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Abstract
We prove a sharp quantitative version of the Faber–Krahn inequality for the short-
time Fourier transform (STFT). To do so, we consider a deficit δ(f ;�) which mea-
sures by how much the STFT of a function f ∈ L2(R) fails to be optimally concen-
trated on an arbitrary set � ⊂ R

2 of positive, finite measure. We then show that an op-
timal power of the deficit δ(f ;�) controls both the L2-distance of f to an appropriate
class of Gaussians and the distance of � to a ball, through the Fraenkel asymmetry of
�. Our proof is completely quantitative and hence all constants are explicit. We also
establish suitable generalizations of this result in the higher-dimensional context.

1 Introduction

1.1 Main results

Given a function g ∈ L2(R) (called the window), the short-time Fourier transform
(STFT) of a function f ∈ L2(R) is usually defined as

Vgf (x,ω) =
ˆ
R

e−2πitωf (t)g(x − t)dt. (1.1)
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This transform plays a distinguished role in different areas of mathematics, includ-
ing time-frequency analysis [19] and signal processing [30], mathematical physics
[29], where it is also known as the coherent state transform, and semiclassical and
microlocal analysis [21, 37].

From the point of view of time-frequency analysis, the STFT is a measure of
the “instantaneous frequency” of the signal f at each point, in analogy to what a
music score does. As the notion of “instantaneous frequency” is not well-defined for
generic signals, due to the uncertainty principle, the STFT can only concentrate a
limited amount of its L2-norm on any set � ⊂ R

2 with finite Lebesgue measure |�|,
and finding explicit bounds in terms of |�| is an important issue in time-frequency
analysis. For a general window g, this appears to be extremely challenging and only
suboptimal bounds have been obtained: we refer the reader to the work of E. Lieb
[28] for what is, to our knowledge, the current best result at this level of generality.

For very regular windows, however, the situation improves. In particular, in the
relevant case (extensively studied in the literature also in connection with the spec-
trum of localization operators in the radially symmetric case, see e.g. [1, 9, 18, 35])
where g = ϕ is the Gaussian window

ϕ(x) = 21/4e−πx2
, x ∈R, (1.2)

a complete solution to this concentration problem has recently been given in [33],
thus proving a conjecture from [2] (see also [10]). Denoting by Vf := Vϕf the STFT
with the Gaussian window ϕ defined in (1.2), the main result of [33] can be stated as
follows:

Theorem A ([33]; Faber-Krahn inequality for the STFT) If � ⊂ R
2 is a measurable set

with finite Lebesgue measure |�| > 0, and f ∈ L2(R) \ {0} is an arbitrary function,
then

´
�

|Vf (x,ω)|2 dx dω

‖f ‖2
L2(R)

≤ 1 − e−|�|. (1.3)

Moreover, equality is attained if and only if � coincides (up to a set of measure zero)
with a ball centered at some z0 = (x0,ω0) ∈R

2 and, at the same time, f is a function
of the kind

f (x) = c ϕz0(x), ϕz0(x) := e2πiω0xϕ(x − x0), (1.4)

for some c ∈C \ {0}.

Note that the optimal functions in (1.4) are scalar multiples of the Gaussian win-
dow defined in (1.2), translated and modulated according to the center of the ball
�.

This result, which improves upon Lieb’s uncertainty principle [28], has inspired
other subsequent works: [36], where a similar result is extended to the case of Wavelet
transforms; [4], where Kulikov used techniques inspired by those of [33] to prove
some contractivity conjectures; and [14], where R. Frank uses the same circle of
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ideas to generalize a series of entropy-like inequalities (see also the recent preprint
[15]). We refer the reader to [22–25, 27, 31, 34] and the references therein for further
closely related work.

In the present paper we investigate the stability of Theorem A: given � ⊂ R
2 and

f ∈ L2(R) which are almost optimal, in the sense that they almost saturate inequality
(1.3), can we infer (and to what extent) that � is close to a ball and that f is close to
a function of the form (1.4)? To formulate this question precisely, a crucial point is
choosing how to measure almost optimality as well as closeness.

To measure almost optimality in (1.3) for a pair (f,�), we will consider the com-
bined deficit

δ(f ;�) := 1 −

ˆ
�

|Vf (x,ω)|2 dx dω

(1 − e−|�|)‖f ‖2
L2(R)

, (1.5)

while we will use the Fraenkel asymmetry of � ⊂ R
2 to measure its distance to a

ball:

A(�) := inf

{ |��B(x, r)|
|�| : |B(x, r)| = |�| , r > 0, x ∈R

2
}

. (1.6)

The Fraenkel asymmetry is a natural notion of asymmetry and it is often used to for-
mulate the stability of geometric and functional inequalities, such as the isoperimetric
inequality [8, 12, 16, 17] or the Faber–Krahn inequality for the Dirichlet Laplacian
[5, 7].

Our main result reads as follows:

Theorem 1.1 (Stability of the Faber-Krahn inequality for the STFT) There is an ex-
plicitly computable constant C > 0 such that, for all measurable sets � ⊂ R

2 with
finite measure |�| > 0 and all functions f ∈ L2(R)\{0}, we have

min
z0∈C,|c|=‖f ‖2

‖f − c ϕz0‖2

‖f ‖2
≤ C

(
e|�|δ(f ;�)

)1/2
. (1.7)

Moreover, for some explicit constant K(|�|) we also have

A(�) ≤ K(|�|)δ(f ;�)1/2. (1.8)

Remark 1.2 (Sharpness) In Theorem 1.1 the factor δ(f ;�)1/2 in (1.7) and (1.8) can-
not be replaced by δ(f ;�)β , for any β > 1/2. Similarly, the dependence on |�| in
(1.7) is also sharp, in the sense that factor e|�|/2 cannot be replaced by eβ|�| for any
β < 1/2. We refer to Sect. 6 for proofs of these claims.

Remark 1.3 (Higher dimensions) There is a natural generalization of the ST FT to
functions f ∈ L2(Rd), for any d ≥ 1. In Sect. 7 we show that a more general version
of Theorem 1.1 holds in all dimensions. It is worth noting that, although δ(f ;�)1/2

still controls the distance of f to the set of optimizers, there is a dimensional depen-
dence of this estimate on |�|.
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As observed in [33], if the set � is fixed and has finite measure, Theorem A (and
consequently also Theorem 1.1) can be interpreted in terms of the well-known local-
ization operator [6, 9] defined, in terms of the STFT operator V : L2(R) → L2(R2)

with Gaussian window, by

L� := V∗ 1� V, L� : L2(R) → L2(R).

This is a positive trace-class operator, hence its norm coincides with its largest eigen-
value

λ1(�) := max
f ∈L2(R)\{0}

〈L� f,f 〉
‖f ‖2

L2(R)

= max
f ∈L2(R)\{0}

´
�

|Vf (x,ω)|2 dx dω´
R2 |Vf (x,ω)|2 dx dω

. (1.9)

In particular, due to the arbitrariness of f , (1.3) entails that

λ1(�) ≤ 1 − e−|�|, (1.10)

with equality if and only if � is a ball, and so we call (1.10) a Faber–Krahn inequality,
by analogy with the Dirichlet Laplacian. Clearly, for any fixed �, the functions f�

that achieve the maximum in (1.9) (i.e. the eigenfunctions of L� associated with its
first eigenvalue λ1(�)) are those functions whose STFT is optimally concentrated
in that particular set �. When � is a ball, these eigenfunctions are the functions
described in (1.4) and appearing also in (1.7): therefore, specifying Theorem 1.1 to
the case where f = f� is the first eigenfunction of L�, normalized so that ‖f�‖L2 =
1, we obtain the following stability result for the first eigenvalue and eigenfunction
of localization operators:

Corollary 1.4 Let � ⊂ R
2 be a measurable set of positive finite Lebesgue measure,

and let λ1(�) be the first eigenvalue of the localization operator L� as in (1.9), with
unit-norm eigenfunction f�. Then (1.10) holds true, and

min
z0∈C,|c|=1

‖f� − c ϕz0‖2 ≤ Ce|�|/2
(

1 − λ1(�)

1 − e−|�|

)1/2

, (1.11)

for some universal (explicitly computable) constant C. Moreover, for some explicit
constant K(|�|) we also have

A(�) ≤ K(|�|)
(

1 − λ1(�)

1 − e−|�|

)1/2

.

This result is the analogue of the stability results for the Faber–Krahn inequality
for the Dirichlet Laplacian [5, 7, 13]. Note, however, that the stability estimate (1.7)
is more general than (1.11), because it holds for arbitrary functions f ∈ L2(R) which
are not assumed to be eigenfunctions of the localization operator L�. Indeed, the
results of Theorem 1.1 are stronger than the available stability results for the Faber–
Krahn inequality for the Dirichlet Laplacian also in that, contrarily to [5, 7], our proof
of Theorem 1.1 is quantitative and does not rely on compactness arguments, as in the
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penalization method [8]. It is for this reason that the constants in estimates (1.7)–(1.8)
can be made explicit. Note, moreover, that the set � in Theorem 1.1 is not assumed
to be smooth; in fact, since Vf is essentially an entire function via the Bargmann
transform, we can replace � with a suitable super-level set of a holomorphic function,
which in Sect. 3 we prove to be very well-behaved (we then use the rigidity of the
problem to come back from super-level sets of holomorphic functions to the original
set �).

We saw in Remark 1.2 that (1.7) is sharp, but whether Corollary 1.4 is sharp as
well is a more delicate question. To answer it, one would need to either (i) compute
the first eigenfunctions of L� for domains � close to a ball, or (ii) given a function f

close to the Gaussian ϕ, construct a domain �f ⊂ R
2 such that f is the first eigen-

function of L�. Strategy (i) appears rather difficult: to the best of our knowledge, the
eigenfunctions of L� are not known even in the simple case where � is an ellipse
of small eccentricity; see [1, 9]. Implementing strategy (ii) involves tools essentially
disjoint from those of this manuscript and so we decided not to address the ques-
tion of optimality of Corollary 1.4 here; instead, this is one of the main goals of an
upcoming work by the third author [35].

To discuss the main ideas behind the proofs of our results, we now briefly recall
some facts and background notions from [33], which we shall use throughout the
paper. We point out, however, that the proof of Theorem A in [33] cannot be readily
adapted to yield quantitative results such as (1.7) or (1.8). Instead, the proof of these
inequalities requires a set of new geometric ideas and estimates in the Fock space,
which are the core of the present paper and which (often being of a general character,
such as Lemma 2.1 or the results in Sect. 3), are of interest on their own.

1.2 Proof strategy in the Bargmann–Fock space

As shown in [33], energy concentration problems for the STFT can be very cleanly
formulated (and dealt with) in terms of the Fock space [39], i.e. the Hilbert space
F2(C) of all holomorphic functions F : C → C for which

‖F‖F2 :=
(ˆ

C

|F(z)|2 e−π |z|2 dz

)1/2

< ∞,

endowed with the natural scalar product

〈F,G〉F2 =
ˆ
C

F(z)G(z) e−π |z|2 dz.

Here and throughout, z = x + iy and dz = dx dy denotes Lebesgue measure on C, al-
ways identified with R

2. This Hilbert space is closely connected to the STFT through
the Bargmann transform B : L2(R) → F2(C), defined for f ∈ L2(R) as

Bf (z) = 21/4
ˆ
R

f (t)e2πtz−πt2− π
2 z2

dt, z ∈C, (1.12)

see e.g. [19, Sect. 3.4]. The Bargmann transform is a unitary isomorphism which
maps the orthonormal basis of Hermite functions on R onto the orthonormal basis of
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F2(C) given by the normalized monomials

ek(z) =
(

πk

k!
)1/2

zk, k = 0,1,2, . . . . (1.13)

More importantly for us, the definition of B encodes the crucial property that

Vf (x,−ω) = eπixωBf (z)e−π |z|2/2, z = x + iω,

which allows us to express the energy concentration in the time-frequency plane in
terms of functions in the Fock space, since

´
�

|Vf (x,ω)|2 dx dω

‖f ‖2
L2

=
´
�′ |Bf (z)|2 e−π |z|2 dz

‖Bf ‖2
F2

, (1.14)

where �′ = {(x,ω) : (x,−ω) ∈ �}. In this new setting, the image via B of the func-
tions ϕz0 defined in (1.4) takes the form

Bϕz0 = Fz0, Fz0(z) = e− π
2 |z0|2eπzz0 , (1.15)

and therefore Theorem A can be rephrased in terms of the Fock space as follows, cf.
[33, Theorem 3.1]:

Theorem B If � ⊂ R
2 is a measurable set with positive and finite Lebesgue measure,

and if F ∈F2(C) \ {0} is an arbitrary function, then

´
�

|F(z)|2 e−π |z|2 dz

‖F‖2
F2

≤ 1 − e−|�|. (1.16)

Moreover, equality is attained if and only if � coincides (up to a set of measure
zero) with a ball centered at some z0 ∈ C and, at the same time, F = cFz0 for some
c ∈ C \ {0}.

Similarly, we can rephrase Theorem 1.1 over the Bargmann–Fock space, as fol-
lows:

Theorem 1.5 (Fock space version of Theorem 1.1) There is an explicitly computable
constant C > 0 such that, for all measurable sets � ⊂ R

2 with positive finite measure
and all functions F ∈F2(C)\{0}, we have

min|c|=‖F‖F2 ,

z0∈C

∥∥F − cFz0

∥∥
F2

‖F‖F2
≤ C

(
e|�|δ(F ;�)

)1/2
, (1.17)

where

δ(F ;�) := 1 −
´
�

|F(z)|2e−π |z|2 dz

(1 − e−|�|)‖F‖2
F2

. (1.18)
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Moreover, for some universal explicit constant K(|�|) we also have

A(�) ≤ K(|�|)δ(F ;�)1/2. (1.19)

We warn the reader that, in (1.18), we used the same notation as in (1.5) to denote
the Fock-counterpart of the deficit. However, no confusion should arise from this
conflict of notation, since we always use an upper-case letter to denote elements F of
the Fock space, corresponding to elements f of L2.

We will provide two different proofs of this theorem, based on a careful study of
the real analytic function

uF (z) = u(z) := |F(z)|2 e−π |z|2 (1.20)

and the properties of its super-level sets

At := {u > t} = {z ∈C : u(z) > t} , (1.21)

where F is an arbitrary function in F2(C) \ {0}. This study was initiated in [33],
where it was proved that the distribution function

μF (t) = μ(t) := |At |, t ≥ 0 (1.22)

is locally absolutely continuous on (0,∞) and satisfies

μ′(t) ≤ − 1

t
for a.e. t ∈ (0, T ), T := max

z∈C
u(z), (1.23)

from which one readily obtains that

μ(t) ≥ log+
T

t
for all t > 0, where log+ x := max{0, logx}. (1.24)

Notice that, when F = cFz0 as in the last part of Theorem B, then T = |c|2 and
μ(t) = log+ T/t . In [33], (1.23) can be found in the equivalent form

u∗(s) + (u∗)′(s) ≥ 0, for almost every s ≥ 0, (1.25)

where u∗ : R+ → (0, T ] is the decreasing rearrangement of u, usually defined as

u∗(s) := sup {t ≥ 0 : μ(t) > s} , s ≥ 0. (1.26)

The function u∗ is proved to be invertible, with μ|(0,T ] as inverse function (see [4] for
a direct usage of (1.23) in this form). This fact enables one to find, for any number
s ≥ 0, a unique super-level set At = Au∗(s) of measure s, which is the set where u is
most concentrated among all sets of measure s, namely

IF (s) = I (s) :=
ˆ

{u>u∗(s)}
u(z)dz ≥

ˆ
�

u(z)dz, whenever |�| = s. (1.27)
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Based on (1.25), it was proved in [33] that the function G(σ) := I (− logσ) is convex
on [0,1]. Since

G(0) = lim
s→∞ I (s) =

ˆ
C

u(z)dz = ‖F‖2
F2, G(1) = I (0) = 0,

the convexity of G yields the upper bound G(σ) ≤ ‖F‖2
F2(1 − σ) or, equivalently,

I (s) ≤ ‖F‖2
F2(1 − e−s), (1.28)

which, combined with (1.27), proves (1.16).
It was then observed in [33] that, if equality holds in (1.16), then by convexity we

must have G(σ) ≡ ‖F‖2
F2(1 − σ) on [0,1] or, equivalently, I (s) = ‖F‖2

F2(1 − e−s)

for every s ≥ 0, and in particular

I ′(0) = ‖F‖2
F2 . (1.29)

But since F2(C) is a Hilbert space with reproducing kernel Kw(z) = e
π
2 |w|2Fw(z),

we have

|F(z)|2e−π |z|2 ≤ ‖F‖2
F2 (1.30)

for all F ∈ F2(C), with equality at some z = z0 if and only if F = cFz0 for
some c ∈ C (see e.g. [33, Proposition 2.1]). Since in any case I ′(0) = T :=
maxz∈C |F(z)|2e−π |z|2 , (1.29) shows that equality in (1.16) forces equality (for at
least one z) also in (1.30), and this proves the last part of Theorem B.

In the rest of this introduction (and also in Sect. 2) we assume without loss of
generality the normalization condition ‖F‖F2 = 1. A simple but fundamental obser-
vation to both our proofs of Theorem 1.5 is that equality in (1.30) can be precisely
quantified: indeed,

min
z0∈C|c|=1

‖F − cFz0‖2
F2 = 2(1 − √

T ) ≤ 2(1 − T ), (1.31)

cf. Lemma 2.5 below. Thus, to prove estimate (1.17) in Theorem 1.5, we need to
show that the deficit controls (1 − T ).

Our first proof of Theorem 1.5 is based on a careful study of the area between
the graphs of s �→ u∗(s) and s �→ e−s . Consider a parameter s∗ > 0, defined to be a
solution of the equation

u∗(s∗) = e−s∗
.

Such a solution always exists and, as soon as T < 1, it is unique. An argument relying
on the convexity inequality (1.25) yields

ˆ s∗

0

(
e−s − u∗(s)

)
ds ≤ e|�|δ, δ := δ(F ; {u > u∗(|�|)}), (1.32)
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cf. Lemma 2.3. Thus, to prove the desired stability estimate (1.17), by (1.31) and
(1.32) it is enough to show that the integral above controls (1 − T ). In fact, it is not
difficult to see that this integral controls (1 − T ) to a suboptimal power, as we have

(1 − T )2

2
=
ˆ s∗

0
(1 − s − T )+ ds ≤

ˆ s∗

0

(
e−s − u∗(s)

)
ds ≤ e|�|δ. (1.33)

Thus, by (1.31), (1.33) already yields a suboptimal form of stability.
To upgrade (1.33) to an optimal estimate, we need to estimate the integral in (1.32)

much more precisely, and our approach is to give a precise quantification of the equal-
ity cases in (1.24). By passing to the inverse functions we have

ˆ T

e−s∗

(
log

1

t
− μ(t)

)
dt ≤

ˆ s∗

0

(
e−s − u∗(s)

)
ds, (1.34)

cf. (2.50) below, and our proof proceeds by establishing a sharp estimate for the
distribution function μ(t): precisely, there is a universal constant C > 0 such that

μ(t) ≤ (1 + C(1 − T )) log
T

t
, (1.35)

provided that t and T are sufficiently close to 1 (see Lemma 2.1); in this paper, C

always denotes a universal constant, which however may change from line to line.
Note that, by the suboptimal estimate (1.33), this restriction on t , T does not restrict
generality. Establishing (1.35) is the most delicate part of the whole argument, as this
estimate relies on a cancellation effect due to analyticity of F . The desired estimate
(1.17) then follows by an elementary analysis, after plugging in (1.35) into (1.34) and
using again (1.31) and (1.32).

Concerning the stability of the set in (1.19), we note that it is not clear how to
quantify inequality (1.27) used in the proof of Theorem B described above, at least
for general sets �. Nonetheless, since we already have estimate (1.17), we know that
u is close to a Gaussian. This allows us to first compare � with Au∗(|�|), and then
compare Au∗(|�|) with a ball.

The described strategy also works to show the stability of a similar Faber-Krahn
inequality for wavelet transforms (see [36]), after adapting the current arguments. We
plan to address this in a future work.

1.3 The geometry of super-level sets and a variational approach

As mentioned above, we will give two different proofs of Theorem 1.5, the first one
having been described in the previous subsection. We now describe our second proof,
which is variational in nature and based on the following result, which is of indepen-
dent interest:

Proposition 1.6 There are small explicit constants δ0, c > 0 such that the following
holds: for all F ∈F2(C) such that

esδ(F ;Au∗(s)) ≤ δ0
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and for all s < c log(1/δ0), the super-level set

Au∗(s) = {z ∈C : u(z) > u∗(s)}
has smooth boundary and convex closure.

Proposition 1.6 shows in particular that level sets of u sufficiently close to its
maximum can be seen as smooth graphs over a circle, thus they can be deformed
to a circle through an appropriate flow. This observation, in turn, allows us to give
a variational approach to Theorem 1.5, in the spirit of Fuglede’s computation [16]
for the quantitative isoperimetric inequality. We refer the reader to [20] for a detailed
introduction to variational methods in shape-optimization problems.

To be precise, and comparing with (1.28), for some fixed s > 0 we consider the
functional

K : F �→ IF (s)

‖F‖2
F2

.

We study perturbations of F0 ≡ 1, i.e. we consider F = 1+ εG for some small ε > 0.
Taking � = Au∗(s), we note that by a formal Taylor expansion we have

δ(1 + εG;�) = 1

1 − e−|�|
(
K[1] −K[1 + εG])

≥ 1

1 − e−|�|
(

− ε2

2
∇2K[1](G,G) + o(ε2)

)
,

since ∇K[1](G) = 0 for all G ∈F2(C) satisfying the orthogonality conditions

〈1,G〉F2 = 〈z,G〉F2 = 0,

according to Theorem 5.1 and Lemma 5.2. Thus, once the Taylor expansion above has
been justified (and this is achieved in Appendix A), we see that for small perturbations
of F0 ≡ 1 the deficit is governed by the second variation of K. For stability to hold,
this variation ought to be uniformly negative definite, since ε is essentially the left-
hand side in (1.17). In Proposition 5.3 we show that, under the above orthogonality
conditions, we have

1

2
∇2K[1](G,G) ≤ −se−s‖G‖2

F2 . (1.36)

This inequality is interesting for several reasons. Firstly, it is sharp, as highlighted by
taking G(z) = z2. Secondly, by the suboptimal stability result (1.33), to prove (1.17)
it is enough to consider functions with small deficit. Therefore, the above Taylor
expansion, combined with (1.36), easily yields the stability estimate (1.17), although
with a suboptimal dependence of the constant on |�|. Finally, the non-degeneracy
of ∇2K provided by (1.36), combined once again with the above Taylor expansion,
shows that the deficit behaves quadratically near F0 ≡ 1, which leads to a direct proof
of the optimality of our estimates, as claimed in Remark 1.2.
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1.4 Outline

In Sect. 2 we give a first proof of (1.17), following the strategy described in Sect. 1.2
above. In Sect. 3 we study the geometry of the super-level sets of functions with small
deficit and, in particular, we prove Proposition 1.6 above. In Sect. 4 we prove the set
stability estimate (1.8). Section 5 contains the variational proof described in Sect. 1.3
and in particular the proof of (1.36). In Sect. 6 we prove the claims from Remark 1.2.
Finally, in Sect. 7 we extend our results to the higher-dimensional setting, as claimed
in Remark 1.3.

2 First proof of the function stability part

The goal of this section is to prove (1.17), by combining a series of new results
(potentially of independent interest) valid for arbitrary functions F ∈ F2, which for
convenience will be assumed to be normalized by

‖F‖F2 = 1. (2.1)

In these statements, we will make extensive use of the notation and the background
results recalled in Sect. 1.2, concerning the functions u(z), μ(t) and u∗(s) that can
be associated with a given F ∈ F2. In particular, as in (1.23), in our statements we
will let

T := max
z∈C

u(z) = u∗(0) = max
z∈C

|F(z)|2e−π |z|2 , (2.2)

recalling that T ∈ [0,1] whenever (2.1) is assumed.
We also note that, since u∗ is (by its definition) equimeasurable with u and de-

creasing, there holds

ˆ
{u>u∗(s0)}

u(z)dz =
ˆ s0

0
u∗(s)ds ∀s0 ≥ 0. (2.3)

Moreover, as recalled in Sect. 1.2, when F = cFz0 (with |c| = 1) is one of the optimal
functions described in Theorem B, one has μ(t) = log+ 1

t
or, equivalently, u∗(s) =

e−s . For this reason, a careful comparison between e−s and u∗(s) (for an arbitrary
F satisfying (2.1)) will be the core of the results of this section. Since, when (2.1)
holds, letting s0 → ∞ in (2.3) we have

1 =
ˆ ∞

0
u∗(s)ds =

ˆ ∞

0
e−s ds, (2.4)

as noted in [27] there exists at least one value s∗ > 0 for which

u∗(s)
{

≤ e−s if s ∈ [0, s∗]
≥ e−s if s ≥ s∗ (2.5)
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or, equivalently, in terms of the inverse functions, a value t∗ ∈ (0, T ) for which

μ(t)

{
≥ log 1

t
if t ∈ (0, t∗]

≤ log 1
t

if t ∈ [t∗, T ] (2.6)

(note μ(t) = 0 for t ≥ T ). When T = 1 (or, equivalently, if F is one of the optimal
functions described in Theorem B, see [33, Proposition 2.1]) and hence u∗(s) = e−s ,
clearly all values of s∗ (or t∗) have this property, but when T < 1 we will prove in
Corollary 2.2 that s∗ and t∗ are in fact unique, with an unexpected universal upper
bound on t∗ (or lower bound on s∗).

With this background, we are now ready to state and prove the results of this
section, starting with a sharp estimate for μ(t), which shows that (1.24) becomes
almost an equality when T is close to 1.

Lemma 2.1 For every t0 ∈ (0,1), there exists a threshold T0 ∈ (t0,1) and a constant
C0 > 0 with the following property. If F ∈ F2(C) is such that ‖F‖F2 = 1 and T ≥
T0, then

μ(t) ≤
(

1 + C0
1 − T

T

)
log

T

t
∀t ∈ [t0, T ]. (2.7)

We note, before proving such a result, that the proof presented below shows that
one can choose C0 = C/t3

0 , where C is some universal constant.

Proof Given t0 ∈ (0,1) and F as in the statement, we split the proof into several
steps.

STEP I. We may assume that u(z) achieves its absolute maximum T at z = 0 and
that F(0) is a real number, so that F(0) = √

T . Expanding F with respect to the
orthonormal basis of monomials (1.13), we have

F(z)√
T

= 1 + R(z), z ∈C, (2.8)

where R(z) is the entire function

R(z) :=
∞∑

n=2

an√
T

πn/2zn

√
n! , z ∈ C (2.9)

The fact that a1 = 0, i.e. F ′(0) = 0, follows easily from our assumption that u(z) has
a critical point at z = 0, which by (1.20) forces a critical point for |F(z)|2 and ulti-
mately for F(z). The assumption that 1 = ‖F‖2

F2 takes the form 1 = T +∑∞
n=2 |an|2,

which we record in the form

∞∑
n=2

|an|2
T

= 1 − T

T
=: δ2, (2.10)
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hereby defining δ. In the sequel we will often tacitly assume that δ is small enough,
depending only on t0; in the end, the required smallness of δ will determine the
threshold T0 in the statement of Lemma 2.1.

From (2.9), Cauchy-Schwarz and (2.10) we obtain

|R(z)|2 ≤
( ∞∑

n=2

|an|2
T

)( ∞∑
n=2

πn|z|2n

n!

)
= δ2

(
eπ |z|2 − 1 − π |z|2

)
. (2.11)

In particular, |R(z)|2 ≤ δ2
(
eπ |z|2 − 1

)
, hence squaring (2.8) we have

|F(z)|2
T

≤ 1 + δ2
(
eπ |z|2 − 1

)
+ h(z), (2.12)

where h(z) is the real valued harmonic function

h(z) := 2 ReR(z), z ∈ C. (2.13)

STEP II: Estimates for h. Since |h(z)| ≤ 2|R(z)|, the elementary inequality ex −
1 − x ≤ x2

2 ex , written with x = π |z|2 and combined with (2.11), implies

|h(z)| ≤ √
2π δ|z|2e π |z|2

2 , ∀z ∈ C. (2.14)

Differentiating (2.9), and then using Cauchy-Schwarz and (2.10) as in (2.11), we have

|R′(z)| ≤
∞∑

n=2

|an|√
T

nπn/2|z|n−1

√
n! ≤ δ

( ∞∑
n=2

n2πn|z|2(n−1)

n!

) 1
2

≤ δ
√

2π |z|e π |z|2
2 ,

(2.15)
having used the inequality n2

n! ≤ 2
(n−2)! in the last passage. Similarly, differentiating

(2.9) twice, using Cauchy-Schwarz and estimating the resulting power series, we find

|R′′(z)| ≤ δ

( ∞∑
n=2

n2(n − 1)2πn|z|2(n−2)

n!

) 1
2

≤ δC(1 + |z|2)e π |z|2
2 . (2.16)

By (2.13) and the Cauchy-Riemann equations |∇h(z)| = 2|R′(z)| and |D2h(z)| =
2
√

2|R′′(z)|, we obtain the following uniform estimates with respect to the angular
variable θ for the first and second radial derivatives of h(reiθ ):

∣∣∣∣∂h(reiθ )

∂r

∣∣∣∣ ≤ δ2
√

2πre
πr2

2 , (2.17)

and
∣∣∣∣∂

2h(reiθ )

∂r2

∣∣∣∣ ≤ δC(1 + r2)e
πr2

2 . (2.18)
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STEP III: Definition of Eσ and rσ (θ). Assuming T > t0, we consider any t ∈
[t0, T ) and any complex number z = reiθ (r ≥ 0), and we observe that

u(reiθ ) > t ⇐⇒ teπr2

T
<

|F(reiθ )|2
T

.

Hence, by virtue of (2.12), we obtain the implication

u(reiθ ) > t =⇒ gθ (r,1) < 1, (2.19)

where, for every fixed θ ∈ [0,2π], gθ is defined as

gθ (r, σ ) := eπr2
(

t

T
− δ2

)
+ δ2 − σ h(reiθ ), r ≥ 0, σ ∈ [0,1]. (2.20)

The variable σ ∈ [0,1] plays the role of a parameter that defines the family of planar
sets

Eσ :=
{
reiθ ∈C | gθ (r, σ ) < 1

}
, σ ∈ [0,1].

Since (2.19) is equivalent to the set inclusion {u > t} ⊆ E1, (2.7) will be proved if we
show that

|E1| ≤
(

1 + Cδ2

t3
0

)
log

T

t
. (2.21)

The advantage of the parameter σ is that we can easily prove the analogous estimate
for E0 – which is a circle, since gθ (r,0) is independent of θ –, and then show that this
estimate is inherited by every Eσ (including E1), by exploiting a cancellation effect
due to the harmonicity of h.

We first show that each set Eσ is star-shaped with respect to the origin, by showing
that gθ (r, σ ) is increasing in r (for fixed θ and σ ). Using (2.17) and assuming e.g.
that δ2 + √

2δ ≤ t0/2, we have from (2.20)

∂gθ (r, σ )

∂r
= 2πreπr2

(
t

T
− δ2

)
− σ

∂h(reiθ )

∂r

≥ 2πreπr2
(
t0 − δ2

)
− δ2

√
2πre

πr2
2

≥ 2πreπr2
(
t0 − δ2 − √

2δ
)

≥ πt0re
πr2

> 0.

(2.22)

Since gθ (0, σ ) = t/T ≥ t0, integrating the previous bound we also obtain that

gθ (r, σ ) ≥ t0

2

(
1 + eπr2)

, ∀r ≥ 0, ∀σ ∈ [0,1], (2.23)

and hence, since gθ (0, σ ) = t/T < 1, for every σ ∈ [0,1] the equation in r > 0

gθ (r, σ ) = 1 (2.24)
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has a unique solution rσ > 0, which we shall also denote by rσ (θ) when the depen-
dence of rσ on the angle θ is to be stressed, as in (2.25) below. Since Eσ is star-
shaped, using polar coordinates we can compute its area |Eσ | in terms of rσ , as

f (σ ) := |Eσ | = 1

2

ˆ 2π

0
rσ (θ)2 dθ, σ ∈ [0,1]. (2.25)

Notice that f (1) is the area of E1 that we want to estimate as in (2.21), while

f (0) = 1

2

ˆ 2π

0
r0(θ)2 dθ = πr2

0 , (2.26)

since when σ = 0, equation (2.24) simplifies to

eπr2
0

(
t

T
− δ2

)
+ δ2 = 1, (2.27)

so r0 is independent of θ and E0 is a ball of radius r0. Note that the sets Eσ are
uniformly bounded, since (2.23) and (2.24) entail that

πr2
σ ≤ log

2

t0
, ∀σ ∈ [0,1]. (2.28)

STEP IV: Estimates for r ′
σ and r ′′

σ . By (2.22) and the implicit function theorem, rσ
is, for every fixed value of θ ∈ [0,2π], a smooth, bounded function of the parameter
σ ∈ [0,1]. Denoting for simplicity by r ′

σ its derivative with respect to σ , we have

r ′
σ = ∂rσ (θ)

∂σ
= −

∂gθ

∂σ
(rσ , σ )

∂gθ

∂r
(rσ , σ )

= h(rσ eiθ )

∂gθ

∂r
(rσ , σ )

, σ ∈ [0,1], (2.29)

and using (2.14) and (2.22) we find the bound

|r ′
σ | ≤

√
2 δrσ

t0
e− πr2

σ
2 . (2.30)

In particular, this implies that

r2
σ ≤ 2r2

0 ∀σ ∈ [0,1], (2.31)

since by (2.30) |r ′
σ |/rσ ≤ √

2 δ/t0 ≤ log
√

2 provided δ is small enough, we have for
every σ ∈ [0,1]

log rσ = log r0 +
ˆ σ

0

r ′
s

rs
ds ≤ log r0 + σ log

√
2 ≤ log r0 + log

√
2,

and (2.31) follows.
Differentiating (2.29) with respect to σ , we have

r ′′
σ =

∂h(reiθ )
∂r

r ′
σ

∂gθ

∂r

−
h(reiθ )

(
∂2gθ

∂σ∂r
+ ∂2gθ

∂r2 r ′
σ

)
(

∂gθ

∂r

)2
. (2.32)
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Since by (2.20) and (2.17)
∣∣∣∣ ∂2gθ

∂σ∂r

∣∣∣∣ =
∣∣∣∣∂h(reiθ )

∂r

∣∣∣∣ ≤ δCre
πr2

2 ,

while by (2.20) and (2.18)
∣∣∣∣∂

2gθ

∂r2

∣∣∣∣ ≤ (2π + 4π2r2)eπr2
(

t

T
− δ2

)
+ σ

∣∣∣∣∂
2h(reiθ )

∂r2

∣∣∣∣
≤ t

T
(2π + 4π2r2)eπr2 + δC(1 + r2)e

πr2
2 ≤ C(1 + r2)eπr2

,

from (2.32) and (2.14) we see that

|r ′′
σ | ≤ δ2

√
2πrσ e

πr2
σ

2

πt0rσ eπr2
σ

|r ′
σ | +

√
2πδr2

σ e
πr2

σ
2

(πt0rσ eπr2
σ )2

(
δCrσ e

πr2
σ

2 + C(1 + r2
σ )eπr2

σ |r ′
σ |

)

≤ δCe− πr2
σ

2

t0
|r ′

σ | + δCe− 3πr2
σ

2

t2
0

(
δrσ e

πr2
σ

2 + (1 + r2
σ )eπr2

σ |r ′
σ |

)
.

Combining with (2.30),

|r ′′
σ | ≤ δ2Crσ e−πr2

σ

t2
0

+ δCe− 3πr2
σ

2

t2
0

(
δrσ e

πr2
σ

2 + (1 + r2
σ )

δCrσ

t0
e

πr2
σ

2

)
≤ δ2Crσ

t3
0

. (2.33)

STEP V: Proof of (2.21). Now, recalling the bounds (2.28) and (2.30), one can
differentiate under the integral in (2.25), obtaining

f ′(σ ) =
ˆ 2π

0
rσ (θ)

∂rσ (θ)

∂σ
dθ. (2.34)

Differentiating (2.34) again, and then using (2.33) and (2.30), we obtain the estimate

|f ′′(σ )| ≤
ˆ 2π

0

(
|r ′

σ |2 + |rσ r ′′
σ |

)
dθ ≤ Cδ2

t3
0

ˆ 2π

0
r2
σ dθ, σ ∈ [0,1].

This, combined with (2.31) and recalling (2.26), gives

|f ′′(σ )| ≤ Cδ2

t3
0

f (0), ∀σ ∈ [0,1]. (2.35)

We now claim that f ′(0) = 0, which is the crucial step of the proof. Indeed, when
σ = 0, we see from (2.27) and (2.22) that r0 and ∂gθ/∂r are independent of θ , and
therefore, by (2.29), when σ = 0 we may write

rσ (θ)
∂rσ (θ)

∂σ

∣∣∣∣
σ=0

= r0
h(r0 eiθ )

∂gθ

∂r
(r0,0)

= φ(r0)h(r0 eiθ ),
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where φ(r0) �= 0 depends on r0 but is independent of θ . Therefore, from (2.34),

f ′(0) =
ˆ 2π

0
rσ (θ)

∂rσ (θ)

∂σ

∣∣∣
σ=0

dθ = φ(r0)

ˆ 2π

0
h(r0 eiθ )dθ.

On the other hand, the last integral vanishes, since the mean value theorem applied to
the harmonic function h gives

1

2πr0

ˆ 2π

0
h(r0e

iθ )dθ = h(0) = 0.

Hence, as f ′(0) = 0, we may write, through Taylor’s formula,

f (s) = f (0) + f ′′(σ )

2
s2 for some σ ∈ (0, s),

and taking s = 1 and using (2.35) gives

|E1| = f (1) ≤ f (0) + Cδ2

t3
0

f (0) =
(

1 + Cδ2

t3
0

)
f (0). (2.36)

Now, as we may assume that 2δ2 ≤ t0, we claim that

πr2
0 ≤

(
1 + 2δ2

t0

)
log

T

t
, (2.37)

which, according to (2.27), is equivalent to

eπr2
0 = 1 − δ2

t
T

− δ2
≤

(
T

t

)1+ 2δ2
t0

. (2.38)

Setting for convenience κ = 1/t0 and defining the function

ψ(τ) := δ2 +
(

1 − δ2τ
)

τ 2δ2κ , τ ∈ [1, κ], (2.39)

we observe that (2.38) is equivalent to ψ(T/t) ≥ 1. Since ψ(1) = 1, T/t ∈ [1, κ] and
ψ is concave (note that 2δ2κ ≤ 1 by assumption), it suffices to prove that ψ(κ) ≥ 1.
Indeed, we have

ψ(κ) = δ2 +
(

1 − δ2κ
)

e2δ2κ logκ ≥ δ2 +
(

1 − δ2κ
)

(1 + 2δ2κ logκ)

= 1 + δ2
(

1 + 2κ(1 − δ2κ) logκ − κ
)

≥ 1 + δ2 (1 + κ logκ − κ) ,

having used 1 − δ2κ ≥ 1
2 in the last passage. This shows that ψ(κ) ≥ 1, hence (2.37)

is established.
Thus, (2.21) follows by combining (2.36) with (2.26) and (2.37). �
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Corollary 2.2 (Uniqueness and non-degeneracy of t∗) If F ∈ F2(C) is such that
‖F‖F2 = 1 and T < 1, then there is a unique value t∗ ∈ (0, T ) satisfying (2.6). More-
over,

t∗ ≤ τ ∗, (2.40)

for some universal constant τ ∗ ∈ (0,1).

Note that the uniqueness of t∗ implies the uniqueness of s∗ defined in (2.5), and
t∗ = e−s∗

. We also note that there cannot be any universal lower bound on t∗, since
t∗ ≤ T and T can be arbitrarily small.

Proof If (2.6) were true for two distinct values t1 < t2 < T of t∗, then we would have
μ(t) = log 1/t for every t ∈ [t1, t2], whence μ′(t) = −1/t for every t ∈ (t1, t2). But
the proof of [33, Remark 3.5] shows that this happens if and only if the corresponding
sets {u > t} are balls, |∇u| being constant on each boundary ∂{u > t} = {u = t}:
this in turn implies that u(z) = e−π |z−z0|2 , for some z0 ∈ C and hence u(z0) = 1 (or
equivalently that u∗(s) ≡ e−s ), contradicting to our assumption that T < 1.

Now let T0 and C0 be the constants provided by Lemma 2.1 when t0 = 1
2 , and

define

τ ∗ := max

{
1

2
, T0, e

− 1
C0

}
.

Given F as in our statement, if t∗ ≤ 1/2 then clearly t∗ ≤ τ ∗, and the same is true if
T < T0, because certainly t∗ ≤ T . Finally, if t∗ > 1/2 and T ≥ T0, then (2.7) written
with t = t∗ becomes

log
1

t∗
= μ(t∗) ≤ (1 + C0(1 − T )) log

T

t∗
,

which is equivalent to

1

t∗
≤

(
T

t∗

)1+C0(1−T )

, that is, t∗ ≤ T
1+ 1

C0(1−T ) .

But then, since T ≤ 1, we obtain

t∗ ≤ T
1

C0(1−T ) ≤ e
− 1

C0

and t∗ ≤ τ ∗ also in this case (notice that x
1

1−x ≤ e−1 for every x ∈ (0,1)). �

We are now ready to start the comparison between u∗(s) and e−s , where the num-
ber s∗, uniquely defined by (2.5) if T < 1, will play a crucial role. In the next two
lemmas, however, it is not necessary to assume that T < 1, since when T = 1 (and
u∗(s) = e−s ) their claims remain true (though trivial) for all values of s∗.
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Lemma 2.3 For every F ∈F2(C) such that ‖F‖F2 = 1 and every s0 > 0, there holds

(1 − T )2

2
≤
ˆ s∗

0

(
e−s − u∗(s)

)
ds ≤ δs0e

s0, (2.41)

where T is as in (2.2) and

δs0 := 1 −
´
{u>u∗(s0)} u(z)dz

1 − e−s0
= 1 −

´ s0
0 u∗(s)ds

1 − e−s0
. (2.42)

Note that δs0 coincides with the deficit δ(F ;�) of Theorem 1.5 when � = {u >

u∗(s0)} is the super-level set of u, with measure s0.

Proof Instead of writing explicitly e−s , we will use the notation

v∗(s) := e−s , s ≥ 0. (2.43)

This will be particularly useful in Sect. 7, when we adapt the current proof to higher
dimensions.

Since u∗(x) ≤ T and v∗(s) ≥ 1 − s, the first inequality in (2.41) follows from

ˆ s∗

0

(
v∗(s) − u∗(s)

)
ds ≥

ˆ s∗

0

(
1 − s − T

)
+ ds

=
ˆ 1−T

0
(1 − s − T )ds = (1 − T )2

2
. (2.44)

To prove the second inequality, note that 1 − e−s0 = ´ s0
0 v∗(s)ds, and hence we can

rewrite (2.42) as

ε := δs0

ˆ s0

0
v∗(s)ds =

ˆ ∞

s0

(
u∗(s) − v∗(s)

)
ds =

ˆ s0

0

(
v∗(s) − u∗(s)

)
ds. (2.45)

The key of the proof is that the ratio

r(s) := u∗(s)
v∗(s)

is an increasing function on [0,+∞), (2.46)

as follows immediately from (1.25) since r(s) = esu∗(s). In order to implement such
an idea, we must now distinguish between some cases:

CASE 1: s0 > s∗. Since r(s∗) = 1 and r(s) is increasing by the convexity inequal-
ity (1.25), we have from (2.45)

ε =
ˆ ∞

s0

u∗(s)
(

1 − 1

r(s)

)
ds ≥

(
1 − 1

r(s0)

)ˆ ∞

s0

u∗(s)ds.

On the other hand, for the same reason,
ˆ s0

s∗

(
u∗(s) − v∗(s)

)
ds =

ˆ s0

s∗
u∗(s)

(
1 − 1

r(s)

)
ds ≤

(
1 − 1

r(s0)

)ˆ s0

s∗
u∗(s)ds,
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which, combined with the previous estimate, gives

ˆ s0

s∗

(
u∗(s) − v∗(s)

)
ds ≤ ε

´ s0
s∗ u∗(s)ds´∞
s0

u∗(s)ds
.

Thus, recalling (2.45) and using the last inequality, we find that

ˆ ∞

s∗

(
u∗(s) − v∗(s)

)
ds ≤ ε + ε

´ s0
s∗ u∗(s)ds´∞
s0

u∗(s)ds
= ε

´∞
s∗ u∗(s)ds´∞
s0

u∗(s)ds
≤ ε´∞

s0
v∗(s)ds

,

(2.47)
having used (2.4) for the numerator, and the fact that u∗(s) ≥ v∗(s) when s ≥ s∗, for
the denominator. Given that clearly ε ≤ δs0 , the second inequality in (2.41) follows
immediately since

´∞
s0

v∗(s)ds = e−s0 .
CASE 2: s0 ≤ s∗. As r(s∗) = 1 and r(s) is increasing, we have from (2.45) again

that

ε =
ˆ s0

0
v∗(s) (1 − r(s))ds ≥ (1 − r(s0))

ˆ s0

0
v∗(s)ds.

On the other hand, for the same reason,

ˆ s∗

s0

(
v∗(s) − u∗(s)

)
ds =

ˆ s∗

s0

v∗(s) (1 − r(s))ds ≤ (1 − r(s0))

ˆ s∗

s0

v∗(s)ds,

which combined with the previous estimate gives

ˆ s∗

s0

(
v∗(s) − u∗(s)

)
ds ≤ ε

´ s∗
s0

v∗(s)ds´ s0
0 v∗(s)ds

.

Thus, using the last inequality, we find

ˆ s∗

0

(
v∗(s) − u∗(s)

)
ds ≤ ε + ε

´ s∗
s0

v∗(s)ds´ s0
0 v∗(s)ds

= ε

´ s∗
0 v∗(s)ds´ s0
0 v∗(s)ds

≤ ε´ s0
0 v∗(s)ds

= δs0,

(2.48)
and the second inequality in (2.41) follows also in this case. �

We are now ready to show that, in (2.41), the first inequality holds in fact in a
much stronger form.

Lemma 2.4 Under the same assumptions as in Lemma 2.3, there holds

1 − T ≤ C

ˆ s∗

0

(
e−s − u∗(s)

)
ds, (2.49)

where C > 0 is a universal constant.
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Proof Passing to the inverse functions, and recalling that μ(t), restricted to (0, T ), is
the inverse of u∗(s), we have

ˆ s∗

0

(
e−s − u∗(s)

)
ds ≥

ˆ s∗

0

(
min{T , e−s} − u∗(s)

)
ds =

ˆ T

t∗

(
log

1

t
− μ(t)

)
dt.

(2.50)
Observe that, given any universal constant τ ∈ (0,1), in proving (2.49) we may as-
sume (if convenient) that

T ≥ τ, (2.51)

because otherwise (2.49) would immediately follow from the first inequality in
(2.41), as soon as C ≥ 2/(1 − τ). In particular, letting T0 and C0 be the constants
provided by Lemma 2.1 when t0 = τ ∗, where τ ∗ is the constant obtained in Corollary
2.2, we may assume that T ≥ T0, so that (2.7) reads

μ(t) ≤ (1 + C0(1 − T )) log
T

t
∀t ∈ [τ ∗, T ]. (2.52)

Relying on (2.40), we now use (2.52) to minorize the last integral in (2.50). More
precisely, letting τ1 ∈ [τ ∗,1) denote a universal constant to be chosen later, and fur-
ther assuming (in addition to T ≥ T0) that (2.51) holds also with τ = τ1, from (2.40),
(2.52) and (2.50) we find

ˆ s∗

0

(
e−s − u∗(s)

)
ds ≥

ˆ T

τ1

(
log

1

t
− (1 + C0(1 − T )) log

T

t

)
dt. (2.53)

Using − logT ≥ 1 − T , for every t ∈ (τ1, T ) we have

log
1

t
− (1 + C0(1 − T )) log

T

t
= − logT − C0(1 − T ) log

T

t

≥ 1 − T − C0(1 − T ) log
1

τ1
,

and choosing now τ1 ∈ [τ ∗,1) sufficiently close to 1 in such a way that

ε1 := 1 − C0 log
1

τ1
> 0, (2.54)

from (2.53) and the subsequent estimate we obtain

ˆ s∗

0

(
e−s − u∗(s)

)
ds ≥

ˆ T

τ1

(1 − T )

(
1 − C0 log

1

τ1

)
dt ≥ ε1(1 − T )(T − τ1).

(2.55)
Finally, choosing a larger number τ2 ∈ (τ1,1) and further assuming that (2.51) holds
also with τ = τ2, we obtain

ˆ s∗

0

(
e−s − u∗(s)

)
ds ≥ ε1(τ2 − τ1)(1 − T )

and (2.49) follows, by letting C−1 = ε1(τ2 − τ1). �
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The final ingredient we need is a well-known lemma, whose statement and proof
are well-known in the theory of Reproducing Kernel Hilbert spaces. For complete-
ness, we provide its proof here.

Lemma 2.5 If F ∈ F2(C) and ‖F‖F2 = 1, then

min
z0∈C|c|=1

‖F − cFz0‖2
F2 = 2

(
1 − √

T
)

≤ 2(1 − T ). (2.56)

Proof Since ‖Fz0‖F2 = 1 for every z0 ∈ C, for any c with |c| = 1 we have

‖F − cFz0‖2
F2 = 2 − 2 Re

〈
cF,Fz0

〉
F2 , (2.57)

and, since F2(C) is a reproducing kernel Hilbert space with kernel Kw(z) =
e

π
2 |w|2Fw(z), we have

〈
F,Fz0

〉
F2 = F(z0)e

− π
2 |z0|2 . Therefore,

‖F − cFz0‖2
F2 = 2 − 2 Re cF (z0)e

− π
2 |z0|2 ,

and choosing the unimodular c that minimizes the last term, we obtain for every z0

min|c|=1
‖F − cFz0‖2

F2 = 2 − 2|F(z0)|e− π
2 |z0|2 = 2 − 2

√
u(z0).

The equality in (2.56) then follows by minimizing over z0 ∈ C, while the inequality
is a direct consequence thereof. �

We are now ready to prove (1.17).

Proof of (1.17) By homogeneity, in (1.17) one can assume that F ∈ F2(C) and
‖F‖F2 = 1. Then, given � as in Theorem 1.5 and letting s0 = |�|, on combining
(2.56) with (2.49) and the second inequality in (2.41), one finds

min
z0∈C|c|=1

‖F − cFz0‖2
F2 ≤ Cδs0e

s0, (2.58)

where δs0 is the deficit defined in (2.42), relative to the super-level set {u > u∗(s0)}.
But (1.27) (rewritten with s = s0) reveals that δs0 ≤ δ(F ;�), where δ(F ;�) is the
deficit relative to � as defined in (1.18). Then (1.17) follows from (2.58), taking
square roots. �

3 The geometry of super-level sets

In this section we study, for a fixed number t > 0, some basic geometric properties of
the super-level sets {z ∈ C : uF (z) > t}. In the proof of Lemma 2.1 we saw that the
function gθ (r, σ ), defined in (2.20), is monotone increasing in r and, in particular, its
sub-level sets are star-shaped. We will soon see that, by doing a finer analysis, we can
prove a stronger version of this result, namely Proposition 1.6.
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We begin by discussing some useful normalizations that we will use throughout
the next sections. Let us first consider the quantity

ρ(F ) := min
z0∈C,c∈C

‖F − c · Fz0‖F2

‖F‖F2
.

Without loss of generality, we will assume that

ρ(F ) = min
c∈C

‖F − c‖F2

‖F‖F2
,

that is, the closest function to F in {cFz0}z0∈C,c∈C is a multiple of the constant func-

tion F0 ≡ 1. This follows by (2.57), since ρ(F )2 = minz0∈C
‖F‖2

F2 −|F(z0)|2e−π |z0 |2

‖F‖2
F2

.

Moreover, we can also assume that

F(0) = 1.

Now, we note that, by the previous assumptions, we have

‖F − c · Fz0‖2
F2 = ‖F‖2

F2 + |c|2 − 2 Re(cF (z0))e
−π |z0|2/2

≥ ‖F‖2
F2 + |c|2 − 2|c||F(z0)|e−π |z0|2/2

≥ ‖F‖2
F2 − max

z0∈C
|F(z0)|2e−π |z0|2 .

(3.1)

This shows that ρ(F ) is attained at z0 = 0 if and only if 0 is a maximum for uF ;
hence, our normalization also implies

F ′(0) = 0.

Observe that ρ differs slightly from the distance to the extremizing class used in
(1.17), due to the condition on c. However, it is equivalent to this distance: indeed,
by Lemma 2.5, we have

ρ(F ) ≤ min
z0∈C,|c|=‖F‖F2(C)

‖F − c · Fz0‖F2

‖F‖F2
= min|c|=‖F‖F2(C)

‖F − c‖F2

‖F‖F2
≤ √

2ρ(F ).

(3.2)
Lemma 2.5 also shows that

2
‖F‖F2 − 1

‖F‖F2
= 2

(
1 − |F(0)|

‖F‖F2

)
= min|c|=‖F‖F2(C)

‖F − c‖2
F2

‖F‖2
F2

. (3.3)

Note that, by our normalizations, we have F(0) = 1 ≤ ‖F‖F2 . One the other hand,
(3.3), Lemma 2.5, and (2.41) show that

1 ≤ ‖F‖F2 ≤ 2

2 − C(e|�|δ(F ;�))1/2 ≤ 2, (3.4)

provided that the deficit is sufficiently small.
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In addition to ρ(F ), it will be convenient to consider the slightly different quantity

ε(F ) := ‖F − 1‖F2 .

This allows us to write

F = 1 + εG, where ‖G‖F2 = 1 and ε = ε(F ), (3.5)

and then the above assumptions are translated as

〈G,1〉F2 = 〈G,z〉F2 = 0. (3.6)

Note that, by (3.4), we can assume that ε is sufficiently small: indeed, if e|�|δ(F ;�)

is sufficiently small, then

ε(F )

2
≤ ε(F )

‖F‖F2
= ρ(F ) ≤ min|c|=‖F‖F2

‖F − c‖F2

‖F‖F2
≤ C

(
e|�|δ(F ;�)

)1/4
. (3.7)

We are now ready to begin the main part of this section. We begin with a key
technical lemma which shows that, above a certain threshold, all level sets of the
function uF behave like those of the standard Gaussian, as long as ε(F ) is sufficiently
small.

Lemma 3.1 Let F ∈F2(C) satisfy the normalizations in the beginning of this section.
There are constants ε0, c1 > 0 with the following property: if ε(F ) ≤ ε0, then for any
α ∈ [0,2π], the function

Gα(r) := uF (reiα) = |F(reiα)|2e−πr2

is strictly decreasing on the interval
[
0, c1

√
log(1/ε(F ))

]
.

Proof Without loss of generality we will take α = 0. In order to prove the desired
assertion, we shall divide our analysis in two cases.

CASE 1: 1/10 < r < c1
√

log(1/ε). We differentiate the function G0 in terms of r ,
which gives us

G′
0(r) = − 2πr|F(r)|2e−πr2 + 2 Re(F ′(r)F (r))e−πr2

= − 2πr(1 + 2ε Re(G(r)) + ε2|G(r)|2)e−πr2

+ 2ε Re(G′(r)(1 + εG(r)))e−πr2
,

(3.8)

where in the last line we used (3.5). In order to bound the last term we note that, by
the Cauchy integral formula,

|G′(w)| ≤ 2

|w| sup
|z|=2|w|

|G(z)| ≤ 2
e2π |w|2

|w| , (3.9)
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since |G(z)| ≤ eπ |z|2/2, and in addition

|1 + εG(r)| ≤ √
2e

π
2 r2

,

since ‖1 + εG‖F2 ≤ 2. Thus, as the ε2-term in (3.8) is negative, and

|ReG(r)|e−πr2 ≤ 1 as r > 1/10, we can estimate

G′
0(r) ≤ −2πr(e−πr2 − 2ε) + 8ε

r
e

3π
2 r2

.

Since r < c1
√

log(1/ε), we obtain that eπr2 ≤ eπc2
1 log(1/ε) = ε−πc2

1 . For all ε small

enough, we have e−πr2 − 2ε ≥ επc2
1 − 2ε > 0 provided that πc2

1 < 1. Since also
1/10 ≤ r , we have

G′
0(r) ≤ −2πr(επc2

1 − 2ε) + 80ε1− 3π
2 c2

1 .

Hence, as long as

5π

2
c2

1 < 1, (3.10)

the term −2πrεπc2
1 dominates over the others. Thus, for sufficiently small ε, we have

G′
0(r) < 0.

CASE 2: 0 < r ≤ 1/10. Notice that this case is more subtle, as G′
0(r) → 0 when

r → 0. We will show that the second derivative of G0 is strictly negative for r ∈
(0,1/10): thus the first derivative decreases in (0,1) and, as G′

0(0) = 0, it follows
that G′

0(r) < 0 in this interval, proving the claim.
Starting from (3.8), we compute:

G′′
0 (r) = − 2π(1 + 2ε Re(G(r)) + ε2|G(r)|2)e−πr2

− 4πεr(Re(G′(r)) + ε Re(G′(r)G(r)))e−πr2

+ 4π2r2(1 + 2ε Re(G(r)) + ε2|G(r)|2)e−πr2

+ 2ε Re(G′′(r)(1 + εG(r)))e−πr2 + 2ε2|G′(r)|2e−πr2

− 4πrε Re(G′(r)(1 + εG(r)))e−πr2
.

We now follow the same strategy as in the first case. For |w| ≤ 1, we find the estimates

|G′(w)| ≤ 4π

2π
max|z|=2

|G(z)| ≤ 2e2π , |G′′(w)| ≤ 4π

π
max|z|=2

|G(z)| ≤ 4e2π . (3.11)

Therefore we have

G′′
0 (r) ≤ −2π(1 − 2πr2)e−πr2 + εh(ε),
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where h : R → [0,∞) is a smooth function. Since r < 1/10, we have 1 − 2πr2 > 0
and so the first term above is negative. Hence, if ε is sufficiently small, it holds that
G′′

0 (r) < 0 for all r ∈ (0,1/10), and the conclusion follows. �

In spite of its simple nature, we can derive several important conclusions from
Lemma 3.1, such as the following result.

Lemma 3.2 Under the same hypotheses of Lemma 3.1, one may find a small constant
c2 > 0 such that, for t > ε(F )c2 , the level sets

{z ∈ C : uF (z) > t}
are all star-shaped with respect to the origin. Moreover, for such t , the boundary
∂{uF > t} = {uF = t} is a smooth, closed curve.

Proof Let c1 > 0 be given by Lemma 3.1. We first prove the following assertion: if
|z| > c1

√
log(1/ε) then

uF (z) < 4επc2
1 . (3.12)

As before, we use the decomposition (3.5) to write

uF (z) = (1 + 2ε Re(G(z)) + ε2|G(z)|2)e−π |z|2 .

For |z| > c1
√

log(1/ε), and ε sufficiently small, since ‖G‖F2 = 1 one readily sees
that

uF (z) ≤ επc2
1 (1 + 2ε + ε2) < 4επc2

1 ,

since we can choose πc2
1 ≤ 1

2 , cf. (3.10).

We now claim that the conclusion of the lemma holds with c2 = πc2
1

2 . If this is not
the case, there is t0 > εc2 such that At0 := {z ∈C : uF (z) > t0} is not star-shaped with
respect to 0. Thus, there would be a point w0 ∈ At0 , such that, for some r ∈ (0,1),
r · w0 /∈ At0 . By (3.12), we must have that

|w0| < c1
√

log(1/ε); (3.13)

indeed, if |w0| > c1
√

log(1/ε) then, by choosing ε even smaller if need be, we

would have u(w0) < 4επc2
1 < επc2

1/2 < t0, contradicting the fact that w0 ∈ At0 . How-
ever, (3.13) leads to a contradiction already: if we write eiα0 = w0|w0| then Lemma

3.1 ensures that the function s �→ |F(seiα0)|2e−πs2
is strictly decreasing for s <

c1
√

log(1/ε) and thus we would have

t0 > uF (rw0) > uF (w0) > t0,

which is a contradiction. Hence At0 is star-shaped with respect to the origin.
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The final claim of the lemma, concerning the smoothness of the boundary ∂{uF >

t} = {uF = t}, follows from the Inverse Function Theorem. Indeed, by (3.12) we see
that if z is such that uF (z) = t > εc2 then |z| < c1

√
log(1/ε), and Lemma 3.1 then

guarantees that ∇uF (z) �= 0. Thus t is a regular value of uF and the set {uF = t} is a
smooth curve. �

Lemmata 3.1 and 3.2 already show that the super-level sets of uF are regular and
have controlled geometry. We now show that they are in fact convex:

Proposition 3.3 Under the same assumptions as in Lemma 3.1, there are small con-
stants ε0, c3 > 0 such that, as long as ε(F ) ≤ ε0 and s < −c3 log(ε(F )), the set

Au∗
F (s) := {z ∈C : uF (z) > u∗

F (s)}
has convex closure.

Proof Choosing ε0 appropriately, we can apply Lemmas 3.1 and 3.2 to conclude that,
for t > ε(F )c2 , the level sets {z ∈ C : uF (z) > t} are all star-shaped with respect to
the origin and have smooth boundary.

We write, for shortness, u = uF and u0 = e−π |·|2 throughout the rest of this proof.
By the triangle inequality and (3.4), we have

|u − u0| =
∣∣∣(|F |2 − 1)e−π |z|2

∣∣∣
≤ |F − 1|(|F | + 1)e−π |z|2 ≤ ε(F )(‖F‖F2 + ‖1‖F2) ≤ 3ε(F )

(3.14)

and so
{
u0 > u∗(s) + 3ε(F )

} ⊂ {
u > u∗(s)

} ⊂ {
u0 > u∗(s) − 3ε(F )

}
. (3.15)

This implies that

s = |{u > u∗(s)}| ≥ |{u0 > u∗(s) + 3ε(F )}| = − log(u∗(s) + 3ε(F ))

or, rearranging,

u∗(s) ≥ e−s − 3ε(F ), (3.16)

In particular, if e−s > ε(F )c3 , then

u∗(s) ≥ 1

2
ε(F )c3 ≥ ε(F )c2 (3.17)

provided c3 and ε0 are chosen sufficiently small. Thus, for our choice of parameters,
the set Au∗(s) is star-shaped and has a smooth boundary.

Arguing similarly to Lemma 3.1 we see that, by further shrinking c3 if needed, we
have

‖u − u0‖C2(Au∗(s))
≤ Csε(F ), (3.18)
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whenever s ≤ −c3 log(ε(F )). Indeed, recalling again (3.5), (3.18) is equivalent to

∥∥∥(
Re(G) + ε

2
|G|2

)
· u0

∥∥∥
C2(Au∗(s))

≤ Cs

2
.

Using (3.9), (3.11), a suitable version of the first of those estimates for the second
derivative, and (3.14)–(3.17), we see that

∥∥∥(
Re(G) + ε

2
|G|2

)
· u0

∥∥∥
C2(Au∗(s))

≤ C sup
w∈Au∗(s)

e4π |w|2 . (3.19)

If w ∈ Au∗(s), by (3.15) and similarly to (3.16), we have

e−π |w|2 ≥ u∗(s) − 3ε(F ) ≥ e−s

2
,

and hence (3.19) implies (3.18) with Cs = C · e4s , where C is an absolute constant.
Let then κs denote the curvature of ∂Au∗(s) = {u = u∗(s)}, thus

κs = −∇2u[∇u,∇u]
|∇u|3 .

For 0 < s < −c3 log(ε(F )), by (3.15) and (3.17) we have {u0 > 1
4ε(F )c3} ⊃ Au∗(s),

and hence

|∇u0(z)| = 2π |z|e−π |z|2 ≥ Cε(F )c3 in ∂Au∗(s). (3.20)

Let us denote by κ̃s > 0 the curvature of the circle {u0 = u∗(s)} and notice that, by
(3.17), κ̃s → ∞ as s → 0. By (3.18) and (3.20), choosing c3 and ε0 sufficiently small,
we have an estimate

|κs − κ̃s | ≤ CCs

ε(F )

ε(F )2c3
≤ ε(F )

1
2 ,

where we used the bound on s in the last inequality. Combining the last two facts, we
see that we can choose ε0 small enough so that ε

1/4
0 ≤ κ̃s and ε

1/2
0 ≤ 1

2ε
1/4
0 . These

choices ensure that

ε
1/4
0

2
≤ κ̃s − ε

1/2
0 ≤ κs

for all s < −c3 log ε(F ). This lower bound implies that Au∗(s) is locally convex. We
then use the well-known Tietze–Nakajima theorem (see [32, 38]) which asserts that,
as Au∗(s) is a closed, connected set, its local convexity implies its convexity, and the
assertion is proved. �

Proof of Proposition 1.6 Proposition 1.6 follows immediately from Proposition 3.3
and (3.7), taking � = Au∗

F (s) as usual. �
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4 Proof of the set stability

In this section we complete the proof of our main Theorem 1.1. As explained in the
introduction, it suffices to prove its Fock space analogue, Theorem 1.5.

Proof of Theorems 1.1 and 1.5 Since the stability for the function has already been
proved in Sect. 2, it remains to prove stability of the set, i.e. estimate (1.8).

Fix f ∈ L2 as in the statement of Theorem 1.1, let F = Bf , uF (z) =
|F(z)|2e−π |z|2 and let us write δ = δ(F ;�) for simplicity. Clearly we may assume
that δ ≤ δ0, for some arbitrarily small constant δ0. We may also suppose that F is nor-
malized as at the beginning of Sect. 3 and so, as in (3.5), we can write F = 1 + εG,
where ‖G‖F2 = 1 satisfies (3.6) and ε satisfies (3.7).

Let A� := Au∗
F (|�|), as in (1.21). Let T be any transport map T : A� \ � → � \

A�, that is,

1�\A�(T (x))det∇T (x) = 1A�\�(x),

cf. [11, page 12] for details on the existence of such a map. Define

B :=
{
x ∈ A� \ � : |T (x)|2 − |x|2 > C|�|γ

}
,

where C|�|, γ are constants to be chosen later. Since T is a transport map,

ˆ
B

(u(z) − u(T (z)))dz =
ˆ

B

u −
ˆ
T (B)

u ≤
ˆ

A�

u −
ˆ

�

u =: d(�). (4.1)

In (4.1), the inequality holds by the fact that, for z ∈ A� \ �, uF (z) > u∗
F (|�|),

and the reverse inequality holds for z ∈ � \ A�. Note that from (1.28) we have the
bound

d(�) ≤ ‖F‖2
F2(1 − e−|�|) −

ˆ
�

u = ‖F‖2
F2(1 − e−|�|)δ ≤ 4(1 − e−|�|)δ, (4.2)

by (3.4) and the assumption that δ is sufficiently small.
STEP I. Control over B . In this step, we will show that

u(z) − u(T (z)) ≥ 5γ for z ∈ B, (4.3)

after choosing C|�| and γ correctly. To see this, we begin by writing

u(z) − u(T (z)) = e−π |z|2 − e−π |T (z)|2

+ 2ε
(

Re(G(z)e−π |z|2) − Re(G(T (z))e−π |T (z)|2)
)

+ ε2
(
|G(z)|2e−π |z|2 − |G(T (z))|2e−π |T (z)|2) .
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Since |G|2e−π |·|2 ≤ 1, we have promptly

u(z) − u(T (z)) ≥ e−π |z|2 − e−π |T (z)|2 − (4ε + ε2)

= e−π |z|2 (
1 − e−π

(|T (z)|2−|z|2)) − 4ε − ε2,
(4.4)

whenever z ∈ B . Moreover, since z ∈ B ⊂ A�, (3.14) shows that

e−π |z|2 ≥ u(z) − 3ε ≥ u∗(|�|) − 3ε ≥ e−|�| − 6ε >
e−|�|

2
;

here we used also

e−|�| − 3ε ≤ u∗(|�|) ≤ e−|�| + 3ε, (4.5)

cf. (3.15) and (3.16). If π(|T (z)|2 − |z|2) ≥ 1 then we find

u(z) − u(T (z)) ≥ e−|�|

2
(1 − e−1) − 4ε − ε2 ≥ e−|�|

4
− 4ε − ε2.

On the other hand, if π(|T (z)|2 − |z|2) ≤ 1, from (4.4),

u(z) − u(T (z)) ≥ e−|�| (|T (z)|2 − |z|2)
2

− 4ε − ε2 ≥ C|�|e−|�| γ
2

− 4ε − ε2.

Choosing C|�| = 20e|�| and γ ≥ ε, the previous estimates yield the desired (4.3).
STEP II.Showing that � is close to A�. Note the identities

|�| − |B| = |�| − |T (B)| = |� \ T (B)| = |�| − |A� \ �| + |(� \ T (B)) \ A�|,

hence

1

2
|��A�| = |A� \ �| = |B| + |(� \ T (B)) \ A�|. (4.6)

In this step, we want to estimate both terms on the right-hand side. The estimate for
the first term follows by combining (4.1), (4.2) and (4.3):

|B| ≤ d(�)

5γ
≤ 2δ(1 − e−|�|)

5γ
. (4.7)

To estimate the second term, note that �\T (B) is contained in a C|�|γ -neighborhood
of A�; in turn, by (3.15), A� is nested between two concentric balls:

{z : e−π |z|2 > u∗(|�|) + 3ε} ⊂ A� ⊂ {z : e−π |z|2 > u∗(|�|) − 3ε} =: E�. (4.8)
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Combining this information with (4.5), and setting λ± = √−π−1 log(u∗(s) ± 3ε) we
can estimate

|(� \ T (B)) \ A�| ≤ |BC|�|γ+λ− \ Bλ+| = π(C|�|γ + λ−)2 + log(u∗(s) + 3ε)

≤ 2
√

πC|�|γ
√− log(u∗(s) − 3ε) + π(C|�|γ )2

+ log

(
u∗(s) + 3ε

u∗(s) − 3ε

)

≤ 4C|�|γ
√− log(u∗(s) − 3ε) + π(C|�|γ )2 + Csε

≤ 4C|�|γ
√

|�| + 8εe|�| + πC2|�|γ 2 + Csγ

≤ 4C|�|γ
(

|�|1/2 + 4ε
e|�|

|�|1/2

)
+ πC2|�|γ 2 + Csγ

≤ 4C|�|γ
(

|�|1/2 + 4Cδ1/2 e2|�|

|�|1/2

)
+ πC2|�|γ 2 + Csγ,

(4.9)

provided that ε is sufficiently small, depending on |�|. Choosing ε ≤ γ =
C(e|�|δ)1/2, where C is the constant provided by Theorem 1.5, and combining (4.6),
(4.7) and (4.9), we get

|��A�| ≤ Cδ1/2,

for some new but still explicitly computable constant C = C(|�|).
STEP III. Conclusion. To conclude, we just need to compare � with the ball S� :=

{z : e−π |z|2 ≥ e−|�|}. By (4.5) and (4.8), we have S� ⊂ E� and

|E� \ S�| ≤ Cε ≤ C(|�|)δ 1
2 , (4.10)

where we also used (3.7). It follows that

|S���| ≤ |� \ E�| + |E� \ S�| + |S� \ �|
≤ |� \ E�| + |E� \ S�| + |E� \ �| ≤ |E���| + Cδ1/2

and so it is enough to bound |E���|. We then estimate

|E���| = |E� \ �| + |� \ E�| ≤ |E� \ A�| + |A� \ �| + |� \ A�| ≤ Cδ1/2,

where in the last inequality we estimate |E� \ A�| as in (4.10) and we also used the
estimate from the last step. We have now proved (1.19) and thus also (1.8). �

We remark that, in spite of the sharp exponent of δ in the result above, the asymp-
totic growth of the constant K(|�|) in (1.8) from the proof above is likely not sharp:
as we shall see in Sect. 6, one expects, from the functional stability part, that the sharp
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growth of the constant should be of the form ∼ e|�|/2, while the proof above yields
K(|�|) ∼ e2|�|.

Although there is room for improving such a constant with the current methods,
it is unlikely that these will suffice in order to upgrade K(|�|) to the aforementioned
conjectured optimal growth rate. For that reason, we consider this to be a genuinely
interesting problem, which we wish to revisit in a future work.

5 An alternative variational approach to the function stability

The purpose of this section is to give a variational proof of the function stability in
Theorem 1.5. Fix s > 0 and consider the functional

K : F2(C) →R, K[F ] := IF (s)

‖F‖2
F2

,

where we recall that IF (s) is the integral of uF over its superlevel set of measure s,
cf. (1.27). We will prove the following result:

Theorem 5.1 Fix s ∈ (0,∞). There are explicit constants ε0(s),C(s) > 0 such that,
for all ε ∈ (0, ε0), we have

K[1] −K[1 + εG] ≥ C(s)ε2,

whenever ‖G‖F2 = 1 satisfies (3.6).

The proof of Theorem 5.1 is almost independent of the results of Sect. 2, as we
will only rely on the suboptimal stability result from Lemma 2.3. This lemma, in turn,
does not rely on the other results from that section.

Let us first note that Theorem 5.1 indeed implies the function stability part Theo-
rem 1.5, although without the optimal dependence of the constant on |�|.

Alternative proof of (1.17), assuming Theorem 5.1 Without loss of generality, we can
assume the normalizations detailed at the beginning of Sect. 3. By the same argument
as in (3.7), if the deficit is sufficiently small we see that

‖F − 1‖F2 = ε(F ) = ‖F‖F2ρ(F ) ≤ C
(
e|�|δ(F ;�)

)1/4
.

where now the last inequality follows by combining Lemma 2.3 with the simple
Lemma 2.5, instead of using (1.17). Here, we take � = Au∗

F (t) = {uF > u∗
F (t)}.

Hence, we can write

F = 1 + εG, ‖G‖F2 = 1,

where G satisfies (3.6), and we can assume that ε is sufficiently small. Theorem 5.1
then implies that

(1 − e−|�|)δ(F ;�) = K[1] −K[F ] ≥ C(|�|)ε2 = C(|�|)‖F − 1‖2
F2 .
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To complete the proof it suffices to note that, by our normalizations, F(0) = 1 ≤
‖F‖F2 . Thus

‖F − 1‖F2 ≥ ρ(F ) ≥ 2−1/2 min
z0∈C,|c|=‖F‖F2(C)

‖F − c · Fz0‖F2

‖F‖F2
,

where the last inequality follows from (3.2). �

The proof of Theorem 5.1 is based on the following technical result:

Lemma 5.2 There is ε0 = ε0(s) and a modulus of continuity η, depending only on s,
such that

|K[1 + εG] −K[1]| ≤
∣∣∣∣ε

2

2
∇2K[1](G,G)

∣∣∣∣ + η(ε)ε2

for all 0 ≤ ε ≤ ε0(t) and G ∈ F2(C) such that ‖G‖F2 = 1 and which satisfy (3.6).
Here we have defined

∇2K[1](G,G) := d2

dε 2
K[1 + εG]

∣∣∣
ε=0

.

The proof of Lemma 5.2 is rather technical and standard, for which reason we
moved it to Appendix A. Lemma 5.2 shows that K[1 + εG] − K[1] is essentially
controlled by the second variation of K at 1, in the direction of G. Since 1 is a local
maximum for K, this variation is negative definite, but to prove Theorem 5.1 we
need to show that it is uniformly negative definite. This is the content of the next
proposition, which is the main result of this section.

Proposition 5.3 For all G ∈ F2(C) such that ‖G‖F2 = 1 and which satisfy (3.6), we
have

1

2
∇2K[1](G,G) ≤ −se−s .

It is clear that Theorem 5.1 is an immediate consequence of the above two results:

Proof of Theorem 5.1 Combining Lemma 5.2 and Proposition 5.3, we have

K[1] −K[1 + εG] ≥ −ε2
(1

2
∇2K[1](G,G) + η(ε)

)
≥ ε2

(C(s)

2
− η(ε)

)
.

The conclusion now follows by choosing ε0 = ε0(s) even smaller so that C(s)
4 ≥

η(ε0). �

The rest of this section is dedicated to the proof of Proposition 5.3. Clearly we
first need to compute the second variation of K and, in order to do so, our strategy is
to consider the sets

�ε := {uε > u∗
ε(s)}, uε := u1+εG = |1 + εG|2e−π |·|2 , (5.1)
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and to write

�ε = �ε(�0),

for a suitable volume-preserving flow �ε . In order to construct such a flow, we first
prove a general lemma which allows us to build a flow that deforms the unit disk into
a given family of graphical domains over the unit circle. This type of result is well-
known, and we refer the reader for instance to [3, Theorem 3.7] for a more general
statement.

Lemma 5.4 Denote by D0 ⊂ R
2 the unit disk, and suppose that we are given a one-

parameter family {Dε}ε∈[0,ε0] of domains, whose boundaries are given by smooth
graphs over the unit circle:

∂Dε = {(1 + gε(ω))ω : ω ∈ S
1}.

We assume that the family {gε}ε∈[0,ε0] depends smoothly on (ε,ω).
Then there exists a family {Yε}ε∈[0,ε0] of smooth vector fields, which depends

smoothly on the parameter ε, such that, if �ε denotes the flow associated with Yε ,
i.e. if

d

dε
�ε = Yε(�ε),

then �ε(D0) = Dε . In addition, Yε is such that div(Yε) = 0 in a neighbourhood of
S

1.

Proof By translating into polar coordinates r = |z| and ω = z/|z| we see that, if we
define a vector field Yε locally on a neighbourhood of S1 by

Yε(r,ω) = 1

r
(1 + gε(ω))∂εgε(ω)ω,

then Yε satisfies div(Yε) = 0 in a neighbourhood of S1, Moreover, in the same neigh-
bourhood of S1, we may write the flow �ε of Yε explicitly as

�ε(r,ω) = (r2 + (1 + gε(ω))2 − 1)
1
2 ω. (5.2)

We then extend �ε from the neighbourhood of S1 to the whole complex plane, in
such a way that �ε(D0) = Dε and the map (ε, x) �→ �ε(x) is smooth. Taking Ỹε to
be the vector field of the extended version of �ε , we see that Ỹε is an extension of Yε

to the whole space, and moreover, the map (ε, x) �→ Ỹε(x) is smooth. �

Using the results of Sect. 3 we can readily apply Lemma 5.4 to the sets �ε:

Lemma 5.5 Let G ∈ F2(C) satisfy (3.6). There is ε0 = ε0(s,‖G‖F2) > 0 such that,
for all ε ∈ [0, ε0], there are globally defined smooth vector fields Xε , with associated
flows �ε , such that

�ε = �ε(�0).
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Moreover, Xε depends smoothly on ε and is divergence-free in a neighborhood of
∂�0. We also have ˆ

∂�ε

〈Xε, νε〉 = 0, (5.3)

where νε denotes the outward-pointing unit vector field on ∂�ε .

Proof Up to dilating by a constant (which depends only on s) we can assume that
�0 = B1. Lemma 3.2 shows that, if ε0 is chosen sufficiently small, the boundaries
∂�ε are smooth and the sets �ε are star-shaped with respect to zero, hence they can
be written as graphs over S1:

∂�ε = {(1 + fε(ω))ω : ω ∈ S
1}. (5.4)

We now claim that the function (ε,ω) �→ fε(ω) is smooth as long as ε is sufficiently
small.

Indeed, for fixed ε, the function ω �→ fε(ω) is smooth, by Lemma 3.2, since it is
implicitly defined by uε((1 + fε(ω)) · ω) = u∗

ε(s). Moreover, since ∇uε is bounded
by a constant depending only on s when restricted to {uε = u∗

ε(s)} (this follows, for
instance, from the proof of Lemma 3.1), any careful quantification of the proof of the
implicit function theorem (cf. [26]) implies that there is a universal ε0(s) > 0 such
that, if ε < ε0(s), then ε �→ fε(ω) is smooth for any fixed ω ∈ S

1. This proves the
desired smoothness claim.

By Lemma 5.4, the associated vector fields are explicitly given in a neighbourhood
of S1 by

Xε(r,ω) = 1

r
(1 + fε(ω))∂εfε(ω)ω, (5.5)

and they are divergence-free in a neighbourhood of S1. Their smoothness then follows
from the smoothness of fε in ε.

To prove the final claim we note that, since �ε has constant measure equal to s for
all ε ∈ [0, ε0], by a calculation in polar coordinates we see that the function

A(ε) :=
ˆ

∂�0

(1 + fε(ω))2 dH1(ω)

is constant in the interval [0, ε0]. Thus,

0 = dA(ε)

dε
= 2

ˆ
∂�0

∂εfε(ω)(1 + fε(ω))dH1(ω) = 2
ˆ

∂�0

〈Xε, ν〉dH1(ω),

and so the integral above has to vanish; here we used the fact that �0 is a ball. Since
div(Xε) = 0 in a neighbourhood of ∂�0, and as

´
∂�0

〈Xε, ν〉dH1 = 0, the divergence
theorem shows that, for any Lipschitz Jordan curve γ in the same neighbourhood of
∂�0, we have ˆ

γ

〈Xε, νγ 〉dH1 = 0,

where νγ denotes the outward-pointing normal field on γ . Thus (5.3) follows. �
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Having the previous lemma at our disposal, we can now obtain an explicit formula
for ∇2K[1].
Lemma 5.6 For all G ∈ F2(C) which satisfy (3.6), we have

1

2
∇2K[1](G,G) =

ˆ
�0

|G|2e−π |z|2 dz − ‖G‖2
F2

ˆ
�0

e−π |z|2 dz

+ e−s

 
∂�0

|G|2 dH1(z). (5.6)

Proof Setting dσ(z) := e−π |z|2 dz for brevity, let us introduce the auxiliary functions

Iε :=
ˆ

�ε

|1 + εG|2 dσ, Jε :=
ˆ
C

|1 + εG|2 dσ ; (5.7)

we also write Kε := K[1 + εG], where we recall that �ε := {uε > u∗
ε(s)}, cf. (5.1).

We will always take ε ≤ ε0, where ε0 is as in Lemma 5.5. Here and henceforth, we
shall denote derivatives of the quantities Kε , Iε , Jε in the ε variable with primes,
that is, K ′

ε , J ′
ε , I ′

ε , etc. With that in mind, we have:

K ′
ε =

(
I ′
ε − Iε

J ′
ε

Jε

) 1

Jε

,

K ′′
ε =

(
I ′′
ε − Iε

J ′′
ε

Jε

) 1

Jε

− 2J ′
ε

J 2
ε

(
I ′
ε − Iε

J ′
ε

Jε

)
,

(5.8)

and using Reynold’s theorem we further compute

I ′
ε = 2

ˆ
�ε

Re(G · 1 + εG)dσ, J ′
ε = 2

ˆ
C

Re(G · 1 + εG)dσ, (5.9)

I ′′
ε = 2

ˆ
�ε

|G|2 dσ + 2
ˆ

∂�ε

Re(G · 1 + εG)〈Xε, νε〉e−π |z|2 , J ′′
ε = 2

ˆ
C

|G|2 dσ.

(5.10)

Here and in what follows, we write Xε to be the vector fields built in Lemma 5.5.
Note that, to obtain (5.9), we used the fact that uε is constant on ∂�ε , together with
the cancelling property (5.3) of the vector fields.

Since 〈G,1〉F2 = 0, �0 is a ball and G is holomorphic, from (5.9) it is easy to see
that

I ′
0 = J ′

0 = 0 =⇒ d

dε
K[1 + εG]

∣∣∣
ε=0

= K ′
0 = 0, (5.11)

where the implication follows from the first equation in (5.8).
Combining (5.8)–(5.11), we arrive at

d2

dε 2K[1 + εG]
∣∣∣∣∣
ε=0

= 2
(ˆ

�0

|G|2e−π |z|2 − ‖G‖2
F2

ˆ
�0

e−π |z|2
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+
ˆ

∂�0

Re(G(z))〈X0, ν〉e−π |z|2). (5.12)

Since ∂�0 is a circle of radius r0, where πr2
0 = s, our main task is to simplify the last

term: specifically, we want to show that
ˆ

∂�0

ReG〈X0, ν〉dH1 =
 

∂�0

|G|2 dH1. (5.13)

In order to prove (5.13), we have to understand how to write X0 in terms of G on
∂�0.

We first claim that

d

dε

∣∣∣
ε=0

με(t) = 0, (5.14)

where με(t) := μ1+εG(t) = |{uε > t}|. To prove this claim we build, exactly as in
Lemma 5.5, a family of vector fields Yε with associated flows �ε such that �ε({u0 >

t}) = {uε > t} (note that, by Lemma 3.2, these sets have smooth boundaries, hence
we can apply Lemma 5.4). We compute, for z ∈ ∂{u0 > t} = {u0 = t},

t ≡ uε(�ε(z)) =
(

1 + 2ε ReG(z) − 2πε〈Y0(z), z〉 + O(ε2)
)

e−π |z|2 , (5.15)

and thus, since the first order term in ε vanishes, we have

ReG(z) = π〈Y0, z〉. (5.16)

We can now prove (5.14): again by Reynold’s formula, we have

d

dε

∣∣∣
ε=0

με(t) =
ˆ

∂{u0>t}
〈Y0, ν〉

= 2π

 
∂{u0>t}

〈Y0, z〉 = 2
 

∂{u0>t}
ReG = 2 ReG(0) = 0, (5.17)

since ∂{u0 > t} is a circle and ReG is harmonic, where the last equality follows from
(3.6).

As we explain in Remark 5.7 below, the function ε �→ με(t) is smooth in ε, when-
ever ε is sufficiently small, and also smooth in t , for t ∈ (εc2,maxuε), where c2 is as
in Lemma 3.2. Now let us fix s > 0 and recall that G(0) = 0. Using the smoothness of
ε �→ με first and then the smoothness of μ0 on a neighbourhood of u∗

0(s), we obtain:

s = με(u
∗
ε(s))

= μ0(u
∗
ε(s)) + 2ε Re(G(0)) + O(ε2)

= s + (u∗
ε(s) − u∗

0(s))
d

dt

∣∣∣
t=u∗

0(s)
μ0(t) + O(ε2)

= s − u∗
ε(s) − u∗

0(s)

u∗
0(s)

+ O(ε2),
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where we used the fact that G(0) = 0 by (3.6). Thus, after rearranging, we find

u∗
ε(s) = (1 + O(ε2))e−s .

Since �ε is the flow of Xε , we have

�ε(z) = �0(z) + εX0(�0(z)) + O(ε2) = z + εX0(z) + O(ε2). (5.18)

We now compare the two expansions

uε(�ε(z)) = (1 + 2ε ReG(z) − 2πε〈X0(z), z〉 + O(ε2))e−π |z|2 ,

u∗
ε(s) = (1 + O(ε2))e−s ,

and we deduce that, on ∂{u0 > u∗
0(s)} = ∂�0, the first order terms in ε must be the

same, thus

π〈X0, z〉 = ReG(z) on ∂�0. (5.19)

Finally, since G is holomorphic and G(0) = 0, we have
 

∂�0

(ReG)2 dH1 =
 

∂�0

Re(G2)dH1 +
 

∂�0

(ImG)2 dH1 =
 

∂�0

(ImG)2 dH1.

Now (5.13) follows by combining this identity with (5.19):
ˆ

∂�0

ReG〈X0, ν〉dH1 = 2π

 
∂�0

ReG〈X0, z〉dH1

= 2
 

∂�0

(ReG)2 dH1 =
 

∂�0

|G|2 dH1,

as wished. �

Proof of Proposition 5.3 Since G ∈F2(C) satisfies (3.6), we can write

G(z) =
∞∑

k=2

ak

(πk

k!
) 1

2
zk, ‖G‖2

F2 =
∞∑

k=2

|ak|2.

It is direct to see that (5.6) can be rewritten using the power series for G as

1

2
∇2K[1](G,G) =

∞∑
k=2

|ak|2Vk(s), (5.20)

where

Vk(s) := πk

k!
ˆ

B(0,
√

s
π

)

|z|2ke−π |z|2 −
ˆ

B(0,
√

s
π

)

e−π |z|2 + e−s sk

k! . (5.21)
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We claim that Vk(s) ≤ 0 for all s ≥ 0. This follows by a simple calculus observa-
tion:

Vk(s) = −πk

k!
ˆ
C\B(0,

√
s/π)

|z|2ke−π |z|2 dz +
(

1 + sk

k!
)

e−s

= −�(k + 1, s)

k! +
(

1 + sk

k!
)

e−s = −
⎛
⎝k−1∑

j=1

sj

j !

⎞
⎠ e−s ,

where �(a, s) := ´∞
s

ra−1e−r dr denotes the upper incomplete Gamma function. In
order to conclude the desired bound, notice that limk→∞ Vk(s) = e−s − 1 < 0, and,
since Vk(s) is decreasing in k for s > 0 fixed,

inf
k≥2

(−Vk(s)) = −V2(s) = se−s .

The conclusion of Proposition 5.3 follows then directly from (5.20). �

Remark 5.7 In the proof of Lemma 5.6 above we used the fact that the func-
tion (ε, t) �→ με(t) is smooth provided that ε is sufficiently small and that t ∈
(εc2,maxuε), where c2 is as in Lemma 3.2. This can be seen explicitly as follows:
the smoothness in ε follows by Lemma 5.4 and the fact that �ε({u0 > t}) = {uε > t}.
On the other hand, by [33, Lemma 3.2] we have

−∂tμε(t) =
ˆ

{uε=t}
|∇uε|−1 dH1 for almost every t in (0,maxuε).

By the proof of Lemma 3.1 we see that

|∇uε(z)| ≥ C(εc2 ,‖G‖F2)|z|, (5.22)

hence με ∈ C
0,1
loc (εc2 ,maxuε). Moreover, the divergence theorem allows us to write

−∂tμε(t) + ∂tμε(t0) =
ˆ

{uε=t}
|∇uε|−1 dH1 −

ˆ
{uε=t0}

|∇uε|−1 dH1

=
ˆ

{uε=t}
∇uε

|∇uε|2 · ∇uε

|∇uε| dH1 −
ˆ

{uε=t0}
∇uε

|∇uε|2 · ∇uε

|∇uε| dH1

= −
ˆ

{t0>uε>t}
div

( ∇uε

|∇uε|2
)

dz,

for a.e. t < t0. By (5.22), |∇uε|−2 is bounded and smooth in the set {t0 > uε > t},
which shows that ∂tμε ∈ C

0,1
loc (εc2,maxuε). By a straightforward use of the coarea

formula, iterating such an argument yields the desired smoothness property of με .
Moreover, we also have that ∂tμε(t) ≤ − 1

t
, cf. (1.23), and so by the Implicit Function

Theorem the functions u∗
ε(s) are differentiable in the variable ε for all fixed s, for

ε < ε0(s) sufficiently small.
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It is important to note that (3.6) is crucial as a normalization for the above proof
to work: as a matter of fact, many of the cancellations in the proof of Lemma 5.6
only appeared since G(0) = 〈G,1〉 = 0. Moreover, if 〈G,z〉 �= 0, it could happen that
∇1K[1](G,G) = 0, which would cause the proof of sharp stability to collapse.

The argument implicit in the reduction to (3.6) is hence a vital part of the proof:
heuristically, it plays the pivotal role of providing us with a single point z0 – which,
through translations, may be assumed to be the origin – for which one can compare
the level sets of the functions uε to balls centered at z0. The fact that z0 is given by the
point where each uε attains its maximum allows thus for a connection between the
analytic and geometric natures of the problem, highlighting further the importance of
the aforementioned reduction.

6 Sharpness of the stability estimates

In this short section we prove the sharpness claimed in Remark 1.2 concerning the
estimates in Theorem 1.1. We will see that the variational approach of the previous
section is quite useful in this regard. The following is the key proposition we require:

Proposition 6.1 Let s > 0 be a fixed positive real number. For each ε > 0 suffi-
ciently small there is a constant C > 0 and sequences {�ε}ε and {F̃ε}ε ⊂ F2(C)

with ‖F̃ε‖F2 = 1, ∀ ε > 0, and such that:

(i) �0 a ball and |�ε| = s;
(ii) infc,z0∈C ‖F̃ε − c · Fz0‖F2 ≥ ε

C
;

(iii) the deficit satisfies δ(F̃ε;�ε) ≤ C se−s

1−e−s ε
2.

Proof Let Fε(z) = 1 + εz2 and as usual let us write uε(z) := |Fε(z)|2e−π |z|2 . Con-
sider, as in (5.1), the domains

�ε = {z ∈C : uε(z) > u∗
ε(s)},

where s > 0 is fixed. We then have

(1 − e−s)δ(Fε;�ε) = K[1] −K[Fε]

≤ −ε2

2
∇2K[1](z2, z2) + ε2η(ε) = 2se−s

π2 ε2 + η(ε)ε2,

(6.1)

where we used Lemma 5.2 to pass to the second line and also (5.6) in the last equality.
Now note that taking ε sufficiently small yields the desired upper bound if we choose
F̃ε = Fε‖Fε‖F2

. For the lower bound on ‖F̃ε − cFz0‖F2 , we recall from (3.1) that

‖F̃ε − c · Fz0‖2
F2 ≥ 1 − max

z0∈C
|F̃ε(z0)|2e−π |z0|2 .

In order to finish, we only need to show that the only global maximum of
|Fε(z)|2e−π |z|2 occurs at z = 0, which is equivalent to showing that

(1 + 2ε(x2 − y2) + ε2 |z|4) < eπ |z|2 ,
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for each z ∈ C \ {0}. As 1 + π |z|2 + π2

2 |z|4 < eπ |z|2 , this inequality is true if ε < π
4 .

Thus, for such ε,

‖F̃ε − cFz0‖2
F2 ≥ 1 − 1

1 + 2
π2 ε2

≥ ε2

π2 ,

which concludes the proof. �

We are now ready to prove the claims in Remark 1.2.

Corollary 6.2 The following assertions hold:

(i) The factor δ(f ;�)1/2 cannot be replaced by δ(f ;�)β , for any β > 1/2, in (1.7)
and (1.8);

(ii) There is no c ∈ (0,1) such that, for all measurable sets � ⊂ C of finite measure,
we have

min
z0∈C,|c|=‖f ‖2

‖f − c ϕz0‖2

‖f ‖2
≤ C

(
ec|�|δ(f ;�)

)1/2
.

Proof Notice that (ii) follows directly from the statement of Proposition 6.1 by taking
s → ∞, so we just have to prove (i). The fact that one cannot improve the exponent
in (1.7) follows directly from Proposition 6.1 above.

To see that one cannot improve the exponent in (1.8) we argue as follows. For the
domains �ε built in Proposition 6.1, we may use Lemma 5.5 to write �ε = �ε(�0),
provided that ε is small enough. As we saw in (5.18) we may write

�ε(z) = z + εX0(z) + O(ε2), where X0(z) = h0(z)z,

for some scalar function h0 : C\{0} → R. Indeed, that X0 has this form follows
from its explicit formula (5.5) in Lemma 5.5. Since π〈X0(z), z〉 = Re(z2) on ∂�0
by (5.19), we have

h0(z) = Re(z2)

π |z|2 = cos(2θ)

π

for z = r(�0)e
iθ ∈ ∂�0, where r(�0) denotes the radius of the ball �0. Hence,

|�ε��0| ≥ |�ε \ �0| ≥
∣∣∣{z = reiθ : r(�0) < r < r(�0) + ε

cos(2θ)

π
− Cε2

}∣∣∣
> c r(�0)

2ε,

which concludes the proof. �

7 Generalizations to higher dimensions

In this section we will provide the generalization of Theorems 1.1 and 1.5 to higher
dimensions d ≥ 1. We believe that the results of Sects. 5 and 6 also have higher-
dimensional counterparts, but as the focus of this paper is on the 1-dimensional case
we do not elaborate further on this.
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Given a window function g ∈ L2(Rd), the STFT of a function f ∈ L2(Rd) is
defined as

Vgf (x,ω) :=
ˆ
Rd

e−2πiy·ωf (y)g(x − y)dy, x,ω ∈ R
d,

coherently with (1.1). As in dimension 1, we will only be interested in the case where
g(x) = ϕ(x) is the standard Gaussian window defined as

ϕ(x) := 2d/4e−π |x|2, x ∈R
d , (7.1)

so as before we set Vf := Vϕf . Note that (7.1) reduces to (1.2) when d = 1.
The d-dimensional version of Theorem A, proved in [33], can be stated as follows.

Theorem C ([33]; Faber-Krahn inequality for the STFT in dimension d ) If � ⊂ R
2d is

a measurable set with finite Lebesgue measure |�| > 0, and f ∈ L2(Rd) \ {0} is an
arbitrary function, then

´
�

|Vf (x,ω)|2 dx dω

‖f ‖2
L2(Rd )

≤
ˆ |�|

0
e−(d! s) 1

d ds. (7.2)

Moreover, equality is attained if and only if � coincides (up to a set of measure zero)
with a ball centered at some z0 = (x0,ω0) ∈ R

2d and, at the same time, for some
c ∈ C \ {0}

f (x) = c ϕz0(x), ϕz0(x) := e2πiω0·xϕ(x − x0), (7.3)

where ϕ is the Gaussian defined in (7.1).

We point out that in [33, Theorem 4.1] the right hand side of (7.2) is expressed
in terms of the incomplete Gamma function and implicit constants depending on d ,
whereas the present formulation (which is equivalent but more explicit) is taken from
[34] (see the remark after Theorem 2.3 therein).

It appears from (7.2) that, in dimension d ≥ 1, the function

v∗(s) := e−(d! s) 1
d
, s ≥ 0, (7.4)

plays a crucial role, since when d = 1, v∗(s) = e−s and the right hand side of (7.2)
reduces to 1 − e−|�|, as in (1.16). To state a stability result in dimension d , we must
modify the deficit δ defined in (1.5) to suit the right hand side of (7.2), so we let

δ(f ;�) := 1 −
´
�

|Vf (x,ω)|2 dx dω

‖f ‖2
L2(Rd )

´ |�|
0 v∗(s)ds

, (7.5)

which once again reduces to (1.5) when d = 1. Redefining the asymmetry index
A(�) by simply replacing R

2 with R
2d in (1.6), our extension of Theorem 1.1 to

dimension d can be stated as follows.
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Theorem 7.1 (Stability of the FK inequality for the STFT in dimension d ) There is
an explicitly computable constant C = C(d) > 0 such that, for all measurable sets
� ⊂ R

2d with finite measure |�| > 0 and all functions f ∈ L2(Rd)\{0}, we have

min
z0∈Cd ,|c|=‖f ‖2

‖f − c ϕz0‖2

‖f ‖2
≤ C

⎛
⎝ δ(f ;�)

´∞
|�| e−(d! s) 1

d ds

⎞
⎠

1
2

. (7.6)

Moreover, for some explicit constant K = K(d, |�|) we also have

A(�) ≤ Kδ(f ;�)1/2. (7.7)

As in the case of Theorem 1.1, the first step is to translate the problem into the
Fock space F2(Cd), now defined as the Hilbert space of all holomorphic functions
F : Cd → C such that

‖F‖F2 :=
(ˆ

Cd

|F(z)|2 e−π |z|2 dz

)1/2

< ∞,

with its induced inner product. An orthonormal basis – that reduces to (1.13) when
d = 1 – is given, using multi-index notation, by the normalized monomials

eα(z) = (π |α|/α!)1/2 zα, α ∈N
d , z ∈ C

d, (7.8)

while the reproducing kernels are the functions Kw(z) = e
π
2 |w|2Fw(z), where, in anal-

ogy to (1.15),

Fz0(z) = e− π
2 |z0|2eπz·z0 . (7.9)

The Bargmann transform is now an unitary operator from L2(Rd) onto F2(Cd), de-
fined as in (1.12), with R

d and C
d in place of R and C, and the multi-index nota-

tion being adopted. Moreover, the functions Fz0 in (7.9) are, much as in (1.15), the
Bargmann transforms of the optimal functions ϕz0 defined in (7.3). In this setting,
since by an identity similar to (1.14) the concentration of a function f on � can still
be expressed in terms of its Bargmann transform, one can rephrase Theorem 7.1 in
terms of Fock spaces.

Theorem 7.2 (Fock space version of Theorem 7.1) There is a computable constant
C = C(d) > 0 such that, for all measurable sets � ⊂ R

2d with finite measure |�| > 0
and all functions F ∈F2(Cd)\{0}, we have

min|c|=‖F‖F2 ,

z0∈Cd

∥∥F − cFz0

∥∥
F2

‖F‖F2
≤ C

⎛
⎝ δ(F ;�)

´∞
|�| e−(d! s) 1

d ds

⎞
⎠

1
2

, (7.10)

where

δ(F ;�) := 1 −
´
�

|F(z)|2e−π |z|2 dz

‖F‖2
F2

´ |�|
0 v∗(s)ds

. (7.11)
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Moreover, for some explicit constant K = K(d, |�|) we also have

A(�) ≤ Kδ(F ;�)1/2. (7.12)

We point out that (7.10) reduces to (1.17), when d = 1 and v∗(s) = e−s .
The proof of (7.10) can be obtained by arguments similar to those given in Sect. 2,

where every result has a suitable analogue in dimension d . Therefore, we limit our-
selves to describing the relevant, and not always trivial, changes that are necessary to
adapt Sect. 2 to dimension d .

We start with the necessary background results from [33], which we discussed in
Sect. 1.2 only in dimension one. We warn the reader that in [33] some numerical
constants were written in terms of ω2d , the volume of the unit ball in R

2d : here, in
(7.13) and (7.14), we write them explicitly using the fact that ω2d = πd/d!, as done
in [34].

Given F ∈ F2(Cd), the function u and its super-level sets At are defined as in
(1.20) and (1.21), now and henceforth with z ∈ C

d . The distribution function μ(t) is
defined as in (1.22), with the adopted convention that | · | denotes Lebesgue measure
in R

2d , but with (1.23) being replaced (see [33, §4]) by

μ′(t) ≤ − d μ(t)1−1/d

(d !) 1
d t

for a.e. t ∈ (0, T ), T := max
z∈Cd

u(z), (7.13)

while (1.24) becomes

μ(t) ≥ 1

d!
(

log+
T

t

)d

for all t > 0.

Similarly, the decreasing rearrangement u∗(s) (i.e., the inverse function of μ(t)) is
defined exactly as in (1.26), but now with (1.25) being replaced by

(u∗)′(s) + (d !) 1
d u∗(s)

d s1− 1
d

≥ 0, for a.e. s > 0. (7.14)

These changes are natural in dimension d , since when F equals one of the optimal
functions defined in (7.9), we have u(z) = e−π |z−z0|2 and its distribution function is

μ(t) = 1

d!
(

log+
1

t

)d

, t > 0, (7.15)

as the explicit volume of the unit ball is ω2d = πd/d!. Note that, for the particular μ

in (7.15), (7.13) is an equality. Moreover, if in (7.15) we let μ(t) = s > 0 and solve
for t , the resulting inverse function is just the function v∗(s) defined in (7.4), much
as e−s is the inverse of log+ 1

t
when d = 1. In particular, note that (7.14) becomes an

equality when u∗ = v∗.
Finally, the fact, expressed by (1.27), that super-level sets maximize the concen-

tration under a volume constraint, is clearly still valid, as so is (1.30), with equality if
and only if F is a multiple of some Fz0 .
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For what concerns Sect. 2, beside obvious changes such as C being replaced with
C

d and analogous changes, a general rule is that e−s should always be replaced by
v∗(s), e.g. in (2.4) and (2.5), and log with (log)d/d!, e.g. in (2.6). Accordingly, the
claim of Lemma 2.1 becomes

μ(t) ≤ 1

d! (1 + C0(1 − T )) (logT/t)d ∀t ∈ [t0, T ],

where now the underlying constants may depend on the dimension d . The proof fol-
lows the same pattern, with some changes being necessary, which we now indicate.
Replacing n by α = (α1, . . . , αd) ∈ N

d and adopting the multi-index notation, (2.9)
becomes

R(z) :=
∑
|α|≥2

aα√
T

π |α|/2zα

√
α! , z = (z1, . . . , zd) ∈ C

d, (7.16)

where we used the basis defined in (7.8). Accordingly, (2.10) changes into

∑
|α|≥2

|aα|2
T

= 1 − T

T
=: δ2. (7.17)

Some additional caution is needed in order to estimate the subsequent powers series.
The outcome of (2.11) is unchanged, now with z ∈ C

d , but after Cauchy–Schwarz
one faces the multivariate power series

∑
|α|≥2

π |α| ∣∣z2α
∣∣

α! =
∑
|α|≥2

π |α|
∣∣∣z2α1

1 · · · z2αd

d

∣∣∣
α1! · · ·αd ! = eπ |z|2 − 1 − π |z|2. (7.18)

Subtler changes are needed in STEP II. After defining h(z) as in (2.13) and obtain-
ing (2.14), one replaces (2.15) by

∣∣∣∣∂R(z)

∂zi

∣∣∣∣ ≤ δ
√

2π |z|e π |z|2
2 , z ∈ C

d, 1 ≤ i ≤ d. (7.19)

For instance, letting e1 = (1,0, . . . ,0) ∈ N
d , differentiating (7.16), and then using

Cauchy-Schwarz and (7.17) one obtains

∣∣∣∣∂R(z)

∂z1

∣∣∣∣ ≤
∑
|α|≥2

|aα|√
T

π |α|/2α1
∣∣zα−e1

∣∣
√

α! ≤ δ

⎛
⎝ ∑

|α|≥2

π |α|α2
1

∣∣z2(α−e1)
∣∣

α!

⎞
⎠

1
2

. (7.20)

Focussing on multi-indices α of a given size k ≥ 2, we have

∑
|α|=k

π |α|α2
1

∣∣z2(α−e1)
∣∣

α! =
∑
|α|=k
α1≥1

πkα1
∣∣z2(α−e1)

∣∣
(α1 − 1)!α2! · · ·αd ! =

∑
|β|=k−1

πk(1 + β1)
∣∣z2β

∣∣
β1! · · ·βd ! .
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Since 1 + β1 ≤ k ≤ 2(k − 1), we have, from the multinomial theorem,

∑
|α|=k

π |α|α2
1

∣∣z2(α−e1)
∣∣

α! ≤ 2πk

(k − 2)!
∑

|β|=k−1

(k − 1)! ∣∣z2β
∣∣

β1! · · ·βd !

= 2πk

(k − 2)! (|z1|2 + · · · |zd |2)k−1

and, since |z1|2 + · · · |zd |2 = |z|2, summing over k ≥ 2 we obtain

∑
|α|≥2

π |α|α2
1

∣∣z2(α−e1)
∣∣

α! ≤ 2
∞∑

k=2

πk|z|2(k−1)

(k − 2)! = 2π2|z|2eπ |z|2 ,

which combined with (7.20) proves (7.19) when i = 1 (when i > 1 the proof being
the same). The analogue of (2.16) now reads

∣∣∣∣∂
2R(z)

∂zi∂zj

∣∣∣∣ ≤ Cδ(1 + |z|2)e π |z|2
2 , z ∈ C

d, 1 ≤ i, j ≤ d. (7.21)

For instance, differentiating (7.16) twice, then using Cauchy–Schwarz and (7.17),
one finds

∣∣∣∣∂
2R(z)

∂z1∂z2

∣∣∣∣ ≤ δ

⎛
⎝ ∑

|α|≥2

π |α|α2
1α2

2

∣∣z2(α−e1−e2)
∣∣

α!

⎞
⎠

1
2

, (7.22)

where e2 = (0,1,0, . . . ,0) ∈ N
d . Since the sum can be restricted to those multi-

indices α where α1 ≥ 1 and α2 ≥ 1 (which imply that |α| ≥ 2), letting β = α−e1 −e2
we have

∑
|α|≥2

π |α|α2
1α2

2

∣∣z2(α−e1−e2)
∣∣

α! =
∑
β∈Nd

π2+|β|(1 + β1)(1 + β2)
∣∣z2β

∣∣
β!

= π2S(z1)S(z2)

d∏
j=2

⎛
⎝ ∞∑

βj =0

πβj |zj |2βj

βj !

⎞
⎠

= π2S(z1)S(z2)e
π(|z3|2+···+|zd |2),

where

S(zi) :=
∞∑

βi=0

πβi (1 + βi)|zi |2βi

βi ! < π(1 + |zi |2)eπ |zi |2 .

Plugging these estimates into (7.22), one obtains (7.21) when i = 1 and j = 2, and
hence also for all i �= j , by the same argument. Finally, the case where i = j can be
treated similarly, by a suitable modification of (2.16).
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Then, by (2.13) and the Cauchy–Riemann equations, it is easy to see that (7.19)
and (7.21) provide bounds for the gradient ∇h(z) and the Hessian D2h(z): in par-
ticular, in polar coordinates rω ∈ R

2d , one has the following bounds for the radial
derivatives

∣∣∣∣∂h(rω)

∂r

∣∣∣∣ ≤ δCre
πr2

2 ,

∣∣∣∣∂
2h(rω)

∂r2

∣∣∣∣ ≤ δC(1 + r2)e
πr2

2 , r ≥ 0, ω ∈ S
2d−1,

(7.23)
which replace (2.17) and (2.18). The rest of the proof requires only minor changes,
such as the systematic usage of polar coordinates rω ∈ R

2d (instead of reiθ ) with
r ≥ 0 and ω ∈ S

2d−1, as in (7.23). In particular, in (2.24) and in the sequel, rσ = rσ (θ)

becomes rσ = rσ (ω). Also integrals should be changed accordingly, e.g., (2.25) now
becomes

f (σ ) := |Eσ | = 1

2d

ˆ
S2d−1

rσ (ω)2d dS(ω), σ ∈ [0,1],

with the obvious related changes, e.g. in (2.34), while (2.26) becomes

f (0) = 1

2d

ˆ
S2d−1

r0(ω)2d dS(ω) = |B(0, r0)| = πd

d! r2d
0 .

Corollary 2.2 is unchanged and has a similar proof, where one of course should re-
place log with (log)d/d! as already mentioned.

The claim (2.41) of Lemma (2.3) must be rewritten as

(1 − T )d+1

(d + 1)! ≤
ˆ s∗

0

(
v∗(s) − u∗(s)

)
ds ≤ δs0´∞

s0
v∗(s)ds

, (7.24)

with the proof, after rewritten in terms of v∗(s) remaining valid almost ad litteram to
prove (7.24), the only necessary changes being the following. For the first inequality
in (7.24), in (2.44) one should use, instead of v∗(s) ≥ 1 − s as when d = 1 and
v∗(s) = e−s , the similar inequality

v∗(s) = e−(d! s) 1
d ≥ 1 − (d! s) 1

d ,

and change (2.44) into

ˆ s∗

0

(
v∗(s) − u∗(s)

)
ds ≥

ˆ s∗

0

(
1 − (d! s) 1

d − T
)

+ ds

=
ˆ (1−T )d

d!

0

(
1 − (d! s) 1

d − T
)

ds,

which after a routine computation yields the first inequality in (7.24).
Then the proof goes on unaltered, except that now (2.46) follows from (7.14) and

(7.4), rather than (1.25) and (2.43), and in CASE 1 one arrives at (2.47). Since ε ≤ δs0
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by virtue of (2.45), (2.47) proves (7.24). Finally, CASE 2 requires no changes, since
(2.48) already implies (7.24).

The claim of Lemma 2.4 now becomes

1 − T ≤ C

ˆ s∗

0

(
v∗(s) − e∗(s)

)
ds. (7.25)

In the proof, the first inequality in (7.24) can now be used to justify, in a similar way,
why on proving (7.25) one can freely assume (2.51) if needed. Thus, replacing also
log 1

t
by the right hand side of (7.15), and rewriting (2.52) as

μ(t) ≤ 1

d! (1 + C0(1 − T ))

(
log

T

t

)d

for all t ∈ [τ ∗, T ],

one obtains the following version of (2.53):

d!
ˆ s∗

0

(
v∗(s) − u∗(s)

)
ds ≥

ˆ T

τ1

((
log

1

t

)d

− (1 + C0(1 − T ))

(
log

T

t

)d
)

dt.

(7.26)
Then, using ad − bd ≥ (a − b)ad−1 with the choice a = log 1

t
and b = log T

t
, since

a − b = − logT and − logT ≥ 1 −T we can replace the minorization after (2.53) by

(
log

1

t

)d

− (1 + C0(1 − T ))

(
log

T

t

)d

≥ (− logT )

(
log

1

t

)d−1

− C0(1 − T )

(
log

T

t

)d

≥ (1 − T )

(
log

1

t

)d−1

− C0(1 − T )

(
log

1

t

)d

≥ (1 − T )

(
log

1

t

)d−1 (
1 − C0 log

1

τ1

)
,

for all t ∈ [τ1, T ]. Finally, fixing τ1 ∈ (τ ∗,1) in analogy to (2.54), from (7.26) and
the previous estimate, in place of (2.55) now one obtains

d!
ˆ s∗

0

(
v∗(s) − u∗(s)

)
ds ≥ ε1(1 − T )

ˆ T

τ1

(
log

1

t

)d−1

dt.

As explained after (2.55), one can proceed by further assuming T ≥ τ2 > τ1, now
obtaining

d!
ˆ s∗

0

(
v∗(s) − u∗(s)

)
ds ≥ ε1(1 − T )

ˆ τ2

τ1

(
log

1

t

)d−1

dt,

which proves (7.25).
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Lemma 2.5, as is well known, remains valid, with the obvious notational changes
and the reproducing kernels described before (7.9). As a consequence, the proof of
(7.10) can be completed essentially as the proof of (1.17), replacing (2.58) by

min
z0∈Cd

|c|=1

‖F − cFz0‖2
F2(Cd )

≤ C
δs0´∞

s0
v∗(s)ds

.

Finally, the proof of the set stability remains virtually unchanged. This finishes the
proof of Theorem 7.1.

We now discuss the sharpness of the estimate in Theorem 7.1, in analogy to the
discussions of Sects. 5 and 6, and we explain how to adapt the arguments of these
sections to the case of general dimension; as before, we keep the notation from these
sections.

The first observation to be made is that Lemmas 5.4 and 5.5 hold after the obvious
changes have been made, with essentially identical proofs. As in Sect. 5, we wish to
compute the second variation ∂2

εK[1 + εG]|ε=0, where G now satisfies that

〈G,1〉 = 〈G,zi〉 = 0, i = 1, . . . , d.

We note that the same argument as in the proof of Lemma 5.6 implies that (5.12) still
holds when passing to the higher-dimensional case. Hence, we only need to compute
〈X0, ν〉, where X0 is defined as the vector field associated with the flows �ε at ε = 0
in the analogue of Lemma 5.5, and ν denotes the unit normal at ∂�0.

In order to do so, we adapt the proof of Lemma 5.6: first, note that equations
(5.15)–(5.17) hold in the exact same way also in the higher-dimensional case. More-
over, we also note that

s = με(u
∗
ε(s))

= μ0(u
∗
ε(s)) + O(ε2)

= s − (u∗
ε(s) − u∗

0(s))
d · s1−1/d

(d!)1/du∗
0(s)

+ O(ε2),

where the last equality simply follows by differentiating (7.15) with respect to t and
evaluating at t = u∗

0(s) = v∗(s). We hence conclude once again that

uε(�ε(z)) = (1 + 2ε ReG(z) − 2πε〈X0(z), z〉 + O(ε2))e−π |z|2 ,

u∗
ε(s) =

(
1 + (d!)1/d

d · s1−1/d
O(ε2)

)
u∗

0(s).

Again, since �ε({u0 = u∗
0(s)}) = {uε = u∗

ε(s)} by definition, if one looks at z ∈ {u0 =
u∗

0(s)} and compares the expansion in ε of uε(�ε(z)) = u∗
ε(s), one arrives at

Re(G) = π〈X0, z〉 = π · r(�0)〈X0, ν〉 on ∂�0, (7.27)
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where r(�0) denotes the radius of �0, which by the definition of v∗ in (7.4), is given
by

r(�0) =
(

(d!s)1/d

π

)1/2

.

Hence,

ˆ
∂�0

Re(G)〈X0, ν〉e−π |z|2 dH2d−1 = H2d−1(∂�0) · e−πr(�0)
2

π · r(�0)

 
∂�0

Re(G)2 dH2d−1

= H2d−1(∂�0) · e−πr(�0)
2

2π · r(�0)

 
∂�0

|G|2 dH2d−1

= e−(d!s)1/d d · s1−1/d

(d!)1/d

 
∂�0

|G|2 dH2d−1,

where the second identity may be justified by the fact that �0 is a ball centered at 0
and G, G are harmonic functions with G(0) = 0. Thus, as in Sect. 5, this shows that

1

2

d2

dε 2K[1 + εG]
∣∣∣∣∣
ε=0

=
ˆ

�0

|G|2e−π |z|2 − ‖G‖2
F2

ˆ
�0

e−π |z|2

+ e−(d!s)1/d d · s1−1/d

(d!)1/d

 
∂�0

|G|2 . (7.28)

We now wish to compute the right-hand side of (7.28) for

G(z) =
d∑

i=1

z2
i +

∑
1≤i<j≤d

√
2zizj .

In order to do so, we note that each monomial in the definition of G is orthogonal to
every other monomial not just over Cd but in fact over any ball centered at the origin.
Thus we have

1

2

d2

dε 2K[1 + εG]
∣∣∣∣∣
ε=0

=
ˆ

�0

|z|4e−π |z|2 − ‖G‖2
F2

ˆ
�0

e−π |z|2

+ e−(d!s)1/d · d · s1−1/d

(d!)1/d

 
∂�0

|z|4 . (7.29)

In order to further analyze (7.29), note the identity
ˆ

�0

|G|2e−π |z|2 − ‖G‖2
F2

ˆ
�0

e−π |z|2 = −
ˆ
Cd\�0

|G|2e−π |z|2

+ ‖G‖2
F2

ˆ
Cd\�0

e−π |z|2 .
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For our choice of G, we can explicitly evaluate these integrals: indeed, a routine
computation implies that

ˆ
Cd\�0

|z|4e−π |z|2 dz = �(d + 2,πr(�0)
2)

π2�(d)
,

while ‖G‖2
F2 = d(d+1)

π2 , which implies that

‖G‖2
F2

ˆ
Cd\�0

e−π |z|2 dz = d(d + 1)�(d,πr(�0)
2)

π2�(d)
.

Hence, by using that �(k, x) = (k − 1)!e−x
(∑k−1

j=0
xj

j !
)

, we conclude that

ˆ
�0

|z|4e−π |z|2 dz − ‖G‖2
F2

ˆ
�0

e−π |z|2 dz = −ds · e−(d!s)1/d

π2

(
1 + d + (d!s)1/d

)
.

Finally, the last term in (7.29) may be explicitly computed to be d·s
π2 e−(d!s)1/d

(d!s)1/d .
Thus, plugging these into (7.29), we obtain

1

2

d2

dε 2
K[1 + εG]

∣∣∣∣∣
ε=0

= −e−(d!s)1/d · d(d + 1)
s

π2
.

A straightforward adaptation of the arguments from Sect. 6 shows the desired sharp-
ness of the exponent, as well as the stability of the order of growth of the constant in
(7.10). That is, we are able to obtain the following result:

Corollary 7.3 The following assertions hold:

(i) The factor δ(f ;�)1/2 cannot be replaced by δ(f ;�)β , for any β > 1/2, in (7.6);
(ii) There is no c ∈ (0, (d!)1/d) such that, for all measurable sets � ⊂ C

d of finite
measure, we have

min
z0∈Cd ,|c|=‖f ‖2

‖f − c ϕz0‖2

‖f ‖2
≤ C

(
ec|�|1/d

δ(f ;�)
)1/2

.

Elementary computations reveal that the denominator on the right-hand side of
(7.10) behaves as

ˆ ∞

|�|
e−(d!s)1/d

ds ≈ Cd |�| d−1
d e−(d!|�|)1/d

as |�| → ∞,

for some explicitly computable constant Cd > 0. Thus, Corollary 7.3(ii) yields, in-
deed, the desired optimal dependence of (7.10) on |�|.
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Appendix A: Proof of Lemma 5.2

This appendix is dedicated to the proof of the technical Lemma 5.2. Before proceed-
ing with the main part of the proof it is convenient to establish some auxiliary esti-
mates for the vector fields Xε , with flows �ε , which were constructed in Lemma 5.5.

Lemma A.1 Let G ∈ F2(C) satisfy (3.6). Let �ε , Xε , �ε be as in Lemma 5.5. There is
ε0 = ε0(s,‖G‖F2) > 0 and a modulus of continuity η : [0,∞) → [0,∞), depending
on s, such that, when ε ≤ ε0,

‖Xε − X0‖C1 ≤ η(ε)‖G‖F2, (A.1)

‖�ε − �0‖C1 ≤ η(ε)‖G‖F2, (A.2)

|H1(∂�ε) −H1(∂�0)| ≤ η(ε)‖G‖F2, (A.3)

|�ε��0| ≤ η(ε)‖G‖F2, (A.4)

σ(�ε��0) ≤ η(ε)‖G‖F2 . (A.5)

We note that in (A.5), as in the proof of Lemma 5.6, we denote for simplicity
dσ(z) := e−π |z|2 dz.

Proof Let fε be as in (5.4). We begin by proving that

‖fε‖C2(∂�0)
≤ η(ε)‖G‖F2, (A.6)

whenever ε is sufficiently small.
We first argue exactly as in Proposition 3.3. More precisely, we write u0 = e−π |·|2 ,

and so, as in (3.15), we have

{u0 > u∗
ε(s) + 3ε} ⊂ {uε > u∗

ε(s)} ⊂ {u0 > u∗
ε(s) − 3ε}. (A.7)

Thus we see that

|u∗
ε(s) − e−s | ≤ 3ε. (A.8)

If z ∈ ∂�ε = {uε = u∗
ε(s)}, we have

s − 8esε ≤ s − log(1 + 8εes) ≤ − log(u∗
ε(s) + 3ε)

≤ π |z|2
≤ − log(u∗

ε(s) − 3ε) ≤ s + 8esε

(A.9)

for all ε sufficiently small (depending on s). In particular, we may take z ∈ ∂�ε

and so z = (1 + fε(ω))ω for some ω ∈ ∂�0, thus π |z|2 = π |ω|2(1 + fε(ω))2 =
s(1 + fε(ω))2, and the last inequalities yield

1 − 8ess−1ε ≤ (1 + fε(ω))2 ≤ 1 + 8ess−1ε.
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Since 1 + fε(ω) ≥ 0, this easily implies the C0-estimate

|fε(ω)| ≤ 4ess−1ε. (A.10)

We now prove the C1-estimate for fε on ∂�0; in order to simplify a bit the no-
tation, we assume that ∂�0 = S

1 and so we write ω = eiθ . Then uε(�ε(ω)) = u∗
ε(s)

implies

0 = ∂θ (u
∗
ε(s)) = ∂θ

(
uε(�ε(e

iθ ))
)

=
(

2ε Re[G′(�ε)∂θ (�ε(e
iθ ))] + 2ε2 Re[G′(�ε)∂θ (�ε(e

iθ ))G(�ε)]
)

e−π |�ε |2

+
(

1 + 2ε Re(G(�ε)) + ε2|G(�ε)|2
)

(−π∂θ |�ε(e
iθ )|2)e−π |�ε |2,

(A.11)

which can be rewritten as

|1+εG(�ε)|2∂θ |�ε(e
iθ )|2 = 2ε

π
Re

(
G′(�ε)∂θ (�ε(e

iθ ))
(

1 + εG(�ε)
))

. (A.12)

By the explicit formula for �ε , cf. (5.2) and (5.5), we have

∂θ (�ε(e
iθ )) = ieiθ (1 + fε(e

iθ )) + ie2iθ f ′
ε(e

iθ ),

∂θ |�ε(e
iθ )|2 = 2ieiθ (1 + fε(e

iθ ))f ′
ε(e

iθ ).
(A.13)

We now argue essentially as in Lemma 3.1. More precisely, we note that if ε is suffi-
ciently small (depending on ‖G‖F2 ) then

1

2
≤ |1 + εG(�ε)| ≤ 3

2
,

1

2
≤ |1 + fε(e

iθ )| ≤ 3

2
,

where the last bounds follow from (A.10). Thus, taking absolute values in (A.12) and
then inserting identities (A.13), we obtain

|f ′
ε(e

iθ )| ≤ Cε|∂θ (�ε(e
iθ ))||G′(�ε)| (1 + ε|G(�ε)|)

≤ Cε‖G‖F2

(
1 + |f ′

ε(e
iθ )| + ε‖G‖F2

)
.

(A.14)

Here, to pass to the last line, we also used the estimate |G′(�ε)| ≤ C‖G‖F2 which
follows from the Cauchy integral formula and the C0-estimate (A.10), exactly as in
(3.9). By choosing ε sufficiently small, we can absorb the term |f ′

ε(e
iθ )| on the right-

hand side of (A.14) into its left-hand side, and so we obtain

|f ′
ε(e

iθ )| ≤ η(ε)‖G‖F2 . (A.15)

By differentiating (A.11) once more with respect to s, repeating the argument above
and using the bound (A.15), one likewise obtains |f ′′

ε (eiθ )| ≤ η(ε)‖G‖F2 , as claimed
in (A.6). Since the details are essentially the same and bear no real insight, we omit
them.
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Having (A.6) at our disposal, estimate (A.1) follows easily from the explicit for-
mula for the fields Xε in (5.5) and (A.2) follows immediately from (A.1) by ODE
theory; alternatively, one may also argue this directly from the explicit form of the
underlying vector fields in Lemma 5.4.

To prove the remaining estimates we return to (A.7) and (A.8) to see that �ε =
{uε > u∗

ε(s)} is nested between two balls:

B1
ε := {u0 > e−s + 4ε} ⊂ �ε ⊂ {u0 > e−s − 4ε} =: B2

ε .

Proposition 3.3 ensures that, by choosing ε0 sufficiently small, �ε is convex, hence

H1(∂B1
ε ) ≤ H1(∂�ε) ≤ H1(∂B2

ε ).

Let us denote by R1
ε , R2

ε the radii of B1
ε , B2

ε respectively. If we choose ε0 sufficiently
small, depending on s, then it is easy to see that

s − 8esε ≤ π(R1
ε )

2 ≤ π(R2
ε )

2 ≤ s + 8esε, (A.16)

similarly to (A.9). This immediately yields

4π(s − 8esε) ≤ H1(∂B1
ε )2 ≤H1(∂B2

ε )2 ≤ 4π(s + 8esε),

and, as H1(∂�0)
2 = 4πs, (A.3) follows. Similarly, for (A.4), we have

|�ε��0| ≤ |B2
ε \ B1

ε | ≤ π
(
(R2

ε )
2 − (R1

ε )
2
)

≤ 16esε.

Finally, (A.5) follows from (A.4) through σ(�ε��0) ≤ |�ε��0|. �

Proof of Lemma 5.2 Returning to the beginning of the proof of Lemma 5.6, and in
particular to (5.11), we can write, using Taylor’s theorem,

Kε = K0 + ε2

2
K ′′

0 +
ˆ ε

0
(ε − s)(K ′′

s − K ′′
0 )ds,

and thus our task is to show that, for all ε ∈ [0, ε0], we have

|K ′′
ε − K ′′

0 | ≤ η(ε) (A.17)

for a suitable modulus of continuity η. We recall that, as in the proof of Lemma 5.6,
primes denote derivatives with respect to ε, and we also recall the definition of Iε and
Jε from (5.7).

Although in the statement of the lemma we assumed that ‖G‖F2 = 1, for the sake
of clarity we will still write ‖G‖F2 explicitly in our estimates. Since 〈G,1〉F2 = 0
by (3.6), we have

Jε − J0 = ‖1 + εG‖2
F2 − ‖1‖2

F2 = ε2‖G‖2
F2 = ε2, (A.18)

and so Jε ≥ J0 = 1. By (5.8), the function K ′′
ε , seen as a function of (Iε, I

′
ε, I

′′
ε , Jε,

J ′
ε, J

′′
ε ), is smooth in the set {Jε > 0} and therefore there is a constant C such that∣∣K ′′
ε − K ′′

0

∣∣ ≤ C(|Iε − I0| + |I ′
ε − I ′

0| + |I ′′
ε − I ′′

0 | + |Jε − J0| + |J ′
ε − J ′

0|). (A.19)
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since J ′′
ε = J ′′

0 is independent of ε, cf. (5.10). It now suffices to estimate each of the
terms on the right-hand side of (A.19). In (A.18), we have already estimated |Jε −J0|
and, similarly, we have

|J ′
ε − J ′

0| = 2
ˆ
C

〈G,εG〉dσ = 2ε‖G‖2
F2, (A.20)

where we used the identities in (5.9). Thus it remains to estimate the first three terms
in (A.19).

For the first term, again since 〈G,1〉F2 = 0, we estimate using the fundamental
theorem of calculus:

|Iε − I0| ≤ ε sup
ε

|I ′
ε| ≤ 2ε|〈G,1 + εG〉F2 | = 2ε2‖G‖2

F2 . (A.21)

For the second term, with the help of (A.5), we estimate

|I ′
ε − I ′

0| = 2
∣∣〈G,(1 + εG)1�ε − 1�0〉F2

∣∣
≤ 2‖G‖F2σ(�ε��0) + 2ε‖G‖2

F2

≤ η(ε)‖G‖2
F2 .

(A.22)

Finally, we arrive at the third term:

1

2
(I ′′

ε − I ′′
0 ) =

ˆ
C

|G|2(1�ε − 1�0)dσ +
ˆ

∂�ε

〈G,1 + εG〉〈Xε, νε〉e−π |z|2 dH1(z)

−
ˆ

∂�0

〈G,1〉〈X0, ν0〉e−π |z|2 dH1(z).

The first term on the right-hand side is easily estimated using (A.4):
ˆ
C

|G|2(1�ε − 1�0)dσ ≤ ‖G‖2
F2 |�ε��0| ≤ η(ε)‖G‖3

F2 .

For the last two terms, we write
ˆ

∂�ε

〈G,1 + εG〉〈Xε, νε〉e−π |z|2 dH1(z) −
ˆ

∂�0

〈G,1〉〈X0, ν0〉e−π |z|2 dH1(z)

= A1 + A2 + A3,

where

A1 :=
ˆ

∂�ε

〈G,1 + εG〉e−π |z|2(〈Xε, νε〉 − 〈X0, ν0〉)dH1(z),

A2 :=
ˆ

∂�ε

ε|G|2〈X0, ν0〉e−π |z|2 dH1(z),

A3 :=
ˆ

∂�ε

〈G,1〉e−π |z|2〈X0, ν0〉 −
ˆ

∂�0

〈G,1〉e−π |z|2〈X0, ν0〉dH1(z).
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Here, we have extended νε to a neighbourhood of ∂�0 as νε = − ∇uε|∇uε | . With this
definition, it follows from a computation similar to that of Lemma 3.1 that ‖νε −
ν0‖L∞ ≤ C̃(s)ε‖G‖F2 in a neighbourhood of ∂�0. Thus, on ∂�ε ,

|〈Xε, νε〉 − 〈X0, ν0〉| ≤ |〈Xε, νε − ν0〉| + |〈Xε − X0, ν0〉|
≤ C(s)ε‖G‖F2 + η(ε)‖G‖F2

and so, using (A.1) and (A.3), we estimate

|A1| ≤ C(s)ε‖G‖F2

ˆ
∂�ε

|G|(1 + ε|G|)e−π |z|2 dH1(z)

≤ C(s)η(ε)(‖G‖2
F2 + ‖G‖3

F2).

Similarly, by (A.1) and (5.19) we have

|A2| ≤ ε‖G‖2
F2

ˆ
∂�ε

〈X0, ν0〉dH1 ≤ C(s)ε‖G‖2
F2 .

Finally, we note that
ˆ

∂�ε

〈G,1〉e−π |z|2〈X0, ν0〉dH1(z)

=
ˆ

∂�0

|∇�ε(ω)|〈G(�ε(ω)),1〉〈X0(�ε(ω)), ν0(�ε(ω))〉e−π |�ε(ω)|2 dH1(ω),

and so we have

A3 = 2

H1(∂�0)

ˆ
∂�0

|∇�ε|ReG(�ε)〈X0(�ε), ν0(�ε)〉e−π |�ε |2

− ReG〈X0, ν〉e−π |·|2 dH1.

By (A.2) we have ||∇�ε| − 1| ≤ η(ε)‖G‖F2 , and so it suffices to estimate the func-
tion

g(z) := ReG(z)〈X0(z), z/|z|〉e−π |z|2 .

We have

|∇g(z)| ≤ (|G′(z)||X0(z)| + |G(z)||∇X0(z)| + C(s)|G(z)||X0(z)|
+ 2π |z||G(z)||X0(z)|)e−π |z|2

≤ ‖G‖F2(C(s)|G(z)| + 2π |z||G(z)|)e−π |z|2 ≤ C(s)‖G‖2
F2 ,

where to pass to the second line we used the definition of X0 from (5.5) (together
with the smoothness of ε �→ fε proved in Lemma 5.5) and the fact that G is in the
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Fock space (together with G(0) = G′(0) = 0, as done in (2.15) for the function R(z)).
Hence, using again (A.2), and as �0(ω) = ω, we have

|g(�ε(ω)) − g(ω)| ≤ ‖∇g‖L∞|�ε(ω) − ω| ≤ C(s)η(ε)‖G‖3
F2 ,

which yields immediately

|A3| ≤ η(ε)‖G‖2
F2 .

Hence, combining the last estimates, and up to replacing η with a new modulus of
continuity, we have

|I ′′
ε − I ′′

0 | ≤ η(ε)‖G‖2
F2 . (A.23)

The desired decay (A.17) now follows by combining (A.18)–(A.23). �
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