1 0.29  50.23 0.12 028  47.05 0.13 036 5773 0.12 0.41 5326 0.16
Avg. 041  39.52 0.20 042 2831 0.25 0.49 4484 0.20 0.55 3438 0.28

Home_003_2 0.19  26.60 0.10 0.33  30.53 0.18 0.39 6236 0.13 048  42.86 0.20

Hard Home_004_2 042  69.84 0.15 0.55 4731 0.26 0.44  70.26 0.14 0.54 6193 0.20
Home_013_1 025 61.41 0.12 031  77.09 0.14 026  62.80 0.09 034 5438 0.15

Avg. 029  52.62 0.12 040 51.64 0.19 036  65.14 0.12 045 53.06 0.18

Average 040 41.13 0.20 044  36.85 0.25 0.49  48.92 0.20 0.54 39.44 0.27

The bold values indicate state-of-the-art (SOTA) results considering the main metric.
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over all scenarios. The errors are categorised into three types: Localisation,
Docking and Other. We used the object detector provided by [53], during both
planning and docking.

if the agent needs to be more confident and robust against false
positives, it must require more steps to increase the probability
of the target location, and bring that to be > the threshold 7.

C. Qualitative Results

In Fig. 4 we visualise an episode by our proposed approach, in
which it is possible to appreciate the evolution of the probability
distribution over the locations and the robustness to a false
positive. The starting pose is defined in Fig. 4(a). From Fig. 4(b)
and (c) the agent explores the top part of the environment without
success. In Fig. 4(d) the robot encounters a false positive: the
update rule defined in (1) with the generated probability map are

providing a robust framework for not stopping the exploration.
Indeed, the standard POMP defined in [13], in the same situa-
tion, would have stopped the episode. Moreover, we can note
that in the area unexplored by the agent (the right part of the
environment) we are raising the probabilities: if we do not locate
the target elsewhere, the object must be in this area. Finally, in
Fig. 4(e) we locate a zone with a high probability of containing
the target, and in Fig. 4(f) we locate the searched object.

V. CONCLUSION

In this paper we presented POMP-BE-PD, our proposed
approach to solve Active Visual Search (AVS) in known en-
vironments. Based on a POMCP planner, POMP-BE-PD learns
the policy online by efficiently exploiting the information of the
2D floor map of the environment; as a consequence, our method
does not require any expensive training, both in time and compu-
tational resources. To cope with imperfect object detectors, with
a high number of false positives and miss-detection that could
have a dramatic effect on the overall success rate, we transitioned
from a deterministic detection to a Probabilistic one. After every
step in the environment, a Bayesian inference, combined with a
probability distribution over all possible object locations, allows
us to reduce the false positives error by 32%. Consequently, to
handle the restricted belief space of the original POMCP in the
AVS domain, we introduce a new belief update considering,
at each time step, all the possible positions that have not been
observed yet. We evaluate extensively our method, following
the AVDB benchmark, achieving state-of-the-art results. On
top of that, with several ablation studies, we demonstrated the
strength of our method. On average over all the environments, we
increase the success rate by a significant 35% while decreasing
the average path length by 4% with respect to our previous
formulation POMP.
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