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Abstract: Structural deterioration is a primary long-term concern resulting from material wear and
tear, events, solicitations, and disasters that can progressively compromise the integrity of a cement-
based structure until it suddenly collapses, becoming a potential and latent danger to the public.
For many years, manual visual inspection has been the only viable structural health monitoring
(SHM) solution. Technological advances have led to the development of sensors and devices suitable
for the early detection of changes in structures and materials using automated or semi-automated
approaches. Recently, solutions based on computer vision, imaging, and video signal analysis have
gained momentum in SHM due to increased processing and storage performance, the ability to
easily monitor inaccessible areas (e.g., through drones and robots), and recent progress in artificial
intelligence fueling automated recognition and classification processes. This paper summarizes the
most recent studies (2018–2022) that have proposed solutions for the SHM of infrastructures based
on optical devices, computer vision, and image processing approaches. The preliminary analysis
revealed an initial subdivision into two macro-categories: studies that implemented vision systems
and studies that accessed image datasets. Each study was then analyzed in more detail to present a
qualitative description related to the target structures, type of monitoring, instrumentation and data
source, methodological approach, and main results, thus providing a more comprehensive overview
of the recent applications in SHM and facilitating comparisons between the studies.

Keywords: structural health monitoring; computer vision; image processing; vision systems; damage
detection; surface cracks; displacement estimation; deep learning; machine learning

1. Introduction

Health monitoring is a critically important issue, not only for people, but also for civil
infrastructures throughout their lifetime. Bridges, railways, tunnels, roads, and the various
buildings distributed across the land play a crucial role in economic growth [1,2] and the
public life of cities [3]. Structural deterioration is one of the major long-term concerns
regarding civil infrastructure, as it can become a potential and latent risk factor for human
safety over time. Indeed, the wear and tear of materials due to weathering, continuous
solicitations, or unforeseen events (such as natural disasters) can progressively compromise
the integrity of a structure to the point of sudden collapse or loss of functionality, with severe
consequences [4]. Therefore, periodic integrity inspections of civil infrastructure are crucial
in their ensuring safety and total efficiency. On-site and manual visual inspections were the
conventional method to detect damage and structural alterations in civil infrastructure in
the past. However, on-site visual inspections conducted by experienced examiners are often
impractical, time-consuming, and laborious, especially in the case of large-scale structures,
such as bridges and buildings [5,6]. Moreover, in many cases, the assessment results largely
depend on the inspectors’ personal competence and subjective evaluation [7].
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To overcome the difficulties and limitations of manual visual inspections, structural
health monitoring (SHM) has received significant attention over the last two decades as
a powerful emerging diagnostic tool for evaluating structural integrity due to advances
in technology. The evidence of this growing interest was objectively demonstrated in
reference [8]. An in-depth analysis of articles dealing with SHM topics, published in
three major journals during 2005–2019, showed a progressive and significant upsurge in
the number of articles published, increasing from 22 publications in 2005 to 495 in 2019
(increase factor: 22.5), with a significant increase in the number of authors involved in this
research as well (increase factor: 28).

The primary aim of SHM is to collect objective measurements and information related
to specific structural properties to trigger timely maintenance interventions and prevent se-
rious consequences. In practice, an SHM system includes sensors, data acquisition modules,
along with algorithms for signal processing, structural diagnosis, and damage detection [9].
In recent years, different types of sensors and techniques have been proposed for SHM.
Traditional approaches involved the use of contact-based sensors applied directly to the
structure under investigation: these include accelerometers, strain gauges, fiber-optic sen-
sors, piezoelectric sensors, ultrasonic waves, displacement sensors, and others, as reported
in reference [10]. However, these wired and wireless sensors are often impractical for
installation and maintenance on large-scale structures and typically provide only scattered
measurements related to application points.

In the past few years, SHM approaches have shifted from conventional contact-based
solutions to more efficient and practical non-contact sensors, partially due to recent ad-
vances in innovative technologies. In particular, optical sensors, drones, robots, and smart-
phones, combined with artificial intelligence (AI), such as deep learning models, machine
learning methods, data mining techniques, and data-fusion/sensor-fusion approaches, are
attracting growing interest, overcoming the practical limitations of contact-based sensors
and fostering a paradigm shift in the context of SHM [11–15].

The in-depth analysis in [8] confirms the existing paradigm shift related to the change
in supporting sensors. By comparing the top 20 topics covered by studies published
in three five-year periods (2005–2009, 2010–2014, 2015–2019), it is evident, for example,
that computer vision (CV), empowered by optical sensors, made its appearance only in
the third period; while machine learning, which appeared in the top 20 in the second
period, made a significant leap forward in the third period, ranking eighth. In contrast, the
“damage type” topic has been addressed regularly since 2005. However, its ranking has
recently increased significantly (from 14th to seventh place), probably due to the spread of
automatic classification methods. The ranking related to 2015–2019 still does not mention
deep learning (DL), likely because this is a methodology explored intensively in SHM only
more recently, and it was ranked lower than other more established topics [16].

As previously pointed out, CV-based solutions are proving to be promising and pow-
erful tools for SHM investigation in large-scale structures due to the recent developments
in optical sensors (high-performance cameras), supporting devices (i.e., drones and robots),
and enhanced image processing techniques that take advantage of machine and deep learn-
ing [17–23]. These solutions have been shown to be easily implemented as an alternative
to manual visual inspections to estimate the properties and integrity of the structures in
several SHM areas, including the assessment of specific local (i.e., cracking, spalling, corro-
sion, and delamination) and global (i.e., vibration, deformation, displacement) structural
conditions [24–27].

Moreover, CV-based solutions offer several advantages over conventional approaches,
including non-contact and long-distance measurements, portability (when installed on
vehicles), higher spatial information density, cost-effective installation, and automated
assessment capability (when combined with artificial intelligence algorithms) crucial in
long-term monitoring and the timely triggering of maintenance actions [16,26,28]. However,
some constraints need to be considered, especially in real-world applications, including
the impact of environmental and weather conditions; reference markers on the structure;
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measurement accuracy; the real-time processing, storage, and transmission of large amounts
of data (images and videos); calibration procedures; and visual optimization techniques,
especially over large distances [29].

On this line of research, this paper reviews the most recent studies (2018–2022) in
the literature that have proposed solutions regarding the structural health monitoring of
infrastructure using optical devices (specifically, standard color cameras), computer vision,
and image processing approaches. Two electronic reference databases (Scopus and the
Web of Science) were explored through ad hoc queries to select published articles based on
well-defined keywords. Subsequently, the automatically selected articles were manually
screened to include only those that met the established eligibility criteria. This review aims
to provide a comprehensive overview of vision-based solutions for SHM and to analyze
them from the perspective of target structures, monitoring types, instrumentation and
data sources, methodological approaches, testing scenarios, and main results. Detailed
information was collected from the full text to facilitate comparison between studies and to
provide general statistical information concerning the resulting categories.

In summary, the main contribution of this article the evaluation of recent work using
optical sensors and image/video signals for SHM, focusing on solutions that can also be
applied to real-world cement-based infrastructure. With the information gathered, it was
possible to classify the selected studies into two main categories (studies implementing
vision-based solutions and studies using pre-collected image datasets) and subgroups
based on specific technological and methodological characteristics to highlight the most
relevant application domains, trends, peculiarities, strengths, and weaknesses to render the
studies and approaches as comparable as possible.

The paper is organized as follows: Section 2 describes the selection procedures, with a
focus on databases, search and refinement strategies, and information collected; Section 3
presents the global results of the selection process and the lists of included articles, with
detailed information; Section 4 summarizes the results and highlights the more critical
issues related to CV-based approaches in SHM that require further investigation from
the perspective of long-term and automated monitoring; and Section 5 provides a brief
conclusion, with some final remarks and future prospects.

2. Materials and Methods
2.1. Sources of Information

As technological progress rapidly drives new solutions due to the availability of
higher-performance devices and computational resources, facilitating the development of
innovative methodological approaches, this study aims to explore the latest trends, solu-
tions, and practical applications for SHM using vision systems, computer vision techniques,
and image processing approaches as alternatives to traditional inspection methods. There-
fore, the search strategy was defined by limiting the analysis to the most recent publications,
focusing on 2018–2022. The two most comprehensive electronic databases, namely Scopus
and the Web of Science, were considered because both allow ad hoc queries for automatic
preliminary selection.

The overall screening procedure followed the guidance of the Preferred Reporting
Items for Systematic Review and Meta-Analysis (PRISMA 2020) [30], and a standard
flow diagram [31] was customized to illustrate the progressive steps in the process. All
the authors were involved in the decision-making process to include or exclude studies
automatically selected according to the predetermined eligibility criteria. In the case of
decision discrepancy, the majority criterion was applied.

2.2. Search Strategy and Eligibility Criteria

The search strategy for automatic preliminary selection was based on ad hoc queries
supported by the two databases. Queries were performed only on the “Title” and “Abstract”
fields, as these fields commonly reflect the most relevant topics (i.e., keywords) of a scientific
study to facilitate proper indexing of the scientific research. Specifically, the ad hoc queries
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included both mandatory (in the “Title” or “Abstract” fields) and optional (only in the
“Abstract”) keywords, using logical operators (“AND” and “OR”) to concatenate the query
elements correctly.

The following queries were used to search in the Web of Science (TI = “Title”,
AB = “Abstract”) and Scopus (TITLE = “Title”, ABS = “Abstract”) databases:

• ((TI = (“Structural Health Monitoring”)) OR AB = (“Structural Health Monitoring”))
AND ((AB = “Computer Vision”) OR (AB = “RGB*”) OR (AB = “Optical Sensors”) OR
(AB = “camer*”)) for the Web of Science database;

• TITLE-ABS (“Structural Health Monitoring”) AND ((ABS (“Computer Vision”)) OR (ABS
(“RGB*”)) OR (ABS (“Optical Sensors”)) OR (ABS (“camer*”))) for Scopus database.

As can be seen, the optional keywords included terms that generally relate to vision-
based approaches (i.e., computer vision, cameras, optical sensors, and RGB). In contrast, the
mandatory keyword (i.e., structural health monitoring) was used to limit the application
context. At this stage, an additional constraint was included regarding the publication date
(2018 to 2022 only), but not for the type and language of the publications. These last filters
were applied during the refinement process.

2.3. Selection Refinement and Final Inclusion of Papers

On the studies automatically extracted from the two databases, a manual a posteriori
screening (refinement process) was performed through the following actions, in this order:

• Removal of duplicates (i.e., studies available in both databases);
• Removal of studies for which the full text is not available (i.e., studies with only the

abstract accessible);
• Removal of non-English studies;
• Removal of reviews, books or chapters, letters to editors, notes, data reports, case

studies, and comments (filtered by publication type);
• Removal of studies with a different focus (i.e., studies with optional keywords in the

abstract, but whose content did not match the purpose of this review);
• Removal of preliminary studies with a more recent extended version already published

in a journal and selected from the databases.

At the end of the overall process, the included papers were analyzed in detail to extract
relevant information according to the main objectives of our review.

2.4. Collected Information

For each article, relevant information providing insights inherent to the purpose of
this review was manually extracted through an in-depth analysis of the full text. This
information was collected and organized into a customized database to create tables,
generate statistics and categorizations, and provide specific details about each study. Key
information included:

• First author and year of publication;
• Target of the SHM (e.g., bridges, roads, buildings);
• Scenario (e.g., indoor, outdoor, in-field, simulation);
• Data source (e.g., vision systems, image dataset);
• For vision systems: details on cameras used (e.g., resolution, frame rate, location);
• For image datasets: details about the images and processing hardware (e.g., dataset

size, image type, resolution, cropped size, hardware components);
• Methodological approach (e.g., computer vision, data fusion, deep learning, algo-

rithm optimization);
• SHM category (e.g., crack detection, damage detection, displacement estimation,

vibration estimation);
• Main objectives, primary results, and limitations.
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3. Results
3.1. Study Selection

The automatic search of electronic databases selected 540 studies (219 from the Web of
Science and 321 from Scopus, respectively). A preliminary analysis of the selected studies
identified 209 duplicates, which were subsequently removed. Next, we screened the re-
maining 331 studies by abstract to verify that they were relevant to our review’s purpose:
after this evaluation, an additional 117 studies were manually removed. Notably, these
studies were out of the scope of the review because they used other technologies (e.g., opti-
cal fibers, thermal cameras, micro cameras), methodologies (e.g., acoustic emission analysis,
vibrational signals, piezoelectric signals), or were applied to specific components of the
targets (e.g., cables, wind turbines, polymers). The remaining articles (214) were considered
suitable for retrieval of detailed information from the full text: for 67 articles, the full text
was not available (only the abstract was directly accessible), and thus were discarded.

Therefore, only 147 articles were further screened for eligibility according to the estab-
lished criteria: of these, 3 were discarded because they were published in a non-English
language; 21 because of the type of publication (e.g., review, book, data report); 40 because
they had a different focus (e.g., traffic load estimation, load forces, performance compar-
isons between cameras) or did not provide results; and 10 because more comprehensive
and extended work was already published. In the end, after the automatic selection process
and manual screening, 73 articles were eligible and included in this review. The PRISMA
flow diagram summarizes the automatic selection and manual screening process (Figure 1).
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The general analysis of the articles selected and included in this review confirmed
the use of computer vision approaches and image processing techniques for various SHM
applications while revealing a preliminary breakdown into two macro-categories: studies
that implemented vision systems (71%) and studies using image datasets available from
other studies (29%). The following sections present and detail the selected studies according
to this primary categorization, while Figure 2 shows their distribution per year.
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3.2. Studies Implementing Vision Systems (VSS)

This section describes studies that have implemented vision systems (VSS) using
standard color cameras. Table 1 includes an overview of their main characteristics, focusing
on target structures and types of SHM, study objectives, methods, camera features and
placement, test scenarios, and main results.

Table 1. Studies included in the “vision-system” category: main features.

Author
(Year) Target SHM

Category Study Objectives Methods Camera Features Test Scenarios Main Results

Zhu et al.,
2022 [32] Bridges

Vibration
estimation
(from dis-
placement)

Structural vibration
assessment system
using natural texture
target tracking
techniques, mode
decomposition
methods to remove
noise, and PMM to
improve camera low
resolution.

CV

Single-camera:
Canon 5D4
(1920 × 1080 px, 50
fps) and telephoto
lens, mounted on a
tripod
approximately
29 m away from
the structure.

Experimental:
footbridge
model
(outdoor)
In-field:
pedestrian
bridge
(outdoor)

The measurement error
was on the order of
0.57–0.78% compared
with LDS
(experimental tests).
The maximum error in
vibration was less than
2% compared with
ACC (in-field tests).

Gonen
et al.,

2022 [33]
Bridges

Vibration
estimation
(from dis-
placement)

Structural vibration
assessment system
using data fusion
from the camera
(continuous
vibrations near the
abutments) and
accelerometers
(vibrations at discrete
points along the
bridge).

CV and
Data
Fusion
(camera
and ac-
celerom-
eters
data)

Single-camera:
standard video
camera (resolution,
frame rate, and
location not
available).

Numerical
Simulation:
simply
supported
50-m long
beam (indoor)

Data fusion increased
system performance
compared with a more
conventional
configuration with only
scattered
accelerometers.
Robustness was
verified against
different levels of noise.
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Table 1. Cont.

Author
(Year) Target SHM

Category Study Objectives Methods Camera Features Test Scenarios Main Results

Shao et al.,
2022 [34] Structures Displacement

estimation

Targetless
measurements of
small displacements
(submillimeter level)
due to vibration
using computer
vision techniques
(motion
magnification) and
deep learning
SuperGlue [35]
models.

CV and
DL

Multi-camera:
two Sony PXW-FS5
4K XDCAM
(1920 × 1080 px, 50
fps), mounted on a
tripod 6.5 m away
from the structure.

Experimental:
steel cantilever
beam (indoor)
In-field:
pedestrian
bridge (indoor)

Relative errors were
<13% (X and Y) and
<37% (Z) with respect
to the actual
displacements
(0.1 mm), and
correlation was 0.94 vs.
vibration
measurements
(experimental tests);
relative errors were
<36%, and correlation
was 0.94 in in-field
tests.

Peroš et al.,
2022 [36] Structures Displacement

estimation

System to measure
displacements due to
pressures and forces
through point cloud
reconstruction from
RGB images and
laser scanner
(distance).

CV and
Data
Fusion
(camera
and laser
scanner)

Single-camera:
High-Speed
Trimble SX10 (2592
× 1944 px, 26.6
kHz), mounted on
a tripod 5 m away
from the structure.

Experimental:
wooden beam
(outdoor)

Precision of data fusion
is +/− 1 mm
(maximum residual =
4.8 mm).

Lee et al.,
2022 [37] Structures Displacement

estimation

System for
quantifying the
movement of a
structure with
respect to outside
fixed targets by
mounting the camera
on the structure
(motion detection
and estimation).

CV

Single-camera:
generic camera
(1920 × 1080 px, 30
fps), mounted on
the structure.

Numerical
Simulation:
data
simulation
using
MATLAB
(indoor)
Experimental:
laboratory
platform
(indoor)

The RMSE was
approximately
0.756 mm in
simulations and
2.62 mm in
experimental tests.

Chen et al.,
2022 [38] Bridges

Vibration
estimation
(from dis-
placement)

Automatic
identification of
vibration frequency
using a deep
learning-enhanced
computer vision
approach.

CV and
DL

Single-camera:
camera resolution
not available (only
target area size: 176
× 304 px) 100 Hz,
mounted on the
bridge.

Experimental:
two laboratory
scale models
(indoor)
In-field:
large-scale
bridge
(outdoor)

Vibration frequency
detection with a low
error (−1.49%)
compared to LDV.

Do Cabo
et al.,

2022 [39]
Bridges

Vibration
estimation
(from dis-
placement)

Comparison between
traditional PME and
a hybrid approach
based on template
matching and
particle filter (TMPF).

CV

Single-camera:
model not
available (full HD,
60 fps), mounted
on a tripod 22 m
away from the
bridge.

In-field:
pedestrian
bridge
(outdoor)

Good accuracy in
detecting vibration
peak frequency (hybrid
vs. traditional PME).

Kumarapu
et al.,

2022 [40]
Structures Damage

detection

System for
evaluating
deformation and
damage in concrete
structures using
UAV-based DIC
approaches.

CV

Single-camera:
model not specified
(CMOS 20 MP,
5472 × 3648 px, 60
fps), mounted on
an unmanned
aerial vehicle
(UAV)

Experimental:
concrete
specimen
(indoor)
In-field:
real bridge
(outdoor)

Accuracy in slight
variations is about 88%
with UAV (compared
to 95% with DSLR);
correctly estimated
length and width of
cracks (mm);
deformation (in mm) is
correctly estimated.
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Table 1. Cont.

Author
(Year) Target SHM

Category Study Objectives Methods Camera Features Test Scenarios Main Results

Wu et al.,
2022 [41] Bridges

Vibration
estimation
(from dis-
placement)

A vision-based
system to monitor
displacements
(vibrations) that uses
a consumer-grade
surveillance camera
and an accelerometer
to remove noise due
to camera vibration.

CV and
Data
Fusion
(camera
and ac-
celerom-
eter
data)

Single-camera:
consumer-grade
DAHUA
(2688 × 1520 px, 25
Hz), mounted on
the bridge.

Experimental:
scale model of
suspension
bridge (indoor)
In-field:
real steel
bridge
(outdoor)

The displacement
measurement error was
reduced to ±0.3 mm,
and the normalized
RMSEs were reduced
by 30% compared to
the raw data.

Weng et al.,
2022 [42] Structures Displacement

estimation

A displacement
(vibration)
measurement system
based on a
visual-inertial
algorithm to
compensate for
camera movement,
using the
accelerations
provided by the
onboard IMU.

CV and
Data
Fusion
(camera
and on-
board
IMU
data)

Single-camera:
Intel RealSense
D455
(1280 × 720 px, 25
fps), mounted on
UAV.

Experimental:
uniaxial
shaking table
(indoor)

The RMSE related to
the estimated structural
displacement is 3.1 mm
(2.0 px) compared with
a stationary camera
(iPhone) using the
traditional
Kanade–Lucas–Tomasi
(KLT) tracker [43].

Sangirardi
et al.,

2022 [44]

Masonry
walls

Displacement
estimation

Vision-based system
to estimate the
natural vibration
frequency and the
progressive decay
associated with
damage
accumulation.

CV

Single-camera:
commercial Reflex
(24.3 MP, 30 fps),
mounted on a
tripod 4 m away
from walls.

Experimental:
three wall
specimens
tested on the
shake table
(indoor)

Estimated vibration
frequencies agree with
a gold standard
marker-based system,
with a relative error of
less than 6.5%.

Parente
et al.,

2022 [45]
Walls

Damage
detection
(cracks on
surface)

Cost-effective
solution for the
detecting and
monitoring of cracks
on walls using
low-cost devices and
open-source ML
algorithms.

CV and
ML

Single-camera:
Canon 2000D with
zoom lens (24.1 MP,
frame rate not
available),
mounted on a
tripod 4 m away
from walls.

Experimental:
drawn cracks
(indoor)
In-field:
cracks on real
wall (indoor)

Sub-millimeter
(>0.2 mm) and
sub-pixel precision,
obtaining +/−1.10 mm
and +/− 0.50 mm of
mean error in crack
width and length.

Ri et al.,
2022 [46] Bridges

Displacement
estimation
(deflections)

Simple and effective
optical method
(based on digital
image correlation) for
measuring
out-of-plane
displacement with
high accuracy.

CV

Single-camera:
Basler
(4096 × 2168 px, 30
fps), mounted 13 m
under the bridge.

In-field:
railway bridge
(outdoor)

The average absolute
difference vs. LDV is
0.042 mm,
corresponding to a
sub-pixel level
(1/75 px).

Belcore
et al., 2022

[47]
Bridges Damage

detection

Free and open-source
software (FOSS) to
detect damages in
bridge inspection
using drones.

CV and
ML

Single-camera:
Raspberry Pi
Camera Module 2
(8 MP
1024 × 702 px,
2 fps) mounted on
a UAV.

In-field:
double bridge
on motorway
(outdoor)

Overall accuracy of the
model ranges between
0.816 (without feature
selection) to 0.819 (with
feature selection).
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Zhu et al.,
2022b [48] Buildings

Displacement
estimation
(vibration)

A systematic
procedure to estimate
building vibration
(amplitude and
frequency) by
combining cameras
and edge computing
devices, using
computer vision
techniques such as
motion amplification,
mask detection, and
vibration signal
extraction.

CV

Single-camera:
Hikvision
MVS-CE120-10UM
(features not
available),
mounted on
building roof, 94 m
away.

Experimental:
shaking table
(indoor)
In-field:
video from
building roof
(outdoor)

In the experimental
setup, the frequency
and amplitude of
vibrations were
estimated and
compared with ground
truth (infrared sensor),
obtaining an error of
0.01 Hz (accuracy:
99.8%) in frequency
and 1.2 mm in
amplitude (accuracy:
93%). The calculation
time was reduced by
83.73%. No results
were provided for
in-field tests.

Liu et al.,
2022 [49] Structures

Vibration
(from dis-
placement)

A solution for
displacement
estimation based on
computer vision
techniques (template
matching and
circular Hough
transform), artificial
circular targets, and
refinement procedure
of subpixel
localization to
improve estimation
accuracy.

CV

Single-camera:
iPhone 7 plus
(1920×1080 px, 60
fps), mounted on a
tripod 1.5 m away
from targets.

Experimental:
aluminum
alloy cantilever
plate (indoor)

The estimated
displacements agreed
well with those
measured by the laser
transducer system in
the time domain. The
estimated first and
second vibration
frequencies were also
consistent.

Wu et al.,
2021 [50] Bridges

Vibration
estimation
(from dis-
placement)

System to measure
structural
displacement using
multi-targets data.

CV and
active
LEDs

Single-camera:
DAHUA camera
(2688 × 1520 px, 25
Hz), mounted on
tripod 24 m away
from the bridge.

Experimental:
scale bridge
(indoor)

The maximum error in
displacement was 3
mm (8.45%) in static
loading and 5.5 mm
(2.90%) in dynamic
loading tests vs. LVDT.
The maximum relative
error in vibration
frequency was 1.82%
vs. accelerometers.

Mendrok
et al.,

2021 [51]
Structures Displacement

estimation

A contactless
approach for
indirectly estimating
loading forces using
a vision-based
system with targets.

CV

Single-camera:
High-speed
Phantom V9
camera
(1632 × 800 px,
1000 Hz).

Experimental:
cantilever
beam with
optical
markers
(indoor)

Pearson correlation
with loading forces was
between 0.65 and 0.82
using the vision-based
system, which was
lower than that using
accelerometers (0.95)

Zhao et al.,
2021 [52] Dams Damage

detection

Damage detection
using a UAV-based
system on concrete
dams through 3D
reconstruction and
appropriate
distribution of
ground control
points.

CV

Single-camera:
Zenmuse X5S (5280
× 2970 px) for
heavy lift drone;
(5472 × 3078 px)
for low-cost drone
(frame rate is not
available),
mounted on UAVs.

In-field:
concrete dam
(outdoor)

Lower RMSE in X and
Y directions, higher
RMSE in Z direction.
Accurate detection of
three types of
artificially created
damages (errors < 1.0
cm).
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Alzughaibi
et al.,

2021 [53]

Building
(ceilings)

Displacement
estimation

System to measure
displacements
(vibrations) by
tracking identifiable
objects on the ceiling
using the FAST
algorithm and a
smartphone.

CV and
on-
board
ac-
celerom-
eter

Single-camera:
Samsung Galaxy
smartphone
camera (1080 px, 30
fps).

Experimental:
shake table
validation
(indoor)

Sub-millimeter (0.0002
inter-story drift ratio)
accuracy; accuracy
comparable to that of
seismic-grade
accelerometers.

Chou et al.,
2021 [54] Buildings Displacement

estimation

Comparison between
three computer
vision techniques
(motion estimation)
for measuring
displacements on
high structures.

CV (opti-
mization
algo-
rithm)

Single-camera:
commercial camera
(1080 × 1920 px, 30
fps), mounted on a
tripod 3 m away
from the structure.

Experimental:
scaled
four-story
steel-frame
building
(indoor)

Similar RMSE (about
1.3 mm) for the three
approaches (lowest for
DIC, highest for PME).
Lower computational
load for PME, higher
for DIC.

Zhou et al.,
2021 [55] Bridges

Vibration
estimation
(from dis-
placement)

Holographic visual
sensor using spatial
and temporal data to
extract the
mechanical
behaviour of
structures (full-field
displacements and
natural vibration
frequency) under
excitatory
environmental
events.

CV and
Data
fusion
(spatial
data at
low fps
and tem-
poral
data at
high fps)

Multi-camera:
Canon 5Dsr (8688
× 5792 px, 5 fps);
Sony AX700 HD
high speed
(5024 × 2824 px, up
to 1000 fps. 100 fps
was used for the
experimental setup;
30 fps for in-field
setup), mounted on
tripods.

Experimental:
scale model of
suspension
bridge (indoor)
In-field: rail
bridge
(outdoor)

Agreement with
contact sensors
(accelerometers) in
estimating the first
natural vibration
frequency.

Attard
et al.,

2021 [56]
Tunnels Damage

detection

Inspection
application to
monitor and detect
changes in tunnel
linings using
computer vision
techniques and
robots.

CV

Multi-camera:
12 industrial
cameras (5 Mpx
resolution),
mounted on an
inspection robot
(CERNBot).

In-field:
section of the
CERN tunnel
(indoor)

Quantitative results of
classifying pixels based
on image differences
(thresholding
techniques): 81% recall,
93% accuracy, and
86.7% F1-score.

Obiechefu
et al.,

2021 [57]
Bridges Damage

detection

Techniques to detect
and monitor bridge
status (damage)
using computer
vision to derive
specific
measurements (e.g.,
deflection, strain, and
curvature).

CV

Single-camera:
consumer-grade
cameras (models
and features not
available) such as
action or
smartphone
cameras.

Numerical
Simulation:
damage
scenarios
through
models
(indoor)

Deformations are
suitable for damage
detection and
localization, with high
resolutions.

Lydon
et al.,

2021 [58]
Bridges Displacement

estimation

Detection of damage
in mid-to-long span
bridges using roving
cameras to measure
displacements at 16
predefined nodes
under live loading.

CV

Multi-camera:
4 GoPro Hero 4
(1080p), mounted
on a tripod.

Experimental:
two-span
bridge model
(indoor)

Four damage cases
were tested using a toy
truck. Vertical
displacement was more
accurate than
horizontal, which
showed lower
variability, but greater
error.

Hosseinzadeh
et al.,

2021 [59]
Buildings

Vibration
estimation
(from dis-
placement)

Vibration monitoring
system using
surveillance cameras
within buildings.

CV

Multi-camera:
3 cameras (1280 ×
960 px, 60 fps),
attached to the
edge of each floor.

Experimental:
three-story
scale structure
on a shake
table (indoor)

Accuracy and precision
in estimating dynamic
structural
characteristics (modal
frequencies and mode
shapes) for the
excitation intensities.
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Civera
et al.,

2021 [60]
Buildings

Damage
detection
and
vibration
estimation
(from dis-
placement)

System to detect the
instantaneous
occurrence of
damage and
structural changes
(due to very low
amplitude vibrations)
using PMM
techniques on videos.

CV

Single-camera:
High-speed
Olympus I-speed 3
(1280 × 1024,
500–1000 fps)
mounted on a fixed
tripod
(experimental);
smartphone
camera
(1920 × 1080,
30 fps) mounted on
a surface (in-field).

Experimental:
target
structures
(indoor)
In-field:
buildings
(outdoor)

Accurate displacement
measurements and
tracking of
instantaneous damage
induced in structures.
Reliable results using
low frame rate cameras
in outdoor scenarios.

Zhu et al.,
2021 [61] Bridges Displacement

estimation

System to measure
dynamic
displacements using
smartphones,
computer vision
techniques, and
tracking target points
on the structure.

CV

Single-camera:
iPhone8 camera
(3840 × 2160 px, 50
fps), mounted on a
tripod 1.5 m away
from the model.

Experimental:
scale model of
suspension
bridge (indoor)

The RMSE in
displacements is
0.19 mm (vs. a
displacement sensor
and traditional KLT)
and 0.0025 Hz in the
first modal frequency
(compared to results of
an accelerometer).

Yang et al.,
2020 [62] Buildings Damage

detection

Solution to quantify
linear deformations
and torsions induced
by vibrations.

CV

Single-camera:
model not
available
(640 × 480 px,
frame rate not
available), fixed on
structure ceiling.

Experimental:
static and
dynamic tests
on one-tenth
scaled
structure
(indoor)

The maximum drift
error is less than
0.1 mm (static tests).
The measurement error
was +/− 0.3 mm
(dynamic test, 1 Hz)
and +/− 2 mm
(dynamic test, 3 Hz).

Guo et al.,
2020 [63] Buildings Displacement

estimation

Algorithm to
measure structural
displacements in
buildings based on
the projective line
rectification.

CV (opti-
mization
algo-
rithm)

Single-camera:
Iphone7 (12 MP)
with 28-mm lens.

Experimental:
30-story
building model
(indoor);
two-story
base-isolated
structure
(indoor)

The average RMSE was
0.68 pixels (1.25 pixels
for traditional
point-based methods),
and the measurement
error was 8%. The
proposed method is
more accurate and
noise-resistant than
traditional point-based
methods.

Erdogan
et al.,

2020 [64]
Buildings

Vibration
estimation
(from dis-
placements)

Computer-vision
based system to
detect and estimate
vibration frequencies
from displacements
in buildings using
the KLT algorithm.

CV

Single-camera:
iPhone
(1080 × 1290 px,
120 fps), fixed at 7
cm from the
reference
component.

Experimental:
four-story and
one bay
aluminium
structure
(indoor)

Good agreement with
natural vibration
frequencies estimated
by accelerometers (low
accuracy in damping
ratios). Good
agreement in modal
frequencies related to
damage cases.

Khuc et al.,
2020 [65] Towers Displacement

estimation

UAV-based targetless
system to monitor
displacements
(vibrations) of high
tower structures
using natural key
points of the
structure.

CV

Single-camera:
UAV Phantom
3 camera
(2704 × 1520 px, 30
fps), mounted
top-down on the
UAV.

Experimental:
steel tower
model
(outdoor)

Good agreement with
accelerometers in
estimating the first
natural frequency of
vibration.
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Xiao et al.,
2020 [66]

Structures,
bridges

Displacement
estimation

A framework that
uses correlation and
template matching
methods to extract
structural responses
(displacement and
strains) and detect
damage through
color-coding the
displacements.

CV

Single-camera:
Nikon D3300 DSLR
(30 fps), mounted
on a tripod facing
the wall
(experiment);
Pointgray camera
(1280 × 1024 px,
fps 60), mounted
on a tripod 45.7 m
away from the
bridge (in-field)

Experimental:
concrete wall
(indoor)
In-field:
highway
bridge
(outdoor)

The maximum relative
error in displacements
is less than 3% (vs.
LVDT) for experimental
tests, with the result
confirmed in real
scenarios (vs.
accelerometers). The
proposed solution
showed robustness to
environmental light
conditions.

Hsu et al.,
2020 [67] Buildings Displacement

estimation

Smart vision-based
system to estimate
dynamic pixel
displacements using
target patches and
data fusion with
accelerometer
inter-story drifts.

CV and
Data
Fusion
(camera
and ac-
celerom-
eters
data)

Single-camera:
Microsoft LifeCam
Studio (1920 ×
1080 px), mounted
on the bottom
surface (first floor).

Experimental:
six-story steel
building
(indoor)

Errors in drift
measurements were
reduced with the data
fusion with drifts
measured by
accelerometers.

Fradelos
et al.,

2020 [68]
Bridges Displacement

estimation

Low-cost
vision-based system
to estimate
significant
deflections
(horizontal and
vertical) by detecting
changes in the pixel
coordinates of three
target points.

CV

Single-camera:
model not
available
(1920 × 1080 px),
mounted a few
meters away from
the bridge.

In-field:
videos of real
bridge under
excitations due
to pedestrian
and wind
(outdoor)

Good agreement in the
estimation of the first
vibration frequency.
Statistically significant
signal-to-noise results
on the three target
points.

Lee et al.,
2020 [69] Bridges Displacement

estimation

Dual-camera system
to implement a
long-term
displacement
measurement
solution using
specific targets to
detect and
compensate for
motion-induced
errors.

CV

Multi-camera:
GS3-U3-23S6C-C
(1920 × 1200 px),
main camera, fixed
on the bridge pier
(in-field test);
GS3-U3-23s6M-C
(1920 × 1200 px),
sub-camera, fixed
on the bridge pier
(in-field test).

Numerical
Simulation:
MATLAB
simulation of
dual-camera
system
(indoor)
Experimental:
Dual-camera
system in
laboratory
environment
(indoor)

In-field:
full-scale
railway bridge
(outdoor)

Numerical simulation
validated the error
compensation ability.
The motion-induced
error greater than 44.1
mm was reduced to 1.1
mm in the
experimental test. The
in-field test on a
full-scale bridge
showed the difficulty of
motion compensation
in real and long-term
scenarios. An actual
displacement of 8 mm
was correctly detected
over 50 days.

Li et al.,
2020 [70]

Buildings
(ceilings)

Displacement
estimation

A smartphone-based
solution for
measuring building
displacements
during earthquakes
by estimating upper
floor (ceiling)
movements using
traditional computer
vision techniques
(SURF algorithm and
scaling factor).

CV

Single-camera:
iPhone 6 or
Huawei Mate 10
Pro (1280 × 720, 30
fps), on a flat
surface.

Experimental:
static and
dynamic tests
on shaking
table (indoor)

The average percentage
of error was 3.09%,
with a standard
deviation of 1.51% from
LDS. The accuracy was
0.1664 mm at a distance
of 3.000 mm. The SURF
algorithm performed
well under good
lighting conditions.
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Miura
et al.,

2020 [71]
Buildings

Vibration
estimation
(from dis-
placements)

An algorithm for
estimating the
micro-fluctuations of
a camera-based
system using a
Gabor-type function
as the kernel of a
complex spatial
bandpass filter, by
assuming that the
global motion
(velocity) appears as
the mode of the time
difference of the
spatial motion of a
selected target.

CV (opti-
mization
algo-
rithm)

Single-camera:
Sony
DSC-RX100m4 (120
fps, 50 Mbps video)
for experimental
test; Blackmagic
Pocket Cinema
Camera (4K, 30
fps), mounted on a
tripod, for in-field
test.

Numerical
Simulation:
artificial
images
(indoor)
Experimental:
vibrating
actuators
(indoor)
In-field:
lightning rod
of a building
(outdoor)

The proposed approach
discriminates
frequencies related to
camera and subject
fluctuations from the
phase signal spectra of
target pixels.

Medhi
et al.,

2019 [72]
Buildings

Vibration
estimation
(from dis-
placements)

High-speed
vision-based system
to estimate
displacements due to
vibration using a
motion detection
algorithm of a target
object or an existing
element in the civil
structure. The
artificial neural
network infers
qualitative
characteristics of
vibration intensity
related to the
structure’s
conditions.

CV and
AI

Single-camera:
high speed
pco.1200 HS (500
fps), Zeiss
Makro-Planar T*
100 mm f/2 ZF.2
Lens.

Experimental:
shaking table
and slip desk
(indoor)

Estimated
displacements were
within a reasonably
good range around the
actual values.
Although the training
phase was based only
on vertical
displacements, the
model was also
effectively adapted to
analyze vibrations in
lateral directions,
obtaining a low error
rate (1.67%) for lateral
displacements.

Yang et al.,
2019 [73] Buildings Displacement

estimation

Calibration
approaches suitable
for large-scale
structural
experiments with
multi-camera vision
systems, combined
with a
synchronization
method to estimate
the time difference
between cameras and
minimize stereo
triangulation error.

CV (opti-
mization
algo-
rithm)

Multi-camera:
consumer video
camera (model not
available), 3480 ×
2160 px, 30 fps.

Experimental:
three-story
reinforced-
concrete
building
specimen on
shaking table
(indoor)

The estimated
differences in
displacements in the
experimental tests were
within 2 mm, with a
maximum of 4.7 mm
and a maximum
relative error at the
peak of 0.33% (the
maximum difference
between the systems
used for validation is 3
mm with a maximum
relative error of 0.33%).

Won et al.,
2019 [74] Structures Displacement

estimation

A new method for
measuring targetless
structural
displacement using
deep matching and
deep flow to find a
dense match between
images and calculate
pixel-wise optical
flow at points of
interest.

CV and
DL

Single-camera:
Samsung Galaxy
S9+ camera (3840
× 2160 px, 60 fps)
mounted 1 m away
from the structure.

Experimental:
steel cantilever
beam model
(indoor)

The method
outperforms the
traditional KLT
approach. The RMSE is
0.0753 mm (vs. LDS),
while it is 0.2943 mm
for KLT. The estimated
first natural frequency
and power spectral
density magnitude
agree with LDS. The
average computation
time is 0.8 s (0.25 s for
KLT).
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Hoskere
et al.,

2019 [75]
Bridges

Vibration
estimation
(from dis-
placements)

Framework to
estimate full-scale
civil infrastructure
vibration frequencies
from UAV recorded
videos using
automatic detection
of regions of interest,
KLT to track motion,
high pass filtering to
remove effects of
hovering, and
marker shapes to
compensate for UAV
rotations.

CV

Single-camera:
camera 2704 ×
1520 px, 30 fps (for
experimental test),
camera 3840 ×
2160 px, 30 fps (for
in-field test),
both mounted on a
UAV.

Experimental:
six-story
shear-building
model and
shaking table
(indoor)
In-field:
pedestrian
suspension
bridge
(outdoor)

Reliable results in
experimental tests,
with error on natural
frequencies less than
0.5% and MAC > 0.996.
Slightly worse results
were obtained during
in-field tests, with
errors on frequencies <
1.6% and MAC > 0.928.

Kuddus
et al.,

2019 [76]
Structures

Vibration
estimation
(from dis-
placements)

Targetless
vision-based solution
for measuring
dynamic vibrations
due to bidirectional
low-level excitations
using a
consumer-grade
camera to derive
displacements.

CV

Single-camera:
Sony PXW-FS5 4K
XDCAM (1920 ×
1080 px, 50 fps)
mounted on a
tripod 4 m away.

Experimental:
reinforced
concrete
column model
and shaking
tables (indoor)

Accuracy in dynamic
displacement
estimation with
minimum (2.2%) and
maximum (5.7%) errors
vs. LDS measurements
(RMSE = 1.14 mm,
correlations from
0.9215 to 0.9787) in
tests with different
excitation forces. The
errors in vibration
frequencies are 1.49%
and 3.69% for the first
and second examples.

Aliansyah
et al.,

2018 [77]
Bridges

Vibration
estimation
(from dis-
placements)

A vision-based
solution to estimate
lateral and vertical
displacements of
bridge members
using a high-speed
camera and active
LEDs to cope with
insufficient incident
light.

CV and
LEDs

Single camera:
High Speed Ximea
MQ042MG-C (2048
× 1024 px, 180 fps)
with lens.

Experimental:
bridge model
(indoor)

Correct estimation of
the first and second
vibration natural
frequencies in lateral
and vertical directions.

Mangini
et al.,

2018 [78]

Structures
(cultural
heritage)

Displacement
estimation

A non-invasive
method for
measuring cracks in
the cultural heritage
sector, taking care of
the aesthetic
appearance, using
small adhesive labels
and a high-resolution
camera that measures
their relative distance
through advanced
least-squares fitting
of quadratic curves
and surface
algorithms for the
Gaussian objective
function.

CV

Single camera:
Mako G-503B (2592
× 1944 px)
mounted 25 cm
away from the tags.

Experimental:
anti-vibration
test bench
(indoor)

Maximum relative
error (at a camera-tags
distance of 25 cm)
between actual and
estimated
displacements was less
than 3%, with an
approximately constant
standard deviation
(less than 4.5 µm). It
was possible to
determine
displacements on the
order of ten
micrometers.
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Kang et al.,
2018 [79] Walls

Damage
detection
(cracks on
surface)

System based on an
autonomous UAV
with ultrasonic
beacons and a
geo-tagging method
for structural damage
localization and crack
detection using
UAV-acquired videos
and a previously
trained deep
convolutional neural
network.

CV and
DL (pre-
trained
net-
work)

Single camera:
Sony FDR-X3000
(2304 × 1296 px
resized to 2304 ×
1280 px, 60 fps).

In-field:
cracks on real
wall (indoor)

Cracks in concrete
surfaces were detected
with high accuracy
(96.6%), sensitivity
(91.9%), and specificity
(97.9%) using video
data collected by the
autonomous UAV and
the pre-trained neural
network.

Yang et al.,
2018 [80]

Contain-
ment

vessels

Damage
detection
(cracks on
surface)

Image analysis
method for detecting
and estimating the
width of thin cracks
on reinforced
concrete surfaces,
using image optical
flow from a stereo
system and subpixel
information to
analyze slight
displacements on the
concrete surface.

CV

Multi-camera:
two Canon EOS 5D
Mark III digital
cameras (22M)
mounted on
tripods
(stereo-system).

Experimental:
reduced-scale
containment
vessels
subjected to a
cyclic loading
at the top
(indoor)

Thin cracks of 0.02–0.03
mm, difficult to detect
with the naked eye,
were clearly detected
by image analysis.
Comparison of crack
widths measured
manually and by the
proposed method
showed differences
generally less than or
equal to 0.03 mm.

Omidaliza-
randi et al.,
2018 [81]

Bridges

Vibration
estimation
(from dis-
placements)

Accurate
displacement and
vibration analysis
system that uses an
optimal passive
target and its reliable
detection at different
epochs, a linear
regression model
(sum of sine waves),
and an
autoregressive (AR)
model to estimate
displacement
amplitudes and
frequencies with high
accuracy.

CV

Single-camera:
Leica Nova MS5 (5
MP, 320 × 240 px
videos with 8×
zoom, 10 fps).

Experimental:
passive target
on shaking
table (indoor)
In-field:
footbridge
structure
(outdoor)

The results
demonstrate the
feasibility of the
proposed system for
accurate displacement
and vibration analysis
of the bridge structure
for frequencies below 5
Hz. The displacement
and vibration
measurements
obtained agree with
those of the reference
laser tracker (LT)
sensor.

Wang et al.,
2018 [82] Bridges

Vibration
estimation
(from dis-
placements)

Smartphone-based
system for measuring
displacement and
vibration of
infrastructures using
target markers and
digital image
correlation
techniques.

CV

Single-camera:
iPhone 6 camera
mounted on a
tripod.

Experimental:
static tests
(target on
surface),
dynamic tests
(target on
shaking table),
laboratory-
scale 1/28
suspension
bridge model
(indoor).
In field: real
bridge
(outdoor)

The correlation in static
tests between actual
and estimated
displacements was
0.9996, with a
resolution of
0.025± 0.01 mm when
the distance between
the smartphone and the
target was 10–15 cm. In
dynamic tests, a
constant correlation
(0.9998) was measured
for displacements. The
correlation in time
histories was greater
than 0.99, with a
maximum frequency
difference of 0.019 Hz
(error: 10.57%).
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Yoon et al.,
2018 [83] Bridges Displacement

estimation

A framework to
quantify the absolute
displacement of a
structure from videos
taken by a UAV,
using the targetless
tracking algorithm
based on the
recognition of fixed
points on the
structure from the
optical flow (KLT),
quantifying the
non-stationary
camera motion from
the background
information, and
integrating the two to
calculate the absolute
displacement.

CV

Single-camera:
4K resolution
camera (4.096 ×
2.160 px, 24 fps)
mounted on UAV
(video recording at
4.6 m from bridge)

In-field:
pin-connected
steel truss
bridge
(outdoor)

The estimated absolute
displacement agrees
with that manually
measured because of
the motion generated
by the simulator. The
RMSE compared with
the reference sensor
was 2.14 mm,
corresponding to
1.2 pixels of resolution.

Shojaei
et al.,

2018 [84]

Retention
ponds,

seawalls,
dams

Damage
detection

Proof of concept for
using a USV with an
onboard camera to
visually assess the
health status of a
retention pond and a
dam, automatically
detecting damaged
areas.

CV

Single-camera:
not specified,
mounted on an
unmanned surface
vehicle (USV).

In-field:
retention pond
and a seawall
(outdoor)

Results related to the
various steps of the
proposed methodology
were provided.

Hayakawa
et al.,

2018 [85]
Tunnels

Damage
detection
(cracks on
surface)

Pixel-wise deblurring
imaging (PDI) system
for compensation for
blurring caused by
one-dimensional
motion at high speed
(100 km/h) between
a camera and special
targets (black and
white stripes) to
improve image
quality for crack
detection in tunnels.

CV

Single-camera:
High-speed
SPARK-12000M
(full HD, 500 fps)
with lens, mounted
on a vehicle.

In-field:
highway
tunnel
(outdoor)

Detection of 1.5 mm
and 0.3 mm cracks with
high accuracy. Slight
degradation for cracks
of 0.2 mm (probably
due to camera
vibration). The image
blurring due to high
speed was
compensated for by a
PDI system; without it,
cracks and stripes
could not be
distinguished at 100
Km/h due to the
strong motion blurring.

PME: phase-based motion estimation; DIC: digital image correlation; PMM: phase-based motion magnification;
FAST: features from accelerated segment test; LDS: laser displacement sensor (contactless); ACC: accelerometer
(contact); LVDT: linear variable differential transformer (contactless); LDV: laser doppler vibrometer (contact);
DSLR: digital single-lens reflex camera (contactless); LT: laser tracker (contactless).

3.2.1. Overall Statistics

This section presents and discusses general statistical information regarding the studies
in Table 1. The first analysis concerns the type of infrastructure addressed in the studies
and the type of SHM implemented (Figures 3a and 3b, respectively).

The analysis revealed that VSS have been implemented on different types of infras-
tructure, particularly on more general targets (such as bridges and buildings) or other more
specific examples (such as containment vessels or retention ponds). The item “structures
(generic)” refers to solutions suitable for multiple infrastructures. Regarding the type of
SHM, the analysis revealed four categories, even though they are pairwise related. For ex-
ample, the “vibration estimation” category includes those studies whose primary objective
is to estimate vibration frequencies (mainly of bridges) starting from a displacement mea-
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surement determined by the vision system. On the contrary, the “displacement estimation”
category includes those studies that have as their primary objective the measurement of
displacements (mainly of buildings) and only secondarily attempt to estimate vibration
frequencies. The “damage detection” category includes studies that focus on general struc-
tural damage (including deformations, deflections, and corrosion). In contrast, the “cracks
on surface “ category includes studies addressing this type of damage exclusively.
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Another relevant item involving vision systems concerns the type of cameras and
configurations used. Regarding configuration, 85% of studies implemented a single-camera
solution, while the others adopted a multi-camera approach. Single-camera solutions
are more easily manageable, transportable, and therefore feasible for SHM of large-scale
structures. In addition, they do not require complex calibration procedures, as is the case
with multiple cameras. Regarding the type of cameras, high-resolution and high-speed
cameras are often used to ensure spatial and temporal image quality, especially for estimat-
ing displacements and vibrations and for taking accurate long-distance measurements. It is
also interesting to note the increasing number of studies using smartphone cameras (10
studies). The analysis also revealed that cameras are commonly mounted on tripods to
ensure stability. However, new emerging alternatives for mounting cameras, such as UAVs
(6 studies), USVs (1 study), and robots (1 study), are becoming common in for reaching
locations that would otherwise be difficult to access.

Finally, two other fundamental aspects of VSS concern measurement accuracy and
application in real-world or, at least, outdoor scenarios. In the first case, it is essential to
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compare the measured quantities with those provided by a gold-standard system through
a validation procedure. In the second case, it is crucial to verify the behavior of the
implemented systems in real situations, where weather and lighting conditions can become
critical issues for the system itself, affecting its overall performance.

The following sub-sections provide a detailed analysis of the studies shown in Table 1
regarding these two key points.

3.2.2. Validation with Gold-Standard

The in-depth analysis revealed that almost all VSS include a validation of the proposed
solution/algorithm against traditional SHM techniques, based on one or more contact and
non-contact sensors.

The analysis revealed that several sensors had been used for validation
purposes, including laser displacement sensors [32,34,41,42,49,70,74,76,82], accele-
rometers [32–34,50,51,53,55,59,61,64–68,76], IMU [60], linear variable differential trans-
formers [34,36,41,50,54,61,66,67,73], laser Doppler vibrometers [38,46], stationary cam-
eras [42,75,83], actuators [71], laser trackers [81], infrared sensors [48], and marker-based
systems [44,73]. Marker-based systems are routinely used in other fields (such as medicine),
where they are the traditional reference systems for motion capture and analysis. How-
ever, for specific measurements, such as displacement estimation, marker-based systems
can also be successfully employed in SHM to compare the performance and accuracy of
the proposed algorithms, thanks to retro-reflective markers applied to target locations on
infrastructure-scale models. All the studies adopted the mentioned sensors as the gold
standard with which to compare the performance, accuracy, and measurements of the
proposed vision-based solutions. Figure 4 shows the percentage breakdown regarding
the most common sensors used for validation purposes, as revealed by the analysis of the
studies in Table 1. It is important to note that some studies adopted more than one type of
sensor to validate their proposed solution. In addition, there is a high percentage related
to accelerometers because many of the studies aimed to estimate infrastructure vibration,
generally from displacement measurements.

In other studies, however, validation with other sensors was not performed, but rather
a performance comparison was conducted between algorithms or devices, indirect measure-
ments, or actual observations. For example, in [37], estimated displacements were compared
with actuator-generated movements and stationary targets. In [39,47,63], only a comparison
between algorithms was performed. In [40,45,52,56–58,62,69,72,77–80,85] a comparison
with damage, deformation, and, in general, real-world manual measurements was per-
formed. Finally, a proof of concept was provided in [84], with only qualitative results.
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3.2.3. Experimental and Real-World Scenarios

Implementing vision systems, especially in the case of SHM, implies addressing
typical problems, including environmental conditions (for example, lighting and weather
events), long-distance measurements, calibration procedures, and stability issues. The
in-depth analysis revealed that many studies implemented experimental tests to verify the
effectiveness of the proposed solutions only in controlled experimental scenarios.

In many cases, the authors chose experimental indoor scenarios because
these allowed the effects of environmental conditions to be limited and solutions
to be tested only on scaled models. This choice applies to the following
studies: [34,40–42,44,45,48–51,53–55,58–64,66,67,69–78,80–82]. In a few cases, the experi-
mental scenarios were outdoors where, on the other hand, it was necessary to consider, at
least in part, the environmental conditions and the problems previously indicated, test-
ing the solution on scale models in most cases as well. The following studies chose this
option: [32,36,65].

In addition, some of the studies that implemented experimental tests in indoor or
outdoor scenarios also ventured out into the field, verifying the behavior of the proposed so-
lutions in real-world environments and on full-scale targets, that is, under more challenging
conditions. This is the case for [32,34,38,40,41,45,55,60,66,69,71,75,81,82].

In contrast, the authors of [39,46,47,52,56,68,79,83–85] tested the proposed solution
only directly on real scenarios. The authors of [48] also mentioned an in-field experiment
(i.e., estimation of building vibration using a video recorded from the roof of a building).
However, they did not present any results regarding this experiment.

Finally, a few studies only verified the proposed solutions through numerical sim-
ulations [33,37,57]. In [69,71], numerical simulations were used to validate part of the
proposed framework before experimental and in-field tests.

3.3. Studies Using Image Databases (IDS)

This section describes studies that have implemented frameworks on image databases
(IDS), generally available from other studies, mainly to detect and identify areas with
structural damage. Indeed, many other studies in the state-of-art literature focus on the
same topics that could fall into this category. However, it is essential to note that only
studies selected from the initial queries on the electronic databases, based on the mandatory
and optional keywords, were included in this section. Table 2 provides an overview of the
main characteristics of these studies, focusing on target structures and types of SHM, study
objectives, methods, database features, processing unit hardware, and main results.

Table 2. Studies included in the “image database” category: main features.

Author
(year) Target SHM

Category Study Objectives Methods Database
Features Hardware Main Results

Gao et al.,
2022 [86] Buildings

Damage
detection
(cracks on
surface,
spalled
areas)

Framework to
facilitate
comprehension
and interpretability
of the recognition
ability of a “black
box” DCNN in
detecting structural
surface damages.

DL: DCNN
Input:
224 × 224 px
Ratio between
training,
validation, and
testing: not
available

ImageNet
dataset
(ϕ-net) [87]
36,413 images,
448 × 448 px,
8 subsets
Spalling
detection: two
classes; Type of
damage: four
classes

Not
Available

From the comparison
between the baseline
(BL), BL+ transfer
learning (TL), and
BL + TL + data
augmentation (DA)
models,
BL + TL outperforms
the other models.
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Table 2. Cont.

Author
(year) Target SHM

Category Study Objectives Methods Database
Features Hardware Main Results

Qiu et al.,
2022 [88]

Subway
tunnels

Water
leakage

Framework for the
automatic and
real-time
segmentation of
water leakage areas
in subway tunnels
and complex
environments.

DL: Hybrid
method
(WRes2Net,
WRDeepLabV3+)
Input:
512 × 512 px
Training:
4800 images
Testing:
1200 images

6000 images
taken by subway
locomotive (CCD
camera, 3.5 MP,
400–5250 fps)

AMD Tyzen
7 5800×
(4.6 GHz),
NVIDIA
GeForce RTX
3060 (6 GB),
16 GB (RAM)

The results show the
highest MIoU (82.8%)
and a higher efficiency
(+25%) that all the
hybrid methods than
other the end-to-end
semantic segmentation
approaches (on the
experimental dataset).

Mahenge
et al.,

2022 [89]
Roads

Damage
detection
(cracks on
surfaces)

A modified version
of U-Net
architecture to
segment and
classify cracks on
roads.

DL: CNN
(U-Net)
Input:
227 × 227 px
Training: 25K
(METU), 9K
(RDD2020)
Validation: 5K
(METU), 2K
(RDD2020)
Testing: 300
(both)

Two datasets:
METU [90]:
40,000 images,
227 × 227 px,
2 classes;
RDD2020 [91]:
26,336 images,
227 × 227 px,
four classes

Intel Core
i7-4570 CPU
(3.20 GHz),
16 GB (RAM)

Higher accuracy in
binary classification on
both datasets (97.7% on
METU and 98.3% on
RDD2020) compared
with other studies that
used CNN to identify
crack and non-cracks
on road images
(execution time around
6 ms).

Quga et al.,
2022 [92] Walls

Damage
detection
(cracks on
surface)

Framework using a
two-steps
procedure to
discern between
regions with and
without damage
and characterize
crack features
(length and width)
with CNN.

DL: CNN
Input: 32 × 32 px
Ratio between
training,
validation, and
testing: not
available

100 images,
4928 × 3264 px,
two classes

Intel Core
i7-8700 CPU
(3.20 GHz),
NVIDIA
Quadro P620
(2 GB), 32 GB
(RAM)

The precision of the
first step is around
98.4% (classification in
damaged and
non-damaged
32 × 32 regions), with
AUC = 0.804. Average
errors in length
and width are 31% and
38%, respectively
(approximately
2 pixels).

Siriborvorn-
ratanakul

et al.,
2022 [93]

Structures

Damage
detection
(cracks on
surface)

A framework that
implemented
downstream
models to
accelerate the
development of
deep learning
models for
pixel-level crack
detection, using an
off-the-shelf
semantic
segmentation
model called
DeepLabV3-
ResNet101, with
different loss
functions and
training strategies.

DL: CNN
(DeepLabv3 +
ResNet101]
Input:
512 × 512 px
Training and
validation:
original images
Testing: four
datasets

DeepCrack
Dataset [94]
512 × 512 px,
800 × 600 px,
960 × 720 px,
1024 × 1024 px,
four datasets

NVIDIA
GeForce RTX
2080 GPU, 8
GB (RAM)

The model generalizes
well among the four
different testing
datasets and yields
optimal F1-score
measurements for the
datasets: 84.49% on
CrackTree260, 80.29%
on CRKWH100, 72.55%
on CrackLS315, and
75.72% on Stone331,
respectively.
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Author
(year) Target SHM

Category Study Objectives Methods Database
Features Hardware Main Results

Luan et al.,
2021 [95] Structures

Vibration
estimation
(from dis-
placement)

Framework based
on convolutional
neural networks
(CNNs) to estimate
subpixel structural
displacements
from videos in real
time.

DL: CNN
Input: 48 × 48 px
Ratio between
training,
validation, and
testing: 7:2:1

15,000 images
(frames from 10 s
video with
high-speed
camera),
1056 × 200 px

Not available

The trained networks
detect pixels with
sufficient texture
contrast, as well as
their subpixel motions.
Moreover, they show
sufficient
generalizability to
accurately detect
subpixels in other
videos of different
structures.

Sajedi
et al.,

2021 [96]

Buildings,
roads,
bridges

Damage
detection
and local-
ization
(cracks on
roads,
damage on
concrete
structures,
bridge
compo-
nents)

Frameworks to
reduce uncertainty
in prediction due to
erroneous training
datasets using deep
learning.

DL: DBNN
Input:
320 × 480 px
(crack detection);
215 × 200 px
(structural
damage);
224 × 224 px
(bridge
components)
Training: 80%
Validation: 20%
(of training set)
Testing: 20%

Three datasets:
-Crack detection
(118 images
320 × 480 px),
two classes [97]
-Structural
damage
(436 images
430 × 400 px)
[98]
-Bridge
components
(236 images) [98]

NVIDIA
GTX 1070 (or
GTX 1080), 8
GB (RAM)

The proposed models
show the best
performance in
detecting cracks (binary
segmentation with a
simple background),
damage (binary
segmentation with a
complex background),
and bridge components
(multi-class
segmentation problem).

Meng et al.,
2021 [99]

Underwater
struc-
tures

Damage
detection
(cracks on
surface)

Framework based
on modified FCN
to improve
localization of
cracks in concrete
structures, thanks
to image
preprocessing.

DL: FCN
Input:
256 × 256 px
Training-
Validation: 3-fold
cross validation,
images split
randomly into
three groups,
two used for
training and one
for validation.

20,000 images,
256 × 256 px

NVIDIA
GTX 1080Ti

The proposed approach
outperforms other FCN
models (97.92%
precision), reducing
processing time
(efficiency
improvement of nearly
12%).

Benkhoui
et al.,

2021 [100]

Buildings,
roads

Damage
detection
(cracks on
surface)

Framework based
on FCN and three
encoder-decoder
architectures
combined with a
cascaded dilation
module to improve
the detection of
cracks on concrete
surfaces.

DL: FCN
Input:
224 × 224 px and
299 × 299 px
Training: 60%
Validation: 20%
Testing: 20%

METU [90]:
40,000 images,
227 × 227 px,
2 classes

Intel Quad
Core
i7-6700HQ,
NVIDIA
GeForce GTX
1060

Best accuracy for
dilated
encoder-decoder (DED)
combined with VGG16
(91.78%) vs. ResNet18
(89.36%) and
InceptionV3 (78.26%).
Best computation time
for DED-VGG16.
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Author
(year) Target SHM

Category Study Objectives Methods Database
Features Hardware Main Results

Asjodi
et al.,

2020 [101]
Structures

Damage
detection
(cracks on
surface
and
features)

Framework to
detect cracks on
concrete surfaces
using a cubic SVM
supervised
classifier and to
quantify crack
properties (i.e.,
width and length)
using an
innovative arc
length approach
based on a color
index that
discriminates
between the
brightest and
darkest image
pixels.

ML: SVM
Input:
227 × 227 px
Training: 80%
Validation and
Testing: 20%

METU [90]:
40,000 images,
227 × 227 px,
2 classes

Not available

The accuracy of SVM in
detecting crack zones is
about 99.3%. The arc
length method can
identify single and
multi-branch cracks
without complexity
(computationally
efficient) and estimate
width and length
(average error vs.
manual measurements
in optimal condition is
0.07 ± 0.05 mm).

Huang
et al.,

2020 [102]
Buildings

Damage
detection
(cracks on
surface)

Framework for
crack segmentation
from compressed
images and
generated crack
images to improve
performance and
robustness.

DL: DCGAN
Input:
128 × 128 px
Training:
458 images
Validation:
50 images

Dataset [103]:
20,000 images
(4032 × 3024 px)
split in
227 × 227 px

Intel
it-8700K,
NVIDIA
GeForce RTX
2080, 16 GB
(RAM)

Greater accuracy
(>0.98) for crack
segmentation, higher
robustness (to
compression rate,
occlusions, motion
blurring), and lower
computation time than
other traditional
methods.

Gao et al.,
2020 [87]

Structures,
bridges

Damage
detection
and com-
ponents

A new dataset of
labeled images
related to buildings
and bridges,
divided into 8
sub-categories.
Several deep
learning models
were investigated
to a provide
baseline
performance for
other studies. Data
augmentation and
transfer learning
were employed
during training for
subsets with fewer
images.

DL: DCNN (with
VGG-16, VGG-19,
and ResNet50
models)
Input:
224 × 224 px
Training-Testing:
new
multi-attribute
split algorithm
with ratio
ranging from 8:1
to 9:1 according
to each attribute.

PEER Hub
ImageNet:
36,413 images,
448 × 448 px,
8 subsets.
Scene-level
(3 classes);
Damage-state
(2 classes);
Spalling-
condition
(2 classes);
Material-type
(2 classes);
Collapse-mode
(3 classes);
Component-type
(4 classes);
Damage-level
(4 classes);
Damage-type
(3 classes)

Intel Core
i7-8700K (3.7
GHz),
NVIDIA
GeForce RTX
2080Ti, 32
GB (RAM)

Best reference accuracy
ranges from 72.4%
(“damage type” subset)
to 93.4% (“scene level”
subset). The best model
and training approach
is provided for each
subset.
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Andrushia
et al.,

2020 [103]
Structures

Damage
detection
(cracks on
surface)

A framework
combining an
anisotropic
diffusion filter to
smoothen noisy
concrete images
with adaptive
thresholds and a
gray level-based
edge stopping
constant. The
statistical six
sigma-based
method is used to
segment cracks
from smoothened
concrete images.

CV: denoising
filters.

Dataset: 200
images
256 × 256 px

Intel i7 duo
core, 8 GB
(RAM)

Comparison with five
state-of-the-art
methods, resulting in
reduced mean square
errors and similar peak
signal-to-noise ratios.
The fine details of the
images are also
preserved to segment
the micro cracks.

Deng et al.,
2020 [104] Bridges Damage

detection

Framework for
detecting specific
damages on
bridges (such as
delamination and
rebar exposure)
from pixel-level
segmentation using
an atrous spatial
pyramid pooling
(ASPP) model in
neural networks to
compensate for an
imbalance in
training classes
and to reduce the
effects of small
database size.

DL: CNN (ASPP
model)
Input:
480 × 480 px
Training:
511 images
Testing:
221 images

Dataset:
732 images
(original size
600 × 800 px and
768 × 1024 px).
Pixel-level
labeling in three
categories:
no-damage,
delamination,
rebar exposure

Intel
i9-7900X, 10
cores, 3.3
GHz, 2
NVIDIA
GTX 1080Ti
GPU

Link-ASPP
outperforms the other
two models tested
(LinkNet and UNet) by
achieving an average
F1-score of 74.86%
(without damage:
>93%, with damage:
60–70%). The execution
time on 100 images is
higher than that of the
other models (4.01 ms
vs. 2.80 ms for LinkNet,
and 3.40 ms for UNet,
respectively).

Filatova
et al.,

2020 [105]
Buildings

Damage
detection
(cracks on
surface)

A novel semantic
segmentation
algorithm based on
a convolutional
neural network to
detect cracks on the
surface of concrete,
leveraging a
MapReduce
distributed
framework to
improve
performance
through the
parallelization of
the training
process.

DL: CNN (with
MapReduce
framework)
Input:
1024 × 1024 px
Training,
validation,
testing ratios:
3:1:2

Dataset:
4500 blocks
(1024 × 1024 px).
2 classes (crack,
no-crack) and
4 sub-categories
for cracking
based on size of
damage (in mm)

Intel
i7-470HQ
2.50 GHz,
16 GB
(RAM),
NVIDIA
GeForce GTX
860M

In binary classification,
the proposed model
outperforms the
comparison approaches
(UNet and CrackNet)
by achieving higher
precision (about 98%).
Using the MapReduce
framework
significantly reduces
the training time (857 s
vs. 2160 s without
MapReduce), with only
a slight loss in regards
to recall and F1-score.
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Hoang
et al.,

2020 [106]
Buildings

Damage
detection
(corroded
areas)

Framework for
automatic pitting
corrosion detection
by integrating
metaheuristic
techniques
(history-based
adaptive
differential
evolution with
linear population
size reduction
(LSHADE), image
processing, and
machine learning
through support
vector machine
(SVM).

ML: SVM
Input: 64 × 64 px
Training: 90%
Testing: 10%
(training and
testing sets were
randomly
created 20 times)

Dataset: 120
images (high
resolution).
2 classes (with
corrosion,
no-corrosion)

Intel i7
8750H 4.1
GHz, 8 GB
(RAM),
NVIDIA
GeForce GTX
1050 Ti
Mobile 4 GB

The classification
accuracy rate (CAR) is
above 91% (93% after
hyper-parametric
optimization). The
proposed approach
outperforms the other
two compared methods
in regards to CAR,
accuracy, recall, and
F1-score. The t-test
confirms the
significance of the
prediction performance
of the proposed
approach.

Zha et al.,
2019 [107]

Structures,
bridges

Damage
detection
and com-
ponents

Framework to
recognize and
assess structural
damage using deep
residual neural
network and
transfer learning
techniques to apply
the pre-trained
neural network to a
similar task (new
real-world images).

DL: DCNN
(ResNet152
model) +
Transfer
Learning

PEER Hub
ImageNet:
36,413 images,
448 × 448 px,
8 subsets.
Scene-level
(3 classes);
Damage-state
(2 classes);
Spalling-
condition
(2 classes);
Material-type
(2 classes);
Collapse-mode
(3 classes);
Component-type
(4 classes);
Damage-level
(4 classes);
Damage-type
(3 classes)

NVIDIA
GeForce GTX
1080
(other
hardware
characteris-
tics not
available)

The accuracy regarding
testing sets created for
each category ranges
from 63.1%
(collapse-mode:
3 classes) to 99.5%
(material-type:
2 classes). The accuracy
regarding a small
number of real-world
images (transfer
learning) is lower,
ranging from 60.0%
(damage-type:
4 classes) to 84.6%
(component-type:
4 classes).

Umeha
et al.,

2018 [108]
Structures

Damage
detection
(cracks on
surface)

Image processing
method to identify
defects on concrete
surfaces using high
boost filtering and
enhanced average
thresholding
strategy to improve
accuracy of crack
detection in
structures.

CV: high boost
filtering +
Enhanced
Average
Thresholding
(EAT)

Not available Not available

High boost filtering
combined with EAT
strategy increases
performance compared
with traditional
filtering and
thresholding
techniques, according
to segmentation quality
metrics [109] (+0.1103
in the Dice index,
+0.2078 in the Jaccard
index).
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Table 2. Cont.

Author
(year) Target SHM

Category Study Objectives Methods Database
Features Hardware Main Results

Zgenel
et al.,

2018 [110]
Structures

Damage
detection
(cracks on
surface)

Applicability of
CNNs for crack
detection in
construction-
oriented
applications
combined with
transfer learning,
considering the
influence of the
size of the training
dataset, the
number of epochs
used for training,
the number of
convolution layers,
and the learnable
parameters on the
performance of the
transferability of
CNNs to new types
of materials.

DL: CNN (7
models: AlexNet,
VGG16, VGG19,
GoogleNet,
ResNet50,
ResNet101, and
ResNet152)
Input:
224 × 224 px
Training: 70%
Validation: 15%
Testing: 15%
Different sizes of
training sets
Four testing sets:
Test1 (6K images
from original
dataset); Test2
(transfer learning
for cracks in
pavements);
Test3 (transfer
learning for
cracks on
concrete
material); Test4
(transfer learning
for cracks on
brickwork
material)

METU [90]:
40,000 images
(227 × 227 px)

2 Intel Xeon
E5-2697 v2
2.7 GHz, 64
GB (RAM),
NVIDIA
Quadro
K6000

In Test1, all networks
achieved accuracy
> 0.99. In Test2 (cracks
in pavement), only
VGG16, VGG19,
GoogleNet, and
ResNet50 achieved
accuracy > 0.90. In
Test3 (cracks on
concrete material), only
VGG16, VGG19, and
GoogleNet achieved
accuracy > 0.90. In
Test4 (cracks on
masonry material),
only VGG16 and
VGG19 achieved
accuracy > 0.90. The
size of the training set
affected the
performance of the
models. AlexNet was
the fastest network for
a training set of 28K
units, while ResNet152
was the slowest.

Ali et al.,
2018 [111] Structures

Damage
detection
(cracks on
surface)

Framework to
detect surface
cracks using a
modified cascade
technique based on
the Viola–Jones
algorithm and the
AdaBoost [112]
meta algorithm for
training on positive
and negative
images.

CV: Viola–Jones
algorithm +
AdaBoost
Input:
30 × 30 px,
56 × 56 px,
72 × 72 px
(positive images);
1024 × 1024 px
(negative images)
Training:
975 + 1950
images
Testing: 100 new
images from
different angles

Dataset:
975 positive and
1950 negative
images
(1024 × 1024)

Not available

Overall, the results
were satisfactory (even
in the presence of dents
and noise), except for
those involving dark
images in which only
60 percent of the
positive areas (however,
with highly accurate
results in low light)
were correctly detected.
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Table 2. Cont.

Author
(year) Target SHM

Category Study Objectives Methods Database
Features Hardware Main Results

Suh et al.,
2018 [113]

Structures,
bridges

Damage
detection

Framework to
provide near
real-time
simultaneous
detection and
localization of
multiple damage
types using faster
region-based
convolutional
neural
network-based
(Faster R-CNN)
and data
augmentation
techniques. The
robustness of the
trained network
was evaluated on
seven new images
of different
infrastructures.

DL: Faster
R-CNN + Data
Augmentation
Input:
2366 images
(500 × 375 px)
Training,
Validation,
Testing: original
images randomly
assigned to the
three sets.
Testing2: seven
new images from
different
infrastructures
(transfer
learning)

297 images
(6000 × 4000 px);
5 classes: steel
delamination,
medium and
high steel
corrosion, bolt
corrosion, and
concrete cracks

Intel Core
i7-6700k;
32 GB
(RAM);
NVIDIA
GeForce GTX
1080 8 GB.

Training and validation
showed an accuracy of
90.6%, 83.4%, 82.1%,
98.1%, and 84.7% for
concrete cracking,
medium steel corrosion,
high steel corrosion,
bolt corrosion, and
steel delamination,
respectively (average
accuracy: 87.8%). Tests
on new images
demonstrated the
feasibility of using the
trained models on new
image datasets (but no
objective results were
provided).

MIoU: mean intersection over union; DCNN: deep convolutional neural network; CNN: convolutional neural
network; DBNN: deep Bayesian neural network; FCN: fully convolutional network; SVM: support vector machine;
DCGAN: deep convolutional generative adversarial network; R-CNN: region-based convolutional neural network;
AUC: area under the curve.

3.3.1. Overall Statistics

This section reports and discusses general statistical information about the studies in
Table 2. The first analysis concerns the type of infrastructure addressed in the study and
the type of SHM implemented (Figures 5a and 5b, respectively).
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The analysis revealed that frameworks using image datasets were implemented
on different types of infrastructure, explicitly addressing more general targets (such as
bridges, buildings, and concrete surfaces), as well as specific examples (such as under-
water structures or tunnels). Again, the item “structures (generic)” refers to solutions
suitable for multiple types of infrastructures, while the item “walls” could be equated with
concrete surfaces.

Regarding the type of SHM, the analysis revealed more categories than the four that
emerged for VSS. The two main ones (“cracks detection” and “damage detection”) are more
generalized and typically concern the presence or absence of structural damage. The other
categories, with much lower percentages, concern the detection of specific deteriorations
and refer to a much finer classification of the type of damage. Obviously, this fineness is
highly dependent on the availability of images supporting this type of investigation.

Additional relevant information about IDS concerns the hardware of the processing
unit. The need for higher or lower performance hardware is closely related to the type of
framework implemented. Deep learning-based solutions demand significant computational
resources, particularly GPU, CPU, and RAM, to handle and process the images. Most
studies have used very high-performance graphics cards (in particular, NVIDIA GeForce)
and at least 8 GB of RAM (up to a maximum of 64 GB). In contrast, solutions using
machine learning and computer vision are much less demanding in terms of computational
resources, so much so that in most cases, the hardware configuration was not specified (3 out
of 5 studies). The analysis also found that accuracy is the primary metric used to evaluate
and compare performance among classification solutions (14 studies). More sporadically,
some studies compared performance using MIoU (1 study), F1-score (3 studies), mean
square error (1 study), segmentation indices (1 study), and AUC (1 study), whereas 3 studies
did not expose a precise metric. Finally, although execution time is one of the crucial aspects
of the classification process, only 5 studies have reported results in this regard.

As just pointed out, accuracy is one of the most widely used metrics in automated
classification (i.e., detection and recognition of specific damage conditions) to evaluate the
performance of networks and predictive models. However, accuracy highly depends on the
number of classes to be recognized. The following sub-section provides a detailed analysis
of the studies shown in Table 2 in regards to this aspect.

3.3.2. Type of Classification

Machine learning and deep learning approaches allow classification problems with
different complexity to be addressed. In the field of SHM, this can lead to an architecture
capable of detecting the presence or absence of a specific condition (i.e., binary classifica-
tion), such as distinguishing structurally damaged areas from intact sections. Alternatively,
they can be used for more specific classification purposes based on recognizing different
categories of structural deficits (multi-class classification), identifying, for example, the type
of damage, type of materials, shape of cracks, and other specific features. Table 3 provides
a summary of the main types of classification addressed by studies using image datasets.

Table 3. Classification characteristics.

Author (year) Method Binary
Classification

Multi-Class
Classification

Transfer
Learning

Gao et al. [86] Deep Learning X X

Gao et al. [87] Deep Learning X X

Qiu et al. [88] Deep Learning X

Mahenge et al. [89] Deep Learning X

Quga et al. [92] Deep Learning X
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Table 3. Cont.

Author (year) Method Binary
Classification

Multi-Class
Classification

Transfer
Learning

Siriborvornratanakul
et al. [93] Deep Learning X

Sajedi et al. [96] Deep Learning X X

Meng et al. [99] Deep Learning X

Benkhoui et al. [100] Deep Learning X

Huang et al. [102] Deep Learning X

Deng et al. [104] Deep Learning X X

Filatova et al. [105] Deep Learning X

Zha et al. [107] Deep Learning X X X

Zgenel et al. [110] Deep Learning X X

Suh et al. [113] Deep Learning X X X

Asjodi et al. [101] Machine Learning X

Hoang et al. [106] Machine Learning X

Ali et al. [111] Machine Learning X

Regarding deep learning approaches, most of the selected studies addressed only
binary classification problems, including [88,89,92,93,99,100,102,105,110]. Only a few stud-
ies also addressed multi-class classification problems in addition to binary classification,
such as [86] (type of damage: four classes), [96] (bridge components: seven classes), [87]
(several multi-class subsets), [104] (type of damage: three classes), [107] (several multi-class
subsets), and [113] (type of damage: five classes). The authors of [105] also mentioned
labeling for the multi-class classification of cracks based on their size (in mm), but they did
not present the results of this task.

Pre-trained networks have also been combined with transfer learning processes to
solve two common issues in DL: insufficient data to train networks from scratch and
the reusability of pre-trained models to tackle similar tasks. This approach was used, for
example, in [107], in which the authors used pre-trained neural networks to detect structural
damage on images from other sources. Moreover, in [110], the authors investigated the
potentiality of transfer learning to classify cracks on other materials and targets (cracks in
pavement, concrete materials, and brickwork materials). The same occurred in [113], where
the authors applied pre-trained models on a small set of images (only seven) taken from
different infrastructures.

In addition, some studies have also applied deep learning models for purposes other
than classification. For example, [92] proposed a method to estimate damage measurements
using the neural network classification results (areas with damage). In [95], pre-trained
models were used to estimate displacements (and vibrations) in structures at the sub-
pixel level.

In contrast, only a few studies have adopted machine learning approaches based on
supervised classifiers, which are less demanding in terms of computation time and archi-
tectural complexity. Among them, the authors in [101] implemented a cubic SVM classifier
to identify cracked areas on concrete surfaces (binary classification) and to determine the
characteristics (width and length) of single and multi-branch cracks on the recognized areas
of damage. In [106], a machine learning approach with an SVM classifier was used to detect
areas of pitting corrosion. In [111], the AdaBoost algorithm [112] was used to discriminate
between areas with and without cracks.

The category related to image databases also includes studies that take advantage
of classical computer vision and image processing techniques to improve image quality
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and, consequently, the accuracy of defect detection. For example, the authors in [103]
proposed a de-noising filter to retain the edges and details of concrete surface images,
which allows for improvement of the image quality and detection of the finest cracks. The
proposed algorithm was compared similar approaches used in five different studies in the
literature. The results showed a reduction in mean square error (MSE) between 36.3% and
73.6%, an increase in peak-to-noise ratio (PSNR) between 7.6% and 54.2%, and an increase
in mean structural similarity (MSSIM) between 2.4% and 45.1%. A combined strategy
based on high boost filtering and enhanced thresholding was proposed in [108], which
outperformed other thresholding techniques in terms of Dice and Jaccard’s [109] average
indices (+0.1103 and +0.2078, respectively), demonstrating the best similarity between
processed and original images, and consequently, better image quality that could be useful
and necessary to increase the accuracy in finer damage detection.

4. Discussion

This paper provides an overview of recent applications (2018–2022) in structural health
monitoring using optical devices (in particular, standard color cameras), computer vision,
and image and video signals. To this end, we queried two electronic reference databases
(Scopus and the Web of Science) using the built-in functions to select studies with specific
mandatory and optional keywords in their title and abstract. The automatically selected
items were then manually screened against pre-established eligibility criteria, ultimately
including 73 articles, which we subsequently analyzed in detail, in this review.

Two interesting aspects emerge from the first, more general analysis of the selected
studies. The first one is the preliminary breakdown of the studies into two macro-categories:
those implementing vision systems (71%) and those using image databases (29%), in most
cases, made available by other studies. While the first group was fairly expected, having
used terms commonly used in the field of vision-based systems in the optional keywords,
the second category, however significant, was somewhat unexpected, considering no
related terms were used in the queries. This fact is explainable if we consider that these
studies deal with one of the components of a vision-based system, namely image and video
processing, regardless of the acquisition phase and data source. However, this group was
undoubtedly underestimated here compared with what is available in the literature, and it
has been analyzed in recent dedicated reviews [16,114,115]. Nevertheless, this review also
considered these studies as resulting from the selection process.

The second aspect is the sharply increasing trend (+61.5%) in the number of SHM
applications over a relatively short observation period (only the last five years). This result
confirms findings from papers over extended periods (fifteen years) that pointed out the
rapid escalation of vision-based solutions and automatic learning approaches [8].

The in-depth analysis showed that VSS studies mainly focus on bridges (35.7%) and
buildings (25.0%). Moreover, some solutions address specific targets (e.g., towers, reten-
tion basins). On the contrary, 19.6% of the studies report a more general target (category
“structure (generic)”). Regarding IDS, the main target infrastructures are the same (bridges,
buildings, and general structures). However, the highest percentage (25%) concerns con-
crete surfaces, probably because several databases containing thousands of images acquired
for this purpose are available. In addition, as with vision-based systems, some studies
address specific infrastructures (such as tunnels and underwater structures).

Regarding the type of SHM, VSS are distributed into four clusters, with a predomi-
nance of studies focused on estimating displacements and vibrations (77.4%) rather than
on detecting structural damage and cracks on the surface (22.6%). In contrast, IDS studies
clearly dominate in structural damage and crack detection (50%). However, 47.5% of the
remainder are focused on detecting and recognizing specific damage conditions; therefore,
they are always attributable to the two predominant clusters. Unlike VSS, only 2.5% of the
studies focused on vibration estimation.

Going into more detail, the full-text analysis of VSS showed that 85% of the studies
implemented a single-camera system, thus overcoming the problems related to the calibra-
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tion of multiple cameras; 19% of the studies used smartphone cameras, trying to switch
to more widespread and low-cost sensors; and about 15% of the studies took advantage
from emerging technologies (UAVs, USVs, and robots) for support for reaching remote
locations. In addition, 63% of the studies verified the accuracy of measurements through
a validation procedure with other systems/sensors commonly used as gold standards
in SHM applications. The main limitations of VSS, which emerged during the analysis,
concern the following: (i) improving robustness and accuracy through optimization algo-
rithms [54,63,71,73]; (ii) the lack of real-world scenarios (only 46% of the studies proposed
in-field tests on real-world structures); (iii) the use of specific targets [67,81,82]; (iv) con-
straints on image and video sizes [60,64,76,77,83]; and (v) the effects of environmental and
weather conditions that can affect performance (44% of the studies proposed only indoor
and scaled-target experimental scenarios, with controlled lightning and environmental
conditions). This last point is fundamental when using technologies and support aids such
as UAVs and tripods. For example, wind can alter the camera stability (and consequently,
the performance) if not suitably compensated for. At the same time, poor lighting (due to
rain, fog, or evening hours) can reduce visibility and the accuracy of measurements [69,75].

The analysis performed on IDS showed that only three studies implemented a frame-
work based on supervised classifiers (machine learning approach) and two studies based
on computer vision. In contrast, 76% of the studies investigated deep learning approaches.
Almost 43% of the studies addressed only binary classification, thus determining whether
an area is damaged or undamaged. Only 28.5% of the studies also addressed multi-class
classification purposes, mainly related to identifying the type of damage, type of materials,
and structural components. Finally, three studies investigated the potential of transfer learn-
ing, i.e., using a pre-trained model for a different task to overcome issues related to the time
to train a network/model from scratch. This approach was used in [107,110,113], which
use pre-trained neural networks on images from different sources, targets, materials, and
infrastructures. The main limitations of IDS concern the following: (i) in general, the results
are presented only on images from the original datasets (through training, validation, and
testing phases), without testing trained models on different images, except in [110,111,113];
(ii) the use of training datasets of limited size, as in [95,103,106]; (iii) a lower agreement
between labelers of damaged areas, as in [104]; (iv) the model performance was dependent
on image resolution and quality [101,107,111]; (v) the need for high-performance hardware
(especially for deep learning networks) to manage training phases and optimize execution
time on larger image databases; and (vi) high accuracy in binary classification, but lower
performance in multi-class classification.

Despite the problems and challenges remaining, this review has highlighted the poten-
tial of computer vision and image processing in the context of SHM. There is undoubtedly
ample room for improvement to overcome the major weaknesses highlighted by the analy-
sis of selected VSS and IDS studies. Nevertheless, thanks to constant technological progress,
the availability of increasingly high-performance resources, and the growing interest in the
creation of large image databases (also exploiting techniques such as transfer learning and
data augmentation), these methodologies will respond more and more comprehensively to
the specific requirements of structural health monitoring, as is already happening in the
field of human health [116–121].

5. Conclusions

Structural health monitoring has received significant attention in recent decades be-
cause of the importance of keeping infrastructure in good condition and in full working
order. Non-contact solutions are gradually finding application in this area because they
are easier to manage and more practical than contact-based approaches. Among these,
solutions based on cameras, computer vision, imaging, and video processing are proving
particularly effective because they provide the ability to carry out visual inspections with
more continuity, even in hard-to-reach areas, thanks in part to the support of new tech-
nologies (drones and robots) that can operate remotely. A further impetus comes from
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the potential offered by automatic classification algorithms (machine and deep learning
approaches) that, thanks to increasingly high-performance hardware, make it possible
to detect and recognize the type and level of structural damage. This trend is expected
to increase in the coming years, also benefiting from the data fusion of multiple sensors
for the increasingly timely and comprehensive detection of structural damage and the
activation of appropriate maintenance actions, thus ensuring the safety and efficiency of
civil infrastructure.

However, several challenges still need to be addressed to achieve the maximum bene-
fits of these approaches, especially in real-world scenarios [26]. For example, when using
optical approaches, environmental conditions (light changes, weather events, obstructive
elements) can interfere with structural monitoring. Another factor concerns the effect
of vibrations caused by the ground or wind, which can make the image captured by a
fixed camera or drone blurry, thus altering the performance, especially over long distances.
Another major challenge relates to the amount of data to be managed, stored, and/or
transmitted; for example, in long-term monitoring, images and videos, particularly when
high resolution is necessary, are large and require special attention for their use, especially
in automated and remote damage assessment solutions. In addition, machine learning and
deep learning approaches, which can support automatic damage recognition and localiza-
tion, require huge datasets of images with well-labeled damage to be effective and accurate.
Nevertheless, the availability of larger datasets could be addressed by merging smaller
datasets, using transfer learning, or through data augmentation approaches. All these
factors may affect the applicability of optical approaches in SHM or introduce uncertainties
in measurements, so they need to be considered during data acquisition and processing.
However, these are well-known problems in computer vision, and ad hoc solutions can
be designed to solve and overcome these limitations, as has been done in other fields,
benefiting from the use of these approaches for SHM as well.
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