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1. Introduction

In recent years, the proliferation of waste electrical and 
electronic equipment (WEEE) has created an unprecedented 
global challenge. The rapid technological advancement of 
today's market has led to a dramatic escalation of the WEEE 
generation rate (estimated increase of 3-5% per year), driving  
the need for effective and sustainable alternative waste 
management strategies [1]. Among these strategies, the role of 
deep learning is emerging as a crucial alternative that can 
revolutionise the disassembly and recycling processes of 
WEEE.

WEEE, also known as e-waste, covers a wide range of 
electronic equipment, from consumer electronics to complex 
computer and communications systems. This heterogeneous 
waste stream presents complex challenges due to the varying 
composition of the materials to be handled, the integration of 
different types of components and the presence of dangerous 
substances [2]. Traditional WEEE management methods often 
involve manual and semi-automated processes that are not only 
time, cost and labour intensive, but also prone to inefficiency  
and inaccuracy. As a result, managing this growing waste 
stream requires a comprehensive approach that takes into 
account the entire product life cycle [3].
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Equipment (WEEE) management. The increasing availability of technology and the expansion of consumer markets have led to a significant  
surge in the generation of WEEE, necessitating the urgent development of sustainable and automated strategies for its disposal and resource 
recovery. Traditional manual disposal methods and the uncontrolled accumulation of WEEE can pose serious threats to the environment, human 
health and natural resources. A comprehensive approach, involving advanced recycling technologies, life-cycle management and policy reforms 
is required to handle this escalating waste stream.
The complexity of WEEE management is heightened by the diversity of product design and composition, making efficient material selection 
processes often labour-intensive and expensive. This work focuses on the automated detection and sorting of WEEE products. The proposed 
system enables rapid identification of products and components, in order to facilitate the subsequent disassembly and reuse of components that 
are still considered functional, safe, and of good quality. This concept is illustrated through a case study where recognition of six different 
electronic boards is performed.
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Deep learning, a subset of machine learning, has become a 
paradigm shifter in several industries, demonstrating 
outstanding capabilities in object detection, natural language 
processing and pattern recognition [4]. Also in the WEEE 
sector, researches have shown how neural networks trained on 
big data have great potential for WEEE recognition, sorting and 
disassembly [5]. By enabling precise identification and 
separation of materials, the application of deep learning to 
WEEE promises to increase the efficiency of disassembly and 
subsequent recycling of electronic components.

The main goal of this paper is to present an application of a 
convolutional neural network (CNN) in the efficien t
recognition of electronic components . By harnessing the power 
of neural networks, this study seeks to explore new approaches 
that can be used for automatic component recognition and 
material classification. Through the experimental results, this 
paper aims to demonstrate the tangible benefits of integrating 
deep learning methods in the field of WEEE management.

2. Object detection using convolutional neural networks

2.1. Convolutional neural network architecture

Object detection is a computer vision activity that detects 
instances of objects of a given class in digital images. The goal 
of object detection is to develop computational models that 
indicate which objects are present in an image and where they 
are located [6]. Among the various techniques, CNN is 
certainly the most widely used for object detection. A CNN is
a hierarchical category of deep neural networks designed to 
process and extract features from images [7]. This hierarchical 
structure is characterised by multiple layers, each consisting of 
interconnected units called neurons [6]. The innovation of 
CNNs lies in the use of convolutional layer, which use adaptive 
filters to perform localised convolutions on the input data, 
capturing distinctive features and patterns within the visual 
domain. Subsequent pooling layer reduce spatial dimensions 
while preserving essential information, promoting translation 
invariance and enabling feature extraction [6]. Feature 
classification takes place in the fully connected layer, where all 
the features extracted from the previous layers converge. 
Finally, the output layer, consisting of a number of neurons 
equal to the number of classes detected, shows the results of the 
classification. This intricate interplay between the 
convolutional and pooling layers gives CNNs the ability to 
learn increasingly abstract and complex features automatically  
and adaptively from the raw data [7]. Fig. 1 shows the 
schematic diagram of a basic CNN.

Fig. 1. Schematic diagram of a basic CNN architecture. Adapted from [8].

The operation of a CNN is based on the concept of bounding 
boxes. Each object identified is enclosed by a bounding box
and marked by a score that indicates the model's confidence in 
associating the box with a real object instance. Accordingly, 
the confidence score quantifies the probability that the 
bounding box precisely encapsulates a detected object [6].

In the field of CNNs, their architecture can be classified into 
two different paradigms: one-stage CNNs and two-stage CNNs  
[4,7]. One-stage CNNs, often referred to as single-strike 
detectors, simplify the process by directly predicting object 
classes and bounding boxes in a single pass through the 
network. This fast approach reduces computational complexity  
and inference time, making it suitable for real-time applications
[6]. This category includes the YOLO (You Only Look Once) 
models [9]. In contrast, two-stage CNNs consist of a 
preliminary stage that generates regions of interest (ROIs), 
followed by a stage for object classification and localisation. 
While introducing an additional layer, two-stage CNNs tend to 
produce more precise prevision. Neural networks such as the 
Regional proposal with Convolutional Neural Network (R-
CNN) and Faster R-CNN fall into this category [9]. The trade-
off between speed and precision defines the distinction 
between the two paradigms: one-stage CNNs favour efficiency  
and real-time operation, while two-stage CNNs favour 
precision and adaptability. The choice between the two 
paradigms depends on the specific requirements of the 
application and the balance between real-time constraints and 
the desired quality of sensing [7].

2.2. Convolutional neural networks for WEEE 

Numerous researches have highlighted the capabilities of 
neural networks, particularly CNNs, when trained on large 
datasets for WEEE management [10,11]. The potential of these 
neural networks is crucial in overcoming the persistent 
problems of low recall and precision associated with  
conventional recognition methods [10].

Even for WEEE, the choice of the most suitable neural 
network depends on the application. According to Xu et al.
[10], if high precision is required in detecting electronic 
components, two-stage networks should be used. On the other 
hand, if the application requires real-time component 
recognition, a single-stage neural network is more suitable
[11]. Considering that the neural network will be used in the 
real-time recognition of electronic boards and their subsequent 
disassembly (see Section 5), a model based on the YOLOv5 
paradigm has been developed.

3. Research framework

As above mentioned, methods for inspecting printed circuit  
boards are well-established in both academic literature and 
industry practice [5,12]. However, these methods typically rely  
on the assumption that electronic components are fixed in 
position on the board. In contrast, the proposed case study 
shows an innovative method for detecting components on the 
assembled electronic boards with variable positions (see 
Section 4). Fig. 2 illustrates the WEEE management stages 
where the proposed automatic recognition system is applied. 
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The system first identifies individual components; then, it 
determines the board's type and function, significantly reducing 
potential human errors in these critical recognition steps 
(highlighted by the red box). This advancement sets the stage 
for automated board disassembly and the subsequent reuse or 
recycling of functional components, as it will be discussed in 
Section 5.

Fig. 2. Stages of Electronic Board Processing for WEEE Management.

Building on the automatic recognition capabilities outlined 
in Fig. 2, this paper delves into the application of the YOLOv5 
algorithm within WEEE management systems. YOLOv5's  
proficiency in detecting and locating multiple objects in images  
makes it particularly suited to the intricacies of WEEE 
management, where rapid and accurate identification of 
electronic waste components is crucial. By applying YOLOv5 
to identify components on electronic boards without fixed 
positions, a notable enhancement can be obtained in the 
efficiency and effectiveness of sorting, recycling and disposal 
processes [11]. The case study affirms that incorporating 
YOLOv5 into WEEE management systems fosters a more 
sustainable approach to e-waste management (see the next  
section).

4. Case study

4.1. ARDUINO boards

Six different electronic boards (named from “pA” to “pF”) 
from the ARDUINO® UNO starter kit were selected as a case 
study. The ARDUINO UNO starter kit consists of three main  
elements: the microcontroller, the components (e.g., wires, 
buttons, resistors, etc.) and the breadboard, which is used as the 
basis for building different product variants. The characteristics 
of the selected electronic boards are reported in Table 1 [13].

Table 1. Characteristics of the six electronic boards (pA-pF).

This type of product allows different types of electronic 
boards to be assembled using the same initial components. If

one of the product variants does not work properly, it is 
possible to disassemble the product itself and reuse the still-
working components to produce a new variant. Moreover, no 
soldering is required, as the ARDUINO breadboard is made up 
of rows and columns of holes that transfer electricity through 
the connections [13]. Thus, ARDUINO boards can simulate the 
assembly and disassembly processes of a Printed Circuit Board 
(PCB), which is the core component of many electronic 
products [11,13], eliminating the challenges associated with  
soldering. Fig. 3 shows two examples of electronic boards .

Fig. 3. Example of assembled electronic boards: (a) pB and (b) pC.

Despite their distinct functions and varying levels of 
customization, which range from simple to more complex [13], 
these six boards share a key commonality: they consist of 
similar, unsoldered components, which makes them potentially 
reusable (if functioning). This characteristic is especially 
significant in the context of real-world product design, where a 
wide range of products frequently employ similar and
interchangeable elements .

4.2. Dataset generation

YOLOv5 offers faster real-time object detection and higher 
precision than other deep learning algorithms. Training a 
YOLOv5 model requires darknet format images, i.e., images in 
which each component is labelled and contained within  
bounding boxes. In this case study, the dataset for training, 
testing and validation was imported directly from Roboflow
[14].

The first step was to upload the initial 240 images, i.e., 40 
images for each of the six product types, to the Roboflow 
website. During the tests, it was found that using at least 40 
different images per product allowed the network to extract  
more robust information. To reduce the noise generated in the 
neural network, the 240 images were cropped with a focus on 
the breadboard (see Fig. 4). Afterwards, an initial phase of 
image labelling was carried out, indicating the individual 
bounding boxes of the recognised components. The labelling  
was performed manually using Roboflow's Smart Polygon tool 
to ensure high precision of prediction [14]. At the end of this 
first phase, 9 different classes (i.e., button, H-bridge, LCD, 
LED, photoresistor, piezo, potentiometer, resistor, wire) were 
identified. All the 240 images were resized to 416x416 pixels . 
Before the training phase, Roboflow allows data augmentation 
to increase the size of the initial dataset [14]. In this study, 
several data augmentation such as flipping (horizontal and 

pA pB pC pD pE pF

Button - 2 4 - 2 1

H-Bridge - - - - 1 -

LCD - - - - - 1
LED 1 1 - 1 - -

Photoresistor - - - 3 - -

Piezo - - 1 - - -
Potentiometer - - - - 1 1

Resistor 1 1 4 6 2 2

Wire 1 4 7 11 15 17

N° of parts 3 8 16 21 21 22
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vertical), rotation (between -20° and +20°), saturation (between
-50% and +50%) and zoom (between -20% and +20%) were 
applied to the initial images (see Fig. 4).

Fig. 4. Example of data augmentation applied to pB images: (a) -20° rotation,
(b) +20% brightness, (c) horizontal flip,and (d) +20% zoom.

The final dataset size amounted to 728 images . This dataset 
was used to train, validate and test the YOLOv5 network. 
Specifically, 80% of the dataset was used for the training phase 
and the remaining 20% for the validation and testing phases. In 
this case study, the YOLOv5 network was trained from scratch 
using the above-described database.

4.3. Network training

Google Colab, a research project for prototyping machine 
learning models on powerful hardware options such as GPUs  
and TPUs, was used to implement the YOLOv5 network. This 
platform provides a Jupyter notebook environment for 
interactive development without the need for high-performance 
local resources [15]. Among the various GPUs, CPUs and 
TPUs offered by Google Colab, the NVIDIA T4 GPU was 
selected. With 16GB of RAM, this GPU excels at parallel 
processing, making it ideal for training deep learning models.

In the first phase of neural network training, the YOLOv5
repository was downloaded from the ultralytics GitHub profile
[16]. This repository contains the pre-written Python files for 
training, validation and testing and the four different variants 
of the YOLOv5 models: s, m, l and x [7]. Given the small size 
of the dataset and the need for real time recognition, the 
YOLOv5s model was selected. The database link was 
downloaded from the Roboflow website and training began by 
feeding the dataset into the custom YOLOv5s model. At this 
early stage, it was crucial to define the correct number of 
epochs (i.e. the number of times the algorithm runs through the 
entire training data set) and batches (i.e. the number of samples 
to be processed before updating the internal model parameters) 
[4]. In this case study, the number of epochs was set to 200 and 
the number of batches to 32. These values were determined by 
observing the learning performance and comparing this number 
with the model's error rate to find the best balance between 
training time and performance. Training was performed using 
the Python training file in the downloaded repository, and the 
best weights were saved and used to detect components when 
training was complete. The process took almost an hour.

5. Results and discussions

5.1. Performance metrics

Object detection methods use several criteria to evaluate 
detector performance, such as precision, recall and mean  
average precision. All these criteria are based on the concept of 
Intersection of Union (IoU), i.e. the ratio of the overlap area to 
the union area between the ground truth (actual object position) 
and the predicted bounding box [17]. The IoU measures the 
spatial alignment between the predicted and actual positions of 
objects and provides an index of location precision. In common 
practice, a predefined threshold is used along with the IoU 
metric to assess the precision of the predictions. If the IoU 
exceeds this threshold, a True Positive (TP) is established, 
indicating that the model has correctly classified the object. 
Conversely, if the IoU falls below the threshold, three different  
scenarios can occur: (i) False Positive (FP), i.e. the model 
identifies an object that does not match the ground truth; (ii) 
False Negative (FN), i.e. the model does not identify an object 
that exists in the ground truth; (iii) True Negative (TN), i.e. the 
model does not identify an object that does not appear in the 
ground truth. [17]. These metrics (TP, FP, TN and FN) are 
counts that give an indication of the model predictive ability.

Precision involves the model's capacity to exclusively  
recognize pertinent objects, quantified as the ratio of positive 
predictions. A high precision means that the model is making  
fewer FP errors. On the other hand, recall concerns the model's  
capability to locate all relevant instances . It measures the 
proportion of positive predictions in relation to the total number 
of ground truths bounding boxes. Accordingly, precision and 
recall can be defined as [17,18]:

Precision = TP
TP+FP , (1)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹 . (2)

There is often a trade-off between precision and recall. 
Increasing one metric may lead to a decrease in the other 
metric. A good object detection model has high precision and 
recall at a suitable decision threshold. To study the joint 
performance of precision and recall, it is usual to create the 
precision-recall curve (P(R) curve) and calculate the area under 
the curve [18]. The area under this curve represents the 
Average Precision (AP) of the recognition model and can be 
defined as: 

𝐴𝐴𝐴𝐴 = ∫ 𝑃𝑃(𝑅𝑅)𝑑𝑑𝑑𝑑1
0 . (3)

Each class identified by the model (nine in our case study, 
see Section 4.2) has its AP value. The mean average precision
(mAP), which is one of the best measures of model precision, 
is obtained by averaging the AP values of the different classes. 
As a result, the mAP can be calculated as follows:

mAP =  1𝑁𝑁∑ 𝐴𝐴𝐴𝐴𝑖𝑖𝑁𝑁
𝑖𝑖=1 , (4)



210 Stefano Puttero  et al. / Procedia CIRP 127 (2024) 206–211

where N is the total number of classes and 𝐴𝐴𝐴𝐴𝑖𝑖 is the average 
precision in the 𝑖𝑖-th class [17,18]. It is noteworthy how 𝐴𝐴𝐴𝐴𝑖𝑖
values depend on the value of the defined IoU threshold (since 
precision and recall depend on this threshold). Therefore, to 
avoid this ambiguity, it is important to assess the mAP using a 
different set of thresholds . It is common practice to consider 
mAP defined with IoU equal to 0.5 (mAP_0.5) and all mAP
values with IoU between 0.5 and 0.95 with a step of 0.05 
(mAP_0.5:0.95).

5.2. Results

Fig. 5 shows the results of training and validation sets of the
YOLOv5s model. The graphs highlight the most important  
criteria to evaluate detector performances: loss, precision, 
recall and mAP. In particular, Fig. 5(a-f) reports the three 
components of the loss function over epochs: box loss, 
objectness loss and classification loss. Box loss indicates how 
well the model can locate the centre of an object and how much  
the predicted bounding box covers an object. Objectness loss 
measures the probability that an object is present in a proposed 
region of interest. If objectness is high, the image window is 
likely to contain an object. Classification loss refers to the 
ability of the algorithm to predict the correct class of an object. 
For all three types of losses, the lower the loss, the better the 
model's performances. Over epochs, Fig. 5(a-f) shows that all 
three loss categories have a decreasing trend towards zero for 
both the validation and training sets. This trend is an indicator 
of the model's ability to correctly detect electronic components .

Regarding precision, recall and mAP, the values gained by 
the model are reported in the first row of Table 2. The same 
results can be seen graphically in Fig. 5(g-l), where an
increasing trend towards unit value can be observed. The 
analysis leads to a mAP of 94.5%, which indicates a good 
capability of the model to detect components a good capability 
of the model to detect components. This capability is also 
reflected in the individual component classes in Table 2, 
detailing the precision, recall and mAP values for each of the 

identified electronic components. For all 9 classes, the model 
shows very high performance, confirming the loss analysis. 
Some restrictions apply only to wire and resistor classes, as for 
more complex products (pE, pF) there is often an overlap 
between wire and resistor, making identification more difficult .

Table 2. YOLOv5s model results. 

Classes Precision Recall mAP0.5 mAP0.5:0.95

All 0.911 0.940 0.945 0.794

Button 0.985 1 0.995 0.895
H-Bridge 0.853 1 0.995 0.995

LCD 0.911 1 0.995 0.808

LED 1 0.985 0.995 0.911
Photoresistor 0.812 0.889 0.949 0.821

Piezo 0.852 1 0.898 0.726

Potentiometer 1 0.982 0.995 0.796
Resistor 0.828 0.705 0.760 0.499

Wire 0.961 0.896 0.919 0.699

Upon validating the model's performance on the dataset, the 
testing phase was performed. The testing part of the database 
was fed into the network, requesting as output the product 
images with their respective labels for each component. Within 
a few seconds, the model processed the different images, 
assigning each detected component a detect box with the 
confidence level of detection. The model produced the outputs 
shown in Fig. 6, representing the detections for product pB and 
product pC. Fig. 6 shows that each detected electronic 
component is surrounded by a differently coloured detection 
box (one for each class) marked by a confidence level of 
detection. For the majority of the electronic components, this 
detection level approaches 90%, underscoring the high 
detection capability of the implemented model. This result 
suggests that the developed system is highly reliable and holds 
promise for future applications.

Fig. 5. Plotting of: a-b) training and validation box loss; c-d) training and validation objectness loss; e-f) training and validation classification loss; 
g) precision; h) mAP_0.5; i) recall and l) mAP-0.5:0.95. 
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After testing, the detected information was used to develop 
a classification system for electronic boards. Based on the 
number and type of components identified, the system is able 
to classify different electronic boards. For example, 
considering product pB in Fig. 6(a), the system identifies 4
wires, 1 resistor, 2 buttons and 1 LED. Comparing the 
recognised components and the available circuit boards (pA-
pF), the only board with these characteristics is the product pB. 
Consequently, the system labels this image as pB. This is useful 
in scenarios where multiple products made up of the same 
components need to be identified (see Section 6).

Fig. 6. Electronic components prediction for (a) pB and (b) pC.

Finally, Fig. 6 and Table 2 show the ability of the model to 
detect electronic components in real time. In particular, the 
system can process and classify an image every 0.72 seconds, 
making it ideal for production line use. The system also proved 
effective and reliable in uncontrolled environments such as the 
laboratory. For example, by recognising the components 
present, the automatic recognition system classifies the board 
type and signals if one or more components are missing. The 
system also performed well in the case of poorly positioned 
components or dirt on the board (provided that this does not 
compromise the minimum visibility required by the camera). 

6. Conclusions and future works

The relentless proliferation of technology and consumer 
markets has led to an exponential increase in the generation of 
WEEE. This increase not only poses environmental challenges, 
but also underlines the urgent need for sustainable approaches 
to facilitate disposal and potential recovery of valuable 
resources. The complexity of this problem requires innovative 
solutions that go beyond traditional methods. Leveraging the 
capabilities of deep learning technology, an innovative 
recognition system has been developed to simplify the process 
of dismantling electronic components.

The aim of this paper is to implement an innovative object 
recognition system for identifying electronic products . The 
feasibility of this approach is highlighted by an illustrative case 
study showing the identification of electronic components from 
six different electronic boards. In particular, the efficient real-
time detection of electronic components and ARDUINO 
boards was demonstrated using a YOLOv5s neural network 
application. The experimental findings not only validate the 
feasibility of the proposed system, but also provide a powerful 

insight into its potential to innovate WEEE management  
methods on a larger scale, beyond the limits of the preset 
positions of the electronic components within the board.

Although this study is a first step towards innovative WEEE 
management, further research is needed to refine the scalability  
and applicability of the system to a broader range of electronic 
components. Future work includes refining and increasing the 
size of the initial database in order to apply the recognition 
system in a Human-Robot Collaboration (HRC) environment 
for the disassembly of electronic boards. Thanks to the 
implemented YOLOv5s model, a cobot equipped with a 
camera could identify the different ARDUINO boards and 
perform a customised disassembly for each electronic board. 
As a result, the human operator could be guided step-by-step 
by the cobot’s movements through the disassembly process and 
subsequent testing phase, tailored to the specific board
identified. This collaboration could lead to a standardised 
disassembly process, reducing variability and streamlining the 
identification and extraction of functional components .
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