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JIST: Joint Image and Sequence Training
for Sequential Visual Place Recognition

Gabriele Berton™!

Abstract— Visual Place Recognition aims at recognizing pre-
viously visited places by relying on visual clues, and it is used in
robotics applications for SLAM and localization. Since typically
a mobile robot has access to a continuous stream of frames,
this task is naturally cast as a sequence-to-sequence localization
problem. Nevertheless, obtaining sequences of labelled data is
much more expensive than collecting isolated images, which
can be done in an automated way with little supervision. As a
mitigation to this problem, we propose a novel Joint Image
and Sequence Training protocol (JIST) that leverages large
uncurated sets of images through a multi-task learning frame-
work. With JIST we also introduce SeqGeM, an aggregation
layer that revisits the popular GeM pooling to produce a single
robust and compact embedding from a sequence of single-frame
embeddings. We show that our model is able to outperform
previous state of the art while being faster, using 8 times
smaller descriptors, having a lighter architecture and allowing
to process sequences of various lengths. The code is available
at https://github.com/galil3o/JIST

I. INTRODUCTION

Localization is a fundamental functionality for au-
tonomous mobile robots, and one of its key ingredients
is Visual Place Recognition (VPR) [1], i.e., the task of
matching a current visual observation (an image or video
stream) to previously visited places. For example, VPR
is used for loop closure detection in SLAM [2], for re-
localization in the kidnapped robot problem [3] and also
for pure localization when a map is already available [4]
and when GNSS measurements are precluded [5], [6]. Addi-
tionally, VPR is used to select rough candidates for precise
6-DoF pose estimation (i.e., visual localization) [4], [7].

Across these robotics applications, VPR is typically per-
formed using methods that process short sequences of images
acquired by cameras onboard the robot - what is called
sequence-to-sequence or seq2seq place recognition [8]. A
recent trend in this sense is to frame the seq2seq problem as
a retrieval task on learnt embeddings (sequence descriptors)
that represent entire sequences rather than individual frames
[9]-[12]. This new paradigm not only intrinsically captures
the temporal information in the video stream, but it is
also more efficient than individually matching each frame
with previous observations [11], [12]. However, the accuracy
and robustness achieved by sequence descriptors is bounded
by the limited availability of large datasets of sequences.
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Fig. 1. Our multi-task training framework allows to surpass previous SOTA
in performance. Thanks to our novel layer SeqGeM, we are able to cut down
the matching time by an order of magnitude.

Indeed, for the classic image-to-image VPR (im2im [8])
the availability of massive datasets has been instrumental
in setting the latest state of the art [13], [14], producing
descriptors that generalize better and are very compac Yet,
due to difficulties in curating sequences [8], [16], the largest
dataset currently available for the seq2seq task (Mapillary
Street Level Sequences [8]) is 40x smaller than the largest
datasets for image-to-image VPR [13], [17].

Given the correlation between the seq2seq and the im2im
tasks, we argue that it is possible to produce more effective
sequence descriptors by jointly training a model not only on
sequences, but also on the readily available massive datasets
for image-to-image VPR: on one hand, the im2im training
from huge-scale datasets would improve the model’s general-
izability; on the other, sequence-to-sequence learning would
embed the model with robustness to sequentially changing
scenes and teach it how to temporally aggregate frame-
level information. To this end, we propose a new training
methodology that jointly uses images and sequences and
exploits a state-of-the-art architecture originally developed
for im2im VPR to first extract discriminative embeddings
from individual frames and then aggregate them. While
this new training method enables the model to effectively
learn also from large datasets for the im2im tasks, it does
not automatically solve the issue of large-dimensional em-
beddings required by previous SOTA [12]. To address this
issue, in section we introduce a new aggregation layer
called SeqGeM, that revisits the popular generalized mean
pooling [18] by applying it along the temporal axis, resulting
in very compact descriptors and, consequently, speeding-
up the matching time (see fig. [I). The combination of this
training method and SeqGeM takes the name of Joint Image
and Sequence Training, or JIST.

I'This also entails a reduced latency, because the size of descriptors has
a linear correlation with the matching time of the retrieval [15].


https://github.com/ga1i13o/JIST

To summarize, we bring the following contributions:

« We propose a novel multi-task training framework to
leverage existing large scale datasets of image-to-image
VPR and improve upon the seq2seq task [8];

« We introduce the SeqGeM aggregation layer, which
revisits the popular generalized mean pooling [18]
by aggregating individual frames descriptors along the
temporal axis and resulting in compact and robust
descriptors regardless of the input sequence length;

« We show that, compared to previous SOTA, our pipeline
achieves better results and faster inference thanks to its
reliance on smaller dimensional descriptors.

II. RELATED WORKS

Sequence matching. Sequence matching, or frame-by-frame
matching, represents an established approach to seq2seq [19],
[20], and it operates by building a similarity matrix wherein
descriptors of single query frames are compared to database
ones. The best match is then determined by aggregating the
scores in the matrix under simplifying assumptions, such as
constant velocity or no stops [21], which makes it hard to
generalize to real-world applications. There is a rich litera-
ture on sequence matching that tries to relax these assump-
tions by exploiting ego-motion information or using complex
methods [22], [23] and graph-based frameworks [24]-[26].
Recently, SeqMatchNet [27] has also addressed the fact that
these methods rely on learned image-to-image descriptors
trained without considering the downstream procedure of
score aggregation. Despite these improvements, sequence
matching can generally be expensive to perform, as it re-
quires each frame from the query to be matched to each
frame of all databases sequences, as discussed in [11], [12].

Sequence descriptors. Sequence descriptor methods sum-
marize each sequence with a single embedding which can
be used for retrieving the most similar matches. This allows
to incorporate temporal clues directly into the descriptors and
to perform the similarity search directly on sequences rather
than frames, thus greatly reducing the matching time. Facil
et al. [9] first introduced the idea of sequence descriptors in
VPR using simple aggregation techniques such as concatena-
tion, sum, or processing via a LSTM network. [8] extended
their benchmark on the Mapillary Street Level Sequences
(MSLS) dataset. A non-learnable aggregation via discrete
convolution was explored by Garg et al. [10]. Alternatively,
1D temporal convolutions were employed in SeqNet [11] to
obtain a learnable aggregation of frame descriptors. Recently,
[28] demonstrated a hyperdimensional computing approach
to systematically combine information from multiple single-
image descriptors. Considering the architectural differences
among these methods, [12] provides a benchmark and taxon-
omy for seq2seq methods depending on how the frame-level
features are fused together, and then it introduces the Se-
qVLAD aggregation layer that achieves SOTA performance.
A follow up work is found in [29].

Image-to-image place recognition on large databases.
There is a parallel body of literature in computer vision

on image-to-image place recognition, addressing it as a
retrieval task using global image descriptors. For years, the
de-facto standard method has been NetVLAD [30], that also
introduced the training procedure with mining and triplet
loss. However, recently [15] has pointed out that the cost
of mining triplets is a major bottleneck that prevents these
methods from scaling to large datasets. This consideration
inspired few recent papers to pursue mining-free methods in
order to enable training on massive datasets. Firstly, CosPlace
[13] provides a method to split large dense datasets into
non-overlapping classes, which then allows for training to
be performed with scalable loss functions. Using a different
approach, Ali-Bey et al. [31] provides a dataset that is already
split into well-defined classes, allowing to use standard re-
trieval losses without the need for mining. MixVPR [14] uses
a similar training approach, and shows that well-designed
architectures can provide a boost in recall. Most recently,
[32] introduces a novel reward function, named Generalized
Contrastive Loss, to dispense from hard-pair mining.

This trend in the literature shows that a method that is
able to efficiently leverage large scale datasets can bring
great benefits for performances. In seq2seq VPR this has not
been possible because it is hard to obtain such large datasets.
In this paper we propose a training protocol for sequence
descriptors that is able to leverage the large amount of data
readily available for the im2im task, even though it does
not contain sequences of frames. Moreover, we show that
our approach is able to improve upon previous SOTA while
reducing the cost of deployment.

III. METHOD

A. Problem setting

We tackle the task of seq2seq VPR that is formally defined
in [8]: given a query sequence the system has to output
a sequence from the available database that matches the
former. Since the database sequences have GPS labels, this
allows to infer an estimate of the query’s position. A match
is deemed correct if any of the retrieved frames is within
25 meters [8] from any of the query frames. The common
recall@N metric [11], [12], [15], [20] is used as an aggregate
evaluation, and it represents the percentage of queries that
have at least one correct match in the top-N candidates.

Our method builds on the idea that the task of seq2seq
VPR can be split into 2 learning objectives: (i) learn to
extract features that are distinctive for localization (i.e. ignore
transient objects, focus on static components, their style and
relative position) and (ii) model the temporal evolution of
these salient features within a sequence. In the spirit of deep
learning, it is possible to jointly acquire both capabilities
in an end-to-end fashion from a dataset of sequences [12].
However, we observe that for the first objective we do not
necessarily need sequences, but we can exploit existing large-
scale non-sequential VPR datasets to embed into our model
robustness to a large variety of scenarios. Following this
intuition, we devise our multi-task learning framework.



Train time framework

Test time framework

\

\

1) Branch

D'| seq2seq
Loss

q Juence

SeqGem
S

LxD"
e

Database
Sequences

Backbone jEx D FC
B —

A A
Shared weights Shared weights

Image-to-image (im2im) Branch

BaclgmneL FC i.( im2im Loss |

f

Backbone
Predictions

e

LXD( arim
Fc éﬂ SeqSGem R

Nearest
Neighbor
Search

: Backboneﬁ Lx 0 SeqGem ] q
B FC S D

Queries
Sequences | [

J

Fig. 2. Overview of the JIST framework. At training time (left) we use two branches, one for sequences and one for single-images. Each branch has a
separate loss, while sharing part of their weights. The multi-task training allows to obtain discriminative frame-wise embeddings by exploiting the powerful
representations learned by the backbone and fully connected from single images. At test time (right) we only use the sequences branch, and we follow
the standard image retrieval pipeline: embeddings are extracted for both database and queries sequences, and then a prediction for database sequence that
is most similar to the query is computed through a kNN. Note that in a real-world scenario, the potentially expensive embeddings extraction for database
sequences can be performed offline, making the framework fast (more information on efficiency in section

B. Multi Task Framework: Overview

The typical descriptor extractor architecture for im2im
retrieval is composed by a backbone and an aggregator of
feature maps (or tokens). For retrieval on sequences, there is
an additional step to aggregate frame-level information [12].
In order to leverage both im2im and seq2seq datasets, we
need a unified architecture with a frame-level aggregation
layer able to process both individual images and sequences.
Thus, we propose a novel double-branched architecture: one
branch takes sequential data as input, while the other takes
single images (see fig. ). We iteratively feed each branch
with one batch of its corresponding input, compute their
respective losses, backpropagate through the entire model
and sum the gradients computed for each loss, which are
then used for optimization. In doing so, we ensure that both
branches share the same gradients and weights: in practice
this makes the backbone and fully connected layer (FC) of
the two branches identical, and allows joint optimization on
both losses in a Siamese-like fashion. Following, we explain
how the two branches work at inference and training time.

C. Sequence-to-sequence branch

The sequence-to-sequence branch has the objective of
exploiting all the frame-wise information extracted by the
im2im branch, via the shared backbone and FC layer, while
learning to aggregate temporal information from sequences
into compact descriptors. The input to this branch is formed
by sequences xy, of frames, with x4 € REXHXWxC
(where L is the sequence length). The sequences are passed
to a backbone B, which extracts L x D dimensional features
where the D depends on the backbone. These features are
then passed through an FC layer F', which acts as a whiten-
ing transformation [18] and produces L  D’-dimensional
descriptors (i.e. one descriptor per frame), where D’ can be
set to a chosen output dimension. At this point, we need
two more ingredients: firstly a sequence aggregation module
that combines these frames into a single vector (the sequence
descriptor); secondly, a loss function for the seq2seq task.

Sequence aggregation: SeqGeM. The current SOTA se-

quence descriptor from [12] is built using the SeqVLAD
aggregator. This module reinterprets the classic NetVLAD
module [30] to make it suitable for sequences. In a nutshell,
given a set of D’-dimensional input descriptors SeqVLAD
produces a single sequence descriptor vector of size K - D,
where K is a parameter indicating the number of clusters
used to summarize the input vectors. In practice, the im-
plementation from [12] uses K = 64, which significantly
increases the size of the sequence descriptor and, as a
consequence, the matching time of the retrieval. To mitigate
this problem, [12] uses a PCA compression operation, which
nevertheless adds a post-processing computational overhead.

For all these reasons, we propose a new aggregation mod-
ule called Sequential Generalized Mean (SeqGeM), which
revisits the popular GeM layer [18] to operate on sequences,
by applying its pooling operation along the temporal axis
given a sequence of single-image embeddings (see fig. [3).
Formally, the SeqGeM layer is defined as

S :REXP" o RY

= (1)
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where p is a learnable parameter and d; is the descriptor of
the i*" frame. Therefore, the sequence descriptor extraction
process is

fseqg = S(F(B(¥seq))) 2

SeqGeM is implemented with differentiable operations,
and it has a few desirable properties: 1) it natively produces
low-dimensional descriptors without requiring a PCA com-
pression; ii) it is learnable; iii) it has few parameters; iv)
it is flexible w.r.t. the length of input sequences, so that
sequences of different length can be compared to each other.
Finally, SeqGeM is purposefully designed to aggregate only
the final descriptors of each frame, instead of the frame’s
feature maps, as in this way it is able to (i) take advantage
of the entire im2im branch, which is trained on large amount
of images, and (ii) take as input small descriptors and
produce small outputs, whereas usually methods that take
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Fig. 3. Sketch of our proposed SeqGeM layer. Given D-dimensional feature
vectors from L frames, SeqGeM produces a single descriptor/embedding of
dimensionality D, which contains information from the whole sequence.

as inputs the feature maps (e.g. SeqVLAD) produce large-
dimensional sequence descriptors which increases memory
and time requirements.

Seq2seq loss. Following best practices from the literature,
we use the popular weakly supervised margin triplet loss
[30], which takes a query, its positive (a sequence from the
same place), and a negative. For best results, negatives need
to be mined, because selecting random negatives would lead
to trivial triplets (i.e., with loss 0), by selecting the negatives
closest to the queries in features space. Given triplets of
query, positive and negative, the weakly supervised triplet
loss, used to train the seq2seq branch, is defined as:

£seq2seq = Z mam(()? d( géq7 felq) - d( géq’ :Leiq) + m))

3)
where fd., fL.,, fic, represent the features of a query, its
positive and negative, m is the margin of the triplet loss,

and d(-) is the euclidean distance between two features.

D. Image-to-image branch

The second branch processes single images instead of
sequences: given input images z;,, € R¥*"W*C the image
branch produces D’ dimensional local feature descriptors
which can be fed to the image loss. The local feature
descriptors are computed as

fim = F(B(xim)) 4)

where the backbone B and fully connected layer F' are
shared with sequence-to-sequence branch (see fig.[2). Finally,
we attach a loss L;,2im for the image-to-image task, that
backpropagates through B and F'.

Im2im loss. Since our goal for this branch is to exploit huge
datasets of single images to learn robust representations, we
resort to the CosPlace training protocol and loss [13] that is
the current state-of-the-art for large scale im2im VPR and
was designed to be used on the massive San Francisco eXtra
Large (SF-XL) dataset. Below we provide a summarized
explanation of the CosPlace training protocol, although we
note that this is not meant to be a thorough description and
we refer the reader to the original CosPlace paper [13] for a
more detailed explanation.

The CosPlace training protocol is divided in two steps.
In the first step, the SF-XL dataset which contains images

labeled with UTM coordinates and heading angles is parti-
tioned into classes based on their position and orientation.
This process, that is performed once prior to the actual
training, divides the geographical area into small squared
cells (10 x 10 meters) and splits each cell into 12 classes
along the orientation/heading (i.e. each class is 30° wide),
thus ensuring that all the images in a single class view the
same scene (by having similar position and orientation). This
division of the continuous label space in a finite number of
classes enables the usage of highly scalable losses for large-
scale image retrieval, such as the CosFace loss [33].

Therefore, the second step consists in training the model
using the CosFace loss on the obtained classes. However,
naively using all the classes would be problematic, because
images in two adjacent classes may have a very high visual
overlap, thus potentially containing the same scene seen from
slightly different points of view. Since this would lead to
unstable gradients during optimization, the training protocol
only considers images from a subset of classes chosen so that
no two adjacent classes are used at the same time. This subset
is not fixed, but it is changed iteratively during training, to
allow the model to see all the images in the dataset.

Summarizing, in this paper we denote as L;;,2:m, the
CosFace loss applied according to the CosPlace protocol.
However, we want to remark that in principle our multi-task
framework is loss-agnostic, so the im2im loss can be easily
swapped with another one, for example if a more performing
loss becomes available.

E. Total multi-task loss

Overall, the total loss of our multi-task framework is

Emulti—task = >\seq2seq£seq2$eq + Aim2imLirnQi7n (5)

where Aseqaseq and Ajp,2ip, are hyperparameters. The combi-
nation of this multi-task loss with architecture that includes
the SeqGeM aggregation makes our multi-task framework,
which we name Joint Image and Sequence Training, or JIST.

IV. EXPERIMENTS

A. Experimental setup

Datasets. To assess the soundness of the JIST multi-task
training framework, we use the following datasets:
* Mapillary Street-Level Sequences (MSLS) [8], is built
from various cities around world, split in non-overlapping
training, validation and test sets, and consisting of 393k
query sequences and 733k for the database (if we consider
5-frames sequences). As the original test set labels are not
released by the authors, we follow the splits defined in [12].

o Test set: Copenhagen, San Francisco

e Val set: Amsterdam, Manila

o Train set: all remaining cities
Unless otherwise specified, experiments (train/val/test) are
performed on MSLS.
* MSLS Melbourne is the subset of MSLS from the city
of Melbourne, and it is commonly used [11], [12], [27]
to understand the effect of training only on a single city



TABLE I
EVALUATION OF SEQUENTIAL DESCRIPTORS AND SEQUENCE MATCHING, ON SEQUENCES OF LENGTH 5: RECALL@ | ON VARIOUS DATASETS. SL

STANDS FOR SEQUENCE LENGTH, CAT INDICATES CONCATENATION OF DESCRIPTORS, FC STANDS FOR FULLY CONNECTED LAYER. EXTRACTION

TIME IS THE TIME TO EXTRACT DESCRIPTORS/EMBEDDINGS, AND MATCHING TIME IS THE TIME TO FIND THE PREDICTIONS GIVEN THE DESCRIPTORS
GIVEN THE TEST DATABASE OF MSLS (WITH 13584 SEQUENCES). BOTH TIMES REFER TO A SINGLE QUERY. * DENOTES A NON-TRAINED METHOD.

Method Backbone Descriptor GPU Memory Extraction Matching ~ Train on Melbourne ~ Train on MSLS  Train on RobotCar Train on MSLS
Dimension  Occupation (GB)  Time (ms)  Time (ms) Test on MSLS Test on MSLS Test on RobotCar  Test on RobotCar

SeqSLAM* [20] VGG-16 4096 - SL 2.68 39.8 500.1 459 459 34.7 34.7
HVPR [11] VGG-16 4096 - SL 2.68 39.8 0.9 51.0 - 56.8 -
SeqMatchNet[27] VGG-16 4096 - SL 2.68 39.8 500.1 44.8 - 51.9 -

Delta Descriptors*[10] VGG-16 4096 - SL 2.68 39.8 1.1 43.0 43.0 18.0 18.0
GeM + CAT [8] ResNet-18 256 - SL 2.04 10.6 0.3 66.7 76.8 75.4 26.4
GeM + CAT [8] ResNet-50 1024 - SL 2.25 29.5 1.8 63.4 68.6 81.3 14.1
NetVLAD + CAT + PCA [9]  ResNet-18 4096 2.04 10.4 1.1 75.5 83.7 67.8 47.0
NetVLAD + CAT + PCA [9]  ResNet-50 4096 2.26 304 L1 74.9 853 89.3 62.4
SeqPool + CAT [34] CCT384 384 - SL 2.01 15.6 0.5 69.9 77.8 774 42.6
SeqNet [11] VGG-16 4096 2.68 39.8 1.1 50.1 - 60.5 -
SeqNet [11] ResNet-50 4096 2.26 31.0 1.1 45.6 - 61.3 -
NetVLAD + FC [9] ResNet-18 4096 3.39 10.5 1.1 55.5 68.5 44.7 193
SeqVLAD + PCA [12] ResNet-18 4096 2.04 10.5 1.1 78.2 85.5 86.5 60.9
SeqVLAD [12] CCT384 24576 2.02 17.2 6.4 81.7 894 92.8 78.7
SeqVLAD + PCA [12] CCT384 4096 2.02 17.2 1.1 81.4 89.2 93.3 76.8
TimeSformer [35] - 768 2.34 13.5 0.2 73.8 81.5 74.9 46.8
JIST (Ours) ResNet-18 512 2.04 11.1 0.1 88.9 90.6 91.5 79.0

as opposed to the entire MSLS train set. When the model
is trained on Melbourne, the validation and testing are
performed on the standard MSLS val and test sets.

* San Francisco eXtra Large (SF-XL) [13] is a large-scale
(41M images) im2im dataset covering the whole city of San
Francisco, and it is used as a training set for the CosPlace
component of the loss. Note that CosPlace requires camera
heading labels, meaning that most other datasets (MSLS
included) can not be used for training CosPlace.

* Oxford RobotCar [36] is a small dataset containing roughly
4k queries and database sequences in each split. It contains
multiple traversals of the same path around the city of
Oxford. Laps are recorded in different times of the day, year,
as well as changing weather conditions, targeting robustness
to domain shifts. In the literature there is little consistency
upon which splits to adopt [10], [11], [27], thus as with
MSLS we follow the proposed one in [12].

o RobotCar Test set: queries: 2014-12-16-18-44-24 (win-
ter night); database: 2014-11-18-13-20-12 (fall day).

e RobotCar Validation set. queries: 2015-02-03-08-45-10
(winter day, snow); database: 2015-11-13-10-28-08 (fall
day, overcast).

e RobotCar Train set: queries: 2014-12-17-18-18-43
(winter night, rain); database: 2014-12-16-09-14-09
(winter day, sun).

Training. For training, we set \jy,2im = 100 and Aseq2seq =
10.000. The learning rate is set to 0.00001 and we use
Adam [37] as optimizer. We train our model for a fixed
number of iterations, namely 12.5k. To speed up convergence
and reduce carbon footprint of our trainings, we initialize
the backbone with the open-source pretrained weights from
CosPlace. Regarding our architecture, we use a ResNet-18
[38] backbone which has an output dimensionality D = 512.
We keep the same dimension after the linear projection
D’ = 512, except for experiments in table [[I| where we show
that our method works well also with smaller descriptors.
The parameter p of SeqGeM is initialized to 3.

Evaluation. We use a standard kNN to find the predictions
for each query. As metric, we use the Recall@N, defined as
the number of queries that have at least one correct positives
within the first N predictions. A prediction is deemed correct
if at least one of its frames is less than 25 meters away from
at least one the query’s frames, following [8]’s definition
of seq2seq. Unless otherwise specified we use a sequence
length of 5 following previous work [12], although in fig. [§]
we show that SeqGeM is able to produce robust descriptors
even with different sequence lengths. Given that in VPR it is
logical to either train and test on different (non-overlapping)
geographical areas [30], or to consider the train and test sets
to be geographically overlapping [13], we compute results for
both cases: results on MSLS use geographically disjointed
sets, whereas results on RobotCar use the same area for
training and testing.
Methods. We report results from a large number of methods
on the task of seq2seq VPR. Wherever available, we made
use of the authors official code for our comparisons. For
methods based on the traditional sequence matching, we
compare against three popular implementations: SeqSLAM
[20], HVPR [11], and SeqMatchNet [27]. We also compare
to existing methods based on sequence descriptors. Starting
from the work of [8], we test standard concatenation (CAT)
of popular im2im descriptors NetVLAD [30] and GeM [18]
using different backbones. We also compute results with
Delta Decriptors [10], a non-learnt pooling in this category.
We compare against Fully-Connected layers on top of flat-
tened frame descriptors [9], varying the feature extractor.
Additionally, we test the learnable pooling of SeqNet [11]
and the previous SOTA represented by SeqVLAD [12].
Finally, we test a method that processes all frames as a single
entity from the first layers, namely the TimeSformer [35].
For methods that produce huge descriptors, mostly due
to NetVLAD applied on each frame of the sequences, we
followed [12] and applied PCA for dimensionality reduction.
It is noteworthy in this sense that our proposed pipeline nat-
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Fig. 4. Precision-Recall curves computed on MSLS test set for the most
relevant methods. All models are trained with a ResNet-18 backbone except
TimeSformer, which uses a custom backbone.

urally outputs compact descriptors (512-D) freeing ourselves
from the extra cost of applying PCA, while also achieving
higher results despite the lower dimensionality.

A few methods (HVPR, SeqMatchNet and SeqNet) could
not be trained on the whole MSLS due to large memory
requirements of their implementation (more than 256 GB
of RAM), hence why some results are missing. Finally, we
clarify that official code for Delta Descriptors and SeqSLAM
do not train frame-level descriptors and rely on pre-trained
networks. In the table they are highlighted with *.

B. Results and discussion

To empirically assess the effectiveness of our proposed
models against previous literature, we report a wide set of
experiments in table | and precision-recall curves for the
most relevant methods in fig. [

We summarize the findings from experiments as follows:

o JIST achieves excellent results with small-dimensional
descriptors, even when trained on fewer sequential data
(i.e. training on Melbourne);

o SeqVLAD achieves overall good results, but its recalls
are poor when trained on fewer data;

o Despite its strong results, JIST is extremely fast and
uses a simple model for inference;

o Extraction time depends mostly on the backbone, and
only slightly depend on the aggregation layer (e.g. CAT,
SeqGeM, FC);

« On all considered testing datasets, extraction is the bot-
tleneck, although for a bigger dataset matching would
be slower, as its speed linearly depends on dataset size;

« We empirically verified that matching time is linearly
correlated to descriptors dimension for sequence de-
scriptors (i.e. pure retrieval) methods;

Computational cost. Besides being fast to train (less than 10
hours on a single GPU), JIST provides very efficient infer-
ence, due to small descriptors and lightweight architecture.
Specifically, we rely on a ResNet-18, which has only 11M
parameters, leading to fast features extraction time.
Matching time is also small (8 times smaller than pre-
vious SOTA), due to SeqGeM’s compact output: in fact
the matching time (i.e. time it takes to find the matching
descriptors to the query’s through a kNN) depends only on
the descriptors’ dimension and the size of the database. Note

TABLE I
ABLATION ON THE TWO COMPONENTS OF THE MULTI-TASK LOSS, ON

MSLS.
Aseq2seq ‘ 0 100 1000 10k 100k ‘ 10k 10k 10k 10k 10k
Xim2im | 100 100 100 100 100 | 0 1 10 100 1000
R@l | 87.6 884 894 90.6 904 | 899 902 902 90.6 899

that, as we scale to larger datasets (with more sequences in
the database), the bottleneck of a VPR system at inference
shifts from the extraction to matching, making compact
descriptors and fast matching an important characteristic for
large-scale deployment [15].

Ablation on the loss. In this paragraph we aim at under-
standing how each component of the loss affects results, to
justify their use in training. In table |lI] we report results
computed with different weights for Ascq2seq and Aim2im,
with a ResNet-18 and our proposed SeqGeM layer. We
find that when any of the two has a null effect on the
back-propagated gradients, the results are evidently lower,
proving that both learning objectives are beneficial to the
task. Note that using Aseq25eq = 0 means that only the im2im
loss is used (therefore SeqGeM is not trained, but simply
initialized to 3). The best results are shown with values of
Aseq2seq = 10.000 and Agyn2im = 100. Finally, we note that
the Lseq2seq has a stronger effect than the \jp,2im, as not
using the Lseq25¢q leads to a 3% points in reduction with
respect to the best model. This effect proves the fact that
while it is possible to learn to extract salient features for
localization using only single images, a loss that instructs the
model how to aggregate temporal information is necessary.

TABLE III
EFFECT OF DESCRIPTOR DIMENSIONALITY: JIST vs. SEQVLAD.

Descriptor Dim. ‘ 64 128 256 512 4096

JIST(ours) 83.6 879 894 90.6

SeqVLAD + PCA | 834 856 867 87.7 892

Effect of descriptor dimensionality. Due to its importance
for seq2seq VPR, and for retrieval in general, we perform an
ablation on the dimensionality of descriptors. We find that
JIST allows trained models to perform astonishingly well
even at very low dimensions, reaching an impressive 87.9%
with 128 dimensional descriptors, which is only 1.5% lower
than previous state of the art while being 192 times smaller.
This practically means that the 128D SeqGeM configuration
requires only 512 bytes to store each sequence, allowing to
store entire cities within a single embedded device. More
considerations on this topic of real-world applicability are in

section [[V=C]

Effect of sequence length. In fig. [5| we investigate the
effect of changing the number of frames within sequences
(sequence length) at test time, without re-training the model,
noting that flexibility on processing sequences of arbitrary
lengths (regardless of the length at training time) is a
desirable property in practical applications. Firstly, we note
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Fig. 5. The plot shows how different methods react to changes in the
dimension of test-time sequence length (i.e. number of frames). All methods
are trained with fixed sequence length of 5.

TABLE IV
ROBUSTNESS TO THE INVERSION OF THE FRAMES.

Method Backbone  Dim. Forw. Back. Diff
SeqSLAM* [20] VGG-16 4096 459 229 -50 %
Delta D.*[10] VGG-16 4096  43.0 11.7 <73 %
HVPR [11] VGG-16 4096  51.0 28.5 -44 %
SeqMatchNet [27] VGG-16 4096 448 242 -46 %
GeM + CAT [8] ResNet-18 1280  76.8 67.8 -12 %
NetVLAD + CAT + PCA  ResNet-18 4096  83.7 79.9 -5 %
SeqNet [11] VGG-16 4096  50.1 42.0 -16 %

NetVLAD + FC ResNet-18 4096 68.5 65.1 -5 %

SeqVLAD + PCA ResNet-18 4096  85.5 852 04 %
SeqVLAD + PCA CCT384 4096  89.2 89.2 0.0 %
TimeSformer - 768 81.5 81.5 0.0 %
JIST (Ours) ResNet-18 512 90.6 90.6 0.0 %

that only a small number of methods can be applied to this
scenario, i.e. those based on CAT, SeqVLAD, SeqGeM and
TimeSformer: others, like those based on a fully connected
layer, would need to be trained again from scratch, as their
number of parameters depends on the sequence length.

Clearly, all methods benefit from longer sequences: with
more frames, descriptors become more informative, limiting
perceptual aliasing. Models trained with JIST outperform
all competitors, especially with very short sequences: this
is expected behaviour, as the image loss allows to extract
informative features even from a single frame.

Effect of reversing frames. Robustness to frame ordering
is a desirable property in some realistic use-cases, because
it allows to reduce the number of sequences stored in the
database. Following [9], [11], [12] we assess each model’s
robustness to reversing the frame ordering for queries se-
quences, while keeping the database untouched, and report
results in table SeqGeM is inherently robust to frame-
ordering, as well as SeqVLAD and TimeSformer which
processes the sequence in its entirety. On the other hand,
methods based on FC-layers, CAT or sequence matching are
the ones that suffer most in this scenario.

Ablation on aggregation layer. Given their importance
in aggregating features from multiple frames, in table
we report experiments performed with a number of pool-
ing/aggregation layers. This shows a number of desirable
properties that are satisfied by SeqGem, as well as showing
its superiority of results. In particular, we note that the
SeqGeM aggregator provides the following characteristics:
(i) learnable, (ii) flexible w.r.t. length of input sequences,
(iii) invariant to frame ordering, (iv) lightweight, besides

TABLE V
COMPARISON OF AGGREGATION LAYERS. RECALL@ 1 IS COMPUTED
WITH SAME TRAINING CONFIGURATION ON MSLS SPLITS.

. Flexible w.r.t. Invariant to Output
Aggregation | Learnable length input seq.  frame order Dimensi[z)nality Rel
Max Pooling N Y Y 512 89.4
Avg Pooling N Y Y 512 89.5

1D-conv Y N N 512 88.7
SeqVLAD Y Y Y 32768 89.7
SeqGeM Y Y Y 512 90.6

producing compact output and having few parameters.
Note that the results from table|V|are performed within the

JIST framework/pipeline, making these aggregations achieve

superior recalls w.r.t. most of the baselines from table [I]

C. Considerations for real-world deployment

As the use of deep models for seq2seq VPR becomes
widespread, we investigate the feasibility of deploying such
models in the real world. We perform experiments on a
Jetson Nano platform. Considering the scenario of a large
city like San Francisco, with 1600 kilometers of road, it
would require roughly 800k sequences to map the whole city.
Using the previous state-of-the-art model, namely CCT384
[34] with SeqVLAD [12], it needs ~ 36GB (#sequences
* descriptors dimension * #bytes) of memory to store all
the descriptors. More compact representations (commonly
compressed with PCA) usually rely on 4096-D features [12],
at the cost of a performance penalty. With SeqGeM however,
we are able to outperform previous state of the art with 512-
D descriptors, which needs only 800k x512%4B ~ 0.75G B,
and can be handled by a Jetson Nano.

Given this setting, we analyzed the inference time on a
Jetson Nano: we found that extraction time for a sequence
takes 276 ms (i.e. with our ResNet-18; does not depend on
the size of the database). Matching takes 3.1 seconds with a
vanilla kNN (on the whole city of San Francisco). We note
that previous works on im2im VPR found that kNN can be
sped up by up to 64 times with negligible loss of recall [15]
when using approximate/efficient versions of it, like Inverted
File Index with Product Quantization [39], [40], leading to a
potential processing speed of roughly 3 sequences per second
(276ms+(3100/64)ms = 324ms), whereas previous SOTA
(with descriptors dimension 24576) would process only 0.4
sequences per second. Even with PCA, the throughput would
still be limited to 1.4 sequences per second.

V. CONCLUSION

This work proposes a novel training algorithm that effi-
ciently exploits existing data sources to boost performance in
sequence-based VPR. We introduce a trainable temporal ag-
gregation layer designed to being flexible to input length and
frame ordering, all while guaranteeing compact descriptors.
Through extensive experimental evaluation we showcase the
improvements that JIST achieves over previous SOTA, as
well as robustness to different conditions such as changes in
frame ordering, sequence length and different datasets. We
empirically demonstrate that our model is able to not only



achieve better results, but also be faster and lighter (in terms
of RAM and GPU memory).

Limitations. Although sequence descriptors are a competi-
tive solution to obtain efficiently a coarse global localiza-
tion estimate even in very large environments, their use
is intended when there is the need to search in a large
number of sequences (e.g., for loop closure or to bootstrap
the localization when lost). Furthermore, we note that a lim-
itation of the current JIST framework is that the two losses
require different format of datasets, where the im2im branch
is trained on large-scale single-image datasets whereas the
seq2seq branch requires continual sequences.

Future works. Possible directions for follow-up works may
explore different strategies for extracting knowledge from
large pre-trained models (e.g. distillation), generalizing our
multi-task framework to other tasks, or using more than two
branches to gather knowledge from other data sources.
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