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Abstract: Some of the most widespread analytical models for nonlinear propagation in fiber optic 

coherent systems are reviewed, highlighting the tradeoffs between accuracy and complexity in 

different transmission scenarios, including wide-band optical systems and short-reach links.   
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1. Introduction 

The nonlinear interference (NLI) noise generated by the nonlinear interaction between different WDM channels is a 

major limiting factor to the capacity of long-haul coherent optical systems. As transmission power is increased, the 

nonlinear Kerr effect degrades the system performance, preventing operation at the transmission rates that would be 

achieved in a linear system [1]. This performance limitation motivated the development of several nonlinear 

compensation techniques, as well as of analytical models for signal propagation in an optical fiber. These models, 

which have become widespread in recent years, are useful tools for system designers in predicting the behaviour of 

optical networks without the need of resorting to time-consuming numerical Split-Step Fourier (SSF) simulations. In 

the following, the most used analytical models of nonlinear propagation in uncompensated coherent optical 

transmission systems are briefly reviewed, highlighting some of the main trade-offs between accuracy and 

complexity in different transmission scenarios, including wide-band optical systems and short reach links. 

2. The GN models and their assumptions 

Most of the models that predict the performance degradation in optical fiber communications due to Kerr 

nonlinearity solve the nonlinear Schrödinger equation (NLSE) analytically using a first-order perturbation approach 

[2]. Among them, those based on the ‘GN-model’ approach [1] have become quite popular, thanks to a good balance 

between accuracy, complexity and ease of use. Their simplicity, with respect to other models, derives from the 

assumption that, in highly dispersive channels such as uncompensated long-haul coherent systems, each WDM 

signal can be treated as Gaussian noise.  

A detailed investigation of GN-model errors and limitations was proposed and extensively discussed in [1]. Overall, 

the GN-model accuracy for uncompensated systems appears to be rather satisfactory and typically adequate for 

dealing with many practical scenarios. The simplest close-form expressions of the power spectral density (PSD) of 

the NLI can be obtained assuming an incoherent combination of the NLI components generated in each span during 

propagation, i.e., under the assumption that that NLI adds up in power at the end of the link. Assuming the 

propagation of equal channels with approximately rectangular spectra over equal fiber spans with lumped 

amplification, the PSD of the NLI at the center frequency can be evaluated as [1]: 

 

 

where Ns is the number of spans,  is the fiber nonlinearity coefficient, Nch is the number of WDM channels, Rs is the 

symbol rate, f is the channel frequency spacing,  is the fiber loss coefficient and 2 is fiber dispersion. Leff is the 

effective length, defined as: Leff =[1−exp(−2Ls)]/(2), with Ls the span length. The accuracy of this incoherent GN 

model (IGN-model) in predicting system performance appears to be quite good for practical system configurations. 

Several applications of the GN-model heavily exploit its closed-form approximate solutions, among which link 

throughput analysis and optimization [3], derivation of approximate ‘design rules’ which provide a simple 

variational dependence of performance on system parameters [4], identification of the potential and limitations of 

non-linearity DSP-supported mitigation [5] and, derivation of an overall optimization and control strategy for new-

generation optically routed network [6]. The breadth of these applications clearly demonstrates the extent of the 

impact of the availability of a simple and effective model of non-linear propagation. 

However, it has been shown that the signal-Gaussianity approximation used in the GN-model derivation can be 

inaccurate, especially in the initial part of a multi-span link [7]. In fact, the dispersed signal is only first-order 
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Gaussian, whereas multiple samples of the signal do not have a jointly Gaussian distribution [8]. The fact that the 

GN model neglects this aspect leads to several limitations, among which the inability to resolve the format-

dependent NLI generation. Removing the Gaussian assumption thus requires taking into account not only the 2nd 

moment of the launched signal, but also higher order moments. In this way, the models of nonlinear propagation 

become more complex in terms of computational effort, but the accuracy is increased. In particular, a detailed 

modelling of all the NLI components is obtained, including short-correlated quasi-circular noise and long-correlated 

nonlinear phase noise (NLPN) and polarization noise [7,8]. The enhanced-GN model (or EGN model [7]) is a 

complete and accurate model in the frequency domain, but computationally very complex and thus not adequate for 

real-time applications, where closed-form formulas are typically employed [6,9] at the expenses of a reduction of the 

estimation accuracy. 

3. Application scenarios  

3.1 High-symbol rate transmission with shaped constellations 

Lately, strong industry innovative trends have developed towards a quick-paced uptake of Gaussian-shaped 

constellations and a swift increase in symbol rates, with rates up to 128 Gbaud and beyond foreseen in the short-

medium term. The EGN model appears to be extremely reliable, across all the explored parameter space, as shown 

in [10, 11]. It handles all formats, QAM and Gaussian constellations, spacing values and symbol rates from 8 to 512 

Gbaud, within a very small error bracket vs. simulations. Interestingly for real-time applications, simpler models of 

the GN type appear to increase substantially their accuracy as the symbol rate goes up. The effect is more evident at 

longer reaches, where accumulated dispersion is larger, and the signal is more spread-out. Moreover, for Gaussian-

shaped constellations, the EGN model remarkably coincides with the much computationally simpler GN model [11]. 

3.2 Wide-band optical systems 

Models based on the conventional nonlinear Schrödinger equation, which assumes an instantaneous nonlinear 

response, cannot be applied to transmission bandwidths beyond the C-band, where the delayed part of the nonlinear 

response (due to the Raman effect) becomes significant and cannot be neglected [12]. The conventional GN-model 

has been thus recently extended to account for inter-channel stimulated Raman scattering (ISRS) by either 

introducing effective attenuation coefficients [13,14] or by deriving a GN model subject to a generic signal power 

profile [14–17]. The ‘ISRS GN models’ enable an accurate modeling of nonlinear propagation in wideband optical 

systems that occupy the entire C+L band or beyond.  In order to reduce the computational complexity of these 

models and make them real-time, Closed-Form Model (CFM) approximations have been proposed [18–21] capable 

of assessing whole links in fractions of a second. The CFMs were originally derived from a closed-form incoherent 

GN model approximation proposed in [1], which was then extended to take into account the frequency-dependence 

of both loss and dispersion, and the impact of ISRS [21–23]. Furthermore, the link function of the ISRS GN model 

can be combined with the formalism derived in [7], to account for arbitrary (non-Gaussian) modulation formats [24–

26]. The CFMs were also augmented with various correction terms to improve their accuracy and bring them to 

EGN-model level [21,24,27], also using machine-learning techniques [21,23,28]. Recently, two examples of 

application of ISRS GN-model closed-form formulas to the maximization of the information throughput [29] and to 

the quality of transmission (QoT) estimation [30] have been reported. 

3.3 Short-reach optical systems 

Most closed-form equations derived for the GN-model do not account for short span lengths and extremely low-

losses, due to the approximations made to derive them, which are based on the assumption that e-2Ls ≪ 1. The 

closed-form formulas proposed in [31,32] remove this assumption and are thus able to account for extremely low 

span losses, as well. In [33], a closed-form expression capable of accurately estimating the NLI in the presence of 

ISRS for any fiber span length and for fibers with extremely low-losses (∼ 0.02 dB/km) is derived. The proposed 

closed-form expression accounts for all modulation formats, wavelength-dependent attenuation and dispersion. 

When compared to the ISRS GN model in its integral form, the estimation error of the non-linear SNR is always 

lower than 1 dB, even for very short span lengths and extremely low values of fiber loss.  

5. Conclusions 

The field of the investigation of NLI modeling has been extremely active over the last decade. The obtained results 

and developed practical tools have been extensively used by the community, both in transmission and in optical 

networking sectors. Several close-form analytical and semi-analytical formulas are currently available for different 

application scenarios, often offering a favorable accuracy versus relative simplicity trade-off. 
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