
17 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A comparison of estimation methods adjusting for selection bias in adaptive enrichment designs with time-to-event
endpoints / Di Stefano, F.; Pannaux, M.; Correges, A.; Galtier, S.; Robert, V.; Saint-Hilary, G.. - In: STATISTICS IN
MEDICINE. - ISSN 0277-6715. - ELETTRONICO. - 41:10(2022), pp. 1767-1779. [10.1002/sim.9327]

Original

A comparison of estimation methods adjusting for selection bias in adaptive enrichment designs with
time-to-event endpoints

Wiley postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1002/sim.9327

Terms of use:

Publisher copyright

This is the peer reviewed version of the above quoted article, which has been published in final form at
http://dx.doi.org/10.1002/sim.9327.This article may be used for non-commercial purposes in accordance with Wiley
Terms and Conditions for Use of Self-Archived Versions.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2965141 since: 2022-05-31T16:41:58Z

John Wiley and Sons



A comparison of estimation methods adjusting for selection bias
in adaptive enrichment designs with time-to-event endpoints

Fulvio Di Stefano1, Matthieu Pannaux2, Anne Correges2, Stephanie Galtier2, Veronique
Robert2, and Gaelle Saint-Hilary1,2

1Dipartimento di Scienze Matematiche (DISMA) Giuseppe Luigi Lagrange, Politecnico
di Torino, Torino, Italy

2Department of Clinical Statistics, Institut de Recherches Internationales Servier,
Suresnes, France

Abstract

Adaptive enrichment designs in clinical trials have been developed to enhance drug developments.
They permit, at interim analyses during the trial, to select the sub-populations that benefits the
most from the treatment. Because of this selection, the naive maximum likelihood estimation of the
treatment effect, commonly used in classical randomized controlled trials, is biased. In the literature,
several methods have been proposed to obtain a better estimation of the treatments’ effects in such
contexts. To date, most of the works have focused on normally distributed endpoints, and some
estimators have been proposed for time-to-event endpoints but they have not all been compared
side-by-side. In this work, we conduct an extensive simulation study, inspired by a real case-study
in Heart Failure, to compare the maximum-likelihood estimator (MLE) with an unbiased estimator,
shrinkage estimators and bias-adjusted estimators for the estimation of the treatment effect with
time-to-event data. The performances of the estimators are evaluated in terms of bias, variance
and mean squared error. Based on the results, along with the MLE, we recommend to provide the
unbiased estimator and the single-iteration bias-adjusted estimator: the former completely eradicates
the selection bias, but is highly variable with respect to a naive estimator; the latter is less biased
than the MLE estimator and only slightly more variable.

Keywords: Subpopulation selection, selection bias, interim analysis, point estimation, adaptive design,
enrichment designs, survival data

1 Introduction
In recent years, adaptive designs (ADs) clinical trials have been developed to enhance drug developments.
They permit, at interim analyses during the trial, to make use of pre-planned modifications that include:
refining sample size; stopping the whole trial or single doses for lack of efficacy; stopping the whole trial
for success; reshuffling patients among treatment arms; selecting population that would be more likely to
benefit from the treatment [1]. In particular, enrichment ADs trials consist of trials with the possibility
to select, at an interim analysis, the specific sub-populations that benefits the most from the treatment,
optimising the resources on the most promising groups of patients. In such trials, patients are divided
in sub-groups according to some biomarker or covariate values (size of tumor, baseline heart rate, etc.)
and the efficacy and safety of the treatment is assessed, at interim analyses, in each group and overall.
If, according to pre-defined criteria, patients from one or several sub-groups appear to benefit more from
the experimental drug than others, the recruitment is then restricted to these patients for the remainder
of the trial.

Although using ADs seems a very promising option to follow, this flexibility comes with a cost. It
is well known that the selection rule applied in ADs causes a biased estimation of the treatment effect
[1, 2, 3]. In Figure 1, obtained similarly to Pallmann et al [1], we see that if the lowest treatment effects
are excluded and the highest are not, the treatment effect is overestimated: an estimator that does not
take the selection process into account produces positively biased results. Analogously, the estimation
obtained from the data which are excluded is biased, but negatively. As a matter of fact, in two-stage
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Figure 1: Illustration of bias introduced by early stopping for futility. Obtained similarly to Pallmann et
al [1]. Two (in red) of 20 simulated two-arm trials with no true treatment effect are excluded because of
the futility threshold (blue cross), resulting in optimistic estimation of the treatment effect.

ADs, the stage 1 naive estimators (obtained using only data before the interim analysis) are biased
because of the selection rule applied, while the stage 2 naive estimators (obtained using only data after
the interim analysis) are unbiased estimations of the true treatment effect for the selected treatments
[3, 4], since no selection rule is applied on these.

In their Guidance for Industry on Adaptive Designs for Clinical Trials of Drugs and Biologics issued
in 2019 [5], the FDA outlines that the use of AD trials can have important advantages from an ethical
point of view, but that some key principles need to be satisfied in order to meet regulatory approval.
In particular, the sponsor is required to evaluate the extent of bias in the estimates and, if available,
to pre-specify methods for adjusting estimates to reduce or remove this bias. This is needed to avoid
an optimistic estimation of the treatment effect and to control the type I error inflation which derives
from the inclusion of the data used for the selection in the final analysis. This regulatory requirement
motivated the work presented in this paper.

In the following, we focus on two-stage adaptive designs with sub-population selection (enrichment
designs) and time-to-event data. This design permits, at one interim analysis during the trial, to select
the sub-population that benefits the most from the treatment. Following the work of Kimani et al [6] on
adaptive threshold enrichment clinical trials with normally distributed endpoints, we compare different
approaches extended to time-to-event data:

• Unbiased estimators, so called uniformly minimum variance conditional unbiased estimator (UMVCUE),
which are developed to find estimations of the true treatment effect with no bias. A first unbiased es-
timator developed for treatment selection was proposed by Cohen and Sackrowitz in 1989 [7]. Later,
their work has been extended by Bowden and Glimm [8]. A version adapted for sub-population
selection with time-to-event data has been proposed by Kimani et al [9].

• Shrinkage estimators, which attempt to reduce, but not to eradicate, the bias. They rely on the
idea to shrink stage 1 estimates towards the stage 1 overall mean, reducing the bias. We compare
two approaches proposed by Carreras and Brannath [4] and Brückner et al [10].

• Bias-Adjusted Estimators, which are mainly proposed by Whitehead [11] and Stallard and Todd
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[12]. The main idea of these procedures is to find an estimation of the bias via an iterative procedure
and then subtract it from the original naive estimator.

Brückner et al [10] compared some of these estimators in the context of multi-arm two-stage trials
with treatment selection and time-to-event endpoint. Kunzmann et al[13] compared 6 other estimators
in the context of adaptive enrichment designs with normally distributed endpoints, recommending a
hybrid estimator which combines the UMVCUE with a conditional moment estimator as a general rule.
Kimani et al [6] compared these estimators in the context of enrichment AD clinical trials with normally
distributed endpoints, recommending the use of the unbiased estimator as a general rule. In a subsequent
work [9], they derived expressions for an unbiased estimator in a two-stage adaptive design with time-
to-event data and focused on the construction of confidence intervals. The goal of this paper is to
extend these works and to compare side-by-side the performances of the presented six estimators of the
treatment effects in the case of two-stage enrichment adaptive designs with time-to-event data, and to
give recommendations on the estimator(s) that, in our opinion, best meet the regulatory requirements and
best support internal decision-making. It is worth noting that since the primary interest of this paper is
for the correct estimation of the treatment effect in the selected sub-populations, the estimators are given
conditionally on the selection made. Unconditional estimators may also be of interest in other settings,
but the reduction of the unconditional bias does not guarantee the reduction of the bias conditioned on
a specific selection [14], which is our primary interest.

The rest of this paper is organized as follows. The methodology to obtain the six different treatment
effect estimators is described in Section 2. In Section 3, we apply the methods to a case-study in cardiology
assessing the effect of an experimental drug versus placebo in patients with moderate to severe chronic
heart failure. In Section 4, a comprehensive simulation study comparing the performances of the six
estimators in terms of bias, variance and mean squared error (MSE) is presented. We conclude with a
discussion in Section 5.

2 Methods
We investigate the setting of adaptive clinical trials with two treatment arms (an experimental drug and a
control), sub-population selection at one interim analysis and time-to-event data. The idea is to split the
patient population according to some biomarker value and analyse the different sub-populations, indexed
by i = 1, ...,K, separately. We define sub-populations such that the patients inside a sub-population have
a biomarker value between predefined upper and lower thresholds: the sub-populations are disjoint. We
identify the data before the interim analysis as stage 1 data and the data after the interim analysis as
stage 2 data. Let dji denote the number of events in sub-population i = 1, ...,K at stage j = 1, 2. In our
setting, d2i does not contain the events in d1i.

Dealing with time-to-event data, we consider the log hazard ratio (HR) between the two treatment
arms in each sub-population, defined as δi = log

(
hti(t)
hci(t)

)
for i = 1, ...,K, where hti(t) and hci(t) are

the hazard functions of the treatment and the control in sub-population i, respectively. We use a Cox
proportional hazard model to obtain the estimates. We consider here that a negative value of the log HR
corresponds to a reduction of risk of event with the treatment, i.e. that the treatment is effective with
respect to the control; if the log HR in one sub-population is lower than in another, it means the treatment
is more effective in that sub-population. The log HR is usually assumed to be normally distributed, with
stage 1 and stage 2 estimators δ̂1i ∼ N(δi, τ

2
1i) and δ̂2i ∼ N(δi, τ

2
2i) for i = 1, ...,K; also τ̂21i and τ̂22i are

estimated from the Cox model.
We specify a selection rule at the interim analysis as follows: given a threshold value b of the log HR

between treatment arms, each sub-population i ∈ (1, ...,K) does not continue to stage 2 if its stage 1
estimation is not lower than b (δ̂1i ≥ b); if stage 1 estimates for all sub-populations are greater or equal
than b, the trial is stopped for futility. We define as S the set of indices corresponding to the selected
sub-populations continuing in stage 2.

In this setting, one particularity of adaptive clinical trials with time-to-event data is that some stage
1 patients may not have had the event of interest yet at the time of the interim analysis. If we continue
the analysis carrying these patients to stage 2, the stage 1 and stage 2 test statistics will be correlated,
inducing some bias in the estimation. As a matter of fact, the independent increment structure, i.e.
the independence between the test statistic of stage 1 and stage 2, is assumed for the calculation of the
upcoming estimators. If the same patients continue from stage 1 in stage 2, the independent increment
structure holds only approximately, even if the time of the interim and final analysis are independent of
each other [9, 15]. To avoid any correlation, patients from stage 1 would have to stop the study at the
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interim analysis. However, it is obviously not ethical and not applicable in practice that patients stop
the study before a minimum treatment period. Instead, we use an intermediate rule following Kimani et
al [9] and Jenkins et al [15]. Consider T1 the time of the interim analysis and T2 the time of the final
analysis, defined here when a certain number of patients had experienced the event. We define T̃1 (such
that T1 ≤ T̃1 ≤ T2) the time until which the stage 1 patients are followed up. This way, we improve the
independent increment structure and we can obtain more accurate estimations. Moreover, it is realistic
as, in many therapeutic areas, a maximum follow-up time could be pre-specified for all patients in the
protocol. Also, note that since T2 is fixed in terms of events, the number of events in stage 2 for each
selected population d2i for i ∈ S depends both on the hazard ratios and the number of partitions selected;
however,

∑
i∈S d2i is fixed.

In accordance with Kimani et al [9] and Bruckner et al[10], the following methodology is used to obtain
the estimators. From the data from stage 1 only, using the survival times up to the time of the interim
analysis (T1), the estimators δ̂1i and τ̂21i are estimated directly via the score process of a Cox proportional
hazard model. At the end of the trial, using all available evidence, i.e. using the survival times up to
the time of the final analysis (T2), the naive estimators δ̂i,N and τ̂2i,N for the selected sub-populations are
also estimated directly with a Cox proportional hazard model. At this point, the stage 2 estimators for

the selected sub-populations are calculated as τ̂22i =
(

1
τ̂2
i,N

− 1
τ̂2
1i

)−1

and δ̂2i = τ̂22i

(
δ̂i,N
τ̂2
i,N

− δ̂1i
τ̂2
1i

)
∀i ∈ S.

2.1 Naive estimator
The naive estimator is calculated using the estimator of the Cox proportional hazard model. It is equal
to:

δ̂i,N =
τ̂22i δ̂1i + τ̂21i δ̂2i

τ̂21i + τ̂22i
∀i ∈ S

and δ̂i,N = δ̂1i ∀i /∈ S.
This estimation is biased because of the selection process [1, 2, 3]. In the following, we focus only

on handling the bias which arises from the selection. This estimator is calculated assuming that the
independent increment structure holds and by pooling all the data available at the end of the study.
Therefore, there is also a component of the bias which comes from the use of stage 1 patients also in stage
2, inducing a correlation between the stages. This correlation bias is mostly (but not fully) eradicated by
choosing T1 and T2 independently of each other and fixing T̃1 in advance and it is not adjusted further
in the following. It results that this estimator is not completely naive, as as correlation between stages
has been reduced.

2.2 UMVCUE
Following the work of Kimani et al [9], we calculate the uniformly minimum variance conditional unbiased
estimator (UMVCUE) which corrects for the selection bias. However, because of the correlation bias
between stages 1 and 2, this estimator would not be perfectly unbiased. For the selected sub-populations,
it is:

δ̂i,U = δ̂i,N − τ̂22i√
τ̂21i + τ̂22i

−ϕ(g(b))

−Φ(g(b))
, ∀i ∈ S

where ϕ and Φ denote the density and cumulative distribution functions of a standard normal distri-

bution, respectively, and g(x) =

√
τ̂2
1i+τ̂2

2i

τ̂2
1i

(
δ̂i,N − x

)
. This estimation, calculated only for the selected

treatments and not available for the dropped ones, eradicates the bias induced by the selection process
at the price of an increase in the variance.

2.3 Shrinkage estimators
The aim of this type of estimators is to have a reduction in the bias, with respect to a naive estimator, not
increasing the variance. While the stage 2 estimates provide an unbiased estimation of the effects of the
treatments, stage 1 estimations are biased because of selection [3, 4]. The idea behind these estimators
is to shrink the stage 1 estimates towards the stage 1 overall average log HR to reduce the bias. We
consider two shrinkage estimators. The first, denoted by S1, was developed by Carreras and Brannath
[4]. We define δ̂1· =

1
K

∑K
i=1 δ̂1i as the overall stage 1 average log HR and ti =

d1i

d1i+d2i
as the information
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fraction at the time of the interim analysis. For the selected sub-populations, the shrinkage estimator S1
is calculated as:

δ̂i,S1 = ti

[
Ĉ+

i δ̂1i + (1− Ĉ+
i )δ̂1·

]
+ (1− ti)δ̂2i ∀i ∈ S

while they are δ̂i,S1 = [Ĉ+
i δ̂1i + (1− Ĉ+

i )δ̂1·] ∀i /∈ S, with Ĉ+
i defined as follows. If K ≥ 4:

Ĉ+
i = max(0, Ĉi), Ĉi = 1− (K − 3)τ̂21i∑K

j=1

(
δ̂1j − δ̂1·

)2 ,
while if K = 2, 3:

Ĉ+
i = max(0, Ĉi), Ĉi = 1− (K − 1)τ̂21i∑K

j=1

(
δ̂1j − δ̂1·

)2 .
The second shrinkage estimator we consider, denoted by S2, was proposed by Brückner et al [10] and

is derived in a Bayesian framework. We suppose to have a prior distribution of the vector of true log HRs
δ = (δ1, ..., δK), which is a multivariate normal MVN(µ, ν2IK) (IK is the KxK identity matrix), that
is updated with the data (δ̂Stage1 ∼ MVN(δ, Σ)), to get a posterior estimation for δ. The posterior log
HR of δ is Cδ̂Stage1+(IK−C)µ, where C = IK−Σ(ν2IK+Σ)−1. Because sub-populations are disjoint,
Σ is a diagonal matrix containing the τ21i on the diagonal. Since it is unknown, we use its estimator Σ̂

with τ̂21i on the diagonal. We define the prior log HR µ as a vector of length K containing δ̂1·, the overall
average stage 1 log HR. An estimate ν̂2 of ν2 is obtained iteratively :

• Step 1: Define an initial guess of ν̂2.

• Step 2: Define weights wi = (ν̂2 + Σ̂2
ii)

−1 for i = 1, ...,K.

• Step 3: Update the estimate calculating

ν̂2 =

∑K
i=1 wi

[
(δ̂1i − δ̂1·)

2 − Σ̂2
ii

]
∑K

i=1 wi

.

• Step 4: If ν̂2 < 0, set ν̂2 = 0.

• Step 5: Go back to step 2 using the updated ν̂2, until convergence.

When the iterative approach converges, we get an estimate ν̂2 used to calculate Ĉ = IK−Σ̂(ν̂2I+Σ̂)−1.
Then the stage 1 estimator is:

δ̂Stage1
S2 = Ĉδ̂Stage1 + (IK − Ĉ)⊮δ̂1·

where ⊮ is the vector with all entries equal to 1. Eventually, the shrinkage estimator is calculated as:

δ̂i,S2 = ti δ̂
Stage1
i,S2 + (1− ti)δ̂2i ∀i ∈ S,

and
δ̂i,S2 = δ̂Stage1

i,S2 ∀i /∈ S.

2.4 Bias-Adjusted Estimators
Lastly, let consider bias-adjusted estimators following the work of Whitehead [11] and Stallard and Todd
[12]. The main idea is to estimate the bias of the naive estimator and subtract it from the naive estimator
itself. In this work, we compare two approaches: the single-iteration estimator (SI) and the multi-iteration
estimator (MI). The single-iteration estimator is calculated as follows:

δ̂i,SI = δ̂i,N − b̂i(δ̂i,N )

where b̂i(δ̂i,N ) is an estimator of the bias of the naive estimator, and where true log hazard ratios
in the expression for the bias are replaced with naive estimators. In the multiple-iteration procedure,
values that replace true log hazard ratios in the expression for bias are obtained iteratively. In step 1
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of the iterative procedure, naive estimates are used, i.e. the single-iteration bias-adjusted estimator is a
special case of the multiple-iterations bias-adjusted estimator. In step 2, the single-iteration bias-adjusted
estimator is used to replace true log hazard ratios in the estimation of the bias. Then, we calculate a
new estimator subtracting the new estimated bias from the naive estimator and repeat the procedure,
until convergence. Since the single-iteration approach is just a special case of the multi-iteration, in the
following we show the calculation of the bias at a generic iteration with estimator δ̃:

b̂i(δ̃i) = ti(E[δ̂1i|S, δ̃i]− δ̂i,N ) ∀i ∈ S,

and
b̂i(δ̃i) = (E[δ̂1i|S, δ̃i]− δ̂i,N ) ∀i /∈ S.

The E[δ̂1i|S, δ̃i] i ∈ (1, ...,K) is calculated as follows:

E[δ̂1i|S, δ̃i] =
b∫

−∞

x ϕ

(
x− δ̃i
τ̂1i

)
dx ∀i ∈ S,

and

E[δ̂1i|S, δ̃i] =
∞∫
b

x ϕ

(
x− δ̃i
τ̂1i

)
dx ∀i /∈ S.

where ϕ is the probability density function of a normal distribution. This formula is constructed recalling
that a sub-population is selected if the treatment has a log HR lower than b, while it is dropped if not.

3 Case-study
The analyses in this work have been inspired by a real case-study in heart failure. The initial study was a
group sequential design without population selection. After the analysis, some subgroups with different
efficacy were identified and it was considered retrospectively that the design could have been conducted
as an adaptive enrichment design. For confidentiality reasons, the data used in this section are simulated
data. Here, an experimental treatment is compared to placebo, and the initial patient population is
partitioned in K = 3 sub-populations according to the baseline heart rate: low heart rate (below 75
bpm); medium heart rate (between 75 and 81 bpm); high heart rate (above 81 bpm). The primary
endpoint is the time from randomisation to cardiovascular death or hospital admission for worsening of
heart failure. The main analysis is a Cox proportional hazard model adjusted for previous beta-blocker
intake at randomisation, and the treatment effect is estimated using the hazard ratio between the two
treatment arms. The interim analysis is done after 630 events occurred, and the stage 1 patients are
followed up at most for 18 months after the analysis; the final analysis is conducted when 1260 events
have occurred, permitting to detect a hazard ratio of 0.85 with a power of 82% with a one-sided type 1
error of 2.5%. The futility threshold on the log-hazard ratio scale is set to b = −0.1, corresponding to a
hazard-ratio of 0.9.

In Table 1, the stage 1 and stage 2 estimations from the Cox proportional hazard model are presented.
The low heart rate sub-population is dropped at the interim analysis because it is below the futility
threshold, while the others continue to stage 2. The medium heart rate sub-population has a large
treatment effect in stage 1, but a smaller effect in stage 2 (due to sampling variations). The high heart
rate sub-population has large treatment effect both in stage 1 and stage 2. Note that since the stage
1 estimates are far from b in both cases, we expect the various estimates to be close. At the end of
the study, we proceed with the estimation of the treatment effect in the selected sub-populations, which
results are shown in Table 2:

• For the sub-population with medium heart rate, the UMVCUE, single-iteration, multiple-iteration
bias-adjusted and second shrinkage estimator estimator provide similar and slightly more conser-
vative estimations with respect to the naive one. There is not much difference between them. On
the other hand, the first shrinkage estimator provides a more conservative estimations.

• For the high heart rate sub-population, the naive estimator is also the most optimistic, but the
UMVCUE, single-iteration and multiple-iteration bias-adjusted estimators remain similar to each
other and to the naive one. The shrinkage estimators provide a slightly more conservative estima-
tion.
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Log HR Low Heart
Rate

Medium Heart
Rate

High Heart
Rate

δ̂1i(τ̂1i) -0.075 (0.155) -0.397 (0.150) -0.358 (0.121)
δ̂2i(τ̂2i) - -0.109 (0.109) -0.313 (0.097)

Table 1: Case-study in heart failure: stage 1 and stage 2 MLE estimators of the log HR.

Log HR Estimator Medium Heart Rate High Heart Rate
Naive estimator (N) -0.209 -0.330

UMVCUE (U) -0.188 -0.329
Shrinkage 1 (S1) -0.180 -0.315
Shrinkage 2 (S2) -0.189 -0.317

Single-iteration (SI) -0.187 -0.327
Multiple-iteration (MI) -0.191 -0.328

Table 2: Case-study in heart failure: comparison of the estimators of the log HR.

95% confidence
intervals

Medium Heart Rate High Heart Rate

Sidak [-0.396;-0.021] [-0.491;-0.170]
Bonferroni [-0.421; 0.003] [-0.511;-0.149]

Selection-adjusted [-0.391; 0.045] [-0.509;-0.140]

Table 3: Case-study in heart failure: Sidak [16], Bonferroni[17] and selection-adjusted[9] confidence
intervals.

For completeness, Table 3 presents 95% confidence intervals for the selected sub-populations. Along-
side the Sidak [16] and Bonferroni [17] confidence intervals, we also present the selection-adjusted confi-
dence intervals from Kimani et al. [9]. We notice that the Bonferroni confidence intervals are wider than
the Sidak’s ones, as expected, with the one for the medium heart rate sub-population containing zero.
However, these rely on the naive assumption that the overall estimate is normally distributed and do
not correct for the selection process. Actually, we see that the selection-adjusted confidence intervals are
more conservative: in the medium heart rate sub-population the lower bound is higher with respect to
the other two and also the upper bound is above zero, suggesting that there could also be no difference
between the treatment and the placebo; in the high heart rate sub-population the lower bound is close to
the Bonferroni’s, while the upper bound is higher, resulting in a wider confidence interval. Note that the
selection adjusted confidence intervals are based on the stage 1 and stage 2 estimates, thus the confidence
interval for the medium heart rate sub-population incorporates zero because of its smaller effect in stage
2.

4 Simulation study
In this section, we compare via simulations the performances of the six estimators presented earlier in
terms of bias, variance and mean squared error (MSE). The bias is the metric we are the most interested
in, because the primary objective of these estimators is to reduce or to eliminate it. However, the variance
is also of interest, as an unbiased but highly variable estimator may not be preferred with respect to a
reasonably biased but more precise alternative, as the latter may better support decision-making. The
MSE combines the two information.

4.1 Setting
Consider a setting inspired by the case study with three sub-populations and two treatment arms: an
experimental treatment and a control. Patients are recruited evenly from the 3 sub-populations during a
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Log HR δi = 0 δi = −0.1 δi = −0.2 δi = −0.3

Probability
of selection

30% 49% 69% 84%

Table 4: Empirical probability of selection for the different sub-populations in the simulation study
according to their log HR.

period of maximum 3 years and equally assigned to the arms (randomisation ratio 1:1), and the maximum
follow-up time is 9 months. We suppose that the hazard function is constant for all the treatments and
equal to hc = 0.0005 for the control. A total number of 632 events is needed to detect a hazard ratio of
0.8 with a power of 80% and a one-sided type 1 error of 2.5%, and an interim analysis is conducted when
half of the events are observed. Thus, we set that: the time of the interim analysis T1 is after 316 events;
the time until stage 1 patients are followed in stage 2 T̃1 is set to 6 months after the interim analysis; the
ending time of the trial T2 is set when all 632 events are observed. Note that T2 occurs when a total of
632 events are observed, also taking into account stage 1 patients followed up until T̃1. Moreover, while
the number of events is fixed regardless of the number of sub-populations selected, the number of patients
needed to reach these number of events varies with the scenarios and the selected sub-populations, but a
maximum of 3000 patients is assigned to each sub-population.

Three cases of log HR are considered: treatment ineffective in all sub-populations δ = (0, 0, 0);
treatment effective in only one sub-population δ = (0 , 0 ,−0.3); linear effect on the sub-populations
δ = (−0.1,−0.2,−0.3). For all the cases, the threshold is set to b = −0.1. We ran simulations for each
scenario until we obtained 10000 simulated clinical trials with a stage 2, i.e. not stopped for futility at
the interim analysis. Table 4 shows empirical selection probabilities.

For completeness, in Supplementary Material, additional simulation scenarios are presented, where:
we set the threshold to b = 0; we set T̃1 to 3 months after the interim analysis; we compare 4 sub-
populations while keeping the other parameters as in this setting.

4.2 Results
In this Section, we present the estimates for the bias, variance and MSE of the estimators in our simulation
study. To derive these, we define Si as the set of simulations where sub-population i is selected, and δ̂si,·
as a generic estimator of δi in a simulation s ∈ Si. The bias in each sub-population is estimated via
1

|Si|
∑

s∈Si(δ̂
s
i,· − δi) and the MSE via 1

|Si|
∑

s∈Si(δ̂
s
i,· − δi)

2; the variance is calculated as (MSE - bias2).
Figure 2 displays these results. Each row corresponds to the three setting we analysed: treatment
ineffective in all sub-populations (top), treatment effective only in one sub-population (center), linear
effect on the sub-populations (bottom). In columns are presented the metrics of interest: bias (left),
variance (center) and MSE (right). In this Figure, if more than one sub-population is selected, the results
for bias, variance and MSE are averaged over all sub-populations.

We see that the bias of the estimators is generally higher in the top row. The optimal decision in this
case would be to stop the whole trial for futility, because none of the underlying log HR is larger than
the threshold. Therefore, a sub-population is selected only when the estimated effect is substantially
better than the true effect in that sub-population. The naive estimator has the greatest bias, followed by
the shrinkage estimators, with the S1 slightly outperforming S2; then, the bias-adjusted estimators come
next, with the single-iteration performing better than the multiple-iteration; the UMVCUE provides an
almost unbiased estimation in this case, as expected, but tends to over-correct leading to a positive bias
which, however, is of lower magnitude with respect to the other estimators’ bias and could be attributable
to the correlation bias left. In terms of variance, the naive estimator is the best performing alongside the
shrinkage ones, followed by the bias-adjusted estimators performing equally, and finally the UMVCUE,
which is the least precise. In terms of MSE the best performing are the S1 and S2 (in this order),
followed by the single-iteration bias-adjusted estimator, multi-iteration bias-adjusted estimator and the
naive estimator, which is slightly worse; the worst performing in terms of MSE is the UMVCUE.

The second row corresponds to clinical trials where, at the interim analysis, the only sub-population on
which the treatment is effective should be selected, and it notably differs from the other ones. Therefore,
the extent of the bias is lower than in the first row. In this case, the best performing estimator in terms of
absolute bias is the multiple-iteration bias-adjusted estimator, followed in order by S1, SI, S2, UMVCUE
and naive estimator. Still, we notice that the UMVCUE again over-corrects the bias, leading to a positive
bias of similar magnitude with respect to the previous scenario. In terms of variance, the best estimator
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Figure 2: Estimators’ performances. Top row: treatment ineffective in all sub-populations δ = (0, 0, 0);
Middle row: treatment effective only in one sub-population δ = (0 , 0 ,−0.3); Bottom row: linear effect on
the sub-populations δ = (−0.1,−0.2,−0.3). Left column: Bias; Centre column: Variance; Right column:
Mean Squared Error.
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is the naive one, followed by the shrinkage estimators, the bias-adjusted estimators, with the UMVCUE
coming last. In terms of MSE, the shrinkage estimators perform best alongside the naive estimator,
followed by the bias-adjusted estimators performing equally, and finally the UMVCUE.

In the third row, the correct choice is to select the two sub-populations where the treatment is more
effective. Again, the naive estimator has the highest absolute bias, followed in order by UMVCUE, SI, MI
with S1 and S2 that performs best at equal merit. However, the single-iteration bias-adjusted estimator,
multi-iteration bias-adjusted estimator and the UMVCUE tend to over-correct the bias, leading to a
positive one in their case. In terms of variance, the UMVCUE has the highest variance followed by SI,
MI, naive estimator, and finally the most precise are the shrinkage estimators. Eventually, the unbiased
estimator has the highest MSE, followed by the SI and MI, the naive estimator, and the shrinkage
estimators in order.

At this point, we would like to have a more precise idea of the behaviour of the estimators in each
sub-population. In Figure 3, we analyse the specific case of δ = (−0.1,−0.2,−0.3), showing the results
in each sub-population. We first notice that the variance and MSE of the estimators do not vary much
from one sub-population to another, keeping the same order noticed in the bottom row of Figure 2,
with only a slight variation of their magnitude from one row to the other. On the other hand, the bias
differs substantially from one sub-population to another. The bias of the naive estimator is higher in the
top row and decreases with increasing effect, as expected while moving from the threshold, approaching
zero in the case of an effect equal to −0.3. The bias of the UMVCUE is constant over the three sub-
populations and positive, indicating an over-correction that may be attributable to the correlation bias
left. The bias of the shrinkage estimators, which seems to be approximately zero when averaged over the
sub-populations in the bottom row of Figure 2, is in truth substantially variable: it is equal to the bias
of the naive estimator when the effect is equal to −0.1; it is almost zero when the effect is equal to −0.2
with S1 outperforming S2; it is positive when the effect is equal to −0.3, with S1 having a higher bias
with respect to the UMVCUE and S2 having a similar performance with respect to SI. Finally, regarding
the bias of the bias-adjusted estimators: on the top row,it is approximately zero for both, with the SI
outperforming MI; on the middle row, it is positive but lower than the UMVCUE’s for the SI, with the
MI outperforming the SI in this case; on the bottom row, the results are similar to the middle row.

Additional simulation scenarios’ results are presented in Supplementary Material. If we set b = 0, the
bias is lower in general for all the estimators since they are further from the threshold, but the overall
order for the estimators’ bias, variance and MSE is the same. When T̃1 is set to 3 months after the
interim analysis, the performance metrics are very similar to those presented here. When comparing 4
sub-populations, we obtain a higher bias overall, and a better performance of the S1 and UMVCUE, with
the latter being almost unbiased. This may be attributable to the fact that we make the decision when we
have the same number of events in stage 1 as in the previous case, but we have one more sub-population.
Therefore, the decision is made with a smaller information fraction, and the stage 2 data have more
impact in the overall estimates’ derivation [4, 9]. In this last case, we also focus on the results in each
sub-population in case of linear effects in the sub-populations, and the same pattern as seen in Figure 3
is obtained.

We can summarize the results as follows:

• The naive estimator (N) has the highest bias but very low variance, resulting in a moderate MSE
compared to the other estimators.

• The UMVCUE (U) has a small constant positive bias (which is not zero because of the correlation
bias, but is reduced increasing the number of sub-populations) and the highest variance, resulting
in the highest MSE.

• The single-iteration (SI) bias-adjusted estimator has small bias, but more variance with respect to
naive estimator, resulting in comparable MSE with respect to the naive estimator.

• The multiple-iteration (MI) bias-adjusted estimator tends to provide a less conservative estimation
with respect to the single-iteration, and has similar variance and MSE with respect to the SI.

• The first shrinkage estimator (S1) has a noticeable bias which also varies substantially from one
sub-population to another, but the very low variance, resulting in the very low MSE.

• The second shrinkage estimator (S2) performs similarly to S1, returning better performances in
some cases and worse performances in other ones.

These results are observed in all scenarios we have considered, and they are also consistent with the
results previously published in different settings [4, 6, 8, 10].
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Figure 3: Estimators’ performances in each sub-population in case of linear effects on the sub-populations.
Top row: effect equal to -0.1; Middle row: effect equal to -0.2; Bottom row: effect equal to -0.3. Left
column: Bias; Centre column: Variance; Right column: Mean Squared Error.
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5 Discussion
In this paper, we investigated the handling for the selection bias [3] in two-stage enrichment adaptive
designs with time-to-event data, using several estimators found in the literature [4, 7, 8, 9, 10, 11, 12].
This work was motivated by the FDA Guidance for Industry on Adaptive Design Clinical Trials for Drugs
and Biologics [5], where the sponsor is required to assess the reliability, and in particular the extent of
bias, of the treatment effects estimation in adaptive design trials with appropriate methods. We applied
the different methods to a case-study in cardiology, and compared the performances of the estimators
in several scenarios with a selection rule based on a futility threshold. The other comparative studies
available in the literature were conducted in the context of adaptive designs with treatment selection
[4, 10] or sub-population selection with normally distributed endpoints [6, 13].

We conducted a simulation study in order to compare the performances of the estimators in terms
of bias, variance and mean squared error. Although the bias is of primary interest, the variability may
also influence the choice of an estimator over another. Alongside the MLE in primary analysis, in order
to address the regulatory requirements, our recommendation is to present the unbiased estimator and
the single-iteration bias-adjusted estimator in sensitivity analysis: the former completely eradicates the
selection bias, but is highly variable with respect to a naive estimator; the latter is less biased than a
naive estimator, but only slightly more variable. Thus, the unbiased estimator can give an idea of the
extent of the bias in the naive estimator, while the single-iteration bias-adjusted estimator can give a
more precise and less biased estimation for decision-making. For completeness, a simulation study may
be added as a complement to outline the estimator that best fits the context and aims of the trial, as
suggested in literature[14].

The present study has several limitations. In particular, it focuses on clinical trials with one interim
analysis, and two arms (one experimental treatment and one control), therefore a future extension could
be to add more interim analyses or more arms. Moreover, we consider disjoint sub-populations, while
other works do not [6, 9]. Also, we have chosen a selection rule based on comparing the HR to a pre-
specified threshold. Other selection rules based on conditional power or predictive power could have been
chosen, however similar conclusions are expected [18]. Besides, some works in literature have also set
up the ground for further exploration, for example of the calculation of appropriate confidence intervals
via simultaneous inference [19], bootstrap resampling [10], confidence regions based on orderings [12] or
simultaneous inference based on the duality between hypothesis testing and confidence intervals [9]. All
of these methods have advantages and limitations, and we refer to literature for further information.

Despite its limitations, the current work provide insightful information regarding the performances of
the different estimators to reduce or remove the bias in enrichment adaptive designs with time-to-event
data, permitting to better support decision-making and to comply with the regulatory requirements.
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