
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Review of Consensus-based Multi-agent UAV Applications / Lizzio, FAUSTO FRANCESCO; Capello, Elisa; Guglieri,
Giorgio. - ELETTRONICO. - (2021), pp. 1548-1557. (Intervento presentato al  convegno THE 2021 INT´L
CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS tenutosi a Athens, Greece nel June 15-18, 2021)
[10.1109/ICUAS51884.2021.9476858].

Original

A Review of Consensus-based Multi-agent UAV Applications

Publisher:

Published
DOI:10.1109/ICUAS51884.2021.9476858

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2972124 since: 2022-10-07T02:59:09Z

IEEE



See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/353823540

A Review of Consensus-based Multi-agent UAV Applications

Conference Paper · June 2021

DOI: 10.1109/ICUAS51884.2021.9476858

CITATION

1
READS

118

3 authors:

Some of the authors of this publication are also working on these related projects:

Autonomous Navigation in GPS denied/degraded environments View project

GNC Algorithms for Aerospace Applications View project

Fausto Francesco Lizzio

Politecnico di Torino

4 PUBLICATIONS   3 CITATIONS   

SEE PROFILE

Elisa Capello

Politecnico di Torino

75 PUBLICATIONS   550 CITATIONS   

SEE PROFILE

Giorgio Guglieri

Politecnico di Torino

142 PUBLICATIONS   1,448 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Fausto Francesco Lizzio on 24 March 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/353823540_A_Review_of_Consensus-based_Multi-agent_UAV_Applications?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/353823540_A_Review_of_Consensus-based_Multi-agent_UAV_Applications?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Autonomous-Navigation-in-GPS-denied-degraded-environments?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/GNC-Algorithms-for-Aerospace-Applications?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fausto-Francesco-Lizzio?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fausto-Francesco-Lizzio?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Politecnico_di_Torino?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fausto-Francesco-Lizzio?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elisa-Capello?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elisa-Capello?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Politecnico_di_Torino?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Elisa-Capello?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giorgio-Guglieri?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giorgio-Guglieri?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Politecnico_di_Torino?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Giorgio-Guglieri?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fausto-Francesco-Lizzio?enrichId=rgreq-4340270e70c2ae514ff2db344630ca60-XXX&enrichSource=Y292ZXJQYWdlOzM1MzgyMzU0MDtBUzoxMTM3MTc5OTEyODY3ODQzQDE2NDgxMzYyMjc4OTY%3D&el=1_x_10&_esc=publicationCoverPdf


A Review of Consensus-based Multi-agent UAV
Applications

Fausto Francesco Lizzio1, Elisa Capello2 and Giorgio Guglieri2

Abstract—In this paper, a review of distributed control for
multi-agent systems is proposed, focusing on consensus-based
applications. Both rotary-wing and fixed-wing Unmanned Aerial
Vehicles (UAVs) are considered. On one side, methodologies
and implementations based on collision and obstacle avoid-
ance through consensus are analyzed for multirotor UAVs.
On the other hand, a target tracking through consensus is
considered for fixed-wing UAVs. This novel approach to classify
the literature could help researchers to assess the outcomes
achieved in these two directions in view of potential practical
implementations of consensus-based methodologies.

Index Terms—consensus, distributed control, UAV, swarm,
multi-agent

I. INTRODUCTION

Distributed control has received a considerable amount
of attention among researchers over the last decades, due
to the substantial advantages coming from the deployment
of multiple agents in comparison with a single operating
unit. In particular, Unmanned Aerial Vehicles (UAVs) multi-
agent applications represent one of the most promising areas
of interest of distributed control, as the typical weakness
of a single-UAV mission, including low endurance, limited
communication range, or inaccurate sensing capability, can
be overcome by employing a swarm of drones.

In this paper, a review of distributed control in multi-
agent systems is presented, considering consensus-based
methodologies. Consensus aims at reaching an ”agreement”
among the agents of a system on a given variable of interest,
exploiting only local information exchange among neighbors
[1]. As briefly said, the main objective of this review is to
analyze some of the most relevant and recent advances in the
literature regarding consensus-based multi-agent UAV sys-
tems, classifying them in function of the considered platform
configurations. Then, both fixed-wing and multirotor UAVs
are considered, focusing on different applications.

Due to the extensive investigation related to the subject,
several reviews of consensus-based UAV applications can be
found in the literature. In particular, [2] provides a thorough
theoretical framework for general multi-agent consensus, an-
alyzing the conditions under which consensus can be reached
in different configurations. In [3] and [4], a survey of the
most common practical issues of applying consensus to a
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multi-UAV system is presented. Ding et.al. [5] provides an
overview on distributed consensus protocols taking into ac-
count communication/measurements noise, while [6] focuses
on event-triggered consensus. An approach similar to the
consensus strategy can be found in [7] and [8], where the
concept of inter-neighbors communication is used to build a
rigid graph topology. In [9], conditions for reaching optimal
consensus are provided.

As briefly said before, the main objective of this paper
is to analyze consensus-based strategies for different plat-
form configurations. Two main classes are here considered:
fixed and rotary wing [10], [11]. Fixed-wing UAVs are
characterized by considerable endurance and high minimum
airspeed and can fly over large distances. On the contrary,
rotary-wing UAVs, in particular multirotor UAVs, usually
provide a lower endurance, but they allow hovering flight
and vertical take-off and landing. The peculiar properties of
the fixed-wing platforms make them suitable to operate in
large and sparse areas, performing missions as patrolling,
surveillance or data gathering over vast regions [12]. On the
other hand, multirotors are generally deployed in confined
and dense areas, such as indoor and urban environment, to
perform operations as data collection in hard-to-reach sites,
or delivery services [13].

In this scenario, switching from a single drone to a swarm
of UAVs poses new challenges that need to be correctly ad-
dressed in relation to the adopted distributed control method-
ology. Indeed, operating in a densely crowded environment,
a swarm of multirotor UAVs requires an accurate obstacle
and collision avoidance strategy. Instead, multiple fixed-wing
drones need an efficient framework for distributed sensing to
enhance the precision of target detection and tracking.

This paper aims at categorizing the literature focusing on
one side on the implementation of collision and obstacle
avoidance through consensus in rotary-wing UAVs, and on
the other hand on the implementation of distributed target
tracking through consensus in fixed-wing UAVs. This ap-
proach to classify the literature could help researchers to
assess the outcomes in view of future implementations of
consensus methodologies.

The rest of the paper is organized as follows: In Section
2, some preliminaries on graph theory and consensus control
are provided. In Section 3, we review the common issues and
benefits of applying consensus to a swarm of UAVs. Section
4 and 5 describe the latest trends of consensus in relation to
rotary and fixed wing multi-agent systems, respectively.



Finally, concluding remarks are provided in Section 6.

II. PRELIMINARIES

In this section, we will provide a theoretical framework
for analysing consensus based on the most relevant surveys
found in the literature [1], [14], [15].

A. Graph Theory

In the scenario of inter-agents communication in a multi-
vehicle system, it is natural to model the exchange of
information among n drones through the concepts of graph
theory. A graph G is defined by a nonempty set of n nodes
V connected by a set of edges E , with E ⊆ V × V . The
communication flowing among multiple drones of a swarm
can be either directed or undirected. Given two agents i and
j belonging to the set V , in a directed graph information can
flow from agent i to agent j, but not necessarily vice versa.
The undirected graph considers only bidirectional communi-
cation, in which both agents send and receive information
to each other simultaneously [1]. In the case of directed
communication topology, the edges in E have to be ordered,
meaning that (i, j) ∈ E states that j, the child node, can
receive information from i, the parent node, and not vice
versa. In undirected graphs, it follows that the edges in E
do not contain any order. If (i, j) ∈ E , in both directed and
undirected cases, the two nodes are said to be connected
or neighbors. Clearly, self-edges of the kind (i, i) are not
considered and do not belong to E .

A directed graph is said to be strongly connected if there
is an ordered sequence of edges in the set E from every node
i to every other node j. An undirected graph is said to be
connected if there is a sequence of edges in the set E between
any two nodes in G [16].

In this context it is possible to define the adjacency matrix
A ∈ Rn×n, in such a way that aij > 0 if the nodes i and j
are neighbors, while aij = 0 otherwise. The value of aij is a
positive weight, that could be proportional to the inverse of
the distance between two nodes, or else could be set equal
to 1 when (i, j) ∈ E . The matrix A is symmetrical for an
undirected graph. Starting from A, it is possible to define the
Laplacian matrix L, such that:

lii =

n∑
j=1,j 6=i

aij , lij = −aij for i, j = 1, ..., n (1)

Notice that L has zero row sum [17]. The multiplication
of each row of L for the vector of ones 1n is always equal to
0. This means that the Laplacian matrix always has at least
one null eigenvalue, associated with the eigenvector 1n.

B. Consensus algorithm for continuous time systems

If the communication between neighbors allows continu-
ous information sharing, or if the communication bandwidth
is large enough, the system could be modelled as a contin-
uous time one, ruled by a set of differential equations [1].
Given a generic variable xi with i = 1, ..., n (n is the number
of drones), the aim of consensus is to obtain the convergence

of xi to a common value, only exploiting local information
exchange. Let Ni be the set of neighbors of a node i. The
traditional form of consensus algorithm is

ẋi(t) = −
∑
j∈Ni

aij [xi(t)− xj(t)]. (2)

So, the value of the variable of interest xi is driven towards
the values of the variables of interest of its neighbors as
‖xi(t)−xj(t)‖ → 0 as t→∞ [18], [19]. It is straightforward
to notice how applying locally (2) is equivalent to apply
globally

ẋ(t) = −L x(t), (3)

where x(t) = [x1(t), ..., xn(t)]T . This means that the dis-
tributed multi-agent system behaves as a linear dynamic
system where x(t) is the state vector and −L is the state
matrix. The stability properties of such a system depend on
the spectrum of the state matrix. As already said, matrix
−L always has at least one null eigenvalue, meaning that
the system is not asymptotically stable. However, the system
could be internally stable if 0 is the only null eigenvalue of
the spectrum, and the other eigenvalues have negative real
parts.

In [1] it is shown that the opposite −L of the Laplacian
associated to a directed graph G has a simple 0 eigenvalue
and all other eigenvalues with negative real parts if and only
if G has a directed spanning tree. Likewise, the opposite −L
of the Laplacian associated to an undirected graph G has a
simple 0 eigenvalue and all other eigenvalues are negative
if and only if G is connected. This means that the system is
internally stable, and its state variables xi(t) remain bounded
for any initial condition xi(0).

From algebraic control theory, we know that the equilib-
rium state of such a linear system is only affected by its
kernel, i.e., the eigenvectors associated to the null eigenvalue
[20].

In particular, x(t) → (1nνT )x(0) as t → ∞, where ν is
the unit left eigenvector of L associated to the eigenvalue 0.
Since (1nνT ) is a matrix with identical rows, it is clear how
each xi tends to a common value given by

∑n
i=1 νixi(0),

that is, the system reaches consensus [1].

C. Consensus algorithm for discrete time systems

A similar approach can be adopted when information
data are shared in discrete packets, i.e., the system can be
modelled as a discrete time one, ruled by difference equations
[1]. In this case, the update of the information variable x[k]
is

xi[k + 1] =
∑
j∈Ni

dijxj [k], (4)

where dij is the element of a row stochastic matrix D such
that dij = 0 when no information flows from i to j or vice
versa, and dij > 0 otherwise. Moreover, dii > 0, meaning
that the updated value xi[k+ 1] is a weighted average of the
current state of the agent i itself and of its neighbors Ni.
Applying (4) locally is equivalent to

x[k + 1] = D x[k], (5)



that is a linear discrete system whose state matrix is D. Being
row stochastic, D always has at least one eigenvalue equal
to 1 associated to the eigenvector 1n [18], [19]. In [1] it is
shown that matrix D associated to a directed graph G has a
simple 1 eigenvalue and all other eigenvalues strictly inside
the unit circle if and only if G has a directed spanning tree.
Likewise, matrix D associated to an undirected graph G has
a simple 1 eigenvalue and all other eigenvalues strictly inside
the unit circle if and only if G is connected. The system is
internally stable in such cases.

As in the continuous time scenario, x[k]→ (1nµT )x[0] as
k →∞, where µ is the unit left eigenvector of D associated
to the eigenvalue 1 [20]. From this consideration, it is clear
how each xi tends to a common value given by

∑n
i=1 µixi[0],

that is, the system reaches consensus [1].

D. Consensus for a second-order dynamic system

The previous subsections focused on a generic variable
of interest modelled as a first-order integrator dynamics. As
in [1], many systems can be modeled as double-integrators
in a linearized way. In the framework of a continuous time
system,

ξ̇i = ζi, ζ̇i = ui, for i = 1, ..., n, (6)

where ξi ∈ Rm and ζi ∈ Rm are the position and velocity of
the ith agent. The most comprehensive consensus protocol
for a second-order dynamic system is the following

ui = ζ̇refi − β[κ(ξi − ξrefi ) + γ(ζi − ζrefi )]︸ ︷︷ ︸
reference model tracking

+

−
∑
j∈Ni

aij [(ξi − ξj) + γ(ζi − ζj)]︸ ︷︷ ︸
consensus building

, (7)

where β, γ and κ are non-negative real parameters, aij is
the element of the adjacency matrix A, and (ξrefi , ζrefi )
represent reference states for (ξi, ζi), such that ξ̇refi = ζrefi .
This reference state can be locally associated at each agent,
or provided by an external source according to the adopted
strategy. In the latter case, (ξrefi , ζrefi ) = (ξref , ζref ) for all
i = 1, ..., n.

The consensus building part in protocol (7) is required to
achieve consensus between members of the swarm, through
the coupling of states (ξi, ζi). This allows to reach ξi → ξj ,
and ζi → ζj as t → ∞ for all i, j = 1, ..., n. With the
presence of the consensus building term only, the states of
the agents would reach a common value given by a weighted
average of their initial states, as seen for Eqs. (2) and (4).

The reference model tracking part in protocol (7) is able to
make the state of the agents converge to a reference state. As
pointed out in [1], it is useful to distinguish two operational
situations. In the first one, consensus has to be reached with
a reference for information state derivatives only, meaning
that κ = 0. This allows to reach ζi → ζrefi as t → ∞ for
all i = 1, . . . , n. In the second case, consensus has to be
reached with a reference for both information state and their

derivatives, so that κ = 1. This allows to reach ξi → ξrefi

and ζi → ζrefi as t→∞ for all i = 1, ..., n.
Altogether, ξi → ξj → ξref , and ζi → ζj → ζref as t→
∞. In [1], [21], it is shown that under the typical conditions
regarding graph topology (presence of a directed spanning
tree in the directed case, being connected in the undirected
one), plus a lower bound on the value of γ for the directed
case, through protocol (7) the system achieves consensus.

III. UAV SWARM APPLICATIONS

A. Formation control

Consensus has been actively studied in relation to UAV
swarm applications. One of the most investigated issues in
this field is formation control [21]–[25]. Generating a UAV
formation through consensus is particularly favorable given
the limited communication resources available onboard. Fol-
lowing the classification proposed in [7], formation through
consensus is a displacement-based control methodology, in
which a shared global coordinate system between every agent
is not needed. Instead, each UAV is required to have its own
local coordinate system, that has to be aligned to the global
one. In this framework, the agents can sense the relative
positions (displacements) of their neighbors and achieve a
desired formation. Note that this configuration is the mid-
point between a swarm in which all the agents share the same
global coordinate system and a situation in which each drone
has its own local reference system, not aligned to a global
one. In this case, only distance-based control is possible [7],
[26], [27].

Displacement-based formation control is usually catego-
rized in three main strategies that can be realized through
the consensus protocol (7): leader-follower (LF), behaviour-
based (BB) and virtual structure (VS). According to the aim
of the control methodology, it is possible to assign to each
of the variable of interest ξ, ζ and (ξref , ζref ) specific roles.
In table I, the results found in [21] are summarized.

TABLE I
CONSENSUS STRATEGIES

ξi ζi (ξref , ζref ) κ

LF ri − δi vi (rL, vL) 0

BB ri − rrefi vi − vrefi (rrefi , vrefi ) 1

VS ri − rFi vi − vFi (rOi + rFi , v
O
i + vFi ) 0

In the leader-follower strategy, the information flows
through a directed graph from a leader UAV to all the follow-
ers. In this case, the followers share with their neighbors the
information regarding their position ri minus a constant δi
and their velocity vi, to reach ri− δi → rj − δj and vi → vj
as t→∞. Note that ri − rj → δi − δj , and the values of δi
and δj can be chosen such that δi−δj = ∆ij , i.e. the desired
separation between agents. Moreover, the leader broadcasts
to every agent in the swarm its information state derivatives
(ṙL, v̇L) with the aim of reaching vi → vL as t → ∞ for
i = 1, . . . , n, where L refers to the leader.

In the behaviour-based approach, several behaviours are
weighted in the control input of each UAV, so that every



agent is able to simultaneously maintain a desired inter-
agent distance (formation keeping behaviour) while tracking
a desired final position rref = [rrefi , . . . , rrefn ] (goal-seeking
behaviour). In this case, a desired reference final position
rrefi is locally known to each drone. The agents share
with their neighbors their deviation vector ri − rrefi and its
derivative vi − vrefi , to reach ri − rrefi → rj − rrefj and
vi − vrefi → vj − vrefj as t → ∞. Note that, if consensus
is reached upon the deviation vectors, the agents keep the
desired formation shape. Every drone is able to reach its
destination rrefi due to the reference model tracking terms
of (7). Even if there is no information exchange among the
agents, each drone can track its own trajectory. However,
better transient performance are obtained with information
coupling [1].

In the virtual structure strategy, each agent is required to
keep a desired (possibly time-varying) distance with respect
to a virtual formation center, that is chosen as the shared
information variable among the drones. Thus, consensus
has to be reached on the state of the virtual formation
center (rO, vO). Each agent shares with their neighbors their
current understanding of the formation center state (rOi , v

O
i )

expressed as (ri − rFi , vi − vFi ), where rFi and vFi are the
position and velocity of the agent i with respect to the
formation center. In this way, rOi → rOj and vOi → vOj as
t → ∞, and the formation is preserved. Moreover, through
the reference model tracking terms, the protocol is able to
make each agent follow its current understanding of the
formation center velocity vOi using (rOi + rFi , v

O
i + vFi )

as the reference for information state derivatives. Indeed,
vi → vOi + vFi , that is, vi − vFi → vOi as t → ∞ for
i = 1, . . . , n.

B. Time-varying topology

The design of a consensus protocol has to take into account
the fact that communication between any pair of agents in the
swarm may be unreliable or could fail [1]. This issue is par-
ticularly relevant when the system is operating in a densely
crowded environment, in which adverse conditions (obsta-
cles, environmental disturbances) may degrade the quality of
information sharing. In such cases, the adjacency matrix A(t)
and the laplacian L(t) become time-variant and the analysis
of consensus stability has to be performed accordingly. It is
typical the assumption that the communication topology G is
piece-wise constant during finite time intervals called dwell
times that usually have a positive lower bound τD [1]. This
means that aij(t) ∈ A(t) and lij(t) ∈ L(t) can be considered
constant or continuous (e.g. if aij(t) is inversely proportional
to the inter-agents distance) at least for τD seconds.

In [1], conditions for consensus are given for a first-order
linear dynamic system. In particular, a directed (undirected)
time-varying topology reaches consensus if the union of
the directed (undirected) graphs across each contiguous,
nonempty, uniformly bounded time interval in which A(t)
and L(t) are constant or continuous has a directed spanning
tree (is connected). In [28], it is shown that, for a system of
multiple single-integrator dynamics agents, if the limit of the

laplacian L(t) as t → ∞ is stable, then the system reaches
consensus. This means that only the connectivity properties
of the limit topology influence the stability of the system.

Concerning second-order linear dynamic systems, the con-
ditions for consensus are generally more stringent. Indeed,
[1] proves that for an undirected switching topology, the
graph G has to be connected at each time instant in order
to reach consensus. In the directed case, not only the graph
G has to contain a spanning time at every time instant, but
a lower bound on the dwell time τD has to be respected.
However, in a more recent study [29], it is shown that for
a second-order nonlinear dynamic system, consensus over a
directed switching topology can be reached even if the graph
does not contain a spanning tree every time instant. Letting
TC be the total time in which G has a directed spanning
tree and TU the total time in which G does not contain
it, [29] provides a lower bound on the ratio TC

TU
such that

consensus can still be reached. Similar results were found in
[30] regarding a general linear system described by a state-
space representation. In [29], [30], the switching between a
known finite set of different topologies is performed both in
a deterministic and stochastic fashion.

Another approach adopted in the literature when dealing
with unreliable communication sharing is to consider the
topology itself as stochastic [31], meaning that the commu-
nication links between any pair of nodes have an associated
probability pij , such that:

aij =

{
0 with probability pij
1 with probability 1− pij

In [31], conditions for consensus are provided for a general
linear multi-agent system. In particular, if the probability
of connectivity of the network is not zero and some linear
matrix inequalities in the design of the protocol are met, the
system reaches consensus. The main contribution of [31] is
that this approach does not require any knowledge on the set
of feasible topologies. In [32], these results are applied to
high-order dynamic systems with uncertain nonlinearities.

Note that all the previous results apply to continuous time
systems.

C. Time Delays

In practical implementations of consensus, another promi-
nent issue to take into account is the presence of delays
arising from the limited capabilities of the hardware or
the environment. In the literature, these delays are usually
classified as communication delays, due to the finite speed
of information transmission between agents, and input delays,
due to signal processing after receipt and execution time
of the actuators of each agent [1]. Studies on the subject
usually aim at finding an upper bound on the maximum delay
admissible so that the system is still able to reach consensus
[3]. As an example, the algorithm regarding continuous first-
order linear dynamic system becomes

ẋi(t) = −
∑
j∈Ni

aij [xi(t− τi)− xj(t− τij)], (8)



to include time delays. In particular, τi is the input delay,
and τij is the communication delay. All the other consensus
protocols previously introduced (discrete-time, second-order
dynamics) can be modified in a similar way.

Regarding the single-integrator dynamics, a prominent
result for continuous time systems is given in [33]. In the case
of undirected connected topology and uniform delay across
the entire swarm (τi = τij = τ ), the robustness of the system
to a relatively high time delay is inversely proportional to its
convergence performance. Since a higher number of links
inside an undirected graph implies faster convergence, there
is a balance between the performance of the system and
its robustness to time delays. Moreover, in [34], [35] it is
shown that only the time delay affecting xi in equation (8)
is responsible for the stability of the system and must be
lower than a specific upper bound. The presence of a delay
affecting xj only influences the convergence speed of the
system, meaning that the consensus is reached more slowly
but is eventually achieved [1].

In [36], an upper bound on the maximum allowable time
delay is provided for the case of switching directed topology.
However, all the topologies must be strongly connected for
reaching consensus. Finally, [37] provides conditions for
consensus with fixed directed topology and time-varying
delays. The main contribution in [37] is that the topology
only has to contain a spanning tree, and the delay can be
unbounded under the assumption that the growth rate of the
delay is limited.

The analysis of consensus protocols including time de-
lays regarding second-order systems has been only recently
addressed. In [38], an upper bound on the maximum time
delay is provided for fixed directed topologies containing a
spanning tree, considering the delay as fixed and uniform.
In [39], a delay-decomposition approach is used to expand
the analysis to time-varying delays, while in [40] switching
topologies are also taken into account. Similar results can be
found in [41], [42] for undirected graphs and in [43], [44]
for generic linear systems.

IV. ROTARY-WING CONSENSUS APPLICATIONS

Multirotor UAVs are particularly suited to operate in con-
fined and crowded spaces, due to their high maneuverability
and their ability to hover in a fixed position [12]. Several
applications [45] as delivery services, bridge inspection, and
monitoring of road traffic are usually deployed in urban
environments, where an adequate safety level of the operation
must be maintained. A crucial requirement in such conditions
is the capability of avoiding collisions between members of
the swarm and crashes with external obstacles [46].

Following the thorough classification proposed in [47],
collision/obstacle avoidance methodologies typically adopted
in UAVs applications can be divided into four categories:
geometric, force-fields, optimization-based, and sense-and-
avoid. In the literature, consensus has been used typically for
implementing collision/obstacle avoidance along with forma-
tion control strategies. The basic form of consensus algorithm
does not take into account the possibility of collision between

agents. Indeed, while generating a formation, two drones
could collide while trying to reach their desired position [48].
A great effort has been made among researchers to formulate
collision-free formation strategies through consensus.

A. Optimization-based Approaches
Optimization-based approaches encode the collision and

obstacle avoidance problem by means of a cost function to be
minimized over a finite time interval. Generally, trajectories
associated with a high probability of collision yield a large
value of the cost function.

In [49], the authors proposed an improved consensus
algorithm able to convert the three Degrees Of Freedom
(DOFs) of each drone, namely the yaw angle φ, the velocity
in the xOy plane vxy , and the vertical position z into
the DOFs describing the relative positions among UAVs,
i.e., the x, y and z positions. The obstacle avoidance is
performed for both static and dynamic objects, classified
either as sphere- or cylinder-shaped. The Particle Swarm
Optimization (PSO) algorithm is employed locally in each
agent to deal with static obstacles. It evaluates the fitness of
the drone’s states (φ, vxy, z) with respect to a cost function
penalizing large deviation from the current trajectory while
ensuring a collision-free path. To tackle dynamic obstacles,
the PSO is applied in the framework of the Distributed
Model Predictive Control (DMPC), in order to predict the
future relative position between the drone and the obstacle
in the prediction horizon. If needed, the formation can be
dissolved while avoiding dynamic obstacles. The topology is
considered directed and a goal-seeking behaviour is adopted
as the consensus protocol. Minimum adjustment strategies
are employed to take into account the actuator constraints.

In [50], the consensus protocol itself is embedded inside
the DMPC framework to compute the states of the drone in
the following Np time steps, where Np is the length of the
prediction horizon. The collision avoidance between UAVs
is deployed as a penalty term added to the cost function
of the DMPC. The relative distance between the predicted
position of agent i and the reference position of its neighbors
is defined as dij , while a safety distance is defined as Ds.The
penalty term is inversely proportional to the difference be-
tween dij and Ds so that the cost function value drastically
increases when two drones come dangerously close to each
other. The method is applied to a directed topology with a
leader-follower strategy.

In [51], a leader-less formation task is analysed under
a directed topology. DMPC is used to generate locally the
trajectory of each agent until the desired position computed
through consensus is reached by every drone. Collision
avoidance is achieved by adding an output constraint on the
model, in terms of the relative distance between the predicted
positions of agent i and the current position of neighbour
agents j ∈ Ni. In particular, this predictive distance must
not become lower than a safety threshold.

B. Force Field Approaches
Force-field methods borrow the concept of attractive and

repulsive force from electromagnetic theory. In particular,



they consider the agent as a charged particle immersed in
an Artificial Potential Field (APF), so that it is attracted by
a target point and repelled by surrounding obstacles.

In [22], the authors introduced a smooth potential with a
finite cut-off to manage both collision and obstacle avoidance.
The finite cut-off is needed to activate both the behaviours
only when a certain distance threshold is violated, thus
making the strategy scalable. Collision avoidance is realized
through a pairwise attractive/repulsive potential that drives
each couple of agents (i, j) to a desired distance Dref that
corresponds to the minimum of the potential function. The
gradient of the potential is simply added to the consensus
protocol, and the result is an α-lattice formation. When an
obstacle is detected, a repulsive potential is activated and
added to the consensus protocol, to drive the agents to a
safety distance Ds corresponding to the minimum of the
potential function.

In [52], a similar approach was used and applied to
directed graphs. In particular, a cyclic strongly connected
topology, a directed spanning tree, and a topology containing
a directed spanning tree were compared in terms of con-
vergence performance. The simulations showed how a faster
convergence could be reached with the strongly connected
topology, while the other configurations yielded oscillations
in control input and drones’ position during the collision
avoidance process.

Such oscillatory behaviour occurred also in [53], where
an experimental verification on actual quadcopters is carried
out to test the performance of a mixed MPC-APF approach.
In particular, a repulsive potential function is formulated to
ensure collision avoidance between the UAVs and added to
the MPC cost function. In order to reduce the computational
burden of the real-time operation, the potential function
is linearly approximated. The experimental results showed
how the control input during the collision avoidance process
displayed an oscillatory behaviour, probably due to the fact
that the agents repeatedly attracted and repelled each other
because of the potential term of the cost function.

To attenuate these oscillations, the authors in [54] proposed
an improved APF approach. In particular, the potential field
computed in the previous iteration and the current potential
field are summed according to a certain ratio so that the
change in direction due to the collision avoidance process
will not become too fast and cause jitter.

In [49], the authors embedded in the consensus protocol an
additive term taking care of collision avoidance. In particular,
the gradient of a potential function is activated when a certain
safety threshold is violated. In such a case, the agent takes
evasive actions in the vertical direction to avoid collisions
without changing the motion of the UAV in xOy plane.

C. Geometric Approaches

Geometric approaches rely on the computation of geomet-
ric attributes to assure that the agent will not collide with any
other member of the swarm or with an obstacle. Information
as relative distance, bearing angle, or velocity are exploited.

In [55], consensus for an undirected connected topology
is combined with a collision cone strategy for obstacle
avoidance. The collision cone represents a set of velocity
vectors that will cause the agent and obstacle to be on the
collision course. The control signal must drive the drone
in such a way that its velocity vector is aligned with the
boundary of the collision cone and does not enter inside it.

D. Sense-and-avoid Approaches

Sense-and-avoid approaches are based on individual obsta-
cle detection and avoidance by each drone in a swarm without
knowledge of the plans of other drones. It is characterized by
short response time and low required computational power,
and it is particularly suitable for dynamic environments.
To the best of the authors’ knowledge, no consensus-based
collision avoidance strategy was investigated adopting this
approach [47], [56]. This may be due to the fact that
consensus control needs significant information sharing at
least among neighbors agents in the swarm, thus making the
application of sense-and-avoid strategies inappropriate.

E. Discussion

In the previous subsections, several collision and obstacle
avoidance methods have been described. The mentioned
strategies present their own benefits and limitations that
are now discussed and compared through the following
metrics: the operational environment, the main operational
requirement, and the progress in experimental validation of
the methods.

From an operational point of view, optimization-based ap-
proaches are more suitable for static environments, in which
the presence of obstacles is known in advance or detected
by the whole formation. Force-field and geometric methods
can tackle better dynamic environments, even though the
application of the former could lead to local minima when the
action of multiple artificial potential fields cancel each other.
Also, the computation of the collision cone for the geometric
approaches could be quite demanding in a crowded dynamic
environment.

Optimization-based methods are usually employed when
the swarm has a pre-defined reference trajectory to follow.
Depending on the specific algorithm, each drone either knows
the reference trajectories of all the other members of the
swarm or only has its own pre-loaded path. Instead, force-
field and geometric approaches usually rely more on inter-
agent communication or relative sensing during the deploy-
ment of the mission.

Finally, it is worth noticing that very few of the mentioned
methods were validated through the use of a real swarm.
Optimization-based approaches are usually simulated through
some dynamic model inserted into the frame of the opti-
mization method employed, for instance, the MPC. Force-
field approaches have been tested more in real platforms,
even though the distributed sensing capability needed for the
deployment of the algorithms is often replaced during flight
tests by some centralized visual tracking method. Being more
computationally demanding for a swarm, also geometric



approaches lack actual flight tests and are usually simulated
through a double-integrator dynamic model.

V. FIXED-WING CONSENSUS APPLICATIONS

Fixed-wing UAVs are frequently employed in operations
as patrolling, surveillance or data collection in outdoor envi-
ronments, where a crucial feature needed for the fulfilment
of the mission is target tracking [12], [57]. Given a physical
phenomenon, or a moving object to be tracked, deploying
a network of UAVs with sensing capabilities can drastically
reduce the observation noise of the process with respect to
the performance of a single drone [58], [59]. This is why data
fusion for sensor networks has received great attention over
the last decade. The main results achieved in this direction
focused on proposing distributed scalable versions of the
Kalman filter exploiting the consensus theory [60]. The basic
framework of the filter consists of a linear model of the
process to be sensed, and a sensing model of each drone
i, given by

x(k + 1) = A(k)x(k) +B(k)w(k) (9)
zi(k) = Hi(k)x(k) + vi(k), (10)

where x(k) ∈ Rm and w(k) ∈ Rm are the state and input
noise of the process, while zi(k) ∈ Rp and vi(k) ∈ Rp

are the measured output of sensor i and the measurement
noise affecting it. The initial state x[0] is considered a
random variable with normal distribution, while the input and
measurement noises are considered white Gaussian noises
satisfying E[w(k)w(l)T ] = Q(k)δkl and E[vi(k)vi(l)

T ] =
Ri(k)δkl, where δkl = 1 if k = l and δkl = 0 if k 6= l [61].

Letting Z(k) be the collective sensor data of the entire
network at time k, it is possible to define

x̂(k) = E(x(k)|Z(k)), x̄(k) = E(x(k)|Z(k − 1))

M(k) = Σ(k|k), P (k) = Σ(k|k − 1)
, (11)

where x̂(k) and x̄(k) are the central estimate and prediction
of state x(k), while M(k) and P (k) are the estimation error
covariance matrices of x̂(k) and x̄(k) respectively and their
inverses are known as the information matrices.

The aim of distributed Kalman filter is to provide at
each agent i a local estimate x̂i(k) of the target state
x(k) equal to the central estimate x̂(k) exploiting only
local information exchange among neighbors [61]. Several
consensus-based methodologies have been developed. An in-
depth survey in [60] classified the Kalman-like distributed
filters in three main categories, depending on the quantity
the system reaches consensus on. In particular, consensus
can be reached on the sensor measurements, estimates, or
information matrices.

A. Consensus on measurements

In [59], the authors showed that a distributed network of n
micro-Kalman filters with p-dimensional measurement vec-
tors observing an m-dimensional process are able to provide
the same estimate as the one that a centralized Kalman filter

with np-dimensional measurement vector would provide.
Defining the following

Si(k) = HT
i (k)R−1i (k)Hi(k) (12)

yi(k) = HT
i (k)R−1i (k)zi(k) (13)

as the innovation pair, [59] showed that if consensus is
reached among the agents on these two time-varying quan-
tities, the drones are able to provide an estimate identical to
the one obtained through a central Kalman filter. Moreover,
with respect to a centralized approach, the complexity of the
problem in terms of the size of the matrices to be manipulated
is reduced by a factor of n if a network of n sensors is
employed. In [61], the approach was extended to consider
sensors with different observation matrices Hi, so that the
network acts as a collective observer of the process even if the
target is not completely observable by each agent. However,
the performance of this approach in terms of estimation error
and cohesiveness of the estimates are quite poor [61].

B. Consensus on estimates

In [61], the authors introduced another approach to dis-
tributed target tracking. Similarly to the algorithm presented
in the previous subsection, it relies on communication be-
tween neighbor agents of the innovation pair (12) and (13),
but also of the current prediction x̄i(k). Consensus is per-
formed on the prediction x̄i(k) during the estimation step
of the filter, so that the estimate of each filter is driven
towards the average estimate of the network. This is done
to improve the accuracy of the estimation at each node. The
authors showed the stability of the collective dynamics of the
estimation errors without input noise, and the boundedness
of the error covariance matrix. With respect to the consensus
on measurements, this approach performs better in terms of
estimation errors and provides more cohesive estimates. In
[62], it is shown that computing the optimal gain of the
Kalman filter based on consensus on estimates is not scalable
in n, as it requires all-to-all communication. Thus, conditions
for faster sub-optimal consensus are provided. In [63], the
authors coupled the target tracking task to motion control.
The network collaboratively performs an estimation of the
state of a moving target and chases it through a protocol
similar to (7). Clearly, the motion of the swarm affects the
accuracy of the collected data since the information quality of
a sensor increases as the agent gets closer to the target. These
results were extended in [64], where input noise and network
connectivity were taken into account. In [65], consensus is
performed both during the estimation and the prediction step
of the filter, using the previous predicted values of neighbors.
This is done to make the system more robust against packet-
loss considered as the stochastic failure of agent i to perform
an observation at time k.

C. Consensus on information

A more recently developed approach is introduced in [66],
where consensus has to be reached on the information matrix
(Mi(k))−1 and the information vector (Mi(k))−1x̂i(k). The
authors showed that the estimation error is asymptotically



bounded. The main contribution of [66] is that, unlike the pre-
vious approaches, the results hold also assuming the presence
of unknown correlations between the measurements coming
from different sensors. In [67], the results were adapted to the
extended Kalman filter to include nonlinearities in the sensing
model. Moreover, the communication noise between UAVs
is considered in terms of signal-to-noise ratio and treated
as an observation noise. In [68], random connection failures
were taken into account by associating a probability to
every communication link in the graph. A thorough stability
analysis for different time-varying settings was conducted
in [69], where also weaker conditions on the observability
of the process were given. Finally, in [70], nonlinearities
affecting both the sensing model and the process to be
observed were considered, and sufficient conditions for the
boundedness of the error covariance matrix were provided.
Recently, some mixed approaches have been emerging in the
literature. In [71], the authors proposed to make the agents
reach consensus on the information matrix (Mi(k))−1 and
on the estimate x̂i(k) after the estimation step of the filter.
With respect to consensus on estimates, this method does
not require the sharing of the innovation pair. Compared
to consensus on information, the authors proved that in a
steady-state situation, only the local estimates x̂i(k) have to
be shared, reducing the communication traffic to a minimum.

D. Discussion

The previous subsections provided an overview of three
consensus-based Kalman filter paradigms for distributed
target tracking. To summarize and discuss the presented
methodologies, the following metrics are employed: the ob-
servability of the process to track, the correlation of measure-
ments coming from different sensors and the cohesiveness of
the provided estimates.

None of the three methods require the target to be com-
pletely observable by every agent. However, both consen-
sus on measurements and estimates need that each set of
neighbour agents is locally able to observe all the states of
the target. Instead, consensus on information relies only on
collective observability.

Both consensus on measurements and estimates assume
that the measurements collected by each sensor are mutually
independent. Instead, consensus on information considers the
correlation among different sensors as unknown but present.

Finally, it is worth noticing how numerical simulations
taking into account process noise showed that consensus on
measurements methods lead to less cohesive estimates with
respect to the other two strategies. This may indicate the need
to share more than just the sensed data when a consistent
process noise is present.

VI. CONCLUSIONS

In this work, an overview of consensus-based applications
for multi-UAV systems is performed, classifying methodolo-
gies in function of the adopted platform. First, the basic
notions of graph theory and consensus control are introduced
for both first- and second-order linear dynamic systems.

Then, formation control is discussed and the latest progress
regarding switching topologies and time delays is also anal-
ysed. Next, rotary-wing applications are considered, focusing
on collision and obstacle avoidance strategies. Optimization-
based and force-field approaches appear to be the most
promising area of interest. Future research areas could in-
volve dynamic and nonsphere-shaped obstacles, different
communication topologies to speed up the convergence rate
or the relief of the oscillatory behaviour that appeared during
flight tests. Finally, fixed-wing applications are investigated,
considering target tracking. Consensus on information and
mixed approaches have been recently developed and present
the most appropriate feature for practical implementations.
Future investigation could involve the coupling between these
target tracking algorithms and UAVs motion dynamics.
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