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ABSTRACT
Recognizing human emotions from videos requires a deep under-
standing of the underlying multimodal sources, including images,
audio, and text. Since the input data sources are highly variable
across different modality combinations, leveraging multiple modal-
ities often requires ad hoc fusion networks. To predict the emo-
tional arousal of a person reacting to a given video clip we present
ViPER, a multimodal architecture leveraging a modality-agnostic
transformer-based model to combine video frames, audio record-
ings, and textual annotations. Specifically, it relies on a modality-
agnostic late fusion network which makes ViPER easily adaptable
to different modalities. The experiments carried out on the Hume-
Reaction datasets of the MuSe-Reaction challenge confirm the ef-
fectiveness of the proposed approach.

CCS CONCEPTS
• Computing methodologies → Machine learning; Computer
vision.

KEYWORDS
Video processing, emotion recognition, multimodal learning,modality-
agnostic learning

1 INTRODUCTION
Human emotions are often conveyed through different channels
and modalities, e.g., facial expressions, body language, voice. The
ability to express emotions allows human beings to effectively
interact with each other. For example, facial expressions convey
crucial information in non-verbal communication [35].

Automating the process of emotion recognition from videos is
known to be particularly relevant to various application contexts
such as human behavior analysis [25], affective education [4], and
healthcare [21]. However, in many real-world scenarios applying
image processing to identify facial expressions is not sufficient to
effectively recognize human emotions. The main reason is that
facial expressions can be either ambiguous or dependent on the
surrounding context. For instance, people can smile not only when
they are happy but also when they are nervous, angry, or in front
of an authority. Hence, there is often a need to effectively and effi-
ciently combine multimodal data sources including images, audio
recording, and the textual annotations [29].

∗Both authors contributed equally to this research.

This paper addresses the problem of automatic emotion recog-
nition from videos using multimodal data representations. Exist-
ing approaches (e.g., [28, 29]) rely on fusion networks to combine
data of multiple modalities. However, these networks are typically
modality-dependent thus not easily adaptable to different scenarios
and tasks.

We present ViPER, a new multimodal architecture to extract
human emotions from videos. ViPER is designed to address the
MuSe-Reaction challenge [8], which aims at automatically recog-
nizing the emotional state of people reacting to a given video clip.
More specifically, it entails estimating the intensity of seven differ-
ent emotional reactions, i.e., adoration, amusement, anxiety, disgust,
empathic pain, fear, and surprise. Video recordings of people reac-
tions to a video clip are captured by a front-facing camera showing
the person’s face and recording her/his voice while watching the
video.

ViPER relies on a Deep Learning architecture that combines mul-
timodal data sources (e.g., images, audio, text) using an established
modality-agnostic late fusion strategy. The facial expression, the
audio recording, and the textual annotations associated with the
video frames are jointly exploited to accurately predict the human
reactions. The use of a modality-agnostic late fusion step, based
on Perceiver [13], preserves the generality and portability of the
proposed solution towards different scenarios. The proposed solu-
tion ensures model scalability by using attention bottlenecks that
transform the inputs into fixed-length latent representations. The
resulting embeddings have an independent computational cost re-
gardless of the original input size.

The main contributions of this work can be summarized as fol-
lows:

• ViPER adopts amodality-agnostic fusion network thatmakes
the proposed architecture adaptable to other inputmodalities.
To the best of our knowledge, this is the first attempt to
address modality-agnostic emotion recognition from videos.

• ViPER leverages the CLIP pre-trained model [23] to enrich
the video frames with new textual annotations. The purpose
is to augment the input sources with the textual descrip-
tions of the video frames providing relevant insights into
the emotional arousal of the person involved.

• We perform an ablation study of the different modality com-
binations. The fusion of images, audio, and text achieves the
best performance across all the tested modality combina-
tions.



AU
TH
OR
S V
ER
SIO

N

MuSe’ 22, October 10, 2022, Lisboa, Portugal Lorenzo Vaiani, Moreno LaQuatra, Luca Cagliero, and Paolo Garza

The project source code is available for research purposes only1. The
remainder of this paper is organized as follows. Section 2 reviews
the related literature. Section 3 describes the ViPER architecture.
Sections 4 and 5 describe the experimental design and summarize
the main empirical outcomes. Finally, Section 6 draws the paper
conclusions and future research directions.

2 PRIORWORKS ON EMOTION
RECOGNITION

Previous studies already addressed automatic emotion recognition
from images, text, or a combination of data modalities. Hereafter,
we will separately analyze the existing methods based on image
processing, natural language processing, and multimodal learning.
Furthermore, we also introduce the modality-agnostic learning
context.

2.1 Approaches based on image processing
The recognition of human emotions from single image frames
has been addressed using Convolutional Neural Networks (CNNs),
which are established for extracting features from images [2, 18]. To
contextualize the facial expressions some previous works also ana-
lyze the facial landmarks [30] and the Facial ActionUnits (FAUs) [20].
Recently, Transformer-based models [10] have shown to be very
successful in various computer vision tasks, including facial ex-
pression recognition [16]. Despite their ability to attend relevant
image portions, they are suboptimal for emotion recognition from
videos because they neglect the temporal evolution of the detected
patterns. To tackle the above-mentioned issue, Recurrent Neural
Networks (RNNs) [11] and 3D Convolutional Neural Networks
(3D-CNNs) [12] have been exploited to analyze sequences of video
frames.

2.2 Approaches based on natural language
understanding

Detecting emotions from natural language is a long-standing Natu-
ral Language Understanding (NLU) problem, which is commonly
formulated as a text classification task [5]. Beyond voice transcrip-
tions and human-generated video annotations, existing NLU meth-
ods also consider the main acoustic properties of the audio signals
such as pitch and loudness [24]. Combining textual and acoustic fea-
tures for emotion recognition has recently proved to be particularly
promising [31]. Specifically, the authors leverage both temporal
and semantic relationships between textual and acoustic features
to perform high-quality emotion predictions. Despite non-verbal
acoustic features play an essential role in human communication,
their exploration to address emotion recognition from videos is
still open [26]. This is the main purpose of the MuSe-Reaction
challenge [8], which is addressed by ViPER.

2.3 Multimodal approaches
Multimodal emotion recognition entails combining data sources of
different modalities to recognize the human emotions. They rely on
fusion techniques aimed at jointly analyzing multiple modalities to
capture complex dynamics of human emotions [34]. For instance,

1https://github.com/VaianiLorenzo/ViPER

deep learning models (e.g., [19, 32]) can effectively combine the
voice sound and the facial expression to improve the prediction
accuracy.

The Multimodal Sentiment analysis challenge (i.e., MuSe) aims
at fostering research in multimodal emotion recognition. Within
this research contest, prior works already tried to use the atten-
tion mechanism to attend relevant portions of the input data [28,
29]. However, existing approaches to emotion recognition rely on
modality-specific fusion networks. For example, they attend rel-
evant regions in visual [10] and audio [7] data. As a drawback,
modality-specific fusion networks are not easily adaptable to dif-
ferent modality combinations.

2.4 Modality-agnostic learning
Modality-agnostic architectures aim at efficiently learning complex
data representation regardless of themodalities involved [13]. These
architectures have been successfully applied to solve different tasks,
including vision-language classification [3], image-text retrieval
and visual question answering [36]. This paper investigates the
use of a state-of-the-art modality-agnostic architecture in emotion
recognition from videos. To the best of our knowledge, this work
is the first attempt in this line of research.

3 METHODOLOGY
We present ViPER (namely, Video-based Perceiver for Emotion
Recognition), a multimodal architecture for emotion recognition
from videos. ViPER is suited to address the MuSe-Reaction chal-
lenge [8], which aims at predicting the emotional arousal of a person
watching a video clip. The key aspects addressed byMuSe-Reactions
are

• The multimodal nature of the input data, which encompass
both visual and acoustic features.

• The primary importance of facial expressions to solve the
emotion recognition task.

• The prevalence of non-verbal communication in the audio
recordings.

A sketch of the ViPER architecture is shown in Figure 1. To
tackle the MuSe-Reactions task, ViPER adopts an attention-based,
modality-agnostic late fusion strategy. The fusion network takes as
input the visual component, i.e., the images corresponding to the
video frames, and the acoustic component, i.e., the audio recording
associated with the video. The visual component is exploited to
elicit various kinds of features including transformer-based visual
embeddings, Facial Action Units (FAUs), and frame captions. In
particular, frame captioning allows us to augment the input data
with a new modality consisting of a textual description of the video
frames encoded using a state-of-the-art contextualized embedding
model.

The original and augmented data produce the following latent
features:

• Visual features: Vision Transformer (ViT) [10], Facial Ac-
tion Units (FAUs) [20] (i.e., the yellow tokens in Figure 1).

• Textual features (augmented): the RoBERTa contextu-
alized embeddings [15] of the frame captions (i.e., the red
tokens in Figure 1).

https://github.com/VaianiLorenzo/ViPER
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Figure 1: Sketch of ViPER architecture2

• Acoustic features: the x-vectors representations of the au-
dio waveforms derived fromWavLM [7] (i.e., the blue tokens
in Figure 1).

Visual, textual, and acoustic features are combined together using
a late fusion network, namely Perceiver [13]. Since it relies on a
modality-agnostic approach, the network is inherently adaptable
to different combinations of modalities.

A more detailed description of the ViPER components follows.

3.1 Image embeddings
Video data samples can be seen as a sequence of hundreds of images.
Two consecutive images in the video sequence are likely to be highly
similar to each other. Hence, we sample images and extract visual
features from the sampled data. The per-video sampling frequency
is adapted to its duration to avoid introducing imbalances in the
sample sizes.

Since Transformer architectures [33] have proven their superi-
ority in the computer vision domain, outperforming Convolutional
Neural Networks, we use a Vision Transformer (ViT) [10] to ex-
tract the information conveyed by each selected frame. ViT has a
BERT-like architecture and takes as input a 224 × 224 image. The
image is divided into 16 × 16 patches, which are provided as input
tokens to the transformer. Finally, we extract the image embeddings
by considering the 768-dimensional last hidden state of a special
Classification Token that is added to the input sequence. It encodes
the global information of the image and is used as a representation
of the frame for the next stage.

Table 1: Examples of template captions for MuSe-React emo-
tion classes.

Emotion Template caption

Adoration This face is feeling adoration
Amusement It looks like this face is amused
Anxiety Anxiety is visible on this face
Disgust The expression on this face is disgusted
Emphatic Pain This face is experiencing Empathic Pain
Fear Fear is apparent on this face
Surprise The face on this picture is feeling surprised

3.2 Audio embeddings
To couple the visual information extracted from each frame with
the acoustic information present in the video audio track, each
audio recording is divided into N small fragments. Each of them
has the same length, no overlap with the other ones and is centered
in the timestamp corresponding to a selected video frame, includ-
ing the first and last ones. The duration of the audio fragments
associated with the video extremities is half of those of the other
fragments. They respectively begin and end in correspondence with
the associated frame.

To encode the content of each audio fragment, we useWavLM [7]
model. It uses self-attention to extract acoustic representations from
the raw waveforms. Originally proposed for the speech recognition
tasks, WavLM has already demonstrated generalization capabilities
for other tasks, including intent detection and speaker verification.
Our approach applies the WavLM model to obtain feature-rich
representations using the same scheme adopted by the x-vector
technique. X-vectors [27] are representations derived from the raw
waveforms, which are commonly used to extract speaker-related
acoustic features from audio recordings. The corresponding embed-
ding vectors are fed to a classification layer to learn the relation-
ship between acoustic features and audio categories (e.g., speaker’s
identity or emotions). In such a way, we use the aforesaid audio
encodings to generate acoustic representations for the input audio
fragments.

3.3 Data augmentation based on frame
captioning

We augment the visual features associated with each video frame
with textual captions. To this end, we first generate 53 caption tem-
plates consisting of 6 to 9 descriptive sentences per target emotion.
In addition to the emotions involved in the task, caption templates
also cover the neutral emotion, which can be mapped to the video
frames preceding or following the actual human reaction. Next, we
match each video frame to the most pertinent caption template to
obtain the corresponding textual description. To this aim, we exploit
a CLIP encoder fine-tuned on image emotion recognition [6] to en-
code sentences and video frames into a common embedding space.
Then, we compute the cosine similarity between the sentence and
frame embeddings and use the sentence with the highest similarity

2All emojis designed by OpenMoji – the open-source emoji and icon project. License:
CC BY-SA 4.0
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score as the textual description of the frame. The corresponding
sentence is then encoded using a pre-trained RoBERTa model [15]
and the resulting 768-dimensional vector is concatenated with the
other frame features to compose the input of our proposed model.

Table 1 reports some qualitative examples of template-based
description associated with each emotion class. The complete list
of template sentences is available in the project repository3.

3.4 Facial Action Units
FAUs describe the activity of facial muscles that cause the move-
ment of many elements of the human face, such as the eyes, lips and
nose. Such movements are often related to the expression of specific
emotions. FAUs have been already used to train neural networks
and they are the key features of the top-scoring baseline method
released by the MuSe challenge organizers. For these reasons, we
leverage the FAUs extracted from N selected frames to enhance the
visual component representation.

Similar to the baseline method, we use Py-Feat4 to extract 20
different FAUs from the selected frames, but we exploit the logistic
regressor pretrained model instead of the random forest because
deprecated. Moreover, the tool provides the scores of 7 emotions
(i.e., anger, disgust, fear, happiness, sadness, surprise and neutral),
which are slightly different from those proposed by the task. Hence,
we include the aforesaid scores in the FAU feature set.

3.5 Domain knowledge for recognizing
emotions

Front-facing camera videos, commonly a webcam recording, charac-
terize the MuSe-Reaction dataset. This is a peculiar characteristics
of the input data, which led us to make the following considerations
on the extracted visual features:

• To recognize emotions we primarily target the facial expres-
sion.

• Since the video recordings are self-made by the human sub-
ject in an uncontrolled environment, the background likely
includes noisy elements that might divert the model’s atten-
tion from the facial expression.

• We need a way to crop faces from the video frames.
To our aim, we use YOLO5Face [22] to automatically detect faces
within the frames and crop them to remove background information.
Moreover, to make our feature extractor more capable of handling
face images, we use transfer learning to inject some prior knowledge
about physiognomy into the model. In addition to the base model
pretrained on ImageNet [9], we include in our experiments the
feature extracted by a ViT [1] pretrained on an age estimation task
using FairFace [14] (i.e., ViT-Face), a close-up photo dataset.

3.6 Attention-based late fusion
We try several combinations of feature sets, including image-related
ones, to solve the downstream task. For each combination, we con-
catenate the involved sets of features to form a unique input array
for each of the N selected frames per video. In such a way, we ob-
tain a sequence of N input tokens of fixed length, depending on the

3https://anonymous.4open.science/r/MuSe2022_reaction-57E7
4https://py-feat.org Latest access: July 2022

features involved. Then, we use these arrays to feed a Perceiver[13]
model to perform the multi-regression task.

Perceiver is an attention-based modality-agnostic model that can
merge information from different input modalities without making
anymodality-specific assumption. In contrast with other late-fusion
approaches, the attention bottleneck mechanism in the Perceiver
architecture ensures its scalability, i.e., it transforms the inputs into
a fixed-length latent representation that can be processed with a
computational cost unaffected by the original input size.

We set the number of neurons in the last linear layer equal to
the number of task-related emotions. Thus, a score can be assigned
to each of them with a single instance of our architecture.

4 EXPERIMENTAL SETTINGS
The challenge organizers provide access to the Hume-Reaction
dataset containing fine-grained annotations for 75 hours of video
clips showing emotional reactions. Each video is self-annotated
with seven scores, one for each emotion, normalized to the [0, 1]
range. The data collection comprises 25067 audio-visual clips, each
one lasting from 10 to 15 seconds and with an average duration of
11.63 seconds.

A video is a sequence of frames reproduced at a Frame Per Second
(FPS) of 30, which gives the viewer the illusion of fluid movement.
The overall number of frames per video varies from 300 to 450. For
this reason, in all our experiments, we chose 32 as the number of
selected frames N. We come up with, on average, one frame every
0.37 seconds of video and an average audio fragment length of 0.74
seconds.

The Perceiver for late fusion is fine-tuned using the average
Mean Squared Error (MSE) loss among emotions. The late fusion
module is trained for 50 epochs, using a batch size of 16 with an
initial learning rate of 10−5 halved every 10 epochs. We select the
best checkpoint according to the Pearson correlation score on the
development set.

Modality contributions. To investigate the contribution of each
modality to the overall performance, we train and evaluate ViPER
in different settings.

• Visual-only: ViPER is trained using only the image embed-
dings extracted by ViT.

• Bi-modal: ViPER is trained using the image embeddings com-
bined with one of the other modalities (i.e., audio, text, or
FAU), independently.

• Tri-modal: ViPER is trained using the image embeddings
combined with two additional modalities.

• Full: ViPER is trained using image, audio and text encodings
combined with Facial Action Units.

Hardware settings. The experiments were performed on a cluster
equipped with Intel® Xeon® Scalable Processor Gold 6130 dual-
CPU, Nvidia® Tesla® V100 GPU, and 384 GB of shared RAM, run-
ning CentOS 7.6.

5 RESULTS
In this section we present and discuss the results of ViPER in the
MuSe-Reaction Challenge. Specifically, Section 5.1 reports the in-
depth analysis of the impact of the visual component, whereas

https://anonymous.4open.science/r/MuSe2022_reaction-57E7
https://py-feat.org
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Table 2: Performance comparison between theViPER settings
and the baselinemethods relying on the visual encoders only.
Performance are reported in terms of Pearson correlation.

Model Encoder Face crop Dev set

FAU [8] - - 0.2840
VGGFace2 [8] - - 0.2488

ViPER

ViT-Base - 0.2102
ViT-Face - 0.2223
ViT-Base ✓ 0.2580
ViT-Face ✓ 0.2712

Section 5.2 discusses the outcomes of an ablation study aimed at
exploring the impact of each modality on the emotion prediction
task. Finally, Section 5.3 discusses the quality of the per-emotion
prediction outcomes.

5.1 Impact of the visual features
Visual encoders provide a high-level description of the dependen-
cies among video frame contents. Table 2 compares the performance
of (1) organizers’ provided baselines (i.e., FAU and VGGFace2 [8]),
(2) different ViPER settings based on various pre-trained ViT mod-
els, both including face cropping strategies and not, (3) a standard
pre-trained model (i.e., ViT) with ViT-Face, which is a specific ver-
sion of ViT fine-tuned on FairFace dataset [14] for age estimation.

Using a pre-trained ViT model fine-tuned on face images (ViT-
Face) improves the performance of ViPER compared to that of the
standard ViT pre-trained model. According to these findings, using
a model pre-trained on face images allows us to extract features
that better represent human emotions, which in turn allows us to
achieve more accurate emotion predictions.

The results confirm that by cropping the face area within each
video frame and by forcing the learning process to focus solely on
the facial expressions, ViPER significantly improves its performance
compared to an entire video frame analysis. This also implies that
the features extracted by the visual component are not able to
sufficiently represent emotional expressions if the model is allowed
to process the whole video frame, which is likely due to the presence
of background information that might distract the model from
focusing on facial expressions. Therefore, using the induction bias
provided by the face cropping strategy might help the model extract
features that better represent emotional expressions.

5.2 Ablation study on the MuSe-Reaction
challenge

Table 3 summarizes all the ViPER results achieved with all the tested
settings as well as the outcomes of the baseline methods released
by the challenge organizers (i.e., FAU and VGGFace2 [8]).

All the system settings were tested in the development set. Chal-
lenge participants were allowed to submit only 5 settings for the
evaluation on the test set. To gain insights into both separate and
joint modality contributions, we submitted the visual-only and bi-
modal systems to the evaluation platform. The results achieved on
the test set are reported in Table 3.

From the comparison between single-modal and bi-modal system
performance, we can observe that bi-modal settings yield signif-
icant improvements. Specifically, their combination of the image
embeddings computed using the Facial Action Units performs best
among the bi-modal settings. Audio embeddings turn out to be the
least predictive features both in the development and the test set.

Because of the enforcement of the maximum number of submis-
sions per team (5), we miss the outcomes of the tri-modal setting on
the test set. However, the results on the development set, clearly in-
dicate a substantial improvement compared to the bi-modal models.
Similar to the former cases, the integration of image embeddings
and FAU is highly beneficial.

Text embeddings are less discriminative than image embeddings
but also more important than acoustic ones. The main reason is
that video recordings do not contain enough acoustic features to
be properly exploited by the automatic audio processing. In fact,
human subjects silently watch the video and never talk throughout
the video stream, thus limiting the amount of information that can
be extracted from the audio. Moreover, the WavLM model used for
audio embeddings has been trained on speech, thus it may not be
effective for encoding audio signals in our scenario. However, to
better understand the contribution of text-based features, we plan
to experiment with different architectures and data representations
for the text modality.

Finally, the full configuration including image, audio, text embed-
dings and Facial Action Units achieves the best performance among
all the other settings, both on the development set and on the test
set. This demonstrates the effectiveness of the Perceiver-based late
fusion approach to the emotion prediction task.

5.3 Analysis of emotion-specific performance
The prediction outcomes show a relevant variability across emo-
tions. This indicates that ViPER is able to better estimate the scores
associated to some specific emotion classes (e.g., Amusement, Anx-
iety, Fear) whereas struggles to classify other ones (e.g., Adoration,
Disgust, Empathic-Pain, Surprise).

Figures 2 and 3 show the confusion matrices for the best and
worst performing emotion classes (i.e., Amusement and Empathic-
Pain). For the Amusement class, most of the matrix values fall in
the [0.4, 1] range, whereas the predictions for the Empathic-Pain
class mainly fall into the [0.1, 0.4] range. This could be due to the
fact that the model is more effective in providing a fine-grained
estimates for the intensity of the Amusement class, whereas is less
accurate to predict the Empathic-Pain class. In a nutshell, extensive
prediction ranges likely imply higher prediction accuracy, whereas
smaller prediction ranges are a strong clue of the difficulties in
emotion intensity estimation. While considering all the emotion
classes together, the average absolute value of the predictions is
uncorrelated with the overall emotion class performance.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this work, we proposed ViPER, a multimodal approach to predict
the emotional state of a user reacting to a video. The proposed
approach relies on a modality-agnostic late fusion network, which
provides ViPER users with a flexible and easy-to-adapt framework.
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Table 3: Performance comparison of ViPER model in multi-
modal settings. Performance are reported in terms of Pearson
correlation. Best performing ViPER setting is statistically
significant (p-value < 0.01) with respect other ViPER configu-
rations.

Model Image Text Audio FAU Dev set Test set
FAU [8] - - - ✓ 0.2840 0.2801
VGGFace2 [8] ✓ - - - 0.2488 0.1830

ViPER

✓ - - - 0.2712 0.2622
✓ ✓ - - 0.2806 0.2702
✓ - ✓ - 0.2748 0.2610
✓ - - ✓ 0.2978 0.2859
✓ ✓ ✓ - 0.2854 -
✓ ✓ - ✓ 0.3014 -
✓ - ✓ ✓ 0.2924 -
✓ ✓ ✓ ✓ 0.3025 0.2970

Figure 2: Amusement prediction analysis. 𝜌 = 0.3414

The effectiveness of ViPER has been demonstrated on the Hume-
Reaction dataset proposed for theMuSe 2022 Reaction sub-challenge.
The empirical findings indicate that all the examined modalities
positively contribute to the overall performance of the proposed ap-
proach. In addition, the integration of domain knowledge, i.e., face
cropping and in-domain ViT pre-training, turns out to be beneficial
as well.

As future work, we plan to extend our approach by adding a pre-
training step, in which modality-specific encoders are trained using
in-domain data collections to enable a more discriminating feature
extraction step for the emotion recognition task. Since the integra-
tion of ViT-Face has shown to be particularly effective among the
visual features, we also plan to test this setting for the other input
modalities. The benefits of using template-based frame captioning
techniques to augment data with textual annotations produced

Figure 3: Empathic-Pain prediction analysis. 𝜌 = 0.2547

satisfactory results. Hence, we will also explore multiple ways to
further extend the video descriptions. This is also instrumental for
the modality-agnostic fusion network, which is inherently capable
of integrating additional annotations.

Finally, we aim at comparing the proposed methodology with
other state-of-the-art fusion approaches, as well as explore other
fusion strategies. For the latter, our goal is to investigate modality
fusion at different levels of the architecture. Since the proposed late
fusion strategy can be suboptimal for specific input modalities, we
plan to leverage a recently proposed technique to better estimate
the fusion point in the architecture [17].
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