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Abstract

The measures of uncertainty are a topic of considerable and growing interest.

Recently, the introduction of the extropy as a measure of uncertainty dual of

Shannon entropy opened up interest in new aspects of the subject. Since there

are many versions of entropy, a unified formulation for it has been introduced

to work with all of them in an easy way. Here, we consider the possibility of

defining a unified formulation for extropy by introducing a measure depending

on two parameters. For particular choices of parameters, this measure will give

back the well-known formulations of extropy. Moreover, the unified formulation

of extropy is also analyzed in the context of Dempster-Shafer theory of evidence

and an application to classification problems is given.

Keywords: Shannon entropy; Extropy; Dempster-Shafer Theory; Tsallis en-

tropy; Fractional entropy.
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1. Introduction

Let X be a discrete random variable with support S of cardinality N and with prob-

ability vector (p1, . . . , pN ). In 1948, Shannon [16] introduced a measure of information

or uncertainty about X, known as Shannon entropy, as

H(X) = −
N∑
i=1

pi log pi, (1)

where log denotes the natural logarithm. The paper of Shannon is considered a

pioneering one since several studies have been devoted to the measures of information

or discrimination, see, for instance, [7, 13, 14, 18]. Recently, a new measure, known as

extropy, has been proposed by Lad et al. [11] as a measure dual of Shannon entropy

and defined by

J(X) = −
N∑
i=1

(1− pi) log(1− pi). (2)

Another important and well-known generalizations of Shannon entropy, is Tsallis en-

tropy defined in [19] as

Sα(X) =
1

α− 1

(
1−

N∑
i=1

pαi

)
, (3)

where α is a parameter greater than 0 and different from 1. Tsallis entropy is a

generalization of Shannon entropy since

lim
α→1

Sα(X) = H(X).

It is also possible to study the extropy-based version of Tsallis entropy, namely Tsallis

extropy, as studied in details by Balakrishanan et al. [2]. In that paper, two equivalent

expressions for Tsallis extropy are given by

JSα(X) =
1

α− 1

(
N − 1−

N∑
i=1

(1− pi)
α

)
(4)

=
1

α− 1

N∑
i=1

(1− pi)
(
1− (1− pi)

α−1
)
,
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where α > 0 and α ̸= 1. Of course, the definition of Tsallis extropy guarantees the

preservation of the same relation which holds between Shannon entropy and extropy,

in the sense that

lim
α→1

JSα(X) = J(X). (5)

The study of measures of uncertainty has been recently extended to the fractional

calculus. In that context, Ubriaco [20] defined the fractional version of Shannon

entropy, known as fractional entropy, by

Hq(X) =

N∑
i=1

pi[− log pi]
q, (6)

where 0 < q ≤ 1. Note that for q = 0 it simply reduces to 1 due to the normalization

condition. Moreover, for q = 1 it reduces to the Shannon entropy, i.e., H1(X) = H(X).

Up to now, the corresponding version based on extropy has not been studied in details.

Of course, the fractional extropy can be easily defined as

Jq(X) =

N∑
i=1

(1− pi)[− log(1− pi)]
q, (7)

where 0 < q ≤ 1, and this is a particular case of the definition of fractional Deng

extropy (see [10]) for the choice of a basic probability assignment that degenerates in

a discrete probability function. Again, the case q = 0 is not of interest since it brings

to a constant, whereas for q = 1 we obtain J1(X) = J(X).

Furthermore, the study of measures of uncertainty has been extended to the Dempster-

Shafer theory of evidence [4, 15]. This is a generalization of the classical probability

theory which allows us to handle better uncertainty. More precisely, the discrete

probability distributions are replaced by the mass functions which can give a weight, a

sort of degree of belief, towards all the subsets of the space of the events. More details

on this theory and on measures of uncertainty developed in its context will be recalled

later on.

Recently, it was proposed by Balakrishnan et al. [1] a new definition given with the

purpose of unifying the definitions of Shannon, Tsallis and fractional entropies. This

was called fractional Tsallis entropy, or unified formulation of entropy, and it is given

by

Sq
α(X) =

1

α− 1

N∑
i=1

pi(1− pα−1
i )(− log pi)

q−1, (8)
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where α > 0, α ̸= 1 and 0 < q ≤ 1. We can readily observe that the fractional Tsallis

entropy is always non-negative and that for q = 1 it reduces to the Tsallis entropy, that

is S1
α(X) = Sα(X). Moreover, as α tends to 1, the fractional Tsallis entropy converges

to the fractional entropy and if, in addition, q = 1 also to Shannon entropy. In [1]

a unified formulation of entropy was proposed also in the context of Dempster-Shafer

theory of evidence.

The purpose of this paper is to give the corresponding unified version of extropy,

a definition which includes, as special cases, all previously defined extropies. Further-

more, a unified formulation for extropy is proposed also in the context of Dempster-

Shafer theory of evidence.

2. Preliminaries on the Dempster-Shafer theory

Dempster [4] and Shafer [15] introduced a theory to study uncertainty. Their theory

of evidence is a generalization of the classical probability theory. In Dempster-Shafer

theory (DST) of evidence, an uncertain event with a finite number of alternatives

is considered, and a mass function over the power set of the alternatives, that is a

degree of confidence to all of its subsets, is defined. If we assign positive mass only

to singletons, we recover a discrete probability distribution. By DST it is possible to

describe situations in which there is less specific information.

Let X be a frame of discernment (FOD), i.e., a set of mutually exclusive and

collectively exhaustive events indicated by X = {θ1, θ2, . . . , θ|X|}. The power set of X

is denoted by 2X and it has cardinality 2|X|. A function m : 2X → [0, 1] is called a

mass function or a basic probability assignment (BPA) if

m(∅) = 0 and
∑

A∈2X

m(A) = 1.

If m(A) ̸= 0 implies |A| = 1 then m is also a probability mass function, i.e., BPAs

generalize discrete random variables. Moreover, the elements A such that m(A) > 0

are called focal elements.

In DST, there are different indices to evaluate the degree of belief in a subset of

the FOD. Among them, we recall here the definitions of belief function, plausibility

function and pignistic probability transformation (PPT). The belief function and the
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plausibility function are defined as

Bel(A) =
∑

∅̸=B⊆A

m(B), P l(A) =
∑

B∩A ̸=∅

m(B),

respectively. Note that the plausibility of A can be expressed also as 1 minus the sum

of the masses of all sets whose intersection with A is empty. Moreover, both the belief

and the plausibility vary from 0 to 1 and the belief is always less than or equal to

the plausibility. Given a BPA, we can evaluate for each focal element the pignistic

probability transformation (PPT) which represents a point estimate of belief and can

be determined as

PPT (A) =
∑

B:A⊆B

m(B)

|B|
, (9)

see [17].

Recently, several measures of discrimination and uncertainty have been proposed

in the literature and in the context of the Dempster-Shafer evidence theory (see, for

instance, Zhou and Deng [21] where a belief entropy based on negation is proposed).

For a detailed review we refer to Deng [6]. Among them, one of the most important is

known as Deng entropy that was introduced in [5] for a BPA m as

ED(m) = −
∑

A⊆X:m(A)>0

m(A) log2

(
m(A)

2|A| − 1

)
. (10)

This entropy is similar to Shannon entropy and they coincide if the BPA is also a

probability mass function. The term 2|A|− 1 represents the potential number of states

in A. For a fixed value of m(A), 2|A| − 1 increases with the cardinality of A and then

also Deng entropy does. Moreover, the fractional version of Deng entropy was proposed

and studied by Kazemi et al. [10] whereas the Tsallis-Deng entropy was introduced

by Liu et al. [12]. Based on these measures, Balakrishnan et al. [1] defined a unified

formulation of entropy also in the context of Dempster-Shafer theory. This formulation

of entropy is also called the fractional version of Tsallis-Deng entropy, and it is

SDq
α(m) =

1

α− 1

∑
A⊆X:m(A)>0

m(A)

[
1−

(
m(A)

2|A| − 1

)α−1
](

− log
m(A)

2|A| − 1

)q−1

, (11)

where α > 0, α ̸= 1, 0 < q ≤ 1. It is a general expression of entropy as it includes

several versions of entropy measure, both in the context of DST and in the classical

probability theory.
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In analogy with the relation between Shannon entropy and extropy, Buono and

Longobardi [3] defined the Deng extropy as a measure of uncertainty dual of Deng

entropy. The definition was given in order to satisfy the invariant property about the

sum of entropy and extropy. For a BPA m over a FOD X, the Deng extropy is defined

by

JD(m) = −
∑

A⊂X:m(A)>0

(1−m(A)) log

(
1−m(A)

2|Ac| − 1

)
, (12)

where Ac is the complementary set of A in X and |Ac| = |X| − |A|. In addition, in the

context of fractional calculus, Kazemi et al. [10] defined the fractional version of Deng

extropy as

JDq(m) =
∑

A⊂X:m(A)>0

(1−m(A))

[
− log

(
1−m(A)

2|Ac| − 1

)]q
, 0 < q ≤ 1. (13)

To the best of our knowledge, the corresponding measure related to Tsallis entropy has

not been studied yet. This measure is called here Tsallis-Deng extropy and defined by

JDα(m) =
1

α− 1

∑
A⊂X:m(A)>0

(1−m(A))

[
1−

(
1−m(A)

2|Ac| − 1

)α−1
]
, α > 0, α ̸= 1. (14)

3. Fractional Tsallis extropy

In this section, we introduce the unified formulation of extropy in the context of

classical probability theory. We refer to this formulation as fractional Tsallis extropy

and, for a discrete random variable X, it is

JSq
α(X) =

1

α− 1

N∑
i=1

(1− pi)[1− (1− pi)
α−1][− log(1− pi)]

q−1, (15)

where α > 0, α ̸= 1 and 0 < q ≤ 1. As mentioned above, the purpose of giving this

definition is based on the fact that this expression includes the classical, Tsallis and

fractional extropies as special cases.

Remark 1. The fractional Tsallis extropy is non-negative for any discrete random

variable. In fact the term 1 − (1 − pi)
α−1 is positive for α > 1 and negative for

0 < α < 1, so that the sum in (15) has a definite sign and it is the same of α− 1.

Remark 2. This extropy is non-additive. In fact, if we consider X with probability

vector ( 13 ,
2
3 ) and Y with probability vector ( 14 ,

3
4 ) it is easy to show that JSq

α(X ∗Y ) ̸=
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JSq
α(X)+JSq

α(Y ). For particular choices of α and q, we obtain JS0.5
2 (X ∗Y ) = 1.2341,

whereas JS0.5
2 (X) = 0.5610, JS0.5

2 (Y ) = 0.5088.

Proposition 1. If q = 1 the fractional Tsallis extropy is equal to Tsallis extropy.

Proof. It follows from (15) for q = 1. □

Proposition 2. The fractional Tsallis extropy converges to the fractional extropy as

α goes to 1.

Proof. By taking the limit for α to 1 in (15) and by applying L’Hôpital’s rule, we

obtain

lim
α→1

JSq
α(X) = lim

α→1

1

α− 1

N∑
i=1

(1− pi)[1− (1− pi)
α−1][− log(1− pi)]

q−1

= lim
α→1

N∑
i=1

(1− pi)[−(1− pi)
α−1] log(1− pi)[− log(1− pi)]

q−1

= lim
α→1

N∑
i=1

(1− pi)
α[− log(1− pi)]

q =

N∑
i=1

(1− pi)[− log(1− pi)]
q

= Jq(X).

□

Corollary 1. If both parameters of the fractional Tsallis extropy go to 1, then

lim
α,q→1

JSq
α(X) = J(X).

The results given in Propositions 1, 2 and Corollary 1 are summarized in Figure 1 in

the form of a schematic diagram by displaying the relationships among different kinds

of extropy.

In the following proposition, we show that the fractional Tsallis entropy and the

fractional Tsallis extropy satisfy a classical property of entropy and extropy related to

their sum.

Proposition 3. Let X be a discrete random variable with finite support S and with

corresponding probability vector p. Then,

Sq
α(X) + JSq

α(X) =

N∑
i=1

Sq
α(pi, 1− pi) =

N∑
i=1

JSq
α(pi, 1− pi), (16)
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Fractional Tsallis Extropy

Tsallis Extropy

Fractional Extropy

Extropy

q =
1

α→
1

α→
1

q =
1

q = 1, α → 1

Figure 1: Relationships among different versions of extropy in classical probability theory.

where Sq
α(pi, 1− pi) and JSq

α(pi, 1− pi) are the fractional Tsallis entropy and extropy

of a discrete random variable taking on two values with corresponding probabilities

(pi, 1− pi).

Proof. The second equality readily follows by observing that, for a random variable

with support of cardinality 2, the fractional Tsallis entropy and extropy coincide. In

order to prove the first equality, by (8) and (15), note that,

Sq
α(X) + JSq

α(X)

=
1

α− 1

N∑
i=1

[
pi(1− pα−1

i )(− log pi)
q−1 + (1− pi)[1− (1− pi)

α−1][− log(1− pi)]
q−1
]
,

and then the statement follows. □

Theorem 1. The supremum of the fractional Tsallis extropy as a function of q ∈ (0, 1]

is attained in one of the extremes of the interval while the infimum is attained in one of

the extremes of the interval or it is a minimum assumed in a unique point q0 ∈ (0, 1).

Proof. The fractional Tsallis extropy is a convex function of q. Then there are three

possible cases to consider. In the first one, it is strictly increasing in q, so that the

infimum is attained at 0 and the maximum at q = 1. In the second one, it is strictly

decreasing in q and then the minimum is reached at q = 1 while the supremum at 0.

In the last case, it is decreasing up to q0 ∈ (0, 1) and then increasing, so that q0 is the

point of minimum and the supremum is reached at one of the extremes of the interval

(0, 1). □
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Figure 2: The fractional Tsallis extropy in Example 1 as a function of α for different choices

of q (left) and as a function of q for different choices of α (right).

Example 1. Consider a discrete random variable X with support of cardinality 4

and probability vector (0.1, 0.2, 0.3, 0.4). It is possible to study the fractional Tsallis

extropy as a function of either α or q by fixing the other one as shown in Figure 2.

There it is possible to observe a decreasing monotonicity for all the choices of α and

q.

Example 2. Consider XN as a discrete random variable uniformly distributed over a

support of cardinality N . Then the components of the probability vector are pi =
1
N ,

i = 1, . . . , N , and the fractional Tsallis extropy is obtained as

JSq
α(XN ) =

N − 1

α− 1

[
1−

(
1− 1

N

)α−1
] [

− log

(
1− 1

N

)]q−1

, (17)

for α > 0, α ̸= 1, and 0 < q ≤ 1. In Table 1, the values of JSq
α(XN ) are given in

function of N for different choices of the parameters α and q. Moreover, these values

are plotted in Figure 3 showing an increasing behavior in terms of N . By considering

the Taylor expansion of Equation (17), we note that as N goes to infinity, JSq
α(XN ) is

asymptotically N1−q. So it diverges and this explains why in Figure 3 the cases related

to the same value of q seem to be paired.
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Table 1: Values of the fractional Tsallis extropy for the discrete uniform distribution as a

function of N , for different choices of q and α.

N α = 0.5, q = 0.2 α = 0.5, q = 0.5 α = 0.5, q = 0.75 α = 5, q = 0.2 α = 5, q = 0.5 α = 5, q = 0.75

5 3.1349 1.9990 1.3739 1.9601 1.2498 0.8590

10 5.8921 2.9997 1.7090 4.6824 2.3838 1.3581

15 8.3445 3.7415 1.9175 7.1670 3.2135 1.6470

20 10.6254 4.3588 2.0743 9.4836 3.8904 1.8514

25 12.7888 4.8989 2.2020 11.6792 4.4739 2.0110

30 14.8637 5.3851 2.3107 13.7825 4.9934 2.1426

35 16.8683 5.8309 2.4060 15.8120 5.4657 2.2553

40 18.8149 6.2450 2.4911 17.7805 5.9016 2.3541

45 20.7122 6.6332 2.5683 19.6975 6.3082 2.4424

50 22.5670 7.0000 2.6391 21.5699 6.6907 2.5225

5 10 15 20 25 30 35 40 45 50
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Figure 3: The fractional Tsallis extropy in Example 2 as a function of N with different

choices of the parameters α and q.

4. A unified formulation of extropy

Now, we introduce a unified formulation of extropy in the context of Dempster-

Shafer theory of evidence as

JDq
α(m) =

1

α− 1

∑
A⊂X:m(A)>0

(1−m(A))

[
1−

(
1−m(A)

2|Ac| − 1

)α−1
](

− log
1−m(A)

2|Ac| − 1

)q−1

, (18)

where α > 0, α ̸= 1, 0 < q ≤ 1. As well as the fractional Tsallis extropy, this is a

general formulation, since it includes several versions of extropy measure both in the

context of DST and in the classical probability theory.

Remark 3. The unified formulation of extropy (18) is non-negative too.
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Proposition 4. If q = 1, the unified formulation of extropy in (18) is equal to Tsallis-

Deng extropy in (14).

Proof. By taking q = 1 in (18), we have

JD1
α(m) =

1

α− 1

∑
A⊂X:m(A)>0

(1−m(A))

[
1−

(
1−m(A)

2|Ac| − 1

)α−1
]
= JDα(m).

□

Proposition 5. The unified formulation of extropy in (18) converges to the fractional

Deng extropy in (13), as α goes to 1.

Proof. By taking the limit for α going to 1 in (18), and by using L’Hôpital’s rule,

it follows

lim
α→1

JDq
α(m) = lim

α→1

∑
A⊂X:m(A)>0

(1−m(A))

[(
1−m(A)

2|Ac| − 1

)α−1
](

− log
1−m(A)

2|Ac| − 1

)q

=
∑

A⊂X:m(A)>0

(1−m(A))

(
− log

1−m(A)

2|Ac| − 1

)q

= JDq(m),

and the proof is complete. □

Corollary 2. When both parameters α and q in (18) tend to 1, the unified formulation

of extropy in (18) converges to Deng extropy in (12), i.e.,

lim
α,q→1

JDq
α(m) = JD(m).

Remark 4. If the BPA m is such that all focal elements have cardinality n− 1, then

in the expression of the unified formulation of extropy |Ac| = 1 for each addend in the

sum. Hence, the unified formulation of extropy reduces to

JDq
α(m) =

1

α− 1

∑
A⊂X:m(A)>0

(1−m(A))
[
1− (1−m(A))

α−1
]
[− log(1−m(A))]

q−1

= JSq
α(Y ),

where Y is a discrete random variable with support X = {θ1, . . . , θn} such that pi =

P(θi) = m(X ∖ {θi}).

To summarize the results given in Propositions 4 and 5, Corollary 2 and Remark 4,

the relationships among different formulations of extropies are depicted in Figure 4 in

the form of a schematic diagram.
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Unified formulation of Extropy

Tsallis-Deng Extropy

Fractional Deng Extropy

Deng Extropy

Fractional Tsallis Extropy

q =
1

α → 1

α →
1

q =
1

q = 1, α → 1

m
(A

)
>

0
⇒

|A
|=

n
−
1

Figure 4: Relationships among different entropies in DST theory (blue) and in classical

probability theory (yellow).

Theorem 2. The supremum of the unified formulation of extropy in (18), as a func-

tion of q ∈ (0, 1], is attained at one of the extremes of the interval, and the infimum

either is attained at one of the extremes of the interval or it is a minimum at a unique

q0 ∈ (0, 1).

Proof. The proof is similar to that of Theorem 1. □

Example 3. Let X be a frame of discernment with cardinality 4 and consider the

BPA m∗ such that

m∗(A) =
2|A| − 1∑

B⊆X(2|B| − 1)
, A ⊆ X.

It is a well-known BPA which gives the same mass to all the subsets with the same

cardinality. More precisely, with |X| = 4, we have four subsets with cardinality 1 and

mass 1/65, six subsets with cardinality 2 and mass 3/65, four subsets with cardinality

3 and mass 7/65 and one subset with cardinality 4 and mass 15/65. Remember that

the last one, that is the entire frame of discernment X, is not involved in the evaluation

of the unified formulation of extropy. In Figure 5, the values of the unified formulation
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Figure 5: The unified formulation of extropy in Example 3 as a function of α for different

choices of q (left) and as a function of q for different choices of α (right).

of extropy of m∗ are plotted as a function of α or q.

4.1. Application to classification problems

The measures of uncertainty are an efficient tool in the classification problems,

see, for instance, [1, 2, 3]. Here, the unified formulation of extropy is applied to the

classification problem based on the Iris dataset given in [8]. It is composed of 150

instances equally divided into three classes, Iris Setosa (Se), Iris Versicolor (V e) and

Iris Virginica (V i), and, for each of them, four attributed are known, i.e., the sepal

length in cm (SL), the sepal width in cm (SW), the petal length in cm (PL) and the

petal width in cm (PW). By using the method of max–min values, the model of interval

numbers is obtained and is presented in Table 10 in [1]. Suppose the selected instance

is (6.3, 2.7, 4.9, 1.8). It belongs to the class Iris Virginica and our purpose is to classify

it correctly. Four BPAs, one for each attribute, are generated by using the similarity

of interval numbers proposed by Kang et al. [9]. Without any additional information,

the final BPA is determined by giving the same weight to each attribute. In order to

discriminate among classes, we evaluate the PPT (9) of singleton classes for the final

BPA obtaining PPT (Se) = 0.1826, PPT (V e) = 0.4131, PPT (V i) = 0.4043. Thus,

the focal element with the highest PPT is the class Iris Versicolor, which would be our

final decision, which is not the correct one. Hence, we try to improve the method by

using the unified formulation of extropy in (18), by choosing as parameters q = 0.5 and

α = 5. The unified formulation of extropy of BPAs obtained by using the similarity of
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interval numbers is evaluated and the corresponding results are given in Table 2.

Table 2: The unified formulation of extropy of BPAs based on similarity of interval numbers.

Attribute Alcohol Malic Acid Ash OD

JD0.5
5 1.5733 1.5855 0.6664 0.7108

A greater value of the unified formulation of extropy represents a higher uncertainty,

then it is reasonable to give more weight to the attributes with lower value of that

measure. Here, we define the weights by normalizing to 1 the reciprocal values of the

unified formulation of extropy, and the results are given in Table 3.

Table 3: The weights of attributes based on the unified formulation of extropy.

Attribute SL SW PL PW

Weight 0.1523 0.1511 0.3595 0.3371

Based on the weights in Table 3, a weighted version of the final BPA is obtained.

Then, the PPT of the singleton classes are computed as PPT (Se) = 0.1156, PPT (V e) =

0.4360, PPT (V i) = 0.4485. Hence, the focal element with the highest PPT is the type

Iris Virginica, and would therefore be our final decision, which is the correct one.

By using the method based on the unified formulation of extropy, a gain in terms of

recognition rate is obtained going from 94% of the non-weighted method to 94.67% of

the method explained here.

5. Conclusions

The recent study of the extropy, as a dual measure of uncertainty, has inspired us

to introduce a unified formulation for it. We have obtained well-known concepts of

extropy for particular choices of the two parameters involved. This unified formulation

has also been analyzed in the context of Dempster-Shafer theory of evidence. Further,

an application to classification problems of the proposed measure is described.
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