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FREEDOM: Validated Method for the Rapid Assessment of
Incipient Multimodal Faults of Complex Aerospace Systems

Francesco Di Fiore∗, Pier Carlo Berri † and Laura Mainini ‡

Politecnico di Torino, Torino, Italy, 10129

Model-based Fault Detection and Isolation (FDI) methods allow to infer the health status of

complex aerospace systems through a large quantity of data acquired in-flight, and evaluations

of numerical models of the equipment. This results in an intensive computational procedure

that can be addressed only grounding the aircraft. We introduce an original methodology

to sensitively accelerate FDI by reducing the computational demand to identify the health

status of the aircraft. Our scheme FREEDOM – Fast REliability Estimate and incipient

fault Detection Of Multiphysics aerospace systems – proposes an original combination of a

novel two-step compression strategy to compute offline a synthesized representation of the

dynamical response of the system, and uses an inverse Bayesian optimization approach to infer

online the level of damage determined by multiple fault modes affecting the equipment. We

demonstrate and validate FREEDOM against numerical and physical experiments for the case

of an ElectroMechanical Actuator (EMA) employed for secondary flight controls. Particular

attention is dedicated to simultaneous incipient mechanical and electrical faults considering

different experimental settings. The outcomes validate our FDI strategy, which permits to

achieve the accurate identification of complex damages outperforming the computational time

of state of the art algorithms by two orders of magnitude.

Nomenclature

A = DMD informative matrix

B = set of ns modes in output from SVD

D = dataset of paired damage parameters and noisy observations of the discrepancy function

f = noisy observations of the discrepancy function

𝑭 = set of noisy observations of the discrepancy function
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i = iteration of the Bayesian scheme for inference

I = stator envelop current

Ire f = reference stator envelop current

Imon = monitoring stator envelop current

Im = current of the electrical motor

k = damage parameter

k = set of damage parameters

k∗ = actual damage parameters affecting the system

K = faults domain

K = Kernel matrix

l = winner neuron

M = finite-dimensional manifold

ne = number of measurement locations

nk = number of damages affecting the system

ns = number of snapshots

nw = number of DMD modes

N = number of observations of the discrepancy function

N = normal distribution

R = resistance of the stator

Tm = torque of the electrical motor

T = SOM training matrix

U = acquisition function

Vm = voltage of the electrical motor

w j = j-th SOM weight vector

x = measurement locations

y = output signal

yM = monitoring signal

Y = snapshot matrix

δ = discrepancy function

δ ∗ = minimum of the discrepancy function

𝚫 = set of observations of the discrepancy function

θm = angular position of the electrical motor
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θu = angular position of the aerodynamic surface

κ = covariance function of the Gaussian process surrogate model

λi = i-th SVD eigenvalue

µ = mean function of the Gaussian process surrogate model

ν = back-electromotive force coefficient

σ = standard deviation function of the Gaussian process surrogate model

σε = standard deviation of the measurement noise

𝝉i = i-th SOM training vector collecting measurement locations x and the nw DMD modes

𝝊i = i-th DMD mode

𝚼 = set of DMD modes

φ = probability density function

Φ = cumulative distribution function

ψ = non-linear dynamical system

ω = angular speed of the electrical motor

I. Introduction

Modern aerospace systems are characterized by a significant level of complexity associated with the demand for

high-performance while operating in extreme environments. Those systems are characterized by technological

architectures consisting of a variety of heterogeneous subsystems to meet the ever-increasing requirements of superior

capabilities. The complexity of aerospace systems further increases with the demand for technological advances

to improve the efficiency and environmental sustainability of the next generation aircraft [1]. Indeed, new lower

emission solutions for green aviation consist of innovative technologies and equipment that might complicate the

overall architecture of systems currently implemented onboard. This growth of technical complexity poses significant

challenges in the compliance to reliability requirements: the increasing number of components and physical interactions

determine an augmentation of isolated and coupled multimodal failure modes, that would affect the operation of the

whole system in hardly predictable ways. The adoption of green technologies further complicates for safety critical

applications that require the reliable assessment of incipient damaged condition affecting the system; this permits to

anticipate severe faults and support high-regret decision making processes with potentially catastrophic consequences

[2]. The difficulties to achieve a reliable identification of complex faults affecting innovative components represent one

of the major bottlenecks that contributes to decelerate the adoption of green technologies onboard modern vehicles.

A multitude of approaches have been proposed in literature to address the diagnostics of complex systems [3–5].

Among these, model-based Fault Detection and Isolation (FDI) techniques provide computational approaches to estimate
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the health status of complex aerospace systems in presence of multiphysics fault modes. These strategies compute the

discrepancy between the output signal measured from the real system with the same signal computed with a numerical

model of the system: the current health status is the solution of the identification problem of minimizing the discrepancy

between the two signals leading to almost identical responses [6–8]. For example, Dalla Vedova et al. [9] propose

an FDI algorithm for the monitoring of electromechanical actuators for aerospace applications, adopting a genetic

algorithm to identify the health status of the system minimizing the discrepancy between the current signal computed

with a numerical test bench of the actuator and the current obtained with an approximated numerical model of the

system. Kolcio [10] develops a model-based autonomous FDI technique where the output signal measured from the

system is propagated through a numerical model to detect inconsistencies that allows to diagnose fault modes; this

approach has been tested for the monitoring of the attitude control subsystem of a spacecraft. Venkataraman and Seiler

[11] use a model-based FDI filter that allows to estimate stuck faults in the split rudder of UAV, comparing the real

measurements of the aircraft dynamics and control commands with simulation-based data obtained with a simplified

model of the system. Sidhu et al. [12] propose a FDI tecnique for the health monitoring of lithium batteries affected by

fault signatures, based on the discrepancy between the measure of the real terminal voltage and the estimated values

computed by a Kalman filter.

Model-based FDI algorithms require to measure a signal sensitive to damages with a high acquisition frequency

to constitute a reliable indicator of the health condition of the system. This results in a significant amount of data to

be stored and processed, and an increased demand for computational resources to address the high dimensionality of

the identification problem. Moreover, these approaches rely on a large number of evaluations of expensive numerical

models of the system that further raises the hardware resources required to execute the FDI procedure [3]. Safety critical

systems introduce further demand for computational capabilities to accurately identify incipient multimodal faults;

the FDI task for these systems requires a massive amount of data acquired during flight operations and through the

evaluation of expensive numerical models in order to assess incipient damages that would be instead rather difficult to

be detected until their effects become severe. Therefore, the FDI procedures are commonly executed grounding the

aircraft to leverage adequate hardware resources that are not available onboard. These limitations get in the way of the

adoption of new green technologies that might introduce failure modes potentially critical, hindering the path towards

sustainable aviation.

This paper proposes an efficient computational framework for fault detection and isolation to accelerate the

identification of incipient fault modes in complex aerospace systems, and potentially ease the transition towards the

adoption of greener technologies. The goal is to obtain an efficient procedure suitable for the onboard monitoring

of innovative technologies. We name and refer to our framework as FREEDOM in the remaining of this paper as

the short for Fast REliability Estimate and incipient fault Detection Of Multiphysics aerospace systems. The main

features of FREEDOM are: i) a Bayesian scheme for the inference of damages drastically reduces the demand for costly
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evaluations of numerical models of the system with a potential efficiency improvement of order of magnitudes; ii) a

novel highly informative compression strategy effectively contains the dimensionality of the diagnostics signals while

retaining a high-quality informative content; iii) the original combination of these features substantially accelerates

the diagnostics procedure: the Bayesian inference leverages the informative compressed signals to accurately identify

damage parameters with contained computational resources.

Specifically, the Bayesian routine uses the Gaussian process surrogate model to approximate the discrepancy between

the real-world measurements and numerical responses. This predictive framework informs an adaptive sampling scheme

realized by the acquisition function that quantifies the utility of querying the fault domain, and directs the computational

resources towards the health assessment of the system. The compression strategy relies on the original combination of

Dynamic Mode Decomposition (DMD) and Self Organizing Map (SOM). The former extracts the dynamical dominant

features of the system, and the latter determines a compressed representation of the first DMD modes. This permits to

compute an efficient encoding map that retains only a reduced set of highly informative elements of the original signals

for diagnostics processing. By combining efficient compression stages with an effective Bayesian inference step, our

novel computational framework FREEDOM rapidly identifies complex and multimodal faults affecting the system, and

could be even suitable for onboard computations to monitor the health status of new greener technologies.

The proposed computational framework FREEDOM is demonstrated and validated for the case of an ElectroMe-

chanical Actuator (EMA) employed for the secondary flight control systems of unmanned aerial vehicles or manned

civil and military aircraft: EMAs allow to convert electrical power in mechanical handling of the aerodynamic surfaces,

and represents an enabling technology towards green electric aviation [13–18]. These systems constitute a challenging

benchmark problem for FDI algorithms given the high level of complexity and interaction of multi-physical components,

resulting in a multitude of failure modes difficult to predict. We investigate the performance of FREEDOM through

numerical experiments involving computer-based models of the EMA system, and validate our framework conducting

physical experiments with a test-bench of an EMA developed to implement different failures. In particular, we consider

the FDI of small incipient damage conditions involving multiple physical domains and components to emulate a

real-world scenario that can be traced in many safety critical applications. We observe the performance of our algorithm

over different numerical settings to assess the accuracy and robustness of the FDI procedure. In addition, we validate

FREEDOM on a real-world EMA system affected by incipient faults, demonstrating the substantial acceleration of the

FDI procedure and potentially enabling the health status monitoring of these systems onboard of aircraft.

This manuscript is organized as follows: Section II introduces the proposed framework FREEDOM, Section III

presents the demonstration FDI problem of an electromechanical actuator, Section IV illustrates the experiment setup,

Section V discusses the results of our numerical and physical experiments, and Section VI provides concluding remarks.
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Fig. 1 Schematic representation of the proposed FREEDOM framework.

II. FREEDOM: Methodology and Computational Framework
This paper proposes FREEDOM as a methodology and computational framework for fault detection and isolation to

accelerate the identification of incipient fault conditions of complex aerospace systems. Our strategy consists of two

main methodological procedures: i) offline we adopt an original two-step compression strategy to compute a synthesized

representation of the dynamics of the system reducing the amount of data to be processed during the FDI procedure, and

ii) online we implement an inverse Bayesian optimization scheme to accurately identify the health status of the system

containing the evaluations of numerical models and computational expense.

The FREEDOM algorithm is schematically described in the diagram of Figure 1. Let us consider a generic complex

system characterized by a certain output signal y(k,x) of ne elements that is sensitive to the health status of the system

k =
[
k1, ...,knk

]
defined as a combination of nk faults modes, and measured in certain locations x. In the offline phase,

we compute a reference dataset using a scaled Latin Hypercube sampling process [19] to determine a set of ns incipient

health conditions K =
[
k1, ...,kns

]
that are used to compute the output signals Y =

[
y0(k0,x), ...,yns(kns ,x)

]
. The dataset

Y is obtained by evaluating a high-fidelity accurate model or through a real-world test bench, and is considered the

ground truth reference data of the system. These information are usually high-dimensional and demand for intensive

computations to be stored and processed during FDI. Therefore, we propose an original two-step signal compression

based on two projection methods to determine a synthesized representation of the signal ŷ(k, x̂) and retain only the

highly informative nw << ne data.

Online, we perform the fault detection and isolation task to identify the current health status of the system – specified

by the combination of fault parameters k. The proposed FDI algorithm is based on a Bayesian scheme for inversion to
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infer the health status of the system by minimizing the discrepancy between the output signal of the real system and the

signal computed with a fast monitoring model. In this stage, we use the compressed informative map (x̂, ŷ) to place

measurement points and reduce the dimension of the output signal. To solve this identification problem, our inverse

Bayesian technique approximates the discrepancy between the real and numerical output through a Gaussian process

surrogate model progressively updated by an acquisition function, that selects the next promising combination of faults

to be evaluated.

The following Sections describe in detail the two main elements that characterize FREEDOM. Specifically, Section

II.A deals with the original two steps signal compression strategy, and Section II.B illustrates the FDI procedure adopting

the Bayesian scheme for inference.

A. Two-Step Compression Strategy

In most aerospace applications, the output signal y needs to be measured with a high acquisition frequency that

results in ne measurements in the order of several thousands to capture all the required amount of information with a

satisfactory level of accuracy. This determines the high-dimensionality of the output signal y, and represents a significant

challenge to rapidly assess the health status of the system due to the demand for large storage capabilities and processing

power.

To address this issue, we propose a novel compression strategy to contain the dimensionality of the output signal y,

and retain only nw << ne measurement locations to store and process for the FDI procedure. Our approach identifies

the most informative elements nw of the output signal y through a two-step compression method; First, dynamic mode

decomposition extracts a set of dominant coherent structures of the system. Then, a self organizing map computes a

compressed representation of the output signal y to retain the highly informative elements that effectively synthesize

the dynamic of the system. This procedure is inspired by the compression strategy proposed by Mainini and Willcox

[20, 21], where Proper Orthogonal Decomposition (POD) and Self Organizing Maps (SOM) are jointly adopted to

determine the optimal placement of sensors for the assessment of structural health status. Berri et al [19] use a similar

approach in which POD and SOM are combined to reduce the computational burden associated with the storage of the

output signal of actuation systems for aerospace applications.

1. Extracting the Dynamic Features of the System

The first step of our compression strategy leverages the Dynamic Mode Decomposition (DMD) technique to identify

the inherent structure of the high-dimensional output signal, extract its the dynamical features, and define a data-driven

reduced order representation of the system [22, 23]. DMD has been successfully employed in aerospace engineering

applications to compute the modes and associated frequency of complex dynamical systems from large physics-based

datasets. Zhao et al. [24] adopt the DMD technique to analyze the physical features of the flow around an airfoil with
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leading-edge protuberance considering a stall regime. Cartocci et al. [25] develop a data-driven approach to model

the attitude dynamics of a CubeSat satellite using a DMD algorithm, computing fast low-dimensional representations

that are used to control the attitude of the system. Deem et al. [26] propose a framework based on a linear quadratic

regulator to control a separated laminar boundary layer, where DMD is adopted online to provide a lower-dimensional

representation of the space-time evolution of the controlled flow field.

Considering a generic non-linear dynamical system ψ acting on a finite-dimensional manifoldM , DMD computes a

matrix Awhose spectrum provides an approximation of the spectrum of an infinite-dimensional linear Koopman operator

that encodes ψ . This allows to derive the dynamical properties of the non-linear system as the dominant eigenvalues and

eigenvectors of the informative matrix A. We are interested in a non-linear dynamical system ψ : M →M characterized

by the output signal y(k,x) : M → R dependent on the health status of the system k and on measurement locations x.

Following the DMD approach, we assume that a set of pairs ns observations ỹ(k j−1,x) and ỹ(k j,x) are available for

different health conditions k j with j = 1,2, ...,ns. We use a scaled Latin hypercube sampling process [19] to collect the

ns incipient faults condition k from the space of possible faults K =
[
k0, ...,kns

]
that are used to compute the output

signals from the dynamical system. DMD seeks to determine the matrix Ã ∈ Rne×ne such that:

ÃỸ = Ỹ′ (1)

where the matrices Ỹ =
[
ỹ(k0,x) ỹ(k1,x) ... ỹ(kns−1,x)

]
∈ Rne×ns and Ỹ′ =

[
ỹ(k1,x) ỹ(k2,x) ... ỹ(kns ,x)

]
∈

Rne×ns are assembled using the series of output signals computed for different health conditions. In real world

applications, the matrix Ã may be extremely large due to the high-dimensionality of y making intractable the direct

solution of Equation (1). A popular approach to mitigate these difficulties is to reduce the spatial dimension of the

matrices Ỹ and Ỹ′ using Singular Value Decomposition (SVD) [27]. The main output of SVD is a set of ns modes

B ∈ Cne×ns that represent a low-order representation of Rne . We employ only the first modes nw << ns according to the

fraction of information retained from the original observation computed as the cumulative sum ∑
nw
i=1 λi/∑

ns
i=1 λi of the

eigenvalues λ associated to the considered modes. This allows to define the matrices Y and Y′ as the projection of Ỹ and

Ỹ′ onto the first nw modes as follows:

Y = B∗Ỹ ∈ Rnw×ns , Y′ = B∗Ỹ′ ∈ Rnw×ns (2)

where B∗ is the Hermitian transpose of B. Combining Equation (1) and Equation (2), the DMD problem is reduced in

the form:

A = Y′Y+ (3)
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where Y+ is the Moore-Penrose pseudoinverse of Y. Through the DMD technique, we obtain a set of dynamic modes

𝚼 = [𝝊1, ...,𝝊nw ] corresponding to the dominant eigenvectors of A that are employed in the following step of the

compression procedure to identify the most informative locations of the output signal y.

2. Projecting to a Lower-Dimensional Space

The second step of the proposed compression strategy determines a synthetized representation of the output signal

ŷ(k, x̂) through a Self Organizing Maps (SOM) identifying only the highly informative nw << ne elements of y to be

stored and processed for fault detection and isolation.

Self Organizing Maps are a class of single-layer neural networks that identifies clusters of self-similar data through

unsupervised competitive learning strategies [28, 29]. SOM maps a high-dimensional space into a lower-dimensional

space represented as a two-dimensional grid of nodes initialized as a randomly generated weight vector. Each of the

neurons of the SOM has two representations: the first is the space of the weight vectors that are updated during the

training process, and the second representation is the fixed bi-dimensional topological space of the network. SOMs

have been adopted for various classes of applications, including the improvement of sensors capabilities for prognostics

considering different operational regimes in turbofan engines for aerospace applications [30], and the faults detection

and prognostics of electrical components [31] and bearings [32] for industrial applications.

For the specific complex systems considered in this work, we define the training set T consisting of the dynamic

modes computed through the DMD procedure illustrated in Section II.A.1 and the associated measuring locations x:

T = [x,𝝊1, ...,𝝊nw ] (4)

Each row 𝝉i of T represents a training point that is fed to the network during the training process, and the winner

neuron l is chosen as the one that minimizes the distance between the associated weight vector wl and the current

training point 𝝉i:

l = argmin
j

(
||𝝉i−w j||

)
(5)

where ||·|| denotes the L2 norm. At this point, the weight vector of the winner neuron and its neighbors are updated

through a neighbourhood function, and the process iterates until all the training points are administered to the network

for several epochs where their order is differently randomized.

After the training procedure, we obtain an efficient compression mask ŷ of the output signal y leveraging the property

that the weight vectors of the trained SOM represent a non linear projection of the high-dimensional training set T to the

lower dimensional space of the neurons [20, 21, 33]. As a consequence, the weight vectors defined in the space of the

input encode representative vectors for clusters of self-similar points. This permits to define ŷ from the components of
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the weight vectors associated with the locations x measuring the output signal y only in the nw informative locations x̂.

At this point, the compression mask ŷ(k, x̂) consists of nw highly informative measurements of the output signal that is

used online to reduce the dimensionality of the diagnostics procedure.

B. Inverse Bayesian Fault Detection and Isolation

The proposed FDI strategy accelerates the identification of the system health status through an effective use of data

from numerical models, and the adoption of the highly informative compressed representation of the signals. The FDI

task represents an inverse problem where the identification of the fault parameters affecting the system is performed

through optimization strategies that usually rely on gradient-based or meta-heuristic algorithms [3]; those approaches

require a large number of data from numerical models or test-benches of the system, which makes the computational

cost unfeasible for the onboard health monitoring.

To overcome this issues, we propose an FDI algorithm based on an inverse Bayesian optimization approach that

wisely uses a limited amount of data from the monitoring model of the system to contain the computational cost

required for the identification task. Bayesian optimization (BO) is a well-established machine learning strategy for the

global optimization of noisy, expensive-to-evaluate black-box objective functions [34–37]. The term black-box refers

to functions whose analytical form is not available or the derivatives are not accessible; this is the case of objective

functions that depends on the dynamic of a system evaluated through a numerical model or a physical test bench that

can be depicted in terms of input/output relationship. Bayesian optimization has been widely employed for design

and optimization of aerospace systems from wings for supersonic transport aircraft [38] to laminated composites for

aerospace structures [39], and for the multidisciplinary design optimization of complete aircraft [40] and partially

reusable launch vehicles [41].

In the context of FDI, we aim to infer the combination of fault parameters k∗ that minimizes the discrepancy δ

between the output signal y(k∗,x) measured in the locations x from the physical system and the same signal yM(k,x)

computed with a numerical model. This problem may be challenging to be solved with a contained computational cost

since the output signals y and yM encode a significant number of measurements. To reduce the dimensionality of the

problem, we leverage the compression mask ŷ(k, x̂) computed with our two-step compression strategy and formalize the

FDI task as follows:

k∗ = argmin
k∈K

δ (k, x̂) (6)

where δ (k, x̂) = ||ŷ(k∗, x̂)− ˆyM(k, x̂)||.

To solve Equation (6), BO adopts two elements: a Bayesian surrogate model to approximate the discrepancy δ , and

an acquisition function to select the next fault combination to be evaluated. Algorithm 1 illustrates the main steps of the
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Algorithm 1 Bayesian scheme for the inference of damage parameters
Input: Definition of the faults domain K ∈ Rnk , discrepancy function δ (k, x̂) and the Gaussian process surrogate
model prior GP(0,κ(k,k′))

Output: Actual damage configuration affecting the system k∗ = argminδ (k, x̂)
1: D0←{kn, f (kn)}N0

n=1 collect initial N0 noisy observations of the discrepancy function f (kn)∼N (δ (kn, x̂),σε)
2: µ0,σ0 ← compute the initial mean and standard deviation of the Gaussian process surrogate model
3: i← 1
4: repeat
5: Load the new combination of damage parameters kNi

6: Compute the observation of the discrepancy function f (kNi)
7: Di←Di−1∪{kNi , f (kNi)} update the dataset of observations
8: µi,σi← update the mean and standard deviation of the Gaussian process surrogate model
9: Compute the acquisition functionU(k |Di) on the updated dataset Di
10: Maximize the acquisition function to select the next damage configuration to query kNi+1 = maxk∈K U(k |Di)
11: i+1← i
12: until Convergence criteria is met
13: return Combination of damage parameters k∗ that minimizes the discrepancy function δ (kn, x̂) over the faults
domainK

inverse Bayesian FDI framework. BO sequentially collects noisy observations of δ and learns a probabilistic surrogate

model to quantify the current belief about the discrepancy between the response of the real system and the outcome of

the monitoring model. This statistical model is typically a Gaussian process due to their flexibility, analytic properties

and well-calibrated uncertainty [42, 43]. We discuss the Bayesian statistical modeling using Gaussian processes in

Section II.B.1. At this point, the acquisition function uses the surrogate information to measure the utility of making any

given evaluation of δ . In Section II.B.2, we discuss popular acquisition functions including the expeceted improvement,

upper confidence bound, and two-step lookahead expected improvement. The process iterates until a maximum number

of evaluations of the monitoring model are reached to contain the total computational expense. We now provide details

about the main components of the inverse Bayesian fault detection and isolation framework, first discussing the Gaussian

process regression (Section II.B.1) and then illustrating different formulations of the acquisition function (Section II.B.2)

1. Gaussian Process Regression

Gaussian process (GP) regression is a flexible and efficient framework to approximate the discrepancy δ through a

non-parametric kernel-based statistical model [42, 43]. GP allows to predict the values of the discrepancy across the

domainK based on its observations at previous evaluated points, and quantifies the uncertainty associated with the

prediction. In the following, we briefly summarize the theoretical formulation of GP.

Let DN = {kn, f (kn)}N
n=1 denote the dataset of N paired health conditions kn ∈K ⊆ Rnk and noisy observations of

the discrepancy f (kn)∼N (δ (kn, x̂),σε), where σε is the standard deviation of the normally distributed noise. GP is a

non parametric model characterized by its mean function µ(k) : K → R and the covariance function also defined as

kernel function κ(k,k′) : K ×K → R. We assume that the observations of the objective function 𝚫= {δn}N
n=1 are

jointly Gaussian, and the output 𝑭 = { f (kn)}N
n=1 is normally distributed given δ :
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𝚫 | k∼N (𝝁,K) (7)

𝑭 | 𝚫,σ2
ε ∼N (𝚫,σ2

ε I) (8)

where µ := µ(kn), and Ki, j =: κ(ki,k j).

Using the Bayesian inference principle, the GP regression combines the prior belief about the objective p(δ )with the

likelihood function p(DN |δ ) to compute the posterior distribution p(δ |DN) ∝ P(DN |δ )P(δ ), representing the updated

surrogate model of the objective function. Assuming the prior of the objective as a GP: δ ∼ GP(0,κ(k,k′)) with zero

mean function µ(k) = 0, the posterior distribution is a GP completely defined by its mean µ and variance σ2:

µ(k) = κi(k)T (K+σεI
)−1

𝑭 (9)

σ
2(k) = κ(k,k)−κi(k)T (K+σεI

)−1
κi(k) (10)

where κi is defined as κi(k)
.
=

(
κ(k,k0), · · · ,κ(k,ki)

)
. The posterior mean µ represents the maximum a posteriori

probability estimate of the discrepancy δ , and the posterior standard deviation σ quantifies the uncertainty of the

surrogate model. These information are used to compute the acquisition function that guides the search towards the

optimal solution of the optimization problem in Equation (6).

In addition, the estimate of the uncertainty σ associated with the prediction µ of the discrepancy through the kernel

function κ represents a significant property that potentially confers our FDI framework a form of intrinsic reliability.

Indeed, kernel functions form a reproducing kernel Hilbert space in which the discrepancy δ has bounded norm [44, 45].

This provides reliable confidence intervals on the discrepancy that determine a measure of the prediction and therefore

reliability of the Gaussian process surrogate model. In our case, this would pave the way for robust inference of the

health status of the system.

2. Acquisition Function

Given the surrogate model of the discrepancy δ , it is possible to define an acquisition function U(k) : K → R+

under the GP posterior that quantifies the improvement of the solution of the FDI problem (Equation 6) once the

discrepancy is evaluated at a new set of fault parameters. At each iteration of the FDI process, BO selects the most

promising combination of fault parameters kN+1 to be evaluated in the next iteration by maximizing the acquisition

function:
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kN+1 = argmax
k∈K

U(k |DN) (11)

Once the new health condition is computed, BO evaluates the value of the discrepancy δ (kN+1, x̂) and uses this

information to expand the datasetDN+1; as the dataset has been extended, the GP posterior is updated and the acquisition

function evolves through the optimization.

In this paper, we discuss and investigate the performance of three popular formulations of the acquisition function

for the fault detection and isolation task, including the expected improvement (EI), upper-confidence bound (UCB), and

two-step lookahead expected improvement (2lookEI). These acquisition functions are designed to address a trade-off

between the exploration of the faults spaceK to reduce the uncertainty of the GP model, and the exploitation of the

most promising regions ofK where the minimum value of the discrepancy is likely to be located. The rationale behind

the selection of these specific acquisition functions is to investigate different approaches to measure the improvement of

the solution in terms of identification of the health status of the system. In the following, we review and discuss the

formulations of EI, UCB and 2lookEI.

Expected Improvement

The expected improvement (EI) acquisition function measures the improvement in the estimate of the health status of

the system as the expected probability that a certain health condition leads to a reduction of the best value of discrepancy

observed so far. Given the posterior mean µ(k) (Equation (9)) and the standard deviation σ(k) (Equation (10)) of the

Gaussian process model, the Expected Improvement is defined as follows [46]:

UEI(k) =


(
µ(k)−δ (k+)

)
Φ(Z)+σ(k)φ(Z) if σ(k)> 0

0 if σ(k) = 0
(12)

where δ (k+) is the value of the discrepancy evaluated at the health condition k+ determined so far that realizes the

larger reduction of δ , Φ is the cumulative distribution function, φ is the probability density function of the standard

normal distribution, and Z =
(
µ(k)−δ (k+

)
/σ(k) is the standardized improvement.

Upper-Confidence Bound

The upper confidence bound (UCB) acquisition function defines an optimistic selection strategy of favourable health

conditions of the system under-estimating the prediction of the Gaussian process with added uncertainty. In the context

of minimizing δ , UCB uses the lower confidence for every health status corresponding to effectively using a fixed

probability best case scenario according to the Gaussian process model. The formulation of UCB is a weighted sum of
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the mean function µ(k) (Equation (9)) and the uncertainty σ(k) (Equation (10)) [47]:

UUCB(k) = µ(k)−
√︁

βnσ(k) (13)

where
√︁

βn = 1/(
√

2n2π2) is the weight defined as a function of the number of evaluations n of the discrepancy δ .

Two-Step Lookahead Expected Improvement

The two-step lookahead expected improvement (2lookEI) quantifies the current informative gains given by a potential

health condition of the system, and uses this data to determine a new health status on the next query that produces larger

reduction of the discrepancy δ . This is obtained through an optimal sampling policy to determine the health condition k

at the second future iteration of the optimization that maximizes the cumulative expected improvement (Equation 12)

over two iterations [48]:

U2lookEI(k(2)) =U (0)
EI (k

(1))+E(0)
[
maxk(2)∈K U (1)

EI (k
(2))

]
(14)

where the apex 0 refers to the elements computed at the current iteration of the FDI procedure, and 1 and 2 define

variables evaluated at the first and second future iteration, respectively. Equation (14) is not computable in closed form

as it requires the evaluation of the nested expectation and maximization term. In particular, the second term ofU2lookEI

has to be assessed evaluating Equation 12 through the Gaussian process updated at the first future iteration, which is

not directly available at the current iteration of the FDI procedure. To overcome this issue, we adopt a Monte Carlo

approach to provide a reliable approximation ofU2lookEI through the estimate of the mean µ(1) and standard deviation

σ (1) of the GP model at the first future iteration [49]:

µ
(1)(k) = µ

(0)(k)+H(0) (k)Z (15)

σ
(1)(k) = σ

(0)(k)−H(0) (k)H(0) (k)T (16)

where Z is an independent standard normal random variable, H(0) (k) = κ(0)
(
k
)

C(0)(k)−1, C is the Cholesky

decomposition of the covariance matrix κ(ki,k j). To estimateU2lookEI , we sample the random variable Z and compute

U (1)
EI combining Equation 15 and Equation 16: averaging over many Z provides a robust estimate of the two-step

lookahead expected improvement.
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fault parameter fault mode ki = 0 (no damage) ki = 1 (full damage)

k1 friction nominal 3 times nominal
k2 backlash nominal 100 times nominal
k3 phase A short circuit absent complete
k4 phase B short circuit absent complete
k5 phase C short circuit absent complete
k6 rotor eccentricity absent air gap width
k7 eccentricity phase −180◦ 180◦

Table 1 Definition of the health status of the EMA system in terms of fault parameters ki

III. Fault Detection and Isolation: Problem Setup
Without losing the generalization properties of our method, we demonstrate and validate the computational framework

FREEDOM for the FDI problem of an ElectroMechanical Actuator (EMA) adopted for the flight control system of

manned aircraft. EMAs represent a complex multiphysics system that constitute a potential enabling technology for

sustainable aviation according to the more electric and all electric aircraft philosophies: these systems permits the

elimination of a centralized hydraulic power generation system with benefits in terms of lower emissions and weight

reduction [13–18]. EMAs constitute a significant challenge for the FDI procedure due to the presence of different

subsystems characterized by heterogeneous and coupled physical domains. The EMAs architecture consists of an

electrical power unit coupled with a mechanical transmission that converts the electric power from the aircraft electrical

system into mechanical power to control the aerodynamic surfaces. For the specific EMA considered in this work, the

electrical power unit consists of three elements: i) the actuator control electronic compares the position setpoint required

by the user with the actual position and speed of the aerodynamic surface to define a torque setpoint for the electrical

motor through a control law; ii) the three phase inverter controls the electric motor phase commutation sequence, and

feeds to the motor the required voltages of the motor coils; iii) the electric motor provides the required torque necessary

to move the flight control surfaces. This torque is transmitted through the gearbox of the mechanical transmission to the

aerodynamic surfaces, and counteracts the aerodynamic hinge moment acting on the actuator to move the flight controls

at the prescribed position and speed.

In this paper, we consider 4 different failure modes affecting the EMA system, including the increase of friction

(k1) and backlash (k2) of the mechanical transmission, partial short circuit for the three phases of the electrical

motor (k3,k4,k5), and the static eccentricity of the rotor (k6,k7). This results in the health status of the system

k =
[
k1,k2,k3,k4,k5,k6,k7

]
defined as a combination of nk = 7 elements. Table 1 summarizes the fault modes affecting

the considered EMA system; these failure conditions are selected among the most common EMA faults during the

in-flight operations [50, 51]. Each fault parameter ki ∈ [0,1] is normalized between 0 and 1, where ki = 0 represents the

nominal condition and ki = 1 indicates the complete damaged condition. We consider as incipient damages values

15



of fault parameters ki < 0.05 which represent a condition where the system is still capable to meet the operational

requirements with a small degradation of the performance.

For the FDI procedure illustrated in Section II, we adopt the stator envelop current I of the electrical motor as the

output signal of the system to determine its health status: this signal is sensitive to the failure modes considered in

this study and is easy to be acquired in a real-word physical system [19, 52]. Thus, the FDI problem of the considered

aerospace EMA is formulated according to Equation (6) as follows:

k∗ = argmin
k∈K

|| ˆIre f (k∗, x̂)− ˆImon(k, x̂)|| (17)

where k = [k1, ...,k7] represents the health status of the considered system, andK =
[
0,1

]7 is the space of the fault

parameters. To solve this FDI task, we use offline a high-fidelity computer-based model of the EMA system (Section

III.A.1) as the source of the reference dataset that is used to compute the compression mask Î(k∗, x̂) through the proposed

two-step compression strategy (Section II.A). During the online phase, we adopt the inverse Bayesian approach for FDI

(Section II.B) to compute the health status of the system; we use both a high-fidelity numerical model and a real-world

test bench of the EMA system to provide the reference current signal Ire f , and a simplified low-fidelity numerical model

to evaluate the monitoring current signal Imon with a contained computational cost.

In the following, we present the numerical high-fidelity model of the EMA system in Section III.A.1, and the

approximated low-fidelity monitoring model in Section III.A.2. We then illustrate the experimental test-bench of the

EMA in Section III.B.

A. Computer-Based Physical Models of the System

In this paper, we consider two computer-based models of the EMA system at different levels of accuracy and

computational cost. The high-fidelity model (Section III.A.1) is used in the offline phase as the source of information

to build the reference dataset for the two-step compression strategy, and online as the emulator of the real EMA to

compute the reference current signal that is adopted during the Bayesian FDI procedure. This model provides an

accurate representation of the dynamic of the system considering both the nominal and damaged condition, but requires

a significant computational cost that is not suitable for an efficient health monitoring procedure. To overcome this issue,

the low-fidelity numerical model of the EMA (Section III.A.2) provides a less accurate estimate of the response of the

system that can be used online as the source of data to compute the monitoring signal, given the contained computational

resources required for its evaluation.

1. High-Fidelity Reference Model

The high-fidelity model of the EMA system is a highly accurate physics-based numerical model that is capable to

emulate the dynamical response of the actuator, and has been validated against experimental data [52–54].
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Fig. 2 Block diagram of the high-fidelity numerical model

The block diagram in Figure 2 illustrates the architecture of the high-fidelity EMA model. The actuator control

electronics model emulates the Proportional Derivative Integrative (PID) control law, and defines the reference current

Ir for the motor to neglect the error between the commanded setpoint of position and speed and the actual position

and speed of the aerodynamic surface. This model accounts for signal noise and digitization, and the controller allows

to switch between a position control mode and a speed control mode. The power electronics block models the three

phase inverter providing a reliable estimate of the effects of the pulse width modulation three-phase current control

logic, and defines the voltages VA,VB and VC to produce the currents IA, IB and IC required to achieve the torque setpoint.

The electromagnetic model of the BrushLess Direct Current (BLDC) electric motor consists of a complete lumped

parameters model of the electromagnetic coupling between the stator windings and the rotor poles to estimate the

magnetic flux across the air gap. This block allows to compute the torque Tm produced by the motor, and accounts for

multiple fault modes including the partial short circuit of the stator for the three phases (k3,k4 and k5) and the rotor

eccentricity (k6 and k7). The motor-transmission model is a nonlinear second order dynamical model of the motor and

gearbox of the actuator, and determines the position of the aerodynamic surface θu and the position of the motor θm.

This block is capable to consider nonlinear effects and faults that commonly affect the mechanical transmission, namely

the dry friction between the components (k1), and the transmission backlash (k2). To simulate a real-word scenario, the

high-fidelity model implements an aerodynamic load model block that provides a representation of the aerodynamic

hinge moment acting on the actuator using the linearized longitudinal model of the F-16 fighter jet [55].

We consider this high-fidelity numerical model of the EMA as an emulator of a real-world actuator, and is adopted

to assess the performance of FREEDOM in numerical experiments and to collect ground truth data in the offline

compression stage. However, the computational cost required to estimate the dynamic of the EMA is almost two orders

of magnitude above the simulated time interval, making the FDI task with the high-fidelity model unfeasible with
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Fig. 3 Block diagram of the low-fidelity numerical model

limited computational resources. This motivates the development of a low-fidelity model of the EMA that introduces

approximations to reduce the computational burden for evaluation while retaining an acceptable level of simulation

accuracy.

2. Low-Fidelity Monitoring Model

The low-fidelity numerical model of the EMA system introduces simplifications in the physical modeling of the

electrical subsystems of the actuator to contain the computational cost associated with its evaluation [52].

The architecture of the low-fidelity EMA model is illustrated in Figure 3. The main approximation introduced

in this model is the three-phase inverter modeling and the evaluation of the magnetic flux across the air gap. Those

complex and expensive to evaluate subsystems are replaced in the low-fidelity model with a first order direct current

model assuming the inductance of the motor negligible. Accordingly, the simplified governing equation provides an

approximated relation between the motor current Im, voltage Vm and torque Tm as follows:

RIm =Vm−νω (18)

Tm = νIm (19)

where ν is the back-electromotive force coefficient, R is the resistance of the stator, and ω is the motor angular speed.

To model the electrical failure modes of partial short circuit and rotor eccentricity (k3, ...,k7) , we follow the approach

proposed by Berri et al. [56] modulating the electrical motor resistance, inductance and electromotive force coefficient

as a function of the rotor angular position through two shape functions sensitive to faults: this strategy permits to
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(a) (b)

Fig. 4 (a) EMA test-bench and (b) the corresponding block diagram

emulate the response of the high-fidelity model in presence of faults.

This modeling approach of the electrical power unit allows to avoid the iterative solution of the stator circuit,

resulting in a reduced computational burden and acceptable numerical accuracy. In this paper, we use the low-fidelity

model of the EMA to compute the monitoring current signal during the online FDI procedure.

B. Physical Test Bench of the System

The test bench of the EMA system provides experimental data about the dynamical behaviour of the system in

different operating conditions and considering different fault modes [57]. In particular, the test bench allows to simulate

the presence of mechanical faults affecting the system, namely the increase of the friction force k1 and backlash k2 in the

mechanical transmission.

The layout of the EMA test-bench is illustrated in Figure 4. The electrical power unit consists of a permanent magnet

synchronous motor characterized by a three-phase star connected permanent magnet architecture featuring four pole

pairs. The power electronics coupled with the electrical motor consists of a driver powered by the 400V three-phase

industrial line for the power module, and a 24V DC line for the logic subsystem. The control unit adopts an absolute

encoder to measure the position of the motor shaft that is used to synchronize the phase commutation and to close the

velocity control loop. The transmission subsystem is based on a planetary gearbox that converts the torque provided

by the motor in a torque applied to the user shaft. The architecture of the transmission is conceived to introduce the

backlash fault mode (k2) through an adjustable gear that simulates the degradation of the mechanical components. The

brake unit simulates the effects of external loads on the actuator connecting a disc brake to the motor shaft through a

roller chain. Additionally, this subsystem emulates the transmission wear resulting in the increase of the friction force
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(k1) that is simulated increasing the load value applied to the motor shaft.

In this paper, the experimental data measured from the EMA test-bench are adopted to validate our Bayesian FDI

strategy, providing the experimental reference current signal that is used to assess the health status of the system in

presence of mechanical faults. Additionally, the test-bench data have been employed to validate the response of the

high-fidelity numerical model of the EMA (Section III.A.1) in nominal conditions.

IV. Experiments
In the following, we demonstrate and validate our original methodology FREEDOM for the fault detection and

isolation problem of the electromechanical actuator for aerospace applications discussed in Section III considering a

variety of mechanical and electrical fault conditions.

For all the numerical experiments, we collect a reference dataset of 100 combinations of incipient faults whose

corresponding system responses are evaluated with the high-fidelity EMA model (Section III.A.1). This set of faults is

determined through a modified scaled Latin hypercube sampling to increase the density of sampling points near the

nominal condition [19]. Offline, we use this dataset to compute an encoding map of nw = 30 informative points using

our original two-step compression strategy presented in Section II.A. Figure 5 shows the placement of those informative

points determined through the self organizing map (Section II.A.2) for the first mode computed using the dynamic mode

decomposition technique (Section II.A.1): our compression strategy places the nw points in correspondence of the most

significant locations of the mode including minima and maxima. This compressed representation is adopted online to

identify the health status of the system through the inverse Bayesian fault detection and isolation algorithm illustrated in

Section II.B. For this study, we use the Gaussian process (Section II.B.1) as the surrogate model implementing the square

exponential kernel for the GP covariances, and the maximum likelihood technique to optimize the hyperparameters of

the kernel and the mean function of the GP [58]. Additionally, we compare three formulations of the acquisition function

(Section II.B.2), including the expected improvement (EI), upper-confidence bound (UCB) and two-step lookahead

acquisition function (2lookEI).

We conducted both numerical and physical experiments considering three main experimental configurations to

investigate the overall behaviour of the proposed methodology. In particular, we first tested FREEDOM implementing

the high-fidelity numerical model of the EMA (Section III.A.1) to compute both the reference output signal and the

monitoring signal: the goal is to assess the performance of the proposed methodology in the identification of the health

status of the system without introducing a modeling error between the reference and the monitoring signals. This

procedure permits to highlight the main difficulties in solving the EMA identification problem caused by the interaction

of heterogeneous and multi-domain fault modes that affect simultaneously the system, and excludes the influence of

modeling approximations in the computation of the monitoring signal. For the numerical test-cases, we compute the

output signal considering in input a linear chirp command characterized by a 0.5 s duration, 5 ·10−3 rad amplitude, 0
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Fig. 5 Set of nw = 30 informative points over the first DMD mode

Hz start frequency and 15 Hz end frequency, and an aerodynamic load of 0.5 Nm applied to the actuator.

Then, we investigate our methodology implementing the low-fidelity representation of the EMA (Section III.A.2) as

the monitoring model, to evaluate the actual performance in fault identification considering a real-world scenario where

a fast digital twin is required to limit the computational resources for the evaluation of the monitoring signal. This

allows to assess both the accuracy and robustness of the proposed methodology in presence of multiple fault conditions

and modeling error between reference and monitoring system.

Finally, we validate FREEDOM for the health assessment of the real-world EMA system (Section III.B) using the

low-fidelity EMA model as the monitoring model. For the physical experiments, we provide in input to the test-bench

and low-fidelity numerical model an input sinusoidal command with 0.12 rad amplitude and 0.2 Hz frequency, without

external loads applied to the actuator.

The whole procedure is implemented in the Matlab environment, and we run all the experiments using a laptop PC

equipped with Intel Core i7-6700HQ (2.6 GHz) and 32 GB of RAM.

V. Results and Discussion
In the following, we illustrate and discuss the results obtained with our original framework FREEDOM. To evaluate

the performance of the algorithm, we define the following assessment metrics:

e(ki) =
||k∗i − k̃i||

k∗i
·100 (20)

δ
∗ = min(δ (k∗, x̂)) (21)

where k∗i is the actual level of damage that affects the system, k̃i is the level of damage inferred by the algorithm
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considering the i-th fault mode, and δ (k∗, x̂) is the value of the discrepancy between the reference and monitoring

output signals. In particular, e(ki) measures the percentage relative error in the identification of the health status of the

system, and δ ∗ represents the minimum value of the discrepancy achieved by the algorithm.

We evaluate e(ki) and δ ∗ as functions of the time employed by the different algorithms to complete the FDI task.

For the results obtained against numerical experiments, we consider a statistics over 100 different incipient faults

combinations k∗ = (k∗1, ...,k
∗
7) including all the spectrum of mechanical and electrical damages. For the results obtained

against physical experiments, we consider a statistics over 10 different combinations of incipient mechanical faults

k∗ = (k∗1,k
∗
2). For both the numerical and physical experiments, the incipient damage conditions are determined through

the scaled Latin hypercube sampling proposed by Berri et al. [19]. This choice is motivated by the increased probability

distribution of the fault combinations located near the nominal condition, in order to collect a large amount of incipient

faults without limiting the identification process bounding the space of faults. In the remaining, the results are reported

and discussed for all the three different formulations of our FDI algorithm – namely Expected Improvement (EI),

Upper-Confidence Bound (UCB), Two-Step Lookahead Expected Improvement (2lookEI) – and compared in term of

median values of the inference error e(ki) and discrepancy δ ∗ together with the associated statistics in between the 25-th

and 75-th percentiles.

Numerical Experiments: High-Fidelity Monitoring

Figure 6 shows the outcomes obtained for an experimental setup where the high-fidelity numerical model of the

EMA (Section III.A.1) is used as the source of information for both the reference and monitoring current signal. All the

competing formulations identify the current health status of the system reducing the inference error e(ki) for both the

mechanical (k1,k2) and electrical faults (k3,k4,k5,k6,k7). The best performing FDI strategy implements the two-step

lookahead acquisition function (2lookEI). which leads to a significant reduction of the inference error for all the fault

modes with a fraction of the computational time required by UCB and EI. This outcome suggests that acquisition

functions capable to quantify the improvement in the solution of the FDI problem achievable in future iterations

determine an effective and efficient sampling scheme to identify the health status of the system.

It should be noticed that the correct identification of the health status of the EMA – which correspond to the

computational time for which the inference error is equal to zero – coincides with null discrepancy between the reference

and monitoring current signals (Figure 6h). These results are justified from the adoption of the same high-fidelity

numerical model to compute both the reference and monitoring signals. As a consequence, the inference of the

actual damage configuration affecting the EMA produces the same reference and monitoring responses, which in

turn determine a value of the discrepancy function equal to zero. This experimental setting offers the opportunity to

investigate the challenges associated with the EMA health assessment problem without a modeling error between the

diagnostics signals that might lead to the misinterpretation of the results. In particular, the overall outcomes achieved
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(a) Friction (b) Backlash (c) Phase A short circuit (d) Phase B short circuit

(e) Phase C short circuit (f) Rotor eccentricity (g) Eccentricity phase (h) Discrepancy

Fig. 6 Statistics over 100 incipient fault conditions of the percentage relative error of the inference of the fault
parameters e(ki) and minimum discrepancy value δ ∗ obtained for the high-fidelity monitoring.

with the three formulations for all the fault modes indicate that a reduction of the discrepancy between the reference and

monitoring current signal is not related with a continuous decrease of the inference error (Figure 6). This suggests

that the EMA identification problem is ill-posed: a reduction of the discrepancy function is not always related to an

improvement in the accuracy of the faults inference. As a consequence, the identified fault parameters are subjected to

instability and uncertainty that raise when the reduction of the discrepancy causes an increase in the inference error,

further complicating the fault detection and isolation task. These results are justified with the presence of multiple

and multiphysics faults affecting simultaneously the EMA system. In particular, a variation of both the friction in

the mechanical transmission (k1) and the partial short circuit in the three phases of the electric motor (k3, k4, k5)

determines opposite effects in the dynamical response of the system: increasing k1 reduces the speed of the actuation

while increasing k3:5 causes an increase in the motor speed. These effects indicate a distinct multimodality of the

discrepancy function, which is characterized by the presence of multiple suboptimal local minima that stresses the

search towards the actual health status of the system. The outcomes show that FREEDOM is capable to address this

multimodal behaviour through the joint contribution of the efficient compression stage and the Bayesian scheme: the

two-step compression extracts the most significant elements of the signals that are used to guide and support with an

highly informative content the Bayesian scheme for inference; this produces an effective FDI procedure with contained

evaluations of the monitoring model of the system.

Table 2 and Table 3 summarize the convergence results for the three formulations of the acquisition function in

terms of median values of the inference error e(ki) and minimum discrepancy δ ∗, and maximum inference error emax(ki)

achieved at convergence, respectively. In particular, the computational time required to identify the exact health status
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Method e(k1) e(k2) e(k3) e(k4) e(k5) e(k6) e(k7) δ ∗ Time

EI 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00 583 s
UCB 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00 335 s
2lookEI 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00 271 s

Table 2 Convergence results of the percentage relative error of the inference of the fault parameters e(ki),
minimum discrepancy value δ ∗, and computational time obtained for the high-fidelity monitoring.

Method emax(k1) emax(k2) emax(k3) emax(k4) emax(k5) emax(k6) emax(k7)

EI 1.06% 1.05% 1.53% 1.51% 1.07% 1.43% 1.16%
UCB 0.87% 1.30% 1.10% 1.64% 1.35% 1.26% 1.13%
2lookEI 0.88% 0.91% 1.21% 1.25% 0.95% 1.20% 1.05%

Table 3 Convergence results of the maximum percentage relative error of the inference of the fault parameters
emax(ki) obtained for the high-fidelity monitoring.

of the EMA system is on average 271 seconds for the 2lookEI, while the other competing formulations require further

time expenditure to infer the damaged condition (Table 2). A significant outcome observed at convergence is that all the

algorithms achieve a maximum inference error lower than 1.64% over the experimental setup of 100 incipient fault

combinations, highlighting the robust identification of the health status of the system (Table 3).

The results obtained for the high-fidelity monitoring test-case demonstrate the accuracy and robustness of the

framework FREEDOM in presence of multiple and interacting incipient failure modes. In addition, it is shown the

capability of our framework to overcome the issues related to the ill-posed identification problem and multimodality of

the discrepancy function. However, the demand for computational resources makes the FDI procedure with high-fidelity

numerical models unfeasible for the fast identification of the health status of the system. This justifies the adoption of

the low-fidelity numerical model to approximate the output signal of the system, decreasing the computational cost

required for the FDI procedure.

Numerical Experiments: Low-Fidelity Monitoring

Figure 7 illustrates the outcomes achieved adopting the low-fidelity numerical model of the EMA system (Section

III.A.2) to compute the monitoring current signal. The 2lookEI acquisition function leads to a superior reduction of the

inference error with a contained computational time if compared with EI and UCB. Nevertheless, all the competing

formulations identify accurately the level of damage for the electrical faults (k3,k4,k5,k6,k7) and allow to reduce the

inference error for friction (k1) and backlash (k2) fault modes below the 6.66% and 10.1%, respectively. However, the

convergence values of e(k1) and e(k2) are higher with respect to the values of the error for the electrical faults. Figure

7a and Figure 7b report the convergence history of the inference error for the mechanical faults affecting the EMA.

Both e(k1) and e(k2) show similar trends: the error decreases for lower computational times while tends to reach values
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(a) Friction (b) Backlash (c) Phase A short circuit (d) Phase B short circuit

(e) Phase C short circuit (f) Rotor eccentricity (g) Eccentricity phase (h) Discrepancy

Fig. 7 Statistics over 100 incipient fault conditions of the percentage relative error of the inference of the fault
parameters e(ki) and minimum discrepancy value δ ∗ obtained for the low-fidelity monitoring.

higher than the minimum computed so far as the FDI algorithm proceeds in reducing the discrepancy δ . This result

can be justified with the introduction of a modeling error between the reference – high-fidelity – and monitoring –

low-fidelity – signals that is reflected in a computed minimum of the discrepancy δ ∗ different from zero (Figure 7h).

Indeed, the same combination of fault parameters determines discrepant current responses between the high-fidelity and

low-fidelity numerical model caused by the physical approximations adopted to reduce the computational cost of the

low-fidelity representation. Those effects poses further difficulties to efficiently assess the health status of the system.

Table 4 illustrates the median values of the inference error e(ki) and minimium discrepancy δ ∗ reached at the

convergence of the FDI process, while Table 5 shows the corresponding maximum inference error emax(ki). In particular,

the 2lookEI infers the electrical faults with an error below the 0.12%, while permits the identification of the mechanical

faults with an error of the 4.51% and 8.94% for friction and backlash, respectively (Table 4). Although the inference of

mechanical failures is not as accurate as the identification of electrical damages, the overall accuracy of our methodology

is adequate for the detection of incipient failure modes, and permits the adoption of corrective actions to contain the

early stage effects on the degradation of the system performance. In addition, the identification of the health status of

the system requires on average 25 seconds for the 2lookEI, which correspond to a reduction of the 91% if compared

with the time required to assess the EMA health status with the high-fidelity monitoring. This allows to infer barely

noticeable failure modes early on before the propagation, and permits to prevent and counteract to excessive loss of

performance of the system with potentially severe effects.

Moreover, it can be noticed that the 2lookEI algorithm achieves a maximum inference error at convergence below

the 4.81% for the electrical damages, and equal to 4.73% for friction and 9.33% for backlash considering a total of 100
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Method e(k1) e(k2) e(k3) e(k4) e(k5) e(k6) e(k7) δ ∗ Time

EI 6.55% 8.66% 0.08% 0.09% 0.11% 0.10% 0.05% 0.136 51 s
UCB 6.66% 10.1% 4.73% 3.68% 6.50% 14.7% 3.35% 0.139 69 s
2lookEI 4.51% 8.94% 0.05% 0.09% 0.12% 0.07% 0.06% 0.132 25 s

Table 4 Convergence results of the percentage relative error of the inference of the fault parameters e(ki),
minimum discrepancy value δ ∗, and computational time obtained for the low-fidelity monitoring.

Method emax(k1) emax(k2) emax(k3) emax(k4) emax(k5) emax(k6) emax(k7)

EI 6.77% 9.07% 4.90% 4.05% 4.82% 4.61% 4.53%
UCB 6.86% 10.73% 8.60% 8.21% 10.23% 19.77% 9.64%
2lookEI 4.73% 9.33% 4.81% 4.24% 3.12% 3.98% 3.35%

Table 5 Convergence results of the maximum percentage relative error of the inference of the fault parameters
emax(ki) obtained for the low-fidelity monitoring.

Metric GA PSO DE GWO FREEDOM

Average Time 2322 s 1710 s 405 s 709 s 25 s
Average Error e(k) 2.813% 0.711% 3.001% 4.378% 1.977%

Table 6 Comparison of the computational time and average inference error between the FREEDOM algorithm
and the meta-heuristic algorithms proposed by [59], namely Genetic Algorithm (GA), Particle Swarm Optimization
(PSO), Differential Evolution (DE) and Grey Wolf Optimization (GWO).

incipient fault combinations (Table 5). These outcomes demonstrate that our methodology FREEDOM provides a robust

identification of the health status of the system even in presence of modeling errors, ill-posedness, and multimodality of

the identification problem. However, the maximum inference error computed at convergence is higher if compared with

the outcomes of the high-fidelity monitoring test-case (Table 3), suggesting that the introduction of the modeling error

also affects the overall robustness of the FDI process.

Table 6 compares the results obtained with the FREEDOM algorithm and with popular meta-heuristic approaches

as the one proposed by Dalla Vedova et al. [59]. In particular, we compare the two-step lookahead implementation

of FREEDOM with the diagnostics outcomes obtained with Genetic Algorithm (GA), Particle Swarm Optimization

(PSO), Differential Evolution (DE) and Grey Wolf Optimization (GWO). FREEDOM is capable to achieve a comparable

average reduction of the inference error with a remarkable acceleration up to two orders of magnitude if compared with

the standard algorithms. These results remark and emphasize the capability of the FREEDOM framework to leverage

the combination of efficiently compressed highly informative signals with the Bayesian inference stage to provide an

accurate health status assessment with a fraction of the computational cost required by competing algorithms.

The outcomes computed adopting the low-fidelity numerical model demonstrate a substantial acceleration of the

inference of incipient damages with satisfactory accuracy and robustness. In particular, the implementation of a
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low-fidelity monitoring model significantly reduces the computational burden associated with the FDI procedure if

compared with the time expenditure required for the high-fidelity monitoring test-case. Moreover, the computational

time required to complete the FDI task with our methodology is two orders of magnitude lower than state of the art

model-based FDI algorithms [3, 9, 59, 60]. This reveals the capabilities of our algorithm to efficiently exploit data from

the low-fidelity monitoring model and contain the demand for computing resources. However, the introduction of a

modeling error between the reference and monitoring signal moderately affects the accuracy and robustness of the FDI

procedure for the failures in the mechanical transmission.

Real-World Experiments

Figure 8 illustrates the results obtained with the FREEDOM algorithm for the health assessment of the real-world

EMA system (Section III.B) implementing the low-fidelity monitoring model. All the three formulations are capable

to identify the health status of the system minimizing the inference error with a contained computational time. The

overall convergence trends for both the inference error of friction (Figure 8a) and backlash (Figure 8b) confirm that the

identification problem is ill-posed and multimodal – the decrease of the discrepancy (Figure 8c) is not always related to

a reduction of the inference error – and affected by the modeling error between the current signal measured on the

real-world system and the same signal computed with the low-fidelity model – the minimum of the discrepancy is

greater than zero when the health status of the system is inferred.

Table 7 provides the experimental convergence median values of the inference error e(ki) and minimum discrepancy

δ ∗ for the three acquisition functions considered in this paper. All the implementations accurately identify the health

status of the system, and lead to an inference error of the 0.03% for friction and 0.08% for backlash. However,

the 2lookEI implementation achieves the best experimental results in terms of efficiency, identifying the incipient

mechanical faults with a computational time within 6 seconds; this corresponds to a reduction of the 62% and 70%

of time expenditure if compared with the outcomes of the EI and UCB methods, respectively. Table 8 illustrates the

maximum inference errors emax(ki) at convergence. All the formulations keep the maximum error below the 3.35%,

validating the robust identification of the incipient mechanical faults; in particular, the two-step lookahead acquisition

function shows the higher level of robustness with an inference error at convergence lower than the 1.62% and 1.24%

for friction and backlash, respectively.

These outcomes validate the performance of FREEDOM as a computational framework that enables the acceleration

of the FDI procedure, and permits the accurate and robust identification of incipient faults affecting a complex and

multiphysics aerospace system. A significant achievement of our methodology is the reduction of computational time

required to identify the health status of the real-system, which corresponds to an inference procedure two orders of

magnitude faster than standard model-based FDI approaches [3, 9, 59, 60].
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(a) Friction (b) Backlash (c) Discrepancy

Fig. 8 Statistics over 10 incipient fault conditions of the percentage relative error of the inference of the fault
parameters e(ki) and minimum discrepancy value δ ∗ obtained for the real-world experiments.

Method e(k1) e(k2) δ ∗ Time

EI 0.03% 0.08% 0.0326 16 s
UCB 0.03% 0.08% 0.0326 20 s
2lookEI 0.03% 0.08% 0.0326 6 s

Table 7 Convergence results of the percentage relative error of the inference of the fault parameters e(ki),
minimum discrepancy value δ ∗, and computational time obtained for the real-world experiments.

Method emax(k1) emax(k2)

EI 2.69% 3.35%
UCB 2.39% 2.59%
2lookEI 1.62% 1.24%

Table 8 Convergence results of the maximum percentage relative error of the inference of the fault parameters
emax(ki) obtained for the real-world experiments.

VI. Concluding Remarks
This paper introduces an original fault detection and isolation (FDI) methodology FREEDOM to accelerate the

identification of the health status of complex aerospace systems. Our algorithm permits to identify the incipient failure

condition affecting the system through the original combination of a two-step compression strategy – which reduces

the amount of data to be stored and processed – and an inverse Bayesian approach – to infer failure modes through

the efficient use of data. The objective is to accelerate the FDI task and provide an accurate and robust inference of

the system health status with a major reduction of the demand for computational resources. In addition, the use of the

Bayesian framework opens the avenue to formalize the reliability of the prediction based on the stochastic nature of the

Gaussian process surrogate model.

Without losing the general applicability of our method, we demonstrate and validate our computational framework

for the fault detection and isolation problem of an electromechanical actuator, considering heterogeneous mechanical

and electrical incipient fault modes. Specifically, we conducted both numerical and physical experiments comparing

three formulations of the Bayesian acquisition function to investigate the performance of our methodology with different
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search criteria. The results demonstrate that FREEDOM provides an accurate and robust inference of the health status

of the system in presence of incipient faults with a reduced time expenditure. This is particularly relevant to capture the

early stages of damages propagation, and prevents severe effects due to the degradation of the performance of the system.

The comparison over the different formulations reveals that the two-step lookahead acquisition function provides

a robust identification of the electrical faults with an error below the 0.1% while keeping the error under the 9% for

the mechanical damages; this is due to the intrinsic properties of the low-fidelity monitoring model that introduces

a modeling error which increases the difficulties in the identification of mechanical faults. Nevertheless, the major

outcome is observed in terms of a large reduction of the computational time required to complete the FDI task. Indeed,

the fault detection and isolation procedure is completed within 25 seconds when the low-fidelity monitoring model

is used implementing the two-step lookahead acquisition function. This corresponds to a reduction of two orders of

magnitude with respect to the computational cost required by standard model-based FDI algorithms. The outcomes

are validated through physical experiments on the real-world system affected by mechanical failures. In particular, the

two-step lookahead acquisition function permits to achieve the exact identification of the health status of the system

within 6 seconds with the use of the low-fidelity monitoring model.

The major acceleration of the FDI procedure is enabled by the original combination of a highly informative two-step

compression mapping that allows to speed up the data processing, and the data efficient Bayesian inference that permits

to contain the number of model evaluations. As an additional remarkable outcome, we achieve sensitive improvements in

terms of computational effort while enabling an accurate identification of incipient multimodal damages. We recognize

that this potentially paves the way for a major acceleration of the adoption of novel technologies onboard, whose

integration and associated increase in system complexity requires an efficient FDI procedure suitable for onboard

health monitoring. This would ideally speed up the achievement of the ambitious goals of sustainable aviation, towards

net-zero climate impact.

Our experiments illustrate that the adoption of a low-fidelity monitoring model – and therefore the introduction

of a modeling error between the reference and monitoring signals – affects the fault detection and isolation process,

precluding the possibility of high accuracy in health status inference. We believe that approaches to overcome this issue

are offered by multifidelity methods which we plan to consider in future developments.
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