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In this paper, a new mixed model based on the enhanced Refined Zigzag Theory for thick multilayered composite
plates is formulated. The kinematics is assumed cubic for the in-plane displacements and parabolic for the
transverse one. The set of kinematic variables are reduced by using a partial constraint on the transverse shear
stress, and a new set of enhanced cubic zigzag functions are obtained. The transverse normal stress is assumed as
a smeared cubic function along the laminate thickness. The assumed transverse shear stresses profile is derived
from the integration of local three-dimensional equilibrium equations involving a new set of strain variables. The
entire formulation is developed by involving the Hellinger-Reissner functional and a penalty term for the strains
compatibility; the governing equations and the consistent boundary conditions are derived. Finally, to assess the
proposed model’s predictive capabilities for general multilayered laminated and sandwich plates, results are

compared with exact three-dimensional solutions available in the literature.

1. Introduction

In the recent years, the use of composite materials has widely
increased in various engineering fields (aerospace, automotive, marine,
military, civil, ...) due to their excellent properties, such as high
stiffness-to-weight ratio and good fatigue behaviour under cycle loads.
On the other hand, they exhibit high transverse anisotropy and trans-
verse shear deformability that have to be taken into account during the
design in order to prevent failures, such as delamination.

Among the numerical models existing in the literature framework,
very few works on analytical three-dimensional solutions have been
provided. In Pagano’s works [1,2], a solution for the cylindrical bending
and bending of simply supported multilayered and sandwich plates has
been proposed. For more general laminated plates, such as symmetric
and unsymmetric angle-ply, Pagano [3] provided a three-dimensional
analytical solution under the hypothesis of cylindrical bending and
simply-supported edges. Among the exact elasticity solutions for anti-
symmetric laminate plates, Noor and Burton [4] have developed a mixed
formulation for stress and free vibration problems. Later, Savoia and
Reddy [5] have used a variational approach for the three-dimensional
static solution of rectangular antisymmetric angle-ply multilayered
plates with simply supported edges. Although the exact elasticity solu-
tions are desirable in order to describe the correct behaviour of
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multilayered composite and sandwich plates, unfortunately, simply-
supported boundary conditions are rarely found in industrial applica-
tions. Without involving the use of solid finite element models for
complex structures, since they are affected by prohibitive computational
costs, it is necessary to develop other structural models to achieve a
reliable solution.

In order to pursue this aim, axiomatic displacement-based theories
are the most used for structural analysis. They can be grouped into two
main categories: the Equivalent Single Layer (ESL) theories and the
Layerwise (LW) ones. The displacement field assumed in the ESL the-
ories is independent of the number of layers. Generally, they provide
accurate results for global quantities (transverse displacements, natural
frequencies and buckling loads), but they are quite inaccurate for the
through-the-thickness displacements, strains and stresses. In the LW
theories, an independent displacement field is assumed for each layer,
with the continuity of displacements at the layer’s interfaces.

Moreover, it is also possible to enforce the through-the-thickness
transverse shear stresses continuity that cannot be obtained in the ESL
theories. Among the most used ESL theories the Classical Laminate
Theory (CLT), the First-Order Shear Deformation Theory (FSDT) and the
Third-Order Shear Deformation Theory (TSTD) have been widely used.
More details on the hypotheses, formulations and numerical examples of
these models can be found in the book of Reddy [6]. Although the LW
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are more accurate than the ESL ones, the computational cost is not
affordable for structures with several layers. The interested reader is
referred to the reviews of Di Sciuva and Abrate [7,8] and Li [9] for a
more general overview on existing ESL/LW theories.

In recent years, the Zigzag Theories (ZZT) have been widely used as
alternative structural models with respect to the ESL and LW theories.
Generally, the kinematic field of these models regarding the in-plane
displacements is represented by a superposition of a coarse distribu-
tion (such as in the ESL assumptions) and a finer one described by zigzag
functions. Zigzag models have more kinematic variables than the ESL
ones but are computationally efficient with respect to the Layerwise. In
the open literature, several ZZTs have been developed that differ from
one another for the methodology implemented to derive the zigzag
functions. This enhancement in the displacement field leads to a more
accurate prediction of through-the-thickness quantities, particularly for
the transverse shear stresses. In the past, several researchers have
developed zigzag models (Di Sciuva [10,11], Cho and Parmerter [12],
Murakami [13] and Icardi [14], that represent the first contributions in
this field).

The Refined Zigzag Theory (RZT), originally developed by Tessler
et al. [15,16], has been widely used in recent years for the analysis of
multilayered and sandwich beams [17-20], plates [21-24] and shells
[25-27], revealing to be very accurate for displacements and in-plane
stress through-the-thickness distributions. In RZT, the global first-
order kinematic, typical of the FSDT, is enriched with continuous
piecewise linear zigzag functions, whose slope is a piecewise constant
function with jumps at the interfaces. The linear zigzag functions are
then derived through a partial fulfilment of the transverse shear stress
continuity at the layer interfaces. Moreover, an attractive aspect for
efficient finite element implementation is that the RZT requires only a C°
continuity for the seven kinematic variables.

Recently, the standard zigzag kinematic has been enriched with two
additional zigzag functions in order to consider the coupling effect of in-
plane displacements typically present in angle-ply stacking sequence.
This peculiar behaviour was observed firstly by Whitney [28], more
recently, by Di Sciuva [29] using a zigzag model and by Loredo and co-
workers [30-33] that developed a new model in which a set of warping
shear functions obtained from the three-dimensional elasticity are used
to improve the kinematic field. The new set of enhanced zigzag func-
tions, formulated according to the procedure of RZT, does not increase
the number of (seven) kinematic variables of the standard RZT. This new
model, the enhanced-RZT (en-RZT), has shown [34,35] to generally
predict displacements, frequencies and through-the-thickness distribu-
tions of stresses in angle-ply laminates.

The transverse shear stress distributions coming from the material
constitutive relations in the RZT are not accurately represented, since
this theory fails to guarantee the full through-the-thickness stress con-
tinuity at the layer interfaces. As a consequence, the transverse shear
stresses are more often obtained by the integration of the local equi-
librium equations providing highly accurate distributions for the RZT
model. Moreover, the exact elasticity solutions have shown that the
transverse normal deformability is no more negligible, and the in-plane
displacements have a more complex distribution [36] for sandwich
laminates, especially if the plate is moderately thick to thick.

In order to include these effects, among the existent works on the
RZT, the in-plane kinematics has been enriched by Barut et al. [37,38]
by using a quadratic through-the-thickness variation of the in-plane and
transverse displacements. In their model, the transverse normal stress is
assumed as a continuous cubic function related to an independent field,
then a least-square statement is used to enforce the transverse normal
strain compatibility. In a similar way, Iurlaro et al. [39-42] have
enriched the RZT in-plane kinematics with a smeared parabolic contri-
bution and layerwise cubic terms in the thickness coordinate, whereas,
for the transverse displacement, a smeared parabolic distribution has
been assumed, which depends on the top, bottom and average transverse
displacements. The number of kinematic variables is reduced by
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enforcing the top/bottom transverse shear stress-free conditions,
resulting in an in-plane kinematic field with piecewise cubic zigzag
functions. In this model, called RZT{§}), the transverse normal stress is
assumed as an independent field, with a smeared cubic distribution that
satisfies the equilibrium stress conditions on the outer surfaces. Ac-
cording to the assumption proposed by Tessler [43], the transverse shear
stresses have been assumed as independent fields where the through-
the-thickness the transverse distributions are obtained directly by inte-
grating the local three-dimensional equilibrium equations under the
hypothesis of cylindrical bending. The Reissner’s Mixed Variational
Theorem (RMVT) [44] is then used to relate the independent stress
variables to the kinematic ones. Although this procedure has been
demonstrated to provide accurate results for multilayered composite
and sandwich plates [42], the cylindrical bending hypothesis is a strong
reduction and simplification of the plate behaviour, especially for angle-
ply laminates. This assumption developed to avoid over-fitting trans-
verse shear stress distributions (as shown by Auricchio and Sacco [45]
for the FSDT) is no longer valid when more general stacking sequences
are considered, i.e. angle-ply.

In a similar way, Groh and Weaver [46] have used the linear RZT
with a third order expansion of the in-plane displacements in conjunc-
tion with the use of the Hellinger-Reissner (HR) mixed variational the-
orem to investigate the static behaviour of highly heterogeneous
laminated beams. It has shown that the HR formulation was able to
capture the transverse stresses very accurately (over-performing the
RMVT) without involving any post-processing procedure. The previous
two field mixed formulation has been extended by the same authors to
investigate the three-dimensional static behaviour of heterogeneous
laminated plates [47,48]. The same theory has been used by Thurnherr
et al. [49] to accurately predict the stresses in curved multilayered
beams. Kopple and Wagner [50] have formulated a quadrilateral plate
element involving the RZT kinematic and a modified HR functional
where the displacements and the transverse shear stresses are involved
as independent variables. The new variables have been statically con-
densated at the element level in order to maintain the same number of
variables as in the classical quadrilateral RZT element. It has been
revealed the great accuracy of these formulated element at an affordable
computational cost. Moreover, Thrinh et al. [51] have enhanced the
previous higher-order zigzag mixed beam model with the modified
stress theory for the analysis of laminated beams, confirming the great
improvements in the stress predictions using the HR functional.

In this paper, a new mixed model based on the en-RZT kinematic is
formulated to analyse thick multilayered and sandwich structures. The
main aim is to obtain an enhanced zigzag plate model that can include
the nonlinear distributions of displacements for thick multilayered
structures with general lamination schemes. Furthermore, the use of a
mixed formulation does not involve the stress recovery technique to
describe the correct distribution of the transverse normal and shear
stresses. As done by Iurlaro et al. [41] for the original RZT, in this model,
the in-plane en-RZT displacement field is enriched with a second and a
third order power-series in the thickness coordinate and the transverse
displacement is assumed as a second-order polynomial expansion. A new
set of higher-order zigzag functions is obtained by enforcing the trans-
verse stress-free condition at top and bottom surfaces, reducing the
existing kinematic variables. Moreover, the transverse normal stress is
assumed as an independent field, with a smeared cubic through-the-
thickness distribution that fulfils the traction boundary conditions on
the bottom and top external surfaces. Without using the cylindrical
bending assumption and introducing a new set of independent strain
variables, the transverse shear stress distributions are derived by using
the integration of local equilibrium equations. The Hellinger-Reissner
functional is then used to enforce in a weak form the strains compati-
bility between the strains from the kinematic field and those from the
assumed stresses. By following the procedure explained by Auricchio
and Sacco [45], a penalty term is added to the energy functional in order
to enforce in a weak form the compatibility between the new strain
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variables and the strains from the kinematic relations. The new strain
variables in conjunction with the penalty functional have been demon-
strated [45] for the FSDT to avoid the over-fitting problem in the mixed
models. Then, the equilibrium equations and the consistent boundary
conditions are derived from the variational functional and specialized
for the simply-supported boundary conditions of thick multilayered
laminated and sandwich plates under bi-sinusoidal transverse pressure.
The accuracy of the proposed model is investigated through a compar-
ison with existing elasticity solutions, when available.

2. The (3,2)-mixed enhanced Refined Zigzag Theory (en-
RZT{$h)

In this Section, the (3,2)-mixed enhanced Refined Zigzag Theory
(herein named as en-RZT?é‘,)z}) for multilayered composite and sandwich
plates is formulated, and the equilibrium equations and consistent
boundary conditions are derived.

2.1. Geometrical preliminaries
We consider a multilayered flat plate made of a finite number N of
perfectly bonded layers, V is the volume of the plate and h the total

thickness. The points of the plate are referred to an orthogonal Cartesian
coordinate system defined by the vector X = {x;} (i = 1, 2, 3), where the

a)

o
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vector x = {x,} (@ = 1,2)is the set of in-plane coordinates on the
reference plane, here chosen to be the middle plane of the plate, and x3
being the co-ordinate normal to the reference plane (see Fig. 1a), so that
X3 is defined in the range x3 € [ — %, +§} . Let us defineS = S, U S, the total
cylindrical edge surface, comprised of S,, the portion on which
displacement restraints are imposed (or prescribed), and S, the portion
on which a traction vector, F = {F;} (i = 1,2, 3), is prescribed. More-
over, let pg) = {;‘)i<B) } and p(p) = {f)im } (i=1,2,3) be the vectors of
the prescribed tractions on the bottom (B) and top (T) bounding surfaces
of the plate, along the coordinate axis x;. Furthermore, Q represents the
set of points given by the intersection of the plate with the plane x3 =
OandI'=SNQ =TI, U, (NI, =) its contour line, withI', =S, N Q
and I, = S, N Q. (See Fig. 1a.)

The thickness of each layer, as well as of the whole plate, is assumed
to be constant, and the material of each layer is assumed to be elastic
orthotropic with a plane of elastic symmetry parallel to the reference
surface and whose principal orthotropy directions are arbitrarily ori-
ented with respect to the in-plane reference frame.

If not otherwise stated, in the paper the superscript (k) is used to
indicate quantities corresponding to the Kt layer (k =1, ...,N), whereas
the notation(.)gy (k =1, ...,N-1) stands for (.) valued for x3 = z), i.e., at
the k™ interface (k =1, ...,N-1) between the k™ and the (k + 1)th layer.
Also, we use the subscript (B) and (T) to indicate the bottom and top

Qv DBy
b) 20 = ) = 7w
h 1 ~ Z(k::)) = Z(k"ll\:) )= ZN=1)
h _
E pUe+1) (k+ 1)”‘ layer Z((chn = 7((1;? = 2
(k) th
h k'™ layer T Zg%
h
X
I a=12
2| pel 274 layer & =2
Yy v Zmy = Ay = A1)

 _ —
Zm) = A’ T Ao

Fig. 1. General plate notation: (a) plate geometry, loads, and coordinate system, (b) layer numbering.
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surfaces, respectively, of the single layer/whole plate; specifically, zéé)) =

z@) = —f and z%) = zi1) = 2 denote the co-ordinates of the bottom and

top surfaces of the whole plate; thus, h = z(r) — 2@B) = 2 — Z()is the
plate thickness and h® = k) — Zk—1) = z?ﬁ — zﬁ% (k=1,2,...,N), the
thickness of the k™ layer (see Fig. 1b).

Furthermore, the symbol (-); = ?;7,) refers to the derivative of the
function (-) with respect to the x;coordinate. In the paper, if not other-
wise specified, the Einsteinian summation convention over repeated
indices is adopted, with Latin indices ranging from 1 to 3, and Greek
indices ranging from 1 to 2.

The prescribed quantities are indicated in the paper with an overbar.

2.2. Kinematic field, strains and stresses

The kinematic field assumption of the en—RZT?;,"’,)z} involves the use of
the en-RZT field for the in-plane displacements in conjunction with a
second and third order power-series terms of the thickness coordinate.
The transverse displacement is approximated by a second-order power-
series expansion in the thickness coordinate. The complete kinematic
field can be represented as follows:

UY(X) = ug(X) + u, (X)

@
Us(X) = w®(x) + 2wV (x) + 2P (x)
where
u(X) = u(x) + 20(x) + 22x(x) + @ (x) .
(%) = oY w(x)
®
(k) _ U"(X) _ u; (x _ 0 (x) N
U9 (x) o x) u(x) {uz (X)} 0(x) { 0:(%) } x(x) {

u,(x) and 6,(x) are the global uniform displacements and rotations of
the normal to the reference plane about the positive x; and the negative
x7 directions, respectively; w,(x) are the zigzag rotations, whereas y,(x),
Wa(X), w® and w® are the additional kinematic unknowns that take into
account the effect of non-linear distribution of in-plane and transverse
displacements along the thickness direction.

Moreover, in Eq. (3) the expression of the linear zigzag functions
(such as in Ref. [34]) reads:

k
o) = (z—2) )Y+ KDY —BY) (k=1,...,N) )

q=1

(k)
where p*) = {gi p lﬂ is the matrix of zigzag slopes, i.e. p*(z) = ¢,

z(k)(z), computed by the partial enforcement of the transverse shear
stress continuity at the layers interfaces.

Consistent with the linear strain-displacement relations, the en-
RZT{%); strain components can be computed as follows:
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el (x,2) = Ul (x,2); el (x,2) = USS(x,2); ex(x,2) = Us;(x,2);

19 (x,2) = U (x,2) + U (x,2); ©
18 (x,2) = U (x,2) + Uz (x,2);

7 (%,2) = US(X) + Usa(x,2);

Assuming that each layer is linear elastic and orthotropic, as defined
by Ref. [42], the mixed constitutive relation written in a convenient
form for the formulation of the model can be written as follows

(k)

o11(X,2) ® Q1 Qn Rs Qi Y €1(x,2)
0(X,2) _| Q2 On Ris 0O & (x,2) 6)
£33(X,2) —Ri3 —Ry S —Re 033(X,2)
712(X, 2) Ois 0O Res  Oes 712(%,2)

(k)
(k) o -~ (k) (k)
W (x,2) = { 713(x,2) } _ | Cu Cis {713(?(72) } = C, 1Y(x,2)
C45 C55 }’]3(X, Z)
7
Where, Q; (i,j = 1, 2,6) are the in-plane transformed elastic reduced

stiffness coefficients; a—j (i,j = 4.,5) are the transformed transverse shear
elastic stiffness coefficients and Rj3 = S33Cj3 (i = 1,2, 6) are transformed
mixed coefficients [42].

The kinematics shown in Eq. (1)-(3) involves thirteen unknown
variables that are independent by the number of layers. In order to
reduce the number of variables, the procedure described by Iurlaro et al.
[41] is adopted for condensing some of the global unknowns and
introducing a new set of higher-order zigzag functions, that are expected
to be piecewise cubic along the thickness direction. In the Section 2.3,
the procedure adopted by Iurlaro et al. [41] is applied in a more general

3
way to the enhanced zigzag functions.
The final reduced kinematic can be expressed as follows:
UY(x,2) = ug (x,2) + v (x,2) ®
Us(x,2) = w? (x) + 2w (x) + 2w (x)
where
uG(x,z) = u(x) +z0(x)
® _y® &)
u (x,2) = p (2w (x)
and
(k) (k)
o (z) = .u(ll) (2) Hi2(2) (10)

is the new set of higher-order, piecewise cubic zigzag functions, that are
null at the top and bottom external surfaces and continuous at the layer
interfaces. It should be noted that the coupling extra-diagonal terms in
Eq. (10), i.e. ,u&kz)(z) and ,u&kl)(z), are null for cross-ply multilayered and
sandwich plates and the expressions for the other functions are the same
as those written by Iurlaro [42].

According to the displacement field defined in Eq. (8), by using the
strain-displacement relations of Eq. (5), the strains can be defined as
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follows;
eli (x,2)
e (x,2) = el (x,2) (= Ten(x) +2leo(x) + MY (e, (x)
7 (%,2)
w (x) 1D
en(x2) =0 12 wh(x) b = B (w(x)
w® (x)
. op®(z
70x,2) = B @awx) + 2
Hz 0 | o
where Iis the identity matrix, H*(z) = { .z ], H (z) =
0 H(2
[1 z 2], ()w(x)T:{wa> wg) wflz> WF;)) w) szz)] and
k
#11(2) 0 0 H12(2) ©
M) (z) = 0 pgn(z) uxm(z) O . Moreover,e,” =
H21(2)  p2(2) H11(2)  poa(2)
(w11 Uz2 Wi2+uz1l,ee” =[611 622 612+021] and g7 =

V28! Va2 W12 Va1l

2.3. Enhanced higher-order zigzag functions

In this Section, the procedure to obtain the enhanced higher-order
zigzag functions is shown in details. The expression of transverse
shear strains, according to Eq. (5), can be written as follows:

73 (%, 2) = Us (%,2) + 01 (%) + 227, (x) + 3201 (%) + B, (x) + A w (x)
739 (%,2) = Us2(x,2) + 02(x) + 227, (x) + 3202 (%) + 5w, (x) + A (x)
(12)

Introducing the definition of the auxiliary strain measure, 71, 772 [15]:

0 (X) + Us, (X7Z) -y, = YI(X) - WI(X) = ’71("71)
02(%) + Us(x,2) — 1, = 12(X) — p(x) = m,(x,2) 13

and substituting (13) into Eq. (12), we rewrite:

A (x,2) = 1, (%,2) + 200, (x) + 32010 + (A + 1)y (%) + Byn(x)

PR(x,2) = 1a(x.2) + 250,(x) + 320a(x) + A, (%) + (P8 + 1 ()

a4
In a more convenient matrix form,
75? (x,2) (k) 2 (k)
® =7 (x,2) = n(x.2) + 21 (x) +370(x) + (B (2) + 1) w(x)
713 (X,2)
(15)

By using the constitutive relation for material, Eq. (7), and the
transverse shear strains in Eq. (15), the transverse shear stresses can be
expressed as follows:

2) + 22(x) + 320(x) + (BY(2) +1)y(x)] =

"x9) + € e + 320 + (B9 +1)wx)] =

~(k)
7V (x,2) =C, [n(
C
1% (x,2) + ¥ (x, 2)

X,
(k
1

k

(16)
with
0 () _ ~ (k)
T (x,2) = ,\Ek)n(X7 ) 17)
aW(x,2) = C, [221(x) + 370(x) + (B(2) +1)wx)]
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By using the same procedure to obtain the zigzag functions formu-
lated for the enhanced-RZT [34], the continuity of the transverse shear
stress as defined by Egs. (16) and (17) is limited to Ct(k)(x, 2). Thus, the
continuity conditions at the N-1 interfaces read as follows:

¢ [2202(0) + 38,000 + (B + Dw(x)|

=€ [2zn(x) 355,000 + (B4 +1)wi(x) | as)

In order to reduce the number of variables, the vanishing condition
on the top and bottom external surfaces for the continuous part of the
transverse shear stresses can be enforced:

(k)

c c (k
73 (%, 2) =0; “73(x,2)

=+h/2

=0 19

z=+h/2

Developing Eq. (19):
c’ {f () + o) + (B + I)w(x)} —0
(20)

¢ [hx(x) o0 + (B + I)w(x)} =0

After some mathematical manipulations, here not reported for sake
of brevity, the following relations are obtained:

(1) UORNR) |
o(x) = f%f)w(x) E—
" 1)

2(%) = 5 (B — B W) = oy

The relations in Eq. (21) allow to reduce the number of kinematic
variables, relating the new one introduced for the parabolic and cubic
terms in the in-plane displacement field to the zigzag rotations.

By substituting the relations of Eq. (21) into the kinematic field of Eq.
(1), the reduced kinematic field can be obtained as shown in Egs. (8) and
(9), where the higher-order zigzag functions are defined as follows:

i) = (=2n— o +9¥(2)) (22)

It can be noted that the new set of higher-order zigzag functions are
dependent on the thickness coordinate and on the linear zigzag slopes, i.
e. p%. In order to compute the p® values for each layer, Eq. (18) is
enforced at each layer interfaces. The last conditions required to
completely define the functions in Eq. (22) is the zero values of on the
top/bottom external surface of the higher-order zigzag functions. Thus,

W= —h/2) = pM(c = +h/2) =0 @3)

2.4. Assumed transverse normal stress

In this Section, the assumed transverse normal stress is defined and
briefly described.

The transverse normal stress is assumed as a third-order power
function of the transverse coordinate [40]:

0y (%,2) = 03 (%) + 203 (%) + 25(x) + 205 (%) 24)

Enforcing at the top and bottom external surfaces the traction
boundary conditions, i.e.
03(x,z2=—h/2) = —D3(p)

_ (25)
05, (%, 2 = h/2) = DP3(r)

and after some straightforward manipulations, the assumed transverse

normal stress is written as follows:
05 (x,2) = Ps(2)q,(x) + L(2)q.(x) (26)

where
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<[ ()] ma-[-5) -9)

Q.x) =[P P )i €X' =[06) 6]

2.5. Assumed transverse shear stresses

The assumed transverse shear stresses, following the formulation
proposed by Auricchio and Sacco [45], is derived by the integration of
the local three-dimensional equilibrium equations, i.e.

‘751)1( )+7122( )+(11;)3( )

=0
v ‘ (28)
Ty (X, )*Gzzz( )+7231(X 7)=0

According to the derivation reported in [45], the assumed transverse
shear stresses are deducted by Eq. (28) in which the in-plane stresses are
those coming from the constitutive relation expressed in Eq. (6), but the
strains quantities are assumed independently with respect to the kine-
matic field. This assumption can be reported as follows:

¥ (x,2) = I, (x) + 2leg(x) + MY (2)e,, (x)—

29
—Te(x) + zIk(x) + M® (2)k¥ (x)

where the vectors of the new assumed strain variables are defined as
follows:e” = lenn e enn]; kI = [kin ko k2] KT =
K K, K KL

The new independent expressions for strain quantities are then used
in combination with the constitutive relation Eq. (6), and the Eq. (28).
After some mathematical passages reported in the Appendix B for sake of
brevity, the final expression of the assumed transverse shear stresses is:

©(%,2) = Z,(2)8, (%) + Z,()4,(X) + Z,:(2)05.(x) 30)
where 0dq,(x) represent the derivatives of the transverse distributed load,
i.e.0q,(x)T = [P3s1 Psma Pamz Psmz2 |; Gp(x) is the vector of the
prescribed tractions in the x; and x, direction at the bottom and top
external surfaces, i.e. q,(x)7 = [Pis P2y Py Pam |5 4,07 =
[de(x)” ok(x)" ok¥(x)" ow(x)" ] is the vector of the derivatives of
the strain unknowns, their full expressions are reported in Appendix B.

2.6. Variational statement, equilibrium equations and boundary
conditions

In this Section, the en- RZTQ 32 is developed by using the variational
statement as described by Auricchio and Sacco [45]. Neglecting the
virtual work done by the inertia forces, the first term (5I1iy,) is the work
done by the internal stresses. The second term (6I1yg), related to the
transverse shear and transverse normal stress is represented by the
Hellinger-Reissner (HR) functional in which the weak compatibility
constraint for the transverse strains obtained by the assumed indepen-
dent stress fields, as it has been shown by Egs. (26) and (30), has been
enforced. Since the assumed transverse shear stresses are dependent on
the new strains quantities, a new penalty functional is added to the
variational statement (SA). This penalty term guarantees the weak

0T _(k T, B T [k
/ [(66007 00 + o905t + Bty ) |av + / T (y

v v

-y )av+
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enforcement of the compatibility relations between the strains coming
from the displacement field and the new independent strain variables.
According to these assumption the variational statement can read as
follows:

O = oIy + M1k + 6A — Oll,y =0 (€X0)]

where 6[ljnds the virtual work done by the internal stresses defined as
follows:

STy = / [ (59;,“ "6+ 570"t + Sennoty ) ] av (32)

\4

SIlyp is the virtual variation of the Hellinger-Reissner functional for the
transverse shear and the transverse normal stress and it reads:

STl = / [51;”' (v

\4

- Yﬁk)a ) + 605, (5%3 83?“ ) }dV (33)

SA is the virtual variation of the penalty functional, introduced to assure
the compatibility condition between the assumed strain field and the
strains obtained by the assumed displacement field. Thus, it reads:

5/\:% / [(8e—50)" (£ —€)-+ (69 —5K)" (g — k) + (56, — k") (&, —K")]dV

\4

(34)

Sy is the virtual variation of the external applied traction loads (the
traction forces Fare neglected):

ST, = /pl nUM (= h/2)dQ + /171(8) U (z = —h/2)dQ

Q
/ (z=h/2)dQ2+ /p Ué”(z =—h/2)dQ+ (35)
Q Q
/ﬁ Ut Z—h/2)d£2+/p U (2=
Q

+ —h/2)dQ+

In the previous expressions, the a superscript denotes the quantities
related to the assumed fields and 6 defines the arbitrary virtual variation.
1 is the penalty parameter in the penalty functional. As defined by Eq.

(11),inEq. (32),eP" = [ ¥

e® % Jis the vector of in-plane strains

k) (k) (k) i
[‘751 T12 } is the

obtained by the displacement field; Gk)T o

vector of in-plane stresses; 7Y = [y 4% ] is the vector of the
transverse shear strains computed by the assumed displacement field
and e33 is the transverse normal strain according to the strain-
displacement relations.

In virtue of the independent assumption of the kinematics, Eq. (8),
and the transverse normal stress, Eq. (26),the variational statement can

be split into two contributions:

ST, = / {5033 <£13 —e® )]dv (36)

Vv

and

37

+%/[(60u — de)" (du — e) + (590 — k)" (00 — k) + (50y — k)" (dys — k) ]dV — 611, = 0

Vv
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that can be solved separately. Firstly, Eq. (36) is solved as a weak form
compatibility constraint between the transverse normal strain expressed
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1 1 _
60y 1 My +Mxnr— 0 +ﬁ (0222 — k222) +6 (0112 + 011 — kizy) + 72

in terms of the kinematic variables and that coming from the assumed =0
transverse normal stress. Secondly, Eq. (37) is solved. It represents the (45)
variational expression of the work done by strains and stresses and that
done b 1f di i ibuti ivi : b _of 4] !
y external forces, and it contains a contribution deriving from the Sy, . MY, +Mh,— 0l +- (‘l/l u =k 1) +- (1,/1 0 — Ky 2) =0 (46)
weak form compatibility constraint between the transverse shear strains ' ' N AN '
plus the penalty constraint of the strains quantities. Performing the 1 1
integration by parts, it results into the governing equations with the Sy, M, M, — )+ (wmz - k;’”) +- (y/w fk;’]_l) =0 47
variationally consistent boundary conditions. d i
According to the procedure, the Eq. (36) is solved (for sake of 1
brevity, the final results are here reported, for more details refer to deqy : 7 (e —uy) +EF =0 (48)
Appendix A) and the assumed transverse normal stress has the following
expression: 1
Seyn: —-— (622 — un) +EX=0 (49)
053(x,2) = Aj(2)en(x) + A7 (2)es(x) + Al (2)e, (x) + A} (2)w(x) + A% (2).(x) 1
(38) 1
Sen:  —=(en—ma—u) +ER =0 (50)
where A%z), A%z), A%(z), A%(z), A%(2) are the shape functions of the n
transverse coordinate and their definition is reported in Appendix A. 1
By introducing the assumed transverse normal stress defined by Eq. Okyy “ (ki —=011) + K7 =0 (51)
(38) and the assumed transverse shear stresses defined by Eq. (30) into
the variational statement (37), and performing the conventional inte- 1
; : ; _R7T(m) Skt —=(knp—0s) + K =0 (52)
gration by parts, the governing equations of the en RZT$3,2} plate can be n 2
obtained as follows (the full expression of the terms are reported in
Appendix C): 1
PP S = (ki — 012 — 021) + K =0 (53)
1 1
oup: Nipg+Nip +ﬁ (urn —eny) Jrﬁ (122 + 1212 —e22) +py =0
1
(39) k¢ - (ki —wi1) + Kyt =0 €]
ouy : N121+N222+1(Vu7622 )+1(M112+u21176121)+[7) =0 v 1 Y HR
: : 275 W @)y : : 2 kY, — (K —y,) + K3 =0 (55)
(40)
(0) 0 0 . AW
w' T 0, -N -0 +
~p P P =P ~p - A P
- (Dllpl(B),l + DyPamy1 + DisPiryt + DiaParyy + DaubPis)2 + DaPas)2 + DusPiry2 + DuPary2 )+ (41)
9 — ~Nd — NG — ~NGd — ~Nd — ~qd _ NI — N — —
- <D41P3(3).12 + D ypDs3ry12 + DasDPasy 22 + PaaPsry 22 T DiiPawyin + DioPsryn + PPy + D14I73(T).12> +q;=0
1) 1 1 .M
ow TN -0 +
N P - ~p ~p NP - NP
- (DZIPI(B),I + DyyPyy1 + DysPyrya + DoPorya + DsiPisya + DsaPasy2 + DssPiyry2 + Dsd’z(r).z)"‘ (42)
N — N — nNT — nNg — NT — N — nNT — nNT — h, —
- (Dul’s(s),n + DyP3ry 1 + DisPasyi2 + Dl + DsiPaw) 2 + DsaParyaz + DssPag) 0 + D54P3(1'),22) + 3 (Pz(r) — D3 ) =0
@ 5 " w2
ows: O+ 0 -N; -0 +
P ~p P P AP P ~p P
- <D31P1(3>,1 + DDy 1 + DisPiry + DaaPoryy + DeiPis)2 + DeaPasy2 + DesPiry2 + DeaPory2 )+ (43)
h2
~q _ ~q _ ~qd _ ~qg _ ~qg _ ~q _ NI — nNT — —
- <D31P3(8).1| + D32P3(T)‘11 + D33P3(B)‘12 + D34P3(T).12 + D61P3(B).12 + D62p3(T).]2 + D63P3(B),22 + D64p3(T).22> + Z% =0
1
okt - *ﬁ (K, —w12) +K$f2 =0 (56)
1 1
66y My 1+Minp— Q4 +ﬁ(9]'“ —ki1) +%(91.22+02.12*k12.2) +m;=0  (44) 1
oKy, - 0 (k%) — Wz,l) + K.,ijl =0 (57)
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The consistent boundary conditions are (for sake of brevity, the full

expressions of some terms are reported in the Appendix C):
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expressions for the assumed transverse normal and shear stresses, i.e.
Egs. (38) and (30), the following constitutive relations for the en-

B o 1
up =1 onl, v Nuni + Niny +ﬁ(ll1,1 —en)n +E(ul,2+uz.1 —en)m onT,
- o 1 1
Uy =1 onl, \ Niny + Nypn, +;(M2A2 —exn)n +ﬁ(141‘2 +up — ep)n on [,
—w — —_w0 w0
w® =35 onT, Y Q:Onl + onnz + HRQI n + HRQZ m onl,
. —wl —wl HR—=W! HR—=W1
wil) = w0 onT, Y 0 'm+0 m+" 0, m+ 0, m on T,
_ —w —w w2 w2
w® =%w®  onT, v Q'1 n + Q‘2 n, + HRQI n + HRQZ ny onI,
_ — — 1 1
0, =0, onl, \ Myiny + Mpn, +E(9H — ki) +ﬁ(91,2+92,1 — kip)ma onTl,
_ — _ 1 1
6, =0, onTl, \ Mny + Myn, +—(02,2 —kzz)l’lz +—(01,2 +6,, _klz)”l onT,
n n
— — — 1 1
v, =1, onT, Vo My + My +6(Wl’l —K)ny +ﬁ(t//l'27k‘f’2)n2 onT,
_ — — 1 1
v, =, onl, \ My, n, + Mayn, +ﬁ (Wap — K)o + " (o, — K)m on I’ (58)
el el
e = e on Fu \ HRE: ny HRE; ny on Fg
_en e
€y = €exn on Fu \Y HRE:“ ny + HRE; ny on FJ
_el2 _el2
epn =¢ep onl, \Y HRE? ny + HRE; n, onl,
_ k11 k11
kll = kll on Fu \ HRKl n + HRK2 ny on Fg
_ ) 2
kzz = kzz on F,( \ HRKl n + HRK2 ny on FJ
_ k12 k12
klZ = k12 on Fu \ HRKl n + HRK2 ny on FJ
- k11 k11
K, =K onT, v HRKl wnl HRK2 an onT,
- 2 22
K, =%, onT, v HRKl wnl + R ) an onT,
. k12 k12
K, =%, onT, v HRKl wnl + HRK2 an onT,
- 1 2l
K =K, onT, v HRKl Wnl + HRK2 I//nz onT,

In Eq. (58), n; = cos (x1,n)and ny = cos (x3,n) are the components

(direction cosines) of the unit outward normal vector to the cylindrical
plate edges.

+h/2

(N,M,M?) = / (1,2, M7 )6V dz;

The resultant forces and moments are defined as:

—h/2
+h/2
N = H 6%,dz (59)
—h/2
+h/2
(@)~ [ (| .LonS)ed:
—h/2

Moreover, in Egs. (39)-(45),

RZT&%{)z}, are expressed as follows:

N =Ae, +Be, +A’e, +A'w+ A",
M = Cg,, + De, + E"’sw +B'w+B%q, (61)
M’ = F}d)e,,, + F¢€g + (~}¢£w +C'w+ éqzq.

N° = AMg, +B¥e, + CVe, + DVw + EVq, (62)

x2 A

X1

P1 =Dy T Pyr); P2 =Dys) +Punys

_ h/_ _ _ h/_ —

my = ) ([) () — Pias) ) mp = 7 (Pz(T) — Pap) )% (60)
g3 = 1_73(13) +ﬁ3(T)

By using the mixed material constitutive relations, i.e. (6), and the

a

Fig. 2. Rectangular plate dimensions and coordinate system.
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Q" =A"0e+B" ok+C" ok’ + D" ow + E"dq.
~0T =0T ~0T 0T ~0
Q=A Jde+B ok+C ok¥+D ow+Eodq,
~yT ~yT ~yT ayT ~y
de+B odk+C 0k"+D ow+E dq,

©63)
Q-A

Appendix D reports, for sake of brevity, the definition of the matrices
of the constitutive relations, Egs. (61)-(63), and the other matrices that
appear in the governing equations, Egs. (39)-(57), and in the boundary
conditions, Eq. (58).

For simplicity, numerical examples are related to rectangular flat
plates with the edges parallel to the axes (x3,x2). The length of the plate
(in the x; direction) is denoted with a, and the width (in the x5 direction)
is denoted with b. The origin of the axes corresponds to the lower-left
corner of the plate.

According to the plate dimensions (See Fig. 2), the previous
boundary conditions used in this numerical analysis are the following
ones:

e SS-1 = Simply supported symmetric cross-ply and sandwich plates

Qx;=0,a 2 o2
Ux; =0,

M2:W(U):W(U:W(z)zezzlﬂz:en:kn:k'fl] =0 _HRE

1 1 1 .

Ny +*(M1,1 *6’11) =My, +*(91,1 *kll) :M?J +*(W1.1 *k'fl):”RE
n n n 1 1

:HRK/IZZ :HRKL]'IZ :HRKIIZZV/:HRK/;]ZV/:HRKIIZIV/:O@XZ :0717 u :W(O) :W(])

1 1
=w? =0, =y, =ep=ky =k}, =0 N22+ﬁ(u2,2*€22) :M22+6('92«2*k22)
1 ¢ :

:Mgﬁz +; (Wz.z 7kg/2) :HRE2“ :HRE;”:HRK/;“ :HRK;D:HRKJ; ly :HRK‘;Z'I’
k2ly

:HRKZ =0

(64)

e SS-2 = Simply supported antisymmetric angle-ply

@Qx; =0,a

u = W(o) = W(]) = W(z) = 92 =Y, =é€epn = k“ = kll‘,] =0

1 1 1
Ni +g(“1,2 + 21 — e12) = My +ﬁ(01.1 —kn) = MY, +6(Wl"l -k =
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Table 2
Laminated composite and sandwich plates (the layer-stacking sequence starts
from the bottom surface).

Name Materials h®/n Lamina Orientation [deg]
L1 A/A/A 0.25/0.5/0.25 0/90/0

L2 A/A 0.5/0.5 —-15/15

L3 A/A/A/A 0.25/0.25/0.25/0.25 —30/30/-30/30

S1 B/B/C/B/B 0.05/0.05/0.8/0.05/0.05 0/90/Core/90/0

3. Numerical analysis

In this Section, the en-RZT?é‘,)z} is used to study the elasto-static
behaviour of multilayered thick plates.

In order to assess the accuracy of this newly developed mixed model,
the results are compared with exact three-dimensional solution avail-
able in literature framework. More specifically, for multilayered cross-
ply and sandwich plates, the solution obtained by Pagano [2] has
been used as reference, whereas, for angle-ply lamination schemes in
which the effect of shear coupling is typically present, the other solution
developed by Pagano [3] for cylindrical bending has been used as
reference.

By using the Navier’s method to obtain the solution, for cross-ply or
orthotropic rectangular plates with simply supported boundary condi-
tions (SS-1) under bi-sinusoidal transverse pressure, the equilibrium
equations and the BCs can be satisfied by the following set of trigono-
metric functions:

ell 22

22 k12 K22 k12 21
_ HRE :HRK'I( :HRK] :HRK] W:HRK] W:HRK’I\ w:O@xz

HRE

1 1

1 1 1 11
=06 w=wO=wl=wP =0 =y =en=kn=K,=0 Np + (12 + w2y —e12) = Moy + . (022 — k) = M3, -‘r;(l]/zz — k) ="E,
R HR K HR K2 proKly  pRoK2w R K2l
="E"="K, ="K, ="K, ="K, ="K, "=0

(65)
Table 1
Material properties (all Young and shear moduli are expressed in MPa).
Material Name E; E E3 V12 Vi3 V23 Gi2 Gi3 Gos
A 25 1 1 0.25 0.25 0.25 0.5 0.5 0.2
B 110,000 7857 7857 0.33 0.33 0.49 3292 3292 1292
C 40.3 40.3 40.3 0.3 0.3 0.3 12 12 12
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Table 3
Percentage errors for maximum deflection and strains.
n 1.00E-02 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 1.00E-09 1.00E-10
deflection L1 3.941E-01 3.404E-02 3.893E-03 —3.151E-03 —4.242E-03 —4.402E-03 —4.422E-03 —4.424E-03 —4.424E-03
L2 2.210E-01 2.118E-01 2.104E-01 2.103E-01 2.103E-01 2.103E-01 2.103E-01 2.103E-01 2.103E-01
strains L1 1.55E+04 8.63E+03 1.83E+03 2.09E+02 2.12E+01 2.12E+00 2.12E-01 2.12E-02 2.12E-03
L2 4.08E+01 4.63E+00 4.71E-01 4.72E-02 4.72E-03 4.72E-04 4.72E-05 4.72E-06 4.72E-07
a)
0.5 < T T 0.5
04 —3b 0 04
N (m) |7 N
—— en—RZT{w}
0.3 b 0.3
0.2 4 0.2 F
0.1 . 0.1
< of 1 < ot
N N
-0.1 b -0.1
-0.2 1 -0.2
-03 b -03
0.4 1 0.4
-0.5 : -0.5
-1 -0.5 1.5 -3
%107
c
0.5 7 .) g
R4
I’
04 [——3D[2 ) 1
m, ./
03k - en- RZT{sz} 7 ]
0/‘
R
0.2 r q
0.1 7 4
¢/.
<= 4
~ 0 4 N
N /.
o/.
0.1 F 4 i
0.2 : E
R/
R
03} P i,
R
04 P .
.05 a L L I
1.6 1.65 B 1.7 1.75 1.8
Us(a/2,b/2) %10

Fig. 3. Normalized through-the-thickness distributions for displacements and stresses in a simply supported (SS-1) square (a/b = 1) thick (a/h = 4) three-layered
cross-ply under bi-sinusoidal pressure on top surface.

uy (X) = Ucos(Anx1)sin(A,22);  up(X) = Vsin(A,x1)cos(A,x,);
wO (x) = WOsin(Ax) )sin(d,xy); w(x) = WWsin(A,x))sin(Ax); w? (x) = WOsin(A,x, )sin(A,x,);
01(x) = O1cos(Anx1)sin(A,x2);  62(X) = Opsin(Auxi)cos(Anxa);

)

= Wicos(Anx1)sin(A,x2); W, (X) = Pasin(Auxi)cos(A,x2);
)i

(66)

e11(x) = Eysin(Ayx))sin(A,x2);  €22(X) = Ensin(A,x1)sin(A.x2);  €12(X) = E12co8(Anx1)cos(Anxa);
ki (x) = Kp18in(Anx1)sin(A,x2); koo (X) = Kapsin(Anx1)sin(A,x2);  kia(X) = Ki2c08(Anx1)cos(A,x2);
kY () = K sin(A,x1)sin(A,x2);  kay(X) = Kaysin(A,x; )sin(A,x;);
K (X) = K},co5(Anx1)cos(Auxa); Koy (X) = K2y cos(Anx)cos(A,x2)

10
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e)
0.5 05 :
0.4 g 04t |——3D[2] g
——men-RZT™)
03f 1 03f (52} 1
0.2+ 1 0.2+ 1
0.1+ 1 0.1+ 1
U 1 U 1
N N
0.1 F 1 0.1 F 1
-0.2 . 02| 4
03F 1 03 1
04 . 04 .
05 T 1 1 1 1 05 |
0.6 0.4 0.2 0 0.2 0.4 0.6 0.5 0 0.5
a11(a/2,b/2) Ga2(a/2,b/2)
g
0.5 0.5 .)
0.4 1 0.4
0.3 1 0.3 1
02+ 1 02+ 1
0.1+ 1 0.1+ 1
S 1 £ ot 1
N N
0.1+ 1 0.1+ 1
02+ 1 02+ 1
0.3 . 0.3 .
04+ 1 04 1
0.5 I I 1 | I I 0.5 | | | 1 | X
-0.01 0 0.01 002 003 004 005 006 007 -0.06 -0.04 -0.02 0 0.02 0.04 0.06
6’33((1/27 b/2) 77'12(0, 0)
05 0.5
0.4r 1 04
03} 1 03} 1
0.2+ 1 0.2+ 1
0.1+ 1 0.1+ 1
< ot — S i
N N
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04 . 04 .
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Fig. 3. (continued).
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0.5 0.5
04 r g 04 F 4
0.3 B 0.3 B
02F 5 0.2 r 5
0.1 B 0.1 B
S 1 S ]
N N
01 f | 01 f 1
-0.2 5 -0.2 5
-0.3 F B -0.3 F B
041 8 041 8
05 i : 05 . i L \ i L . ;
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U1(0,b/2) Uz(a/2,0)
=
< J
N
0.5 U L L L L L
150 155 160 165 170 175 180

Us(a/2,b/2)

Fig. 4. Normalized through-the-thickness distributions for displacements and stresses in a simply supported (SS-1) square (a/b = 1) thick (a/h = 4) sandwich with

cross-ply face-sheets and soft core, under bi-sinusoidal pressure on top surface.

where 1, = mzy An = nzy, (m, n are half-wave number in x; and x,
directions, respectively).

For antisymmetric angle-ply laminated plates simply supported on
all edges, a solution for both the governing equations and the boundary

Moreover, in the following examples, the in-plane prescribed trac-
tions on top and bottom surfaces are null and only a transverse load
pressure has been considered:

conditions can be obtained by using the Navier’s method with the giii)) ;8

following trigonometric functions (SS-2): Pag) =0 (68)
P =0

uy (x) = Usin(Anx1)cos(A,x2);  up(X) = Veos(Ayx1)sin(A,x,);

wO (x) = WOsin(Ax) )sin(d,xy); w(x) = WWsin(A,x))sin(Ax); w? (x) = WOsin(A,x, )sin(A,x,);

01(x) = O1cos(Anx1)sin(A,x2);  62(X) = Opsin(Auxi)cos(Anxa);

v, (X) = Prcos(Anx1)sin(Aux2); W, (X) = Wosin(A,xi )cos(A.x2); 67)

e11(x) = E11co5(AnX1)cos(AnXa);  €2(X) = Excos(AnX1)cos(Ax2);  e12(X) = Eppsin(A,x; )sin(A.x2);

ki (x) = Kp18in(Anxy)sin(A,x2); koo (X) = Kapsin(Anxy)sin(A,x2);  kia(x) = Ki2c08(Anx1)cos(A.x2);

kY () = K sin(A,x1)sin(A,x2);  kay(X) = Kaysin(A,x; )sin(A,x;);

K (X) = K},co5(Anx1)cos(Auxa); Koy (X) = K2y cos(Anx)cos(A,x2)

12
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Fig. 4. (continued).
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Fig. 5. Normalized through-the-thickness distributions for displacements and stresses in a simply supported (SS-2) thick (a/h = 4) antisymmetric two-layered angle-
ply [-15/15] under bi-sinusoidal pressure acting on top and bottom surfaces.
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Fig. 5. (continued).

If not otherwise specified, the transverse applied load pressure has
the following expression;

P3p)
P3r)

= GapSin(Anxy )sin(A,x;
= gj((l;))singﬂmxl ;sinEﬂ,,xz; (69)
where G5 and g5y are the maximum values.

The materials used in this analysis are defined in Table 1. Material A
and B are orthotropic and material C is an isotropic polymeric soft foam.

Table 2 reports the layer stacking-sequences for the plates investi-
gated in this numerical assessment.

The non-dimensional quantities, if not otherwise specified, are
defined as follows:

o E,l* — E,1’
{T,, 0>} = 1000=5{U), Us}; Us = 100—=Us;
30} P3a,
W{on, 10h
{611,62,03,7T1n} = —{611'622’63371-[2}; {713, T3} = 7{7137123}3

— —
P3ay pP3ai

(70)
Note that p; = qap + qar), and for sandwich structures Ep is

considered the Young’s modulus in the transverse direction of the face-
sheet material.
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3.1. Penalty parameter evaluation

By observing the equilibrium equations (see Egs. (39)-(57)), it is
clear that the accuracy of the results can be dependent on the value of
the penalty parameter 5 related to the penalty functional for the
enforcement of the compatibility between in-plane strain quantities.
Generally, when the numerical value assumed by 7 in the penalty
functional (see Eq. (34)) is low, that term in the variational statement
has an important role to ensure the compatibility between the new strain
variables and those derived from the kinematic field. Otherwise, if 5
assumes high values, the penalty term is less relevant and there can be
discrepancies in the in-plane strain compatibilities. In order to evaluate
the best range of # values that can guarantee a good accuracy of the
results, a parametric investigation has been done. For the simply sup-
ported (SS-1) cross-ply laminate L1 and the simply supported (SS-2)
anti-symmetric angle-ply L2, both under a bi-sinusoidal transverse
pressure, the through-the-thickness averaged central deflections and the
other strain quantities are computed using the Navier’s method. Ac-
cording to Pagano [2,3] analytical three-dimensional solutions as
reference results, Table 3 provide the percentage errors for the through-
the-thickness averaged central deflections. Furthermore, for each value
of the penalty parameter, the sum of the absolute errors in the strains
compatibilities is evaluated for both plates. The errors on the deflection
is decreasing with the decreasing of the penalty parameter value and
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Fig. 6. Normalized through-the-thickness distributions for displacements and stresses in a simply supported (SS-2) thick (a/h = 4) antisymmetric four-layered angle-
ply [-30/30/—30/30] under bi-sinusoidal pressure acting on top and bottom surfaces.
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Fig. 6. (continued).

after y = 107 is almost stable. As expected, the lower the value of the
penalty parameter the better enforcement of the strain compatibility
between the new strain variables and the strains obtained by the kine-
matic field.

Thus, the selected penalty parameter value for this numerical anal-
ysis is 7 = 10710, that is able to guarantee a good accuracy on the
maximum displacement and a good compatibility on the strains
quantities.

3.2. Cross-ply multilayered and sandwich plates

In this first numerical example, a three-layered cross-ply plate (L1) is
considered. The squared (a/b = 1) plate is simply supported (SS-1) on all
edges and the length to thickness ratio is here considered as a/h = 4.

In order to obtain a non-negligible transverse normal deformation,
the transverse distributed load is applied on the top surface only, i.e.,
Gz =0.

In Fig. 3 (a-i), the through-the-thickness distributions of the
normalized quantities are shown for the simply-supported three-layered
symmetric cross-ply.

It is clear from Figs. 3 a) and b) how the en-RZT%‘,)g} is able to match
the exact three-dimensional distributions for in-plane displacements.
Moreover, the parabolic expansion for the transverse displacement
assumed in the kinematic field can predict with good agreement the

17

exact result. As expected, the non-linear distributions for in-plane
stresses obtained using the constitutive relation of the en-RZT?g‘,‘,)z} are
very close to the exact three-dimensional ones and the transverse normal
stress. Moreover, the transverse shear stress distributions are in very
good agreement with the three-dimensional solution.

The next example considers a multilayered thick sandwich plate with
cross-ply face-sheets (S1) and simply-supported (SS-1) edges. The
length-to-thickness ratio is a/h = 4 and a/b = 1, with a the ratio between
the core’s thickness and each face’s thickness equal to h./hy = 8. Like in
the previous example, the bi-sinusoidal transverse load is applied only to
the top surface of the sandwich plate.

Fig. 4 (a-i) shows the normalized through-the-thickness distributions
of non-dimensional displacements and stresses for the simply-supported
square multilayered sandwich plate.

As expected, in sandwich structures with a soft core, the effect of
transverse normal deformability is more pronounced, affecting the
through-the-thickness distribution of the transverse displacement and
leading to more complex distributions of in-plane displacements and
stresses. The assumed transverse normal stress is still able to follow the
three-dimensional distribution. Also, the parabolic transverse displace-
ment provided by the present model is very close to the exact one, but
the in-plane displacements approximation is accurate only in the face-
sheets. The higher-order zigzag functions are not able to represent the
non-linear and non-symmetric distributions of displacements in the
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core. On the other hand, the in-plane stresses are very close to the exact
ones, especially at the layer interfaces. Also, the prediction of the
transverse shear stresses is very accurate.

3.3. Antisymmetric angle-ply multilayered plates

In this Section, the family of angle-ply multilayered structures is
investigated.

In this first example, a two-layered antisymmetric angle-ply plate
(L2) is considered. The simply-supported conditions (SS-2) are consid-
ered here, and to use the Navier’s solution and to compare the results
with the exact analytical solution provided by Pagano [3] for the cy-
lindrical bending assumptions, the length b (along the x2 direction) is
assumed to be much higher than the size along the x; direction (b/a =
1000). The length-to-thickness ratio here is a/h = 4, typical for a thick
plate. As observed in the previous numerical examples, the transverse
normal stretching effect is typical of sandwich structures, where the core
has a very low stiffness with respect to the face-sheets. In fact, in the
monolithic multilayered structures, the transverse normal deformability
has an almost negligible effect on the laminate behaviour. For this
reason, in the next examples, the bi-sinusoidal transverse pressure has
been equally divided between the top and the bottom surfaces.

Fig. 5 (a-i) show the through-the-thickness normalized quantities for
the antisymmetric two-layered angle-ply plate.

From Fig. 5, for through-the-thickness in-plane displacements and
stresses, it is observed the same accuracy of the en-RZT(m){3,2} with
respect to the three-dimensional solution. The novelty of this mixed
model in the transverse shear stresses assumption can provide a
remarkable accuracy in predicting these quantities. As observed in
Figs. 5 h) and i), the percentage errors between the en-RZT?g',l,)z} and the
exact results for the peak values are 1.93% and 6.54% for 713 and 723,
respectively.

In order to assess the ability of the present mixed model to predict
more complex transverse shear stress distributions for angle-ply multi-
layered structures, an anti-symmetric angle-ply laminate with more
layers is considered (L3). Also for this case the simply supported con-
dition (SS-2) and cylindrical bending assumption for the exact three-
dimensional solution is considered to compare the numerical results
with Pagano’s solution [3]. Fig. 6 shows the results for normalized
through-the-thickness quantities.

As expected, the en—RZT?gl,l,z} is able to provide very accurate results
for transverse shear stress distributions also with more complex lami-
nation schemes. The higher-order zigzag functions are able to provide
the non-linear through-the-thickness distribution for in-plane displace-
ments and in-plane stresses. The parabolic transverse displacement, as
well as all the transverse stress distributions, are in a very good agree-
ment with the exact three-dimensional solution.

4. Conclusions
In this paper, a new mixed model has been developed based on the
enhanced Refined Zigzag Theory and enhanced with cubic in-plane

displacements and a parabolic transverse displacement. A new set of
cubic zigzag functions have been obtained from the original kinematic

Appendix A

Derivation of the assumed transverse normal stress
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field, enforcing the transverse shear stress to vanish on the top and
bottom external surfaces. This new mixed model, en—RZT?é?z}, has the
transverse normal stress assumed a-priori as a through-the-thickness
continuous cubic function and the transverse shear stresses assumed
from the three-dimensional local equilibrium equations by involving an
independent strain field. The Hellinger-Reissner functional has been
used to enforce the compatibility of the transverse normal and shear
strains between those coming from the independent field and those from
the displacement one. Furthermore, a penalty term has been added to
the governing functional in order to enforce the compatibility between
the assumed strain variables used for the transverse shear stresses and
the strains derived from the kinematic field.

The accuracy of the eIl-RZT?:?’)g} has been assessed by comparing its
results with the exact three-dimensional solutions available in the
literature for simply-supported thick multilayered and sandwich plates.
The numerical investigation reveals the remarkable accuracy of the
proposed model in computing the trough-the-thickness distribution of
displacements and in-plane stresses for cross-ply and angle-ply multi-
layered and sandwich structures. Moreover, the cubic terms in the in-
plane displacements are able to represent the typical through-the-
thickness nonlinear distributions for displacements and stresses.

The assumed transverse shear stresses with the combination of in-
dependent strain variables and the compatibility strain condition
through the penalty functional can accurately predict a distribution very
close to the three-dimensional elasticity one. Moreover, this model is
able to predict the effect of shear coupling typically present in multi-
layered angle-ply plates. In fact, with respect to the procedure developed
in the previous mixed RZT models, in the present one, all the derivatives
of the kinematic variables introduced as new strain variables are
considered, thus allowing to predict the transverse shear stress distri-
butions accurately.

As a final consideration, it is possible to formulate efficient and
computationally attractive finite elements with appropriate reduction
methods, using the en—RZT%l’)z}, since in the governing functional, it is
required only the C%-continuity of all the unknowns (kinematic variables
and strains variables for the transverse shear stresses).
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In this appendix are given the details for the solution of the weak form of the compatibility constraint between the transverse normal strain derived
from the kinematic field and that derived from the assumed transverse normal stress. This procedure described is similar to that developed by Iurlaro
et al. [41] but here is recalled and used for a more general lamination scheme that involves the presence of the enhanced higher-order zigzag functions.

Due to the arbitrary variation of the unknown stress vector q4(x), the Eq. (36) can be solved as follows:
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/‘Wz'z (6 —et)av = <56‘3’3 (833 — e ) > =0 (A1)

Vv

where the symbol (...) denotes the integration over all the plate thickness.
Using the material constitutive relation for the transverse normal strain, see Eq. (6) and here reported for simplicity, it reads:

£43(x,2) = 5% 0% (x,2) — RV (x, 2) (A.2)

Where R = [R(1k3) R(zk3> Rg;) } is extrapolated by the constitutive relations Eq. (6).

Performing the virtual variation of the transverse normal stress and substituting the expression of Eq. (A.2) into Eq. (A.1), it follows:

(80, ()P, (2) (M5 ()w(x) = S8 (L) + Po(2)a, (x) ~ RYel (x,2)) ) ) =0 A.3)
Substituting the expression for in-plane strain quantities as defined by Eq. (11), it results into the following equation:

<P,JH5'3>w - <S§’§)P,,TL )q. - <S§’§)P,,TPJ >q6 +(P,'R® e, + (P,/RYz )ey + (P,/RIM® Ye, = 0 (A4
From which it is possible to solve in terms of the vector q(x)that contains the unknown stress quantities:

q,(x) = <S§§)P,,TP,, >71<P(,7Hf3>w(x) - <S§’§)P p, >71<s<")1> TLYq.(x) + <s§§>P > (P,TR® Ve, (x)+

(A.5)
- -1 -
(SRR ) (BTRYZ e (x) + (SER,TR, ) (RTRIMO Yo, (x)
The substituting the expression (A.5) into (26) after some mathematics, it is possible to write the final expression:
05 (%,2) = AL()en (%) + AL(2)ea(x) + AL (e, (x) + AL ()W) + A% (), (x) A.6)
where
l
riasmm) e
1
<S§2P A(2)) (P >
(stp > (P RUMY (2) ) A7)

are the shape functions of the thickness coordinate for the transverse normal stress.
Appendix B
Derivation of the assumed transverse shear stresses

In this appendix is reported in details the formulation of the transverse shear stresses by performing the integration of the local equilibrium
equations.

Using the assumed transverse normal stress expression defined by Eq. (38) and substituting into the material constitutive relations (see, Eq. (6)),
the in-plane stress quantities are here defined in a compact matrix form:

Hxz) =0 =Q e (x2) + RVl (x,2) =

= fo)e,,, (x) + zQ,(f)eg(x) + Q;")M“)e.,, (x)+ (B.1)
+R® (A%(2)en(x) + Al(2)es(x) + AY (2)g, (x) + AL (2)w(x) + A% (2)q.(x) ) =

)
= (@ + RYALE) Jeu(x) + (2 + RYALR) Jea(x)+
+(QUMY + RVAY(2) )&, (x) + RYAY (w(x) + RYAL (2], (x)

Before substituting into the expression of local equilibrium equations defined by Eq. (28), it will be performed the substitution of the strain
quantities with the new set of independent variables as defined by Eq. (29). This procedure results in:
o) = (@ + RYAL() )e(x) + (2Q) + RYAL(:) )k(x)+ 52
+(QUMY + RVAY () )" (x) + RUAY (w(x) + RYAL (.(x)
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Deriving the expression of Eq. (B.2) with respect to x; and x; directions and substituting into Eq. (28) the integration along the thickness direction
is performed, resulting into the following expression:

T(x,2) = =P (x) + A"(2)de(x) + B’ () 0k(x) + D* () 0k (x) + E*(2)ow(x) + F*(2)0q, (x) (8.3)

where A%(2), B*(z), D%(2), E*(2), F*(2)are the shape functions in the transverse direction, and the derivative of the independent strain variables are
defined as follows:

0e(x)T = [611.1 €n1 €n1 €112 €n2 6’12,2};

ak(X)T = [k]].l kg kiogy kiz o kap klzz];

ok¥ (x)" = [kifll.l kgz,l kx{[z,l Ky, K, kgz,z kl{/z,z k3, z} (B.4)
ow(x)" = [W@ Wl @ 0o ];

0q,(x)" = [Py Pyni Pawaz Dz |

The shape functions are expressed as follows:

—[ [ (00 +roa, ) } —[ [ (00 ro.)ae } —[I (00 +RO4,) } [ 0+ R )d ] [ R:?Ad,z)d] [ [ (00 + ) }
A'(z)= —hi2 —h2 i 2 z hi2 (B.5)
iemnne] {feroee] {1 @mne] {j@mae] {fems] {je e
|: Q(“+R(“AHH i| |: fA)+R4k)AH i| |: J‘ 20 + RO A, :| |: Z (A!+R:;)A:” :| |: ZQ(A)+R1A)AH‘2)d7i| _|: j‘ 7Q4M+RUMAH“ db:|
B(o=| L i : 1 - -2 (B.6)
[ Corerv e - | onsreaye] - Gorerva)e] | | corerva)e| o ] (o envaye] - ] Gorens)e)
{ [ (00ut+ 00w+ RO 7, ) ] —[ [ (00w +0u + RO, dz] [ [ (s + 0 + R 47, } [ I Q,‘f’#,‘z”+Qy‘é’ﬂ‘“+R‘“ALN)d']
D] L i i
{J’ O ul + 0wy + R4, ) ] —[ (Ol + CO ) +RY AL, d] {J’ Ol i) + 0 it + R 4%, } []’ o7 u#"+Q“’/l‘“+R‘“A:.4)dz]
i i i (B.7)
{ apvammea] {f ommseomnt omsiee] {flanurvonninece] J f otmssotutronsic e
[ O+ O+ REA,) l,,] { Y+ 0 + R A7) ] [ (048 + 00wty + R 47,) 4] [ (00 +Q(A,#M,+R;5‘Aim)dz}
- / ng:s)A:ndz - / R(1k3)A:12dZ - / R(lk:&)Aanz - / Rég)A:“dz - { / Réﬁ)AledZ - { / R&)A;'”dz
() — L -h/2 i L_h/2 1 L _h/2 i L _h/2 1 —h/2 —h/2 (B.8)
- / Rgg)A‘;'”dz - / Rg;)A:ndz - / Rg;)Af;”dz - / R;?A:“dz - |: / Rg;)A:;lde - |: / R;?A;’de
L -h2 ] L _h/2 ] L _h/2 ] L _h/2 —h/2 —h/2
- / RYA% dz | — / WAL, dz | — / ROA% dz | — / WAL dz
F(2) - | —h/2 ] L —h/2 1 ~h/2 1 - —h/2 1 (B.9)
- RYA% dz | - REALdz | — RWAL dz | - RY AL d
63451142 63 451202 23451142 23441242
Lo -n2 ] L _h/2 1 L _h/2 1 L —h/2 1
Since the expression (B.3) is not able to satisfy the traction condition at the top surface, a further term is added:
T(x,2) = =P (x) + A(2)de(x) +B*(2)0k(x) + D* () 0k" (x) + E*(2)ow(x) + F*(2). (x) +a(z + 1/2) (B.10)
Performing the integration along the entire thickness, it is possible to compute the expression of a as follows:
1
a=— " +p?) —- (A’)ae - (B’)ak (D’)()k"’ <E’)6w += <F’)6q. (B.11)
Substituting the expression of Eq. (B.11) into (B.10) it is possible to obtain:
_ 1 1 _ ~z ~z ~z ~z ~Z
(x,7) = p? (x) ( —-1- %(z + h/Z)) - Z(Z +h/2)p" (x) + A (z)de(x) + B (z)ok(x) + D (z)0k" (x) + E (z)ow(x) + F (2)dq,(x) = ®.12)
B.

=Z,(2)q, () + Zi(2)q,(x) + Z.(2)0q, (x)
Where, the terms of (B.12) and (30) are defined as follows:
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A=A~ e+ h/2) (A
B () =B() ~ (2 + /2),; (B
D' (0) = D) — (c-+ h/2) 7 (D)
() = B'(2) — (e h/2) (B)
F () =F() — (4 h/2) () (8.13)

2,6)= (- 1-4G+m) et ]

4,0 =[p? " ]=[rw Pw Po P ]
q,(x)" =[0e" ok" oK' ow']

Appendix C
Full expression of the equilibrium equation and boundary condition terms

In this appendix are reported the full expressions of the terms appeared in the en-RZT?é‘,)z} equilibrium equations, i.e. Egs. (41)-(57):
~w0 ~W 0 ~W 1 ~w 2 ~w 0 ~w 1 ~w 2 ~0 ~0 ~Y ~y
Q0 = 7<D11W,(12 + Dlzw,(lz + D13W‘(11) + meflz) + D15Wf12) + DIGWfI% + D611+ D001 + Dy + Dy, >+
N () BN ) BTSN B U (1) BN N O) BN L ¢ M- ] ~6 I~ N
_<D41W,(1% + D42W,(12 + D43W,(1; + D44W,(2% + D45W,(z; + D46W,(22) + D012+ Dybry + Dyyy, + Dy, )""
~kw ~kw ~kw ~kw ~kw ~kw
+A e +Ayen A e FAy e+ Ag enn +Agennt

~kw ~kw ~how ~how ~kw ~kw vy, ~hv ~hw oy, ko,
Jan"‘ll.ll + 321]‘22-11 + lekllll + B4|kll,12 + lek22,12 + BmkIZ-,lZ + C11k11.11 + C21k22,11 + C31k12.11 + C41k21.11+

(C.1)
~ow ~kw ~ow ~ow Sk () kv () sk ) ~kw o) k() ~kw (o
+C51k1f/1,12 + Cq k12 + Corkly 1 + CSlkl{l,lZ + D11W,<11) + DIZWfll) + Dlzw,(l; + D14W,(1; + D15W.(1; + DIGW‘(12)+
~how ~hw ~hw ~hw ~how ~dow
Ayennn+Ayenn Ay enntAyennt+Agenn +Agennt
~hw ~hw ~how ~hw ~hw ~hw PN PN oy PN
+B ki + Byykn o + Bygkingo + Bykno + Bsyknm + B ki Ciukiy p + Cogky n + Cyykiyp + Coukyy 1pt
~ow ~hw ~hw ~ow kv (o) L wkw (1) ke o) ke o)~k () ke (o
+C54kt;11,22 + Coykhom + Coykyny + Cs4kgl1,22 + Dy, W.<12 + D42W.(12) + Dy W,l; + D44W.(2% + Dys szz + D45W.22)+
~wl ~w ~w ~w ~w ~w ~w ~0 ~0 ~y ~
0 1 2 0 1 2 W v
0 = 7<D11W,(12 + Dlzw,(lz + D13W‘(11) + meflz) + D15Wf12) + DIGWfI; +Dy,011 + D0 + Dy + Dy, )+
~w 0) ~w 1 ~w 2 ~w 0 AW W2 ~0 ~0 ~y ~y
_<D51W.<12 + DSZW.(I% + D53W,(1% + D54W,(2% + D55W,2; + D56W,22) +D51012 + Ds,60h2 + D5y, + Dsyy )""
~kw ~kw ~kw ~kw ~kw ~kw
+Aenn HAypen +Ayjen A et Agpenn +Agennt
~hw ~hw ~how ~hw ~hw ~hw
+B ki + Bykan i + By ko + Byykinie + By koo + By kio o+
vy oy P vy oy oy vy vy
+Chkiin + Cpkpyy + Cpkingy + Cukyay + Csykiy g + Corkp 1o + Cookin in + Coy ki 1p+ (C.2)

~kw ~kw (1 ~kw (p ~kw ~kw (1 ~kw (2
+D21W,(?f + D22W,<11) + D23Wf11) + D24W,(?2) + Dzsw,(% + Dzew.(lg""
~kw ~kw ~kw ~kw ~kw ~kw
+A e +Ayenn +Ajsenin + A€+ Aseny +Agennt
~how ~hw ~ow o ~hw ~hw
+B skiii2 + Byskn 1o + Byskinin + Byskiign + Bsskan oo + Beskinom+
P oy, v, vy, vy, v, v, vy
+Ciskiy i + Coskyppn + Cyskin gz + Cuskyy1n + Csskiy g + Coskppg + Coskingy + Cyskyypnt

~kw ~kw ~kw ~kw ~kw ~kw
(0) (1) (2) (0) (1) (2)
+D5w iy + Dsyw iy + Dsywpy + Dyywiy + Dssw ) + Dsew i+
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—~w2

0
Qo (Dzlw it an 1t D%Wn + DMW( )+ Dgsw + D%le + Dﬂel 1+ D32'921 + D%]WI 1+ Dzz‘/’z 1 )
(Dﬁlw 2t DﬁZW 2t D63w )+ D64W22 + Dsswzz + D66W22 + D61'91 2+ 362‘922 + Dm'l’l 2+ Dsz‘/’zz)
+A13 e+ A23 eni + A33'€12,11 + A43 e+ A53 enn+ A63 et
~kw ~kw ~kw ~kw ~kw ~kw
+B3kii 11 4 Byskoo i + Byyking + Bygkinio + Bssko o + Bgykin o+
oy, P P vy, PoT oy oy oy
+Clzku n+ C23k22 n+ C33k1211 + Cukan + Csskiy o + Coykyyin + Cozkingn + Coskyypt+ (C.3)
1
JrD31W nt D32W it D33W nt D34W 12+ D35W( )+ DzGW 12+
+A16€11.|z + A26€22.12 + A36€12,12 + A46€11,2z + A56€22,22 + A66€12,22+
~kw ~kw ~kw ~kw ~kw ~kw
+B gkii12 + Bk 12 + Bygkinio + Bygkingn + Bsgkanon + Begkinm+
~kw v ~kw v ~kw w ~kw v ~kw v ~kw v ~kw v ~kw v
+Clakn 2+ Cxkygp + C36k12 n+ C46k214]2 + Csokiion + Cooknann + Crgkingy + Coghy ot

~kw

akw () wbw (g
JrD61 w) 12 - D62W ity D63W nt D64 22 - Des W,(zg + DGGW.(Z%+

~W 0 ~W 1 ~W 2 ~wW 0 ~wW 1 ~W 2 ~0 ~0 ~y ~y
Eﬁk = Allw(ll) + Alzw(lf + A13W(11) + A14W(1; + Alsw(l; + Al6w,(1; +A O ARG ALY, Ay, T+
0 1 ~w ~0 ~0 ~y -~y
JrA41W 13 +A 2w<12 + A42W(12 + AMW(ZZ) + A45w(22) + A46W,(2; +AL012+Apbis + ALY, + ALY, ,t+

A11P1 B+ Alzpz B+ A\T}ﬁl(ﬂ_l + A\i;ﬁz(r),l + ;\\jlen,n + ;\\‘1)26’22.11 + 74\?3612.11 + ;\\74611,12 + //‘\\55622.12 + 1/4\?66’12‘12-"-
+A11k11,11 + Alzkzz.u + g];3k12,11 + X]1(4/%11.12 + K]1(5k22.12 + ZA1v6/<12,12+

""Zl;li/kxfl nt X;Zkg,z nt thklflz nt :4\’1(:/;/]‘;/1 nt nglfll 2t "4\]1(:]‘%/2,12 + A\T:sz.IZ + 21:ng"’1.12+

+A11'W +A12w11+A13W JrA14 12 +Alsw +A16W J+ €4
- +A41171(3>72 + A42ﬁ2(3),2 + A43]71(T),2 + A441772(T),2 + A41€11.12 + A42622‘12 + 223612,12 + 1/4\24611,22 + :4\25322,22 + :‘\\Z(,é’lz,zer
+;‘\\§1k11,12 + ijkzz‘lz + :4\/;3](12,12 + Zi;kn.zz + 1/4\/;5k22‘22 + A\/;(,klz,zz-l-

+X§Tklﬁ,1z + ;‘\Zkglz,lz + Xizk\flz,lz + ‘/A\ftfkg’l,n + sz‘f’l.zz + sz;’z.zz + Z]::klflz.zz + Zxkgl] 2t

A w )+ Al + Agw + Agw + Al + Agwll+

+le1[73(3)“ +K?2ﬁ3(7),“ + 273173(3).12 Jr11‘1]41773(7),12 + Kzlﬁw).lz +ZZZﬁ3(T),12 +233173(3).22 +ZZ4A53(T> »

Egzk = A21W11 + Azzw 1+ A23W n+ A24W 1+ A25W12 + A26W12 + A2101 1 ""Azngl + Alel 1+ A22W21+
+A51W.12 + A52W.12 + A53W‘12 + A54W,22 + Assw,zz + Assw,zz + A5191.2 + A5292,2 + Asl’/’l,z + Asz‘l’z,zJr

A\lelg +A22P2 +A23p1 7), +A24P2 +A21€11 1 +A22€2211 +A23€1211 +A24€1112+Az5€22 12 +A26€1212+
+221k11,11 + A22k22.11 + A23k12.11 + Az4k11.12 + A25k22.12 + A25k12,12+

+"4\2{kl{/l n+ ngk;’z n+ X?Zk'fz n+ ‘Zl;z/t/kgll nt X’;Zk(]’ll 12+ Ezlgk;/z,lz + K;Zk.l’lz.lz + ng%.lfr

+A21W 1 +A22w 1 +A23W 1 +A24w 2t A25W 12 +A26W )+ (C.5)
- +A51171(B),2 + Aszﬁz 2t A53p1 e T A54P2 2t ASle“ 2+ A52622 12+ Assel2 2t A54e“ 2+ A5562222 + A5661222+
+A\§1k11,12 + X§2k22.12 + A53k12‘12 + A54k11,22 + A55k22.22 + A56k12‘22+

+X?;’klfll Tt ngg’z 1t A\?gk‘f/z 1+ Xlsaf:k;/l 2+ X?gklﬁ »n+ X];:kzwz,zz + :‘Zk\f/z,zz + 2];:]‘;/1.22+

+A51W 2t AszW 2t Ast 12 +A54W22 + Ass (l) +A56W22+

+A21l_73(3),11 + Azzl_’S(T).n + Azgﬁwg),lz + Az4l_73(r),12 + AS]ﬁ}(B).lZ + 2321_730),12 + X:;ﬁs(n).zz + 2241_73(1) b2
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~W 0 ~W 1 ~W 2) ~W 0 ~w 1 ~W(2 ~0 ~0 ~y ~y
Eflzk = A31W,(11) + A32W,(lf + A33W,(11 + A34W.(1% + A35Wf12) + Asew,lg + A0 +Aph + Ay + Apy, +
I G B N R s N VA B L o ~y ~y
HAqwin AW FAGW i T AW, + AgsW oy + AgeW iy + Ag 012 + Agba0 + A, + Ao+

~p _ ~p _ ~p
APy + AnDas T AP t A34p2 |+ A31611 11 +A; peén1 + A 1€ + A34611 12 + A, 35€2,12 A36e12 L+
~k ~k ~k
+A5 ki + Agkp gy + Agzking + A34k11,1z + A35k22.12 + A36k12,12+
~ky ~ky ~ky ~ky ~ky ~ky ~ky ~ky
FAG Ky Ak AR+ AR+ Ak Aggks 1+ Ay kY 1+ Aggky) ot
ke (0) akw () ~kw oy ke () ~kw () ~kw (o
+A45, W,(lf +A45n an) + Az W,(ll + Az W(IZ) + Ass W(l; + AW, 1%+
~p _ ~p _ ~p _
—| APz + AePap2 T AcPir)2 + Aml’z )2 T Agenn + Agenn + Agenn + Agenn + Agenan + Agenn+t
~k ~k ~k
FAg ki + Agknin + Agkini + A64k11‘22 + A65k22.22 + A66k12,22+
~ky ~ky ~ky ~ky ~ky ~ky ~ky ~ky
+Ag k1 + Aszk%lz T+ A63 k'flz 12+ Ag k) 1o+ Ags ko + A kS 0 + Amklf/z,zz + Aesk\{l,zz“'
~kw 0 1 W
+Aq w,(l; + A()ZW(IZ) + A zW 12 + A54W22 + Aaswzz + A65W22+
~q _ _ _ _ _ ~q _ ~q _ ~q _
+A31p3(81.11 + A32P3(T)‘1| + A33P3(8),12 + A34P3(T).1z + A61P3(3),|2 + Aezl’}(r),]z + A63P3(B).22 + A64P3<1),22

~w 0 ~W 1 ~W ) ~w 0 ~W 1 ~W 2 ~0 ~0 ~y ~y
K= Bllw,(ll) + Blzw,(lf + BISW,(lf + BI4W,(l% + BISWfIZ) + Bl6w‘(12) + B 011 + Bpbhy + By + By, +
B @ LB 0w LB @ LB WO LB LB WD B0, + B B 4
+Bywiy + Bypw s + Byywin + Bywo + Bysw o + Bugw 5 + By 010 + Byybho + By, + By, +

E’l’lﬁl(B).l + BLoPawa + Babin + By + X,;1“311.11 + Z;ezz.n + X;eml + A\jlelmz + 31;1622,12 + leelz.lfr
+§T1k|1,11 + §T2k22.11 + Ell‘gkIZ.]l + Ei;kn,]z + §T5k22.12 + §T6k12‘12+

B 1+ BYRG - BUKG Bkl + BKY o + Bk o+ BYKG 1 + Bk o+

+Bywf] + Bw) + Byw) + Blow) + Biowl) + Biowl+

- +§le71(3),2 + Eiz?z(s),z + §Z3171<r>,z + Eizﬁz(m + Zf4611,12 + 3§4e22,12 + 7‘24612.12 + A’;4ellv22 + X;622.22 + 324612,22+
+§§1k11,12 + §:2k22.12 + §];3k12.12 + §Z4k11,22 + §§5k22.22 + §:6k12.22+

+§/:fk|{/] 12 + El:;[k%lz 12 + E‘::/i[kl{lZ 12 + Efz/:k;/l 12 + Efgkl{/l 22 + Ejlgk;/z,zz + E:{{//kl{/Z,ZZ + E:‘;’k;’] .22+

+B411W 2t B42W + B43W 2t B - W + B45W + B4e 22Jr

+311P3(B),11 + B12P3(T)‘1| + 3131_73(3),12 + Bl4l_73(r),12 + B41P3(8),|2 + 2\94{121_73(7),12 + §Z3ﬁ3(8).22 + Z\{ile_"%(r),zz

KZR lewll + BZZWI; + BZ%W(I% + Bz4w<12 + B25W(I) + Bza (12) + 32191 1+ 322921 + leV’] 1+ Bzsz]
Jr351W 12+ Bszw 12+ B%W + BS4W22 + Bsswzz + Bsswzz + 35191 2+ 352622 + le'/’l 2+ Bszl//22+

P _ ~P _ ~p _ ~p _ ~k ~k ~k ~k ~k ~k
By Pis)1 + ByPawy + BoPirya + BuPorys + Aneinn +Apenn +Apen +Apene +Asenn + Agennt

~k ~k ~k ~k ~k ~k
+B, ki + Bzzkzz n+ Bz3k12 n+ Bz4k11 12+ 325k22 12+ BZlez 12+
kz// ~ky
+By Ky + Bzzkzz nt Bz3k12 n+ B24k21 n+ stku 12+ stkzz 2+ Bz7k12 12+ Bkt 1o+

+Bz‘fW0) + Bzzw nt Bz3W it Bz4W 2t stw 1t BZﬁw 12Jr
B ""351171 B2 T Bszl’z 2t 351171 a2t 3541_72(7).2 + A15€11,1z + Azse22-12 + "4\§5612-12 + :‘isellﬂ + Z§5e22-22 + 22561222"'
+35]k11,12 + B52k22,12 + B53k12.12 + g;ku,zz + E;kzz.zz + §§6k12,22+
+E?;/k|f/1 2t Egkgz 2t gl:fklfz 2t Ei’:k;’l 12t Eifklfll »t Egtkgfz,zz + Ei:,klflz,zz + Elsﬂ::kzwl.zz+
~hw

+BS] w 12 o Bszw(l) + Bssw<12 + Bs4w<0) + BSSW + B%w2§+
— _ _ _ — =9 _ =9 _ =9 _
+3211’3(5),11 + BzzPs(r),u + 323173(3),12 + Bz4P3(T),12 + 3511’3(3),12 + Bs,P3(1).12 + BssPay22 + BsaP3r) 22
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~w 0 ~W 1 ~w 2 ~w 0 ~w 1 ~w 2 ~0 ~0 ~y ~y
K = B31W.(11) + B32W,(11) + Bssw,(n) + 334“’.(1; + B35Wf12) + B36W‘(12) + B3611 + Byy021 + By, + By +
=W (0) =Y (1) =Y (2) =Y (0) =Y (1) =Y (2) ~0 0 ~0 p) ~y ~y
+Bow i+ Bow iy + Bew iy + Bowoyy + Beswyy + Begwiy + B 012 + Bgy0ho + B Wy o + By o+

EZJ’MB)J + Egzﬁz(a).] + E;ﬁ](m + EZ@z(r).] + Xfaen,u + 2236’22,11 + 2];3312,11 + Xiaen,lz + 21;3922.12 + Xzsemfr
+§i1k11.11 + §§2k22.11 + E;klz,ll + §§4k11‘12 + §§5k22,12 + E§6k12.12+
+B§'{’k‘ﬁ,n + Bk Bk BYRY ) BYKY, o + Baokts o + Bkl + Bkl o+
+Byywl] + Bwll] + Baw) + Biw) + Bigwl) + Bygw(l+
- +§211_71(3),2 + EZzﬁz(B),z + EZ}ﬁl(T),z + EZAﬁZ(T),Z + Kfﬁen.lz + 2/;66'22‘12 + 2‘3(6612.12 + Ziﬁen‘zz + X;ezz,zz + 226612.22-&-
+1A3§1k1142 + Ezzkzz.lz + §§3k12,12 + 1}];4k11.22 + Ezskzz,zz + Bzék12.22+
+§:‘1/k(]’ll 12 + E:Zkglz 12 + E:Zklflz 12 + ElﬂllkZW] 12 + El:;[k?] 22 + E:Z";’Z.ZZ + §,:'I7lkl{/2‘22 + E:lgk3/122+
3,0

JrBlezJFBlez +Bﬁzw +B64W +B65w22+366w22+
_ _ _ _ _ ~q _ ~q _ ~q _
Jr1'331173(13).11 Jr19321’3(7).11 +333173(19).12 +B34P3(T).12 +Bc’nl’sus').lz + BoP3(r).12 + BesPawy 22 + BeaPar) 22

wfl = C11W11 + C12W11 + C13W + C14W 12+ C15W12 + C16W iy Cllel 1+ C12021 + C11W11 + Clz‘//21+
+C51W,12 + CSZW,IZ + C53W.12 + C54W,22 + Cssw,zz + CsaW.zz + C5191-2 + C5292-2 + C51’I/1,2 + C52W2,2+

P _ ~P _ ~P _ ~P _ ~ky ~ky ~ky ~kyr ~ky ~ky
CT]Pl(B)J + CTzI’z(B),] + CiaPinya + Cubaryy T A enn + Ay e + Ay enn + Ay enn +As enin + Ag ennt
4 Sk Skw Skw ~ky ~ky
B ki + By kgt 4 By ki + By ki + B k1o 4 B kig o+
~ky ~ky ~ky ~ky ~ky ~ky ~ky ~ky
+C K+ Clzkglzu + Clzklflz 1+ Cukyy gy + Cishly i+ Cighiy iy + Crpkly 1 + Clsk¥1,12+
~kw
+C1TW(0) + C]ZW + mell + C14W12 + C]sw 12+ CIGW 12Jr
_ _ _ _ ~ky ~ky ~ky ~ky
+Cslpl(n).z + Cszpz(n).z + C53P|<T>,2 + C54P2(T)_2 + A15 e+ Azs eni tAsenn +Aenn +Assenn + Agennt
~ky ~ky ~ky ~ky ~ky ~ky
+B skiii2 + Byska o + Biskizio + Byskiion + Bsskanoy + Beskinn+
~ky -~ ky ~ky ~ky ~ky ~ky ~ky ~ky
+Cy, kl]l’l,lz + Csy k13 4 Cszhy 13 + Coy k) 1+ Coshty o + Csekg’z,zz + Csyklyp + Coghdy 1+

N N I I I N I e
+Cy W.(IZ) + Cszwflz) + Cs; W,IZ) + C54W,z; + C55W,(2% + Cssw,(z%"‘

~q _ ~4 _ ~q _ ~4 _ ~4 _ ~4 _ ~d _ ~d _
+C11P3(B).11 + C12P3(T)‘11 + C13P3(B).12 + C14P3(1)‘12 + C51P3(3),12 + C52p3(7),12 + C53p3(3),22 + C54I73(T) 22

~w 0 ~w 1) ~w 2 () ~w 1 ~w 2) ~0 ~0 ~y ~Y
Kgfz = C21W(11) + szw<11 + CZ%W(lf + Cow, 12) + CZSW(IZ) + C26W(12 + Cy1011 + Cpobr1 + Coyyy ) + Copyry  +

+C51W12 +C, 2W )+ CmW + Gy 4W22 + C65W22 + Coswzz + C61912 + C62922 +Cq, a2+ C 2W22+

6‘211771 1+ sz]’z 1+ szpl |+ C24I72 +A12611 1 +A22622 1 +A32€1211 +A42€11 12 +A52€22 12 +A62€12 1+
Jrgl?/z/kn,u + Bzzkzz,ll + B32k12,11 + B4zk11.12 + B52k22,12 + Bﬁzk12.12+

+6Zk|1l/1 nt 6§Vz/k;lz nt 62% n+ aZVA/k;/I nt 6‘;;,]"{1 2t 62:’(%/2412 + 6'2.17,]‘114/2,12 + 6;’3’";’1,12"’_

+C21W11 + CZZWII + C23W11 + C24W12 + CI;;VW + C26W12+

—| +CoPws + CoaPasa + CosPrimy + Coubairys + Apgernia + Angermia + Aggernia + Aggenin + Asgenn + Aggernat
+§Tgk11,12 + E’;Zkzz,lz + Egzklz,lz + E:zku,zz + E?:kzz,zz + E:gklz.zzwL

+Corkt i+ 62‘5% o+ Ei‘fk‘f; 2+ Corkdy o+ Ckl o + Cooky s + Co ity + Cookly et

*Cm.w + C62W12 + C63W12 + C64W22 + Cﬁ;W + C66W )+

— — — — — ~q — ~4 _ ~4 _
+C21I’3(B)_11 + szl’3(r),11 + Cz3173(3),12 + C24P3(T),12 + C61P3(3),12 + CqP3ryi2 T CosPamyz + CoaPar) 2

24

(C9)

(C.10)

(C11)



M. Sorrenti and M. Gherlone Composite Structures 311 (2023) 116787

Ky’;]IRZ = ann + C32W11 + C33W11 + me 12+ Czswlz + CzaW 12+ C3101 1+ C32‘921 + Cn‘//ll + sz‘/’zl""
(2)

+C7|W 12t C72Wm + C72W(122) + C74W22 + C7SW22 +C, 6W22 + C7191.2 + C7292-,2 + C7|U/1,2 + C72’l/2.2Jr

5211713 +C;2[J2 +C33p1 +CI;4172 +A1;€1111 +A2;62211 +A3;€1211 +A4;€1112 +A53€22 12 +A53€12 1+
~ky
+Bskin + Bz3k22,11 + 333k12,11 + B43k11.12 + B53k22.1z + 3631612‘124“
~kw ~ky ~ky ~kw ~ky ~ky ~ky ~ky
+Cy ka1 + Conkbgy + Cosklagy + Coyky gy + Casklin + Caghin + Caghly 1 + Caghyy 1o
~kw (@ ~kw (1 ~kw (o ~kw (o ~kw (1 ~kw (o
+Cy W‘(ll) +Cyy W,(lf +Cy W,(ll) + C34W.(1% +Cy;5 W.(l; + C}GWf]%+ (C.12)
~p _ ~p _ ~p _ ~p _ ~ky ~ky ~ky ~ky ~ky ~ky
- +CI71171(B)‘2 + C:QPZ(B)‘Z + C:3P1(T)_z + CI74P2(T)‘2 tApenntApenn tAyennt+Agenn +Asenn +Agennt
~ky ~ky ~ky ~ky ky kv
+B k112 + By kan o + By koo + By ki + B§7k22 »+ B(ﬂklz »n+
ko ko ~ky ko W
+C71 k{l 12 + C72k;2 12 + C73 klf’z 12 + C74k£l 12 + C75 kll 22 + C76 k22 22 + C77 k{z 22 + C78 k21 22+
W w ~kw
+C7]w]2 + C72W 12t C73W 12t C74W22 + C7SW + Cm""zzJr
— — — N4 — ~4 — ~4
CnPs nt sz!’s ut C33P3(B).1z + C34P3(T)‘12 + C71P3(3)_1z + CooP3ry2 + C1aPawy o2 + CrP3in) 2
HR (0) N OO I ) B ~0 P~ P~
Ko = C W |+ C42W1| + C43W it C44 0 - Cyswin + Cyewin + Cyybi1 + Cipbay + Cyryy + Cpoipy +
w0 ~w 1 W (2 ~0 ~0 ~¥ ~V
+Cglw.lz + C82W,12 + Cs3w,12 + mefzz) + Cssw.(zg + Cssw,(zg + Cy1012 + Cy025 + Coiyy 5 + Coplpy o+
~p ~p _ ~p _ ~ky ~ky ~ky ~ky ~ky ~ky
C41P1<B 1+ CoaPay1 + CsPrrys + Caabairys + Ajgennn + Aggenn + Aygennn + Agenn + Asieni + Ag et
ki ki ki ~k
+Bl4k11 n+ 324](22 n+ B;:klz n+ B‘an 12+ B5Z/k22.12 + B6Z/kl2.12+
Sy Sy Sy Sy
+C4]k]] 11 —+ C42k22 11 + C43k1211 + C k2] 11 + Céﬁkll 12 + C46k22.]2 + C47k12.12 + C48k21‘]2+
+C41W11 + C42W it C43W + C44W 2+ C45W + C46W12+ (C13)
— — _ _ ~ky ~ky ~ky ~kyr
—| +CaBi)2 + CoPowa + CusPrnys + Caiona + A]xell,lz + AzerZ-,lZ +Azgennn T Agenn +Agenn +Agennt
~ky ~ky ~ky ~ky ~ky ~ky
+B gkii12 + Bygkny 1o + Bigkin 1o + Bagkiioo + Bsgky oo + Bggkin o+
~ky ~ky ~ky ~kw ~ky ~ky ~ky ~ky
+Cyy k112 + Coako 1o + Cyzkty 1 + Cgy Ky 1o + CyskY) 5y + Cygkyy 5y + Cog k5 + Coghy
~kw (@ ~kw (1 ~kw (o ~kw (o ~kw (1 ~kw (o
+Cy W,(IZ) + Cg, W,(l; + Cgs W,(l% + C84W.(2% + Cys W.(zg + C86wf2%+
~4 _ ~4 _ ~4 _ ~q _ ~4 _ ~4 _ 4 _ ~q4 _
+CuPswa1 + CoParyn + CasPaw)i2 + CaabParyaz + CoiPawyi2 T CaaPary iz + CysPamy 2 + CaaPanym
Furthermore, the terms shown in the boundary condition expression, i.e. Eq. (58), can read:
HR ~w ~0 ~y P
E=A0wW+A0+A y— (A p+A ‘e + Ak + A"k + A" ow+ A aq)
~w ~0 ~y p ~kT ~hkw v
—B"ow+B'0+B"y— (B'p+A" de+Bok+B" ok + B ow+ Ba ) K
~w ~0 ~ ~kw ~ HR__
=Cow+C0+Cy— (Cp+A" de+B" ok +C"ok" + C"ow+C'oq.) Q
~w ~0 o~ ~knT o ~k ~how
=D"ow+D0+D"y— (D'p+A""de+B" ok+C" ok + D" ow+D'oq) (C.14)
where
. T wT
HR_T [ Hreell  HR—e22 pp—e12  pre—ell pree22  preei2] #R Tpp gl ppok2  pgroki2 prokll gtz pposi2] MR-
Ei[ 1 E, E, 2 2 2]’K7[ 1 K, 1 2 K, 2]’
HR_T
_ | HR=Kly  gr—k22y  pRp_k12y  gr_Kk2ly  pgr_klly  pr_k22y  gr_k12y pgp_R2ly | T~
- [ 1 K, K, K, K, K, K, K, ’
 [HR="0 HR—=WI HR—W2 HR—WO0 HR—Wl  HR—W2
- [ Q1 Q1 Ql Qz QZ Q2 }
(C.15)

Appendix D
Matrices definition of the en-RZ 2} constitutive relations

In this appendix are resumed the matrices definitions of the constitutive relations for resultants of forces and moments:
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A= <Ql(’k) + R(")TA; >; B— <ZQI(Jk) + R(k)TAZ >; X¢ _ <Q£k)M(k) + R(k)TAi,: >;

A" = (ROTAY Y A" = (RWTA% )

C= <zQ§f> + ZROTAL >; D= <ZZQ;“ +ZROTA? >; B = <zQ;”M<’°> + ZROTAY >;

B" = (RWTAY); B" = (RWTA% ); (D.1)
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From the HR statement linked to the transverse shear strain compatibility, it appears the following constitutive matrices:
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