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Reconstructing hourly residential electrical load profiles for Renewable 
Energy Communities using non-intrusive machine learning techniques 

Lorenzo Giannuzzo a,b,*, Francesco Demetrio Minuto a,b, Daniele Salvatore Schiera a,b, 
Andrea Lanzini a,b 

a Energy Center Lab, Polytechnic of Turin, via Paolo Borsellino 38/16, 10152, Turin, Italy 
b Department of Energy (DENERG), Polytechnic of Turin, Corso Duca degli Abruzzi 24, 10129, Turin, Italy   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Development of a non-intrusive ma
chine learning model to reconstruct the 
aggregated electrical profile of residen
tial users at an hourly resolution level to 
estimate the shared energy of a Renew
able Energy Community. 

• Formulation of a rescaling process 
capable of obtaining electrical load 
profiles from normalized load curves. 

• Optimization of a Random Forest algo
rithm to identify residential users’ con
sumption based only on monthly 
electrical consumption. 

• The methodology is tested on a public 
dataset, achieving a Normalized Mean 
Absolute Error (NMAE) and a Normal
ized Root Mean Square Error (NRMSE) 
of 20.04 % and 26,17 % comparing the 
simulated hourly electrical load profile 
to the real one, and a NMAE and a 
NRMSE of 18.34 % and 23.87 % during 
contemporaneity between energy pro
duction and aggregate consumption 
within the REC. 

• A Relative Absolute Error in estimating 
the shared energy at a monthly (MRAE) 
and yearly (RAE) resolution level is ob
tained equal to 8.31 % and 0.12 %, 
respectively.  

A R T I C L E  I N F O   

Keywords: 
Renewable Energy Community 
Load profiling 

A B S T R A C T   

The successful implementation of Renewable Energy Communities (RECs) involves maximizing the self- 
consumption within a community, particularly in regulatory contexts in which shared energy is incentivized. 
In many countries, the absence of a metering infrastructure that provides data at an hourly or sub-hourly res
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Non-intrusive machine learning 
Data-driven models 
Data analytics 
Shared energy estimation 

olution level for low-voltage users (e.g., residential and commercial users) makes the design of a new energy 
community a challenging task. This study proposes a non-intrusive machine learning methodology that can be 
used to generate residential electrical consumption profiles at an hourly resolution level using only monthly 
consumption data (i.e., billed energy), with the aim of estimating the energy shared by RECs. The proposed 
methodology involves three phases: first, identifying the typical load patterns of residential users through k- 
Means clustering, then implementing a Random Forest algorithm, based on monthly energy bills, to identify 
typical load patterns and, finally, reconstructing the hourly electrical load profile through a data-driven rescaling 
procedure. The effectiveness of the proposed methodology has been evaluated through an REC case study 
composed by 37 residential users powered by a 70 kWp photovoltaic plant. The Normalized Mean Absolute Error 
(NMAE) and the Normalized Root Mean Squared Error (NRMSE) were evaluated over an entire year and 
whenever the energy was shared within the REC. The Relative Absolute Error was also measured when esti
mating the shared energy at both a monthly (MRAE) and at an annual basis. (RAE). A comparison between the 
REC load profile reconstructed using the proposed methodology and the real load profile yielded an overall 
NMAE of 20.04 %, an NRMSE of 26.17 %, and errors of 18.34 % and 23.87 % during shared energy timeframes, 
respectively. Furthermore, our model delivered relative absolute errors for the estimation of the shared energy at 
a monthly and annual scale of 8.31 % and 0.12 %, respectively.   

1. Introduction 

1.1. Context and motivation 

Renewable Energy Communities (RECs) are grassroots initiatives 
that invest in clean energy to meet the consumption needs and envi
ronmental goals of a community, and thereby contribute to the spread of 
renewables [1]. RECs are local organizations that bring together citi
zens, small and medium enterprises (SMEs), institutions, and all the final 

users to develop projects for the production, sharing, and local use of 
renewable energy. The clean energy production of RECs generally relies 
on such technologies as photovoltaic solar panels, wind turbines, and 
hydroelectric plants, and can include the production of electricity, the 
heating and cooling of buildings, and the charging of electric vehicles. 
Moreover, RECs are designed to support the deployment of renewable 
energy sources [2], promote energy efficiency, the use of renewable 
sources and the reduction of greenhouse gas emissions, as well as to 
foster the creation of more sustainable local entities. Additionally, they 
allow citizens to participate directly in the energy market as prosumers 
[3], thereby promoting self-consumption and allowing the citizens to 

Nomenclature 

Q Real Consumption (kWh) 
Q̂ Simulated Consumption (kWh) 
E Energy (kWh) 
T Temporal extension (h) 
q Normalized consumption 
TV Threshold Value 
C Cluster 
s Scaling coefficient 
w Weight coefficient 
NRMSE Normalized Root Mean Square Error 
NMAE Normalized Mean Absolute Error 
NRAE Normalized Relative Absolute Error 

Subscripts 
h Hour 
m Month 
y Year 
t Time of Use rate 
u User 
p Profile 
max Maximum 
cons Consumption 
prod Production 
avg Average 
SE Shared Energy  

Fig. 1. The development timeline of an REC.  
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become the producers and owners of renewable-powered plants. RECs 
represent an emerging player on energy markets, where they undertake 
a variety of activities to deliver benefits to their shareholders and 
members. They serve as a tangible example of how an energy transition 
can evolve into a participatory and inclusive phenomenon, thereby 
enabling the players to become active in the governance of their terri
tory and shaping their energy future [4]. The typical development 
process of a new REC project is composed of three phases: design, cre
ation, and operation, as depicted in Fig. 1. 

The design phase commences with a group of citizens, businesses, 
institutions, and other local entities that share the same interest and 
willingness of other members to collaborate in such an endeavor. They 
first identify the initial core of the project by searching for potential 
members, verifying their geographical proximity, gathering data on 
their energy demand, and assessing the availability of renewable energy 
sources (RES) or the potential for new installations [4]. They then pro
ceed to develop a feasibility study to simulate energy flows, optimize the 
REC design (i.e., to maximize the shared energy), and formulate a pre
liminary action plan. Finally, they issue a call to action for all the citi
zens, investors, and other stakeholders to review and approve the design 
and investments of the project. The creation phase is initiated by 
formalizing the legal entity of the Renewable Energy Community, 
defining the roles of the stakeholders, and establishing the governance 
structure of the RES. Following this, the necessary funds and permits 
required to install new generation facilities are obtained. This phase 
culminates in setting up the generation plant, devices, and technologies 
necessary to manage and control the REC, and in obtaining the necessary 
permits to operate such a REC. The operation phase encompasses the 
daily management of the REC, and includes monitoring the energy flows 
and performance, maintaining the plants and devices, managing the 
costs and revenues, engaging with members, providing customer ser
vices, and sharing profits among the members. 

One of the most significant challenges that can arise during the 
design phase concerns the availability of hourly or sub-hourly con
sumption data of the REC members. The availability of such data is 
closely related to the optimal sizing of the power plants, which is a key 
aspect for the energetic and economic stability of an REC project, 
especially in incentive-driven contexts where a major part of the REC 
income is related to the economic valorization of shared energy. A 
multitude of research studies have been conducted regarding RECs. Such 
studies have encompassed various aspects, such as the impact of RECs in 
complex socio-economic contexts [5–7], the utilization of digital plat
forms as tools to support their development [4], policies [8,9], and their 
optimal sizing and design. The most recent studies have examined the 
aggregation of prosumers within RECs from both an energetic and an 
economic standpoint [10]. These studies have also taken into consid
eration communal batteries and reversible solid oxide cells, as well as 
their impact on the distribution grid [11–13]. Furthermore, novel 
business models and optimization methodologies which have focused on 
energy communities that introduce fair revenue sharing policies, the 
equitable payment of aggregators, and exit clauses have been presented 
[14,15]. These studies have also proposed innovative models and 
methodologies that can be used to determine optimal management 
strategies for energy systems, even in incentive-driven environments 
[16,17]. Additionally, AI models have been utilized to explore the 

potential integration of multi-energy and storage systems, as well as 
their management [18–20]. 

However, it is important to note that these recent research studies 
have relied heavily on high-resolution data of real consumptions, which 
are challenging to obtain during the design phase of an REC, particularly 
for the residential sector [16]. Furthermore, the models utilized in these 
studies require such data as those depicted in Table 1. 

As can be observed, in the aforementioned cases, the optimization, 
simulation, sharing mechanism evaluation and REC management strat
egy analyses were developed using high-resolution data. However, in 
real-context scenarios, obtaining data at an hourly or sub-hourly reso
lution level is often challenging, thereby making it difficult to exploit the 
models utilized in previous research works, such as MILP, Energy Hub, 
and Time Delay Neural Network. 

The availability of hourly or sub-hourly data, which is essential for 
the planning of RECs, is subordinated to the deployment of smart me
ters. Many European countries have established a goal to reach a 80 % 
smart meter penetration rate by 2020 [21], However, this target that has 
been postponed to 2024 for some of them [22]. According to a recent 
European study, countries including Austria, Greece and the UK have 
lagged behind in their large-scale rollout scheduled for 2020 [21]. 
Moreover, according to a recent update [22], only thirteen European 
Union countries (Sweden, Denmark, Finland, Estonia, Spain, Norway, 
Luxembourg, Latvia, Italy, France, Malta, Slovenia and the Netherlands) 
have achieved the 2020 target. Countries such as Portugal, Austria, the 
UK and Ireland have set the target of 80 % penetration by 2024, while 
Belgium, Croatia, Poland, Slovakia, Lithuania and Hungary are at the 
initial stage of their rollout. Moreover, Bulgaria, Cyprus, the Czech Re
public, Germany and Greece have installed very few or no smart meters 
at all. Consequently, it is evident that the deployment of smart meters in 
more than half of the countries of the European Union is behind 
schedule, or has not yet started. This fact reveals the impossibility of 
obtaining high temporal resolution data in many EU regions, especially 
considering that even in countries where rollout targets have been 
recently achieved, it will require time to collect and deploy complete 
datasets useable for planning processes. 

1.2. Literature review on clustering, load profiling and classification 
techniques 

In this section, we delve into the key methods and algorithms related 
to load profiling, load pattern recognition, and classification models. We 
propose a methodology that relies on the integration of these three 
processes to address the gap identified in Section 1.1, namely the lack of 
high-resolution data. 

Regarding the topic of clustering, many studies have demonstrated 
the greater effectiveness of k-Means clustering than other methodologies 
in the context of load pattern recognition using large datasets [22–24]. 
Indeed, k-Means clustering is often employed alongside evaluation 
metrics to determine the optimal number of clusters, as proposed by 
Pérez-Chacon et al. [24]. A different use of k-Means clustering was 
proposed in the study conducted by Wang et al., which presented a 
two-step methodology that combined k-Means clustering with Dynamic 
Time Warping Clustering (DTWC) [25]. The aim of this approach was to 
address the challenges involved in identifying the typical load profiles of 

Table 1 
Characteristics of the datasets employed in recent research works related to RECs.  

References Research purposes REC development 
phases 

Methods Data type Data 
resolution 

[10–12] REC simulation and optimization “Design” MILP / Linear programming Real industrial, agricultural, tertiary, grid, 
household, and commercial activity data 

Hourly 

[14,15] REC simulation, optimization and 
evaluation of the sharing mechanism 

“Design” and 
“Operation” 

Energy and economic-based 
simulation 

Real and synthetic residential and 
commercial activity data 

Hourly / Sub- 
hourly 

[13, 
16–18] 

REC simulation, optimization and 
management 

“Design” and 
“Operation” 

Energy Hub / Time Delay Neural 
Network / Energy-based simulation 

Real residential and building data Hourly / Sub- 
hourly  
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buildings, and it demonstrated the effectiveness of the two-step clus
tering process compared to simple k-Means clustering. However, it may 
only be worth employing such a clustering process in contexts in which a 
large number of typical load profiles may be present. Similarly, Fang 
et al., evaluated different clustering algorithms for load pattern recog
nition [26], including k-Means clustering, Hierarchical clustering, a 
Gaussian Mixture Model, a C-vine Copula Mixture Model, and an R-vine 
Mixture Model, in combination with various classifiers such as K-Nearest 
Neighbors (KNN), Classification and Regression Tree, Naive Bayes 
Classifier (NB), and Random Forest Classifier, and they demonstrated 
that a combination of clustering algorithms and a Random Forest Clas
sifier outperforms other combinations, in terms of classification 
performance. 

The research work conducted by Pérez-Ortiz et al., regarding clas
sification techniques, provided a comprehensive review of classification 
algorithms and their applications in various Renewable Energy (RE) 
domains [27]. This paper primarily focused on offering an extensive 
analysis of classification techniques, along with their related learning 
paradigms, as did Neelamegam et al., who presented a comprehensive 
summary of the classification algorithms used in the data mining field 
[28]. These two papers provide in-depth analyses of various classifica
tion techniques, and highlight their strengths, limitations, and applica
bility in different domains. Moreover, Neelamegam et al. also discussed 
various evaluation measures and validation techniques that could be 
used to assess the performance of classification models, and emphasized 
the significance of such metrics as accuracy, precision, and recall. 

Regarding the theme of load profiling, Alrawi et al. conducted a 
study on a data-driven approach to examine users’ electricity con
sumption habits [29]. The main findings of the study demonstrate that 
the main determinants of electricity consumption are the size of the 
building, whether the occupants pay electricity bills or not, and the type 
of air conditioning system. However, it is not easy to obtain information 
regarding structures, appliances, and users’ habits during the develop
ment of a Renewable Energy Community project, and for this reason, 
employing load profiling techniques that rely on such information is not 
a viable approach within the context of RECs. Similarly, the article 
written by Piscitelli et al. explored the implementation of a 
non-intrusive approach to address a customer classification task [30] in 
the building domain. They developed a classification tool to predict the 
typical monthly load profiles of new customers. The classification model 
makes use of a Globally Optimal Decision Tree algorithm, which is 
trained using predictive attributes derived from the monthly energy bills 
of each customer, as well as additional information gathered through a 
phone survey. Furthermore, the developed approach allows the 
magnitude of typical load profiles to be estimated using energy bill data 
through specific scaling coefficients. Nevertheless, as previously stated 
concerning the work of Alrawi et al., the additional information ob
tained, in this case, through phone surveys, which is related to the oc
cupants’ habits and working time, is not easily available in the context of 
simulating and designing an REC project. Lazzeroni et al. proposed a 
data-driven approach to predict load profiles for various categories of 
end users (e.g., for workdays, Saturdays, holidays) using minimal input 
data, that is, monthly electricity bills [31]. They relied on a K-Nearest 
Neighbors algorithm to predict typical load profiles on the basis of the 
similarity between energy bills. They then evaluated the performances 
of their approach by comparing it with two benchmarks: one based on 
Standard Load Profiles (SLPs) and another that employed clustering and 
decision rules to assign new customers to representative load profiles on 
the basis of their time-of-use energy bill. Their results highlight that the 
proposed method outperformed the other ones concerning some error 
metrics and for each end-user category, with just a few exceptions, thus 
emerging as a valid alternative to load profiling methodologies based on 
clustering and classification processes. 

Considering the Literature Review on clustering, classification, and 
load profiling techniques, k-Means emerges as the most suitable clus
tering methodology for big data analysis. Moreover, the classification 

model coupled with this clustering approach that exhibits the best per
formance is the Random Forest method. Additionally, the examined load 
profiling methodologies made use of datasets enriched with additional 
information, often pertaining to appliances, habits, and occupational 
activities, except for [31], which proposed a methodology to reconstruct 
an electrical profile using only monthly electricity bills, utilizing an 
alternative approach which, however, may be not suitable to reconstruct 
the electrical load profiles of aggregates in the REC context. In short, the 
examined research papers proposed models that utilize datasets 
enriched with additional information, such as the occupants’ habits, 
work activities, and appliances, which is not easily obtainable during the 
"design" phase of an REC. Furthermore, the analyzed research works 
pertaining to the context of load profiling were all aimed at recon
structing the load profile of individual users, which is beyond the scope 
of RECs, where analyses are conducted at an aggregate level. 

1.3. Research gap, novelty and paper organization 

As shown in the previous sections, the recent studies related to REC 
projects rely on datasets that contain high-resolution data, including 
additional information regarding the users’ habits, work activities, and 
the appliances. A lack of these data affects the "design" of a new REC 
project, even in countries where there is a high number of smart meters 
due to the time it takes to obtain suitable and available data. Addi
tionally, the research studies in the literature that tackled load profiling 
issues were not specificity aimed at evaluating the key energy parameter 
of an REC, namely shared energy. For these reasons, given the limited 
availability of high-resolution data, especially pertaining to the resi
dential sector, the challenge of obtaining additional information, such as 
the users’ work activities and habits, and the lack of existing studies that 
apply data-driven load profiling techniques to assess key energy pa
rameters of RECs, the aims of this research are to:  

• Propose a data-driven methodology, trainable using datasets from 
different geographical areas, that can be used to reconstruct the 
hourly electricity consumption of residential users at an aggregate 
level.  

• Reconstruct the hourly electrical consumption of residential users by 
employing non-intrusive machine learning techniques that rely only 
on easily obtainable data, such as monthly consumption data, with 
no additional information related to the users’ work activities, habits 
or appliances.  

• Employ the proposed methodology to evaluate the shared energy in a 
Renewable Energy Community project, in a realistic context of data 
scarcity, and to propose a model that effectively enables potential 
aggregators to accurately estimate the shared energy of an REC. 

The following sections of this study are organized as follows. Section 
2 provides a detailed description of the utilized dataset. Sections 3 and 4 
present the description of the proposed methodology and the results 
obtained from applying the proposed methodology to a specific case 
study. Section 5 focuses on the discussion and commentary of the ach
ieved results and offers a critical and objective analysis of the outcomes 
and accomplished objectives. Finally, Section 6 gives a summary of key 
insights and an outlook of future research. 

2. Data 

The present research work made use of the publicly available Low 
Carbon London project dataset. The project was conducted by UK Power 
Networks and developed in London between November 2011 and 
February 2014 [32]. The project database consists of an extensive 
time-series dataset of the electrical consumption of 5567 residential 
users in London for the given period, of which 1122 received an 
experimental dynamic ToU tariff during 2013, expressed in kWh and 
measured every 30 min. The consumption measurements can be 
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considered accurate, with no more than 3.4 % of the measurements 
missing for any half-hour measurement period, and an average missing 
measurement per period of just 0.17 % during the 2013 trial year [32]. 
Within the data set are two groups of customers. The first is a sub-group, 
of approximately 1100 customers, who were subjected to Dynamic Time 
of Use (dToU) energy prices throughout the 2013 calendar year period. 
The remaining sample of approximately 4500 customers energy con
sumption readings were not subject to the dToU tariff. The database was 
validated before its publication and cleansed of any missing and/or 
negative values. 

A preliminary data analysis showed that the data collection was 
inconsistent throughout the project, with some years providing more 
data than others, as shown in Table 2. 

In 2011, data was only collected from 7.9 % of the total users 
involved during the four years of the project activity, and only two 
months had at least one electrical consumption measurement per user. 
The year 2012 was the year with the most comprehensive data collec
tion, with 99.8 % of the total users involved and with twelve months 
having at least one electrical consumption measurement per user. The 
year 2013 had slightly fewer users than 2012 and also had twelve 
months with at least one electrical consumption measurement per user. 
Finally, 2014 had a high percentage of involved users, but only two 
months with at least one measured data per user. Furthermore, the 
month of March appears to be lacking in data primarily for the entire 
lifespan of the project. Therefore, this month was excluded from the 
subsequent analyses. 

3. Modeling framework and methods 

3.1. Modeling framework 

This study introduces a modeling framework used to estimate the 
hourly electrical consumption of residential user aggregates using 
monthly consumption data through non-intrusive machine-learning 
techniques. The aim of the proposed framework is to use the simulated 
hourly electrical consumption to evaluate the shared energy in a REC 
project, enabling potential aggregators to accurately estimate the shared 
energy in a realistic context of data scarcity, allowing them to conduct 
pre-feasibility studies and economic estimates in a more robust and 
reliable way. The proposed methodology can be divided into two major 
processes: model creation and case study application. The model crea
tion phase involves creating a model that can reconstruct the hourly 
electrical profile at the aggregate level. This model receives real or 
synthetic data, with at least an hourly resolution, as input, which are 
required to train the model. The case study application phase involves 
reconstructing the hourly profile of the desired aggregate electrical load, 
and then calculating the primary evaluation metrics for the obtained 
load profile. This phase requires real or synthetic monthly electrical 
consumption data pertaining to the users for whom the aggregate 
electrical profile has to be reconstructed, as input. The model creation 
phase generally consists of five steps: i) Pre-processing, ii) Data filtering. 
iii) Load Pattern Recognition, iv) Classification, and v) Scaling Coefficient 
Evaluation, as depicted in Fig. 2. 

The first step consists in applying an extensive pre-processing to the 
available raw data. This process is based on the methodology proposed 
in [32] and is aimed at eliminating elements of the dataset that could 

negatively impact the performance of the subsequent models and pro
cesses. This phase is primarily divided into two sections. The first sec
tion, known as data characterization, is aimed at enhancing the 
understanding of the dataset through appropriate visualization tech
niques; the second section, namely data preparation, focuses on 
cleansing the dataset from missing values, outliers, and inconsistencies. 
A data filtering process is then undertaken with the purpose of further 
refining the dataset by removing infrequent load profiles. This is ach
ieved through a segmentation of the dataset into two steps: k-Means 
clustering followed by an analysis of the populations of the clusters to 
eliminate the least populated ones. The load pattern recognition process 
is then undertaken. The aim of this process is to identify the typical 
electrical load shapes of the residential users, using k-Means clustering. 
In a similar way to the data filtering process, an analysis is conducted on 
the population of the obtained clusters with the aim of eliminating any 
load profiles that are not representative of the users’ consumptions. 
Next, the classification process is conducted to create a model that is 
able to assign one of the previously identified typical load shapes to a 
generic user for each month of the year, basing this assignment on 
monthly electrical consumption. In other words, the process involves 
implementing a Random Forest method, followed by an iterative opti
mization aimed at identifying the hyperparameters of the model that 
maximize performance. Finally, a scaling coefficient evaluation process 
is undertaken to evaluate the scaling coefficients that should be used to 
transform the typical load profiles attributed to users for each month of 
the year into electrical load profiles. This is a crucial set and requires the 
definition of scaling coefficients for each user and for each month of the 
year. At the end of the process, the obtained scaling coefficients are 
evaluated to reconstruct the electrical load profiles of each user on a 
monthly basis. Therefore, assuming that, for a single user, the daily 
electricity consumption corresponds to the obtained monthly load pro
files for each month, the hourly electricity consumption for the entire 
year can be reconstructed. A clear and concise explanation of the pro
posed methodology and the obtained results is provided in the next 
sections, and detailed descriptions of the models and the underlying 
assumptions are presented. 

3.2. Pre-processing 

Data pre-processing is an essential step in all data-driven model 
implementations, as it is mandatory to ensure accurate results and 
reliable analyses, and it includes the preparation and transformation of 
data into a suitable form for the mining procedure. The aim of data pre- 
processing is to reduce the size of the data, to find the relationships 
between the data, to normalize the data, to remove any outliers, and to 
extract features. It involves several techniques, such as data cleaning, 
transformation, and reduction. The process can be divided into two main 
tasks, as shown in Fig. 3: data preparation and data characterization. 
The data characterization phase is necessary to obtain an initial 
comprehension of the data, particularly considering the difficulty of 
visually representing multidimensional data in a comprehensive 
manner. The data preparation phase is an important step which allows 
to obtain clean, well-structured and suitable data. 

Before embarking on the processes of data preparation and data 
characterization, a preliminary data selection is performed to identify 
the subsection of the dataset that corresponds to the most complete year, 
in terms of the number of involved users and months with complete 
measurements. The dataset subsection corresponding to 2012 was 
chosen, as it emerged as the most populated subsection of the dataset. In 
addition, only the data from users with complete electricity consump
tion measurements, i.e., for the entire year, were considered from the 
2012 subsection dataset, which led to the selection of 272 users. 

In the data characterization phase, an analysis of the probability 
density function is performed on the hourly consumption measure
ments, and a frequency analysis is conducted on the total monthly 
consumption, as shown in Fig. 4, to attain a more comprehensive 

Table 2 
Preliminary dataset analysis.  

Parameter 2011 2012 2013 2014 

Number of involved users 354 4433 4411 4065 
Relevant Months1 2 12 12 2 
Percentage of involved users2 7.9 % 99.8 % 99.3 % 91.5 %  

1 Months with at least one consumption data detected for each user. 
2 Percentage of users to the total number of users involved in the project. 
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Fig. 2. Framework of the model creation phase.  

Fig. 3. Pre-processing workflow.  

Fig. 4. (a) Density probability of the pre-processed data; (b) Monthly consumption frequency analysis of the pre-processed data.  
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understanding of the dataset. 
As illustrated in the figure, the hourly electrical consumption mea

surements of the pre-processed data primarily correspond to low con
sumption levels. This can be attributed to two main factors. Firstly, the 
presence of nighttime electrical consumption values, which are signifi
cantly lower than the daytime ones. Secondly, the presence of users with 
relatively low electrical consumption, as illustrated in Fig. 4b, where 
most values represent medium-low monthly consumptions. Fig. 4b also 
highlights some notably high monthly electrical consumption values, 
which reach close to 800 kWh in some instances. This demonstrates the 
presence of energy-intensive users during certain months of the year, 
even though they are in a smaller number, thus underlining the diversity 
of the users’ characteristics within the pre-processed data. The results of 
the data preparation process, which concludes the pre-processing phase, 
show that no missing values or outliers were detected. This confirms the 
information in Section 2 related to the data cleaning and validation 
processes carried out before the considered dataset was made available 
to the public. 

Subsequently, the data preparation process, which is mainly focused 
on two issues, is carried out: firstly, the data should be organized into an 
appropriate form for the subsequent data mining algorithms, and sec
ondly, the data should be processed to attain the best performance and 
quality of the models involved in the subsequent data mining operations. 
The data cleaning process involves managing the missing values, in
consistencies, and outliers. Any missing values are handled using a 
linear interpolation method, which consists of substituting missing 
values with those on the straight line between two valid measures [33]. 
Whenever such measures are somewhat distant from each other, linear 
interpolation is ineffective in handling any missing values, and for this 
reason the maximum distance between the two valid measures is set 
equal to 3 during data cleaning process. Outliers are handled on an 
hourly basis using the “interquartile method”. This is one of the simplest 
and most effective methodologies used for data mining and it requires 
the calculation of three fundamental parameters [34]:  

• The median (Q2), which is the central value of the sampled data 
distribution.  

• Q1, which is defined as the first quartile, or the value below which 
25 % of the initial data is present.  

• Q3, which is defined as the third quartile, or the value below which 
75 % of the initial data is present. 

The distance between Q3 and Q1 is defined as the inter-quartile 
range (IQR), and a new interval, known as the decision range, is 
defined using this range, with any elements outside of it being identified 
as outliers. 

The Lower and Upper Bounds are defined by Eqs. (1) and (2). 

Lower Bound = Q1 − 1.5 ∗ IQR (1)  

Upper Bound = Q3 + 1.5 ∗ IQR (2) 

The data transformation process is then carried out by normalizing 
the raw data, which is a mandatory step for certain machine learning 
techniques [30]. In other words, the data are normalized using a 
maximum scaling approach, as shown in Eq. (3). 

x̂i,m =
xi,m

max
(
xi,m
) (3)  

where:  

• xi,m represents the monthly load profile of the i-th user for the m-th 
month;  

• max(xi,m) is the maximum value of the load profile of the i-th user for 
the m-th month. 

3.3. Data filtering 

In this section, a specific process is employed to eliminate any ele
ments within the pre-processed data that could further adversely affect 
the performance of the implemented data-driven and machine learning 
models. The process is divided into two phases that are conducted to 
identify any infrequent daily load profiles, in terms of intensity and 
shape. In the first phase, the daily profiles pertaining to months char
acterized by a low electricity consumption are eliminated for each user 
present in the pre-processed data using a threshold value (TVmonths)

defined according to Eq. (4), which represents an approximation of the 
monthly electricity consumption of residential users in England. 

TVmonths = 0.10 ∗
QUK,avg

12
(4)  

where:  

• QUK,avg is the average yearly electric consumption of residential users 
in England, which is equal to 3800 kWh for the year 2014 [35]. 

Thereafter, any infrequent daily load profiles, in terms of load shape, 
are identified using a nested approach, which involves first segmenting 
the pre-processed data by season, as summarized in Table 3, and then by 
days of the week, followed by k-Means clustering, which is performed on 
each of the identified subsections, as depicted in Fig. 5. 

This approach enables any subgroups within each subsection that 
contain infrequent load profiles or profiles associated with a restricted 
group of users to be identified using the threshold values defined by Eqs. 
(5) and (6). 

TVu = 0.05 ∗ Nmax,u (5)  

TVp = 0.05 ∗ Nmax,p (6)  

where:  

• TVu represent the threshold value related to the number of users 
within each clusters.  

• TVu represent the threshold value related to the number of profiles 
within each clusters.  

• Nmax,u is equal to the maximum number of users within each 
subsection.  

• Nmax,p is equal to the maximum number of profiles within each 
subsection. 

The least populated clusters are identified on the basis of the 
threshold values calculated for each subsection of the dataset, as 
depicted in Fig. 6, and the daily load profiles within each cluster are 
subsequently excluded from further analysis. 

The number of clusters used during the clustering process performed 
for each subsection is identified through the Davies–Bouldin Index 
(DBI). The DBI [36] is a cluster validity metric which is based on the 
concept that, in order to obtain a good partition, the inter cluster sep
aration as well as the intra cluster cohesion should be as high as possible. 
The DBI is evaluated according to Eq. (7). 

DBI =
1
K
∑K

k=1
max
k∕=1

(
δk − δi

dk,i

)

(7) 

Table 3 
Seasonal dataset segmentation.  

Season Months 

Summer June, July, August 
Winter December, January, February 
Spring March, April, May 
Autumn September, October, November  
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where:  

• k is the number of clusters.  
• dk,i is the Euclidean distance between the centroids of clusters Ckand 

Ci.  
• δk, δi are the standard deviations of the distances between objects in 

clusters Ck and Ci. 

The DBI basically measures the similarity between clusters consid
ering their internal distribution and degree of separation. A low index 
value indicates a good division, while a high index value means that the 

division is not optimal, the generated clusters are not easily distin
guishable, and there are significantly different elements within clusters. 

An example of applying the criterion used to identify infrequent daily 
load profiles is presented in Fig. 7, where infrequent daily profiles can be 
identified for Sundays in the autumn season and Thursdays in the spring 
season. 

The optimal number of clusters in Fig. 7a, identified through the DBI 
index, is 16, while the threshold values for the number of users (TVu) and 
the number of profiles (TVp) are 8 and 120, respectively. In this case, 
clusters 6, 7, 8, and 9 have several profiles below TVp and were therefore 
excluded from the pre-processed data, while there were no cluster with a 

Fig. 5. Workflow of the infrequent daily load profile detection.  

Fig. 6. Infrequent load profile detection criteria.  

Fig. 7. (a) Detection of the daily-scale outliers for Sundays in the autumn months. Clusters within the threshold values were considered infrequent or non- 
representative and excluded from the analysis; (b) Detection of the daily-scale outliers for Thursdays in the spring months. Clusters within the threshold values 
were considered infrequent or non-representative and excluded from the analysis. The size of the circles in both figures represents the number of profiles and users 
within a cluster. 
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number of users below TVu. Similarly, the optimal number of clusters in 
Fig. 7b, obtained through the DBI, is 12, while the threshold values for 
the number of users and the number of profiles are 7 and 220, respec
tively. The only cluster below the threshold values in this subset of the 
dataset is cluster 3, and its profiles were excluded from the pre- 
processed data. As can be observed, the number of clusters below the 
threshold values is influenced to a great extent by the number of clusters 
chosen during the clustering process. In this regard, the DBI helps 
determine a suitable number of clusters that are neither too small, which 
could lead to incorrect profile distinctions, nor too large, which could 
result in an excessive division of the dataset subsection. Finally, as can 
be seen in the two aforementioned examples, the most impactful vari
able when identifying anomalous daily profiles is TVp. Indeed, the latter 
accounts for the elimination of 87 % of the clusters throughout the entire 
process, while the remaining portion is determined by the threshold 
value related to the number of users and the combination of the two 
threshold values. 

At the end of the data filtering process 7223 daily load profiles were 
identified as infrequent, as shown in Table 4, which presents the number 
of identified infrequent daily load profiles for each season and their 
respective relative percentages. 

As can be seen, the highest number of identified infrequent daily load 
profiles, which is 2850 load profiles, occurs during the summer season. 
Meanwhile, the smallest number of infrequent daily load profiles, which 
is 750 load profiles, is observed during the winter season. This could be 
attributed to the fact that users tend to exhibit more variable electrical 
load patterns during the summer due to the different use of appliances 
and space cooling systems, which may be less pronounced in the winter 
season. However, the analysis of the relationship between the electrical 
consumption changes and seasons is beyond the scope of this research 
work. 

In summary, the data filtering process resulted in an overall elimi
nation of 12.8 % of the dataset, with 8.0 % identified as infrequent daily 
load profiles and 4.8 % categorized as low monthly consumption data, as 
shown in Table 5. 

3.4. Load pattern recognition 

After the pre-processing and data filtering processes, a k-Means 
clustering is performed on the monthly electrical consumption. Once 
again, the optimal number of clusters is evaluated using the DBI. Similar 
to the data filtering process, clusters containing a low number of profiles 
or users are eliminated using the same logic. In this case, the used 
threshold values are set to 10 % of the number of profiles and users. 
However, this time, unlike the clustering performed during data 
filtering, the Hartigan and Wong algorithm is utilized. The Hartigan and 
Wong algorithm is computationally more expensive than the previously 
used Lloyd algorithm, but it can provide a more stable and robust 
clustering, especially when the number of clusters is high, and the initial 
centroids are chosen non-optimally [37,38]. 

In this phase, the optimal number of clusters defined through DBI 
was chosen as 5, whose variation in relation to the number of clusters 
(from 4 to 20 clusters) is illustrated in Fig. 8, and the obtained typo
logical load patterns identified through k-Means clustering are depicted 
in Fig. 9, in which five different load patterns can be observed. 

The first obtained typological profile is characterized by a rapid 
decline from 00:00 until approximately 05:00, followed by an upward 
trend, while a consistent load is maintained in the middle of the day. 
Around 15:00, there is a sudden surge in load, which peaks at around 
19:00, before descending again. The second typological load profile is 
distinguished by a rapid increase in load, starting at around 05:30, 
which reaches a first peak at 09:00. In the subsequent hours, the load is 
maintained at an approximately constant value until around 14:30, 
where a slight descent occurs, followed by a rapid increase that leads to a 
second peak at 18:00. The load then decreases significantly during the 
nighttime hours. The third typological load profile is significantly 
different from the others. It exhibits a much lower average load value 
than the others and features two closely spaced peaks during the 
nighttime hours, followed by a rapid decline at around 07:30, after 
which it maintains a constant load significantly lower than the nighttime 
hours. Instead, the fourth typological load profile has a generally higher 
average load value than the others. It is characterized by a slight decline 
during the nighttime hours, followed by a slight increase in the load that 
remains constant during the midday hours, reaching a slight peak at 
around 19:30 and then gradually decreasing. Finally, the fifth load 
profile is similar to the first one, but some timeframes differ. In this load 
profile, the decline in load during the nighttime hours is less pro
nounced, and the load during the midday hours, which remains rela
tively constant, is lower than the first typical load profile. Furthermore, 
the localized peak during the nighttime hours occurs slightly earlier, at 
around 18:30. 

After identifying the typical load patterns, as previously stated, a 
further check was performed to exclude clusters with a low number of 
profiles and the users within these clusters, adopting the same procedure 
used to eliminate the infrequent daily load profiles during the data 
filtering phase. In short, the threshold values related to the number of 
users and profiles within the clusters were evaluated as previously 
defined by Eqs. (5) and (6), setting the threshold values as 10 % of the 
number of profiles and users and used to identify clusters containing low 
populated clusters, as illustrated in Fig. 10. 

In this case, the threshold values pertaining to the number of users 
and the number of profiles were set to 60 and 262, respectively. As is 
evident from the graph, the least populated cluster is the number 3, 

Table 4 
Daily-scale outliers identified for each season.  

Season Infrequent daily load profiles Profile percentages1 

Summer 2850 39.5 % 
Winter 750 10.4 % 
Spring 1981 27.4 % 
Autumn 1642 22.7 %  

1 Percentages related to the maximum numbers of daily load profiles for each 
season. 

Table 5 
Results obtained from the data filtering process.  

Dataset subsection Percentages 

Valid Data 87.2 % 
Excluded Data 12.8 % 
Infrequent Daily Load Profile Data 8.0 % 
Low Monthly Consumption Data 4.8 %  

Fig. 8. Evaluation of the optimal number of clusters using the DBI index for the 
load pattern recognition process. 
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which corresponds to the third typological load profile, and it is 
significantly different from the others, as previously mentioned. 

To summarize, typological load profiles are obtained as centroids of 
the four remaining clusters at the end of the load pattern recognition 
process. Those patterns are subsequently used to train a supervised 
classification model to assign a consumption pattern to users based on 
their monthly consumption values. 

3.5. Classification 

The main objective of the classification process is to create a model 
that is able to identify, using monthly consumption values, the electrical 
load pattern on a month-by-month basis throughout the entire year, as 
shown in Fig. 11. The ToU is evaluated considering the London Power 
(LOND) company’s ToU, as outlined in Table 6. These consumption 
bands are considered the same for each day of the year. 

The creation of the classification model involves the following steps: 
i) selection of the classification model; ii) definition of the training variables; 
iii) definition of the training and testing datasets; iv) setting up the model; v) 
tuning the model. The selection of the classification model is one of the 

most important phases of the process. According to the study conducted 
by Fang et al., the model that best fits k-Means clustering for classifi
cation processes is the Random Forest model [26]. Therefore, it was 
decided to implement a Random Forest model using the “Random
Forest” package in the R development environment. This category of 
classifiers belongs to the realm of ensemble-based machine learning 
models, which employ a collection of decision trees (DTs). DTs are 
employed to classify patterns by utilizing a series of precisely defined 
rules. They include a classification algorithm that resembles a tree 
structure, where attributes of the dataset are depicted as internal nodes, 
decision rules are depicted as branches, and the outcomes of the com
bined decisions are depicted as leaf nodes. Several decision trees are 
trained in Random Forest models by randomly choosing subsets of the 
dataset that have the same size as the original training set. A final class of 
the test object is then determined by combining the predictions from the 
various decision trees. The typology of Random Forest that has here 
been used is called “Ranger Forest”, which is a fast implementation of 
the Random Forest model that is particularly suitable for high dimen
sional data. After selecting the model, the training variables are defined. 
As previously stated, the main objective of the classification process it to 
assign a consumption pattern on the basis of the monthly consumption 
data. For this reason, the variables used to train the model are the 
monthly consumption values, the ratio between the monthly consump
tion values within the ToU time frames, and the total monthly con
sumption, as shown in Table 7. 

It was decided to incorporate some other variables during the 
training phase to enhance the accuracy of the model. The new variables 
employed are the same as those shown in Table 7, albeit corrected by a 
correction factor, according to Eq. (8), except for the electrical con
sumption in the “Red”, “Amber”, “Green” ToU rates and the total 
monthly electrical consumption. 

fm,t/j =
Tm,t

Tm,j
(8)  

where:  

• Tm,t represent the number of hours of the t-th ToU rate over the m-th 
month.  

• Tm,j represent the number of hours of the j-th ToU rate over the m-th 
month. 

Fig. 9. Typical electrical load patterns obtained through the load pattern recognition process.  

Fig. 10. Elimination of the low populated clusters for the load pattern recog
nition process. 
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The correction factor, f, takes into account the ratio between the 
temporal extension of the ToU rates over a month, namely the ratio 
between the number of hours of two different ToU rates, which is in
formation that is usually hard to transfer to the model using only the 
monthly consumption values. 

Subsequently, the training and testing datasets are defined. The 
characteristics of these datasets are summarized in Table 8. 

After having identified the model, and after having defined the 
training variables, and the training and testing datasets, it is necessary to 
determine the hyperparameters that define the best model, in terms of 
classification performance. Random Forest classification models are 

characterized by three hyperparameters: the number of globally 
generated trees, the number of variables used for each split, and the 
minimum elements in the leaf nodes. 

The number of globally generated trees is one of the most important 
parameters. It is closely related to the size of the database and the trade- 
off between accuracy and computational cost. In general, the number of 
trees can be chosen arbitrarily, although, in practice, a number of trees 
between a few hundred and a few thousand can provide good results for 
most problems. Furthermore, the accuracy of the model tends to 
improve as the number of trees increases, although, after a certain point, 
increasing the number of trees does not lead to any significant 
improvement in accuracy. The number of variables used for each split 
indicates the number of training variables that are used to create a split 
rule at each step. Using a different number of split variables may lead to 
a significantly different performance of the model. Finally, the minimum 
number of elements in the leaf nodes represents the minimum limit 
value of the elements within a terminal node. This value is closely 
related to the size of the generated tree. Large trees that contain many 
split nodes are obtained for a low minimum number of elements in the 
leaf nodes. Conversely, smaller trees are obtained with a limited number 
of split nodes for a high number of these elements in the leaf nodes. In 
our case, "tuneRanger" and "mlf" packages were used in the R pro
gramming environment to find the best combination, in terms of clas
sification performances and hyperparameters, and 200 iterations were 
performed in which the different combinations of hyperparameters were 
evaluated, with a fixed number of generated trees that was set equal to 
4000. 

The other parameters that are used to define the model and the 
iterative optimization process are: importance, split rule, and measure. 
The importance parameter identifies the metric used to evaluate the 
importance of each training variable and is set in order to reduce the 

Fig. 11. Classification task carried out for a generic residential user.  

Table 6 
The London Power company’s ToU.  

Time of use Hours 

Red 11:00–14:00 
16:00–19:00 

Amber 07:00–11:00 
14:00–16:00 
19:00–23:00 

Green 00:00–07:00 
23:00–24:00  

Table 7 
Training variables used to train the classification model.  

Training 
variable 

Description Unit 

Amber/Total Electrical consumption of the “Amber” ToU timeframe on 
the monthly electrical consumption 

[-] 

Red/Total Electrical consumption of the “Red” ToU timeframe on 
the monthly electrical consumption 

[-] 

Green/Total Electrical consumption of the “Green” ToU timeframe on 
the monthly electrical consumption 

[-] 

Amber/Red Electrical consumption of the “Amber” ToU timeframe on 
the electrical consumption of the “Red” ToU timeframe 

[-] 

Green/Amber Electrical consumption of the “Green” ToU timeframe on 
the electrical consumption of the “Amber” ToU 
timeframe 

[-] 

Green/Red Electrical consumption of the “Green” ToU timeframe on 
the electrical consumption of the “Red” ToU timeframe 

[-] 

Green Electrical consumption of the "Green" ToU timeframe [kWh] 
Amber Electrical consumption of the "Amber" ToU timeframe [kWh] 
Red Electrical consumption of the "Red" ToU timeframe [kWh] 
Total Electrical monthly consumption [kWh]  

Table 8 
Training and testing the characteristics of the datasets.  

Dataset 
name 

Percentage of the 
overall dataset 

Description 

Training 
Dataset 

70 % Seventy percent of the overall dataset 
randomly selected to train the classification 
model. 

Testing 
Dataset 

30 % Thirty percent of the overall dataset 
randomly selected to test the performance of 
the classification model.  
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measure of impurity, defined by the Gini Index, within groups of ob
servations. The split rule parameter defines the rule used to select the 
best variables, in terms of classification performances, at a split node, 
and the Gini Index was used for this specific model. The measure 
parameter defines the KPIs considered to identify the models with the 
best classification performances during the iterative hyperparameter 
optimization process. In this case, the accuracy of the model was defined 
by choosing the best KPI to evaluate the classification performances. 

In synthesis, an iterative optimization process was conducted to 
obtain the model with the best accuracy to identify the best combination 
of hyperparameters, using a fixed number of trees equal to 4000, whose 
results are summarized in Table 9. 

The number of variables required to define the rules used by the best 
Random Forest model was set to 2, while the minimum number of ele
ments in the leaf nodes, which is strictly related to the trade-off between 
computational costs and model performance, was defined to be 16, 
which corresponds to less than 1 % of the total number of elements 
analyzed by the overall model. The performance of the classifier, which 
refers to its ability to correctly classify in relation to the total number of 
classifications, was evaluated, and accuracies of 66 % and 63 % were 
obtained during the training and testing phases, respectively. 

The classifier was not much accurate, and this is primarily because 
the model was trained with variables that were not fully descriptive of 
the identified load profile types during the load pattern recognition 
process. As a result, the model struggles to assign the correct load type 
based on the trained variables only. Additional information would be 
required, such as the number of occupants, their habits, or even their 
occupational activities, to improve the performance of the model. 
However, such information was not considered the present research 
work, which has been conducted in a context of data scarcity. 

A ranking of the predictive variables deemed the most important by 
the model is presented in Fig. 12, where the importance of the variables 
was calculated through the Gini Index. 

Fig. 12 shows the considered variables in order of importance from 
top to bottom. The top three most important variable are the ones 
weighted by correction coefficient “f”. This result shows the effective
ness of providing such additional information to support the Random 
Forest classification. Furthermore, the figure shows that the absolute 
values of electricity consumption in different ToU rates and the monthly 
consumption are associated with a significantly lower level of impor
tance compared to the remaining variables. This implies that, in order to 
identify the load profile shapes of users, the ratio of electricity con
sumption values in different ToU rates are much more important than 
the absolute consumption values. 

3.6. Scaling coefficient evaluation and case study application phase 

This section outlines the key steps involved in calculating the scaling 
coefficients that are necessary to pass from the typical normalized load 
profiles, defined in the load pattern recognition phase and assigned to 
each user for each month during the classification process to real load 
profiles. This step is the final stage of the model creation phase and is 
directly interfaced with the case study application phase, as depicted in 

Fig. 13. 
The coefficients used in the scaling coefficients evaluation process to 

weigh the magnitude of the monthly consumption for the "Red" ToU rate 
are calculated, using the values of the typical normalized load profiles 
obtained during the load pattern recognition process, and are assigned 
to each user on a month-to-month basis during the classification process. 
The coefficients used to weight the magnitude of the monthly con
sumptions for the "Red" ToU rate are calculated according to Eq. (9). 

wm = Tm,red

(
∑14

i=11
qm, i +

∑19

j=16
qm,j

)

(9)  

where:  

• Tm,red represents the number of hours of "Red" ToU rate for the m-th 
month.  

• qm,i is the value of the normalized typical load profiles at the i th hour 
during the time frame defined by the "Red" ToU, i.e., between 11:00 
and 14:00, and between 16:00 and 19:00, for the m-th month, which 
is used to weight the magnitude of the monthly consumption value. 

As shown in Eq. (9) and Fig. 14, the values residing within the "Red" 
ToU time frame were used for each assigned typological load pattern to 
define the weight coefficients. 

A further comparison was made of the four typological load profiles 
obtained downstream of the load pattern recognition process in Fig. 14a, 
where their differences, which determine the varying coefficients used 
to pass from typical load profiles to simulated load profiles, can be 
appreciated, while graphical representations of the sections of the 
typological patterns used to calculate the scaling coefficients employed 
to weight the monthly consumption values are provided in Fig. 14b–e. 
As can be observed from the graph, Load Pattern 4 emerges as the most 
distinct typological profile, as it exhibits the highest load intensity. The 
remaining patterns are similar to each other, particularly Load Pattern 1 
and Load Pattern 5, which primarily differ in shape during the nighttime 
hours and in the temporal location of the evening peak, which is slightly 
shifted in Load Pattern 1 compared to Load Pattern 5. Additionally, Load 
Pattern 2 closely resembles Load Pattern 5 during the nighttime hours, 
but significantly deviates from it during the midday hours, where it 
displays a higher load intensity. 

After obtaining the weight coefficients, the scaling coefficients 
necessary to pass from the typical normalized load patterns to real load 
profiles are evaluated using Eq. (10). 

sm =
Qm, red

wm
(10)  

where:  

• Qm,red represents the monthly consumption within "Red" ToU for the 
m-th month. 

The reference value for the scaling factor was chosen as the con
sumption value in the "Red" ToU time frame, as it generally involves 
periods of higher consumption for residential users, and covers most of 
the consumption activity time frame, which corresponds to approxi
mately 50 % of the hours during which residential users tend to have 
medium-high consumption, i.e., between 8:00 and 20:00.The different 
shapes of the typological load profiles led to different scaling co
efficients, as shown in Table 10. 

The highest weight coefficients are associated with typological load 
patterns, namely Load Patterns 2 and 4, that exhibit a greater load in
tensity than the others. Consequently, their influence will be more sig
nificant during the scaling process, while it will be less significant for 
those months assigned Load Patterns 1 and 5 by the classifier. 

At the end of the process, simulated electrical consumption profiles 

Table 9 
Hyperparameters of the random forest classifier obtained through an iterative 
optimization process.  

Hyperparameter Value Description 

Number of variables used for each 
split 

2 Number of elements necessary to 
create a rule 

Minimum elements in the leaf 
nodes 

16 Number of elements within a terminal 
node 

Additional Random Forest parameters 
Importance Gini Index 
Split rule Gini Index 
Measure Accuracy  
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Fig. 12. Importance of the variables for the classification process. (*) variables corrected with correction factor “f”.  

Fig. 13. Workflow of the evaluation of the scaling coefficients.  

Fig. 14. (a) Comparison of typical load patterns; (b) typical load profile values residing within the "Red" ToU timeframe for load pattern 1; (c) typical load profile 
values residing within the "Red" ToU timeframe for load pattern 2; (d) typical load profile values residing within the "Red" ToU energy consumption range for load 
pattern 4; (e) typical load profile values residing within the "Red" ToU timeframe for load pattern 5. 
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are obtained for each month, by multiplying the sm factor by the pre
viously obtained normalized load profiles, according to Eq. (11). 

Q̂m,h = qm,h ∗ sm∀i ∈ A (11)  

where:  

• A = {January, February, …., December};  
• Q̂m,h represents the simulated consumption value, for the m-th 

month, at hour h;  
• qm,h is the value of the normalized consumption curve, for the m-th 

month, at hour h;  
• sm is the scaling coefficient for the m-th month. 

As previously stated, at the end of this phase, a month-by-month 
electrical load profile is obtained for each user, as depicted in Fig. 15. 

At this stage, average electric load profiles are reconstructed for each 
user for each month. These load profiles are representative of the user’s 
average behavior during a specific month. Hence, the hourly electric 
load profile for the entire year can effectively be reconstructed by 
assuming that the obtained profile is similar to the daily profile of all the 
days in the month. 

3.7. Validation 

The validation of the results of this study was conducted by using a 
set of hourly and monthly measured consumption data [32], and by 
reconstructing the load profiles using the described methods and 
comparing them with real load profiles. Kohler et al. [39] provided an 

extensive review of the metrics that are commonly employed to compare 
predicted or synthetic load profiles with real ones. Several of the metrics 
proposed in [39] to assess similarity concentrate on the statistical 
characteristics of real and simulated load profiles, such as the minimum 
and maximum values, median, standard deviation, and error on the 
duration curve. Additionally, metrics based on complexity, such as the 
number of peaks and the fractal dimension, are also suggested. 

In this study, the equality between the reconstructed and real load 
profiles was evaluated using the Normalized RMSE (NRMSE) and the 
Normalized MAE (NMAE) for both an entire year and the period when 
there is contemporaneity between the aggregate consumption and the 
production of the aggregate power plants (NMAESE, NRMSESE), through 
Eqs. (12)–(15). 

NMAE =

∑n
i=1

|Qi − Q̂i |
n

Qi
(12)  

NMAESE =

∑N
i=1

|Q∗
i − Q̂

∗

i |
N

Q∗

i

(13)  

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Qi − Q̂i )

2

n

√

Qi
(14)  

NRMSESE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Q∗
i − Q̂

∗

i )
2

n

√

Q∗

i

(15)  

where:  

• Qi represents the real aggregate consumption.  
• Q̂i represents the simulated aggregate consumption. 
• Q∗

i represents the real aggregate consumption during contempora
neity between the aggregate consumption and energy production.  

• Q̂i
∗ represents the simulated aggregate consumption during 

contemporaneity between the aggregate consumption and energy 
production.  

• n is the number of observations. 

Table 10 
The values considered to calculate the scaling coefficients used to weight the 
monthly consumption values.  

Load 
pattern 

11:00 12:00 13:00 16:00 17:00 18:00 Weight 
coefficient 
(sm)

1 0.43 0.44 0.45 0.49 0.58 0.69 18.48 
2 0.63 0.62 0.59 0.69 0.76 0.82 24.66 
4 0.71 0.71 0.72 0.76 0.81 0.84 27.30 
5 0.36 0.37 0.36 0.45 0.58 0.73 11.04  

Fig. 15. Application scheme of the scaling coefficient process.  
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The evaluation of NMAE and NRMSE during the period when there is 
contemporaneity between the aggregate consumption and the produc
tion of the aggregate power plants allows to assess of the effectiveness of 
the proposed framework in reconstructing the aggregate electrical load 
during the hours of interest for the calculation of shared energy. This 
aspect is closely related to the estimation of shared energy, which is the 
main focus of the present research. Moreover, the mean relative absolute 
error obtained when estimating the shared energy on both a monthly 
(MRAE) and annual basis (RAE) is evaluated through Eqs. (16) and (17). 

MRAE =

∑M
m=1

|SEm − ŜEm |

SEm

M
(16)  

RAE =

⃒
⃒SEy − ŜEy

⃒
⃒

SEy
(17)  

where:  

• SEm represents the real shared energy for the m-th month.  
• ŜEm represents the simulated shared energy for the m-th month.  
• SEy is the real shared energy for the y-th year.  
• ŜEy is the simulated shared energy for the y-th year.  
• M is the total number of months. 

The shared energy is evaluated, on an hourly, monthly, and annual 
basis, through Eqs. (18)–(20). 

SEh = min
(
Econs,h;Eprod,h

)
(18)  

SEm =
∑H

i=1
SEi (19)  

SEy =
∑M

i=1
SEm (20)  

where:  

• Econs,h is the aggregate consumption for the h-th hour.  
• Eprod,h is the energy production of the power plants related to the 

aggregate consumption for the h-th hour.  
• SEh represents the shared energy for the h-th hour.  
• SEy represents the shared energy for the y-th year.  
• H is the total number of hours in a month. 

4. Case study application results 

This section presents the results of applying the proposed method
ology to the REC case study, which consists of 37 users randomly chosen 
from the dataset described in Section 2. The users were selected from a 
subset of the dataset that excluded the users used during the training 
phase of the classification step to avoid an unrealistic performance 
evaluation. The power plant associated with REC consists of a 70 kWp 
ground-mounted photovoltaic system in the outskirts of London. The 
producibility is simulated, on an hourly basis, using PVGIS [40] and the 
tilt angle and orientation of the photovoltaic panels are calculated using 
the same tool in order to maximize the system’s production, which are 
set at 40 and − 5◦ respectively. Specifically, the orientation (or azimuth) 
is the angle of the PV modules relative to the direction due South (− 90◦

is East, 0◦ is South, and 90◦ is West). PVGIS is a simulation tool that 
incorporates solar irradiation and temperature data to accurately 
simulate the producibility of photovoltaic systems. 

Before evaluating the performance of the proposed methodology, in 
terms of its ability to reconstruct the aggregate electrical load profile, a 

Fig. 16. (a) Comparison between the simulated and real monthly average electricity consumptions at the single user level, for the month of January, for one user of 
the REC; (b) comparison between the simulated and real monthly average electricity consumptions at the single user level, for the month of April, for one user of the 
REC; (c) comparison between the simulated and real monthly average electricity consumptions at the single user level, for the month of July, for one user of the REC; 
(d) comparison between the simulated and real monthly average electricity consumptions at the single user level, for the month of October, for one user of the REC. 
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qualitative comparison between the real and simulated electricity pro
files was made at the individual user level for a subset of the users 
considered in the case study. In particular, the reconstructed load pro
files pertaining to four different users are shown in Fig. 16a–d, and 
compared with the reconstructed profiles for the months of January, 
April, July, and October, respectively. 

As shown, the real and simulated profiles exhibit large differences in 
some specific time intervals, mainly related to load peaks. For instance, 
the load peaks in Fig. 16a and d are significantly underestimated and 
shifted in the simulated load profiles. Furthermore, certain load peaks in 
Fig. 16b and c are overestimated, while in other cases, they are not even 
present in the simulated load profiles. This is primarily because the 
normalized centroids obtained through the Load Pattern Recognition 
process were used as reference profiles during the hourly profile 
reconstruction process to generate the real electrical load profile of a 
given magnitude, and they represent the average electric consumptions 
of a specific statistical sample. Therefore, the reconstructed load profiles 
may not be representative of individual users, but rather of the average 
behavior of a certain number of users. Indeed, the aim of the proposed 
methodology has been to accurately reconstruct the hourly profile at the 
aggregate level. Therefore, the use of the normalized centroids as a 
reference for the aggregate profile takes on a more coherent meaning for 
the objective of this research. In fact, the ability of the model to 
reconstruct the load profile of the aggregate, i.e., the sum of all the 37 
users, can be appreciated in Fig. 17a–d, where the simulated load curve 
is compared with the real one, for the months of January, April, July, 
and December, respectively, and shows that the simulated aggregate 
load profile is similar to the real one. 

By using the typological curves obtained from the load profiles 
recognition process, which are the centroids of the clusters obtained 
during that process, we obtain load profiles that represent the average 
behavior of the users, rather than of individual users, as previously 
specified. The results obtained from the comparison between the real 
aggregate profile and the simulated one, using the metrics defined in 
Section 3.7, are summarized in Table 11. 

An NMAE of 20.04 %, and an NMAESE of 18.34 % are obtained, as 
well as an NRMSE and an NRMSESE of 26.17 % and 23.87 %, respec
tively, thus demonstrating that the proposed methodology can be used 
to more accurately reconstruct the aggregated load profile in the hours 
where there is simultaneity between the REC consumption and the 
production of the power plants. This can primarily be attributed to the 
structure of the rescaling process, where the main factor that influences 
the transition from typical load profiles to real load curves is the 
monthly consumption over the "Red" energy consumption range, which 
describes the energy consumption during the central hours of the day. 

The error in calculating the shared energy on a monthly scale 
(MRAE) and on a yearly one (RAE) is equal to 8.31 % and 0.12 %, 
respectively, thus demonstrating that the reconstructed profile is able to 
accurately estimate the shared energy on a monthly basis. The variation 
of the RAE evaluated for each month, used to evaluate the MRAE, is 
shown in Table 12. 

It can be observed that the model is better at estimating the shared 
energy, on a monthly basis, during the summer months, while it exhibits 
a higher relative error in the remaining seasons. This can primarily be 
attributed to the nature of the residential users in the considered case 
study. Indeed, in this specific case, it is evident that the electrical load 
profiles of the case study users are more dependent on consumption over 
the "Red" energy consumption range during summer months. This 

Fig. 17. (a) Comparison between the simulated and real monthly average electricity consumptions at the aggregate level, for the month of January; (b) comparison 
between the simulated and real monthly average electricity consumptions at the aggregate level, for the month of April; (c) comparison between the simulated and 
real monthly average electricity consumptions at the aggregate level, for the month of July; (d) comparison between the simulated and real monthly average 
electricity consumptions at the aggregate level, for the month of December. 

Table 11 
Validation metrics evaluated by comparing the 
simulated load profile with the real one.  

Parameter Value 

NMAE 20.04 % 
NMAESE 18.34 % 
NRSME 26.17 % 
NRSMESE 23.87 % 
MRAE 8.31 % 
RAE 0.12 %  
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dependence is less pronounced in the other seasons, with a few excep
tions, such as in April and May, where similar RAEs are obtained to the 
summer period. The similarity can be attributed to the proximity to the 
summer season, which indicates a transition toward a consumption 
pattern that is more closely connected to the "Red" energy consumption 
range. Finally, the relative error obtained when estimating the shared 
energy on an annual basis is equal to 0.12 %, and it is significantly lower 
than that of the MRAE. This may be because forecasting errors and de
viations between the simulated and real profiles may be offset over a 
prolonged period, such as a year. This means that negative discrepancies 
in certain periods could be balanced by positive discrepancies in other 
periods, thereby resulting in an overall lower relative error for the entire 
year. 

5. Discussion 

As mentioned in the introduction of this work, most of the previous 
works on load profiling rely on high temporal resolution data, enriched 
with additional information on appliances, number of occupants, their 
characteristics and habits. In contrast, this research proposes a meth
odology that does not rely on such information-rich datasets, which are 
often difficult to obtain in real-world contexts. Furthermore, this 
research aims to apply load profiling techniques in the context of RECs, 
with the aim of obtaining more accurate estimates of their primary en
ergy parameter, namely the shared energy. This topic represents an 
emerging novelty in research, in contrast to the numerous load profiling 
methodologies that focus on reconstructing profiles with high temporal 
resolution for individual users. Additionally, the framework could be 
even used in countries where smart meter deployment has already 
reached a high penetration rate [21] to address the lack of publicly 
available and accessible data that could be used to improve the esti
mation of energy flows and, therefore, the REC economic assessments. 

The obtained results show that the proposed methodology is capable 
of reconstructing the electrical load profile of an aggregate from the 
monthly electrical consumption data of individual users. In general, the 
model could be trained using datasets from different geographical areas, 
and could be therefore able to learn information about typical load 
profiles and their relationship to electrical consumption in different ToU 
rates in a flexible manner. In the specific case study of this research, the 
LCL project dataset was used primarily due to the large amount of data 
that it contains [32]. Using a different dataset, such as a dataset from 
another country, would likely yield different results. This would start at 
the load pattern recognition stage, where it is likely that different 
electrical load shapes would be identified due to different user habits, 
distribution and use of appliances, or building characteristics. In addi
tion, the relationships between consumption ratios in different ToU rates 
and load shapes would likely be different, leading to different results in 
the classification phase. This could result in a different set of important 
variables for the classification process than those obtained for the spe
cific case study in this article. It is also worth noting that the 

performance of the classifier is highly dependent on the number of 
typical profiles to classify, their shapes and their relationship to the 
consumption values in the different ToU rates. It would be a challenge 
for the model to classify different load shapes based on very similar 
electrical consumption values. On the contrary, the classification pro
cess would be straightforward if different load shapes corresponded to 
significantly different electrical consumption values. In the first sce
nario, it might be necessary to implement a different classification 
model than the one used in this study. In the second scenario, the model 
used could potentially improve the classification performance due to the 
strong relationship that could emerge between the new shape of load 
profiles and ToU rates. 

The increase in the number of typological load profiles could also 
occur in the light of the electrification of consumption predicted for the 
coming years [41–44]. Indeed, the use of electric heating and electric 
vehicles could significantly change the electrical load curves of resi
dential users. For example, the introduction of electric vehicles could 
generate additional electricity demand during the night hours, effec
tively changing the shape of the load profile during this time window. 
However, the impact of these new technologies on the load profile of 
residential consumers is highly dependent on the characteristics of the 
installations (i.e., the presence of storage systems linked to photovoltaic 
plants) and the subsequent use of these technologies by consumers in 
relation to their habits, making it difficult to predict. In general, it is 
plausible to expect that the process of electrification of consumption 
would increase the number of typical load curves that would emerge 
during the load pattern recognition phase, subsequently causing the 
classifier to improve or worsen its performance according to the two 
previous scenarios. 

In real-world scenarios, in which hourly or sub-hourly data are 
usually not available, one of the most commonly used methods for 
estimating the shared energy generated by users in a REC is to use 
standard electrical load profiles, often based from statistical analyses at 
the national scale. These profiles, which represent the average behavior 
of a large number of users, often do not accurately represent users in 
more localized geographical areas. As RECs are local aggregations of 
users and therefore not geographically extensive, it is plausible to expect 
that the electrical load of users within a REC will generally be different 
(in some cases very different) from the standard load profiles. Conse
quently, the use of such profiles, which in most cases consist of one or 
two profiles per user category (e.g., residential, industrial), would lead 
to significant errors in the estimation of shared energy. In contrast, the 
proposed methodology uses typological profiles (as seen in the load 
pattern recognition phase) that are representative of a very limited 
number of users, specifically those directly belonging to the REC. 
Therefore, the typological profiles identified by the model are highly 
representative of the user behavior within the REC, as well as being 
more numerous than the standard profiles obtained through statistical 
analysis. The proposed methodology therefore further refines the esti
mation of shared energy by using typological load curves that are highly 
representative of users within the REC and more numerous than stan
dard profiles in different countries. 

In the existing literature, many models perform load profiling based 
on datasets with high temporal resolution and additional information, as 
previously stated. In addition, such models often focus on reconstructing 
the electrical load of an individual user rather than an aggregate. Among 
the reviewed works, the study conducted by Lazzeroni et al. reconstructs 
the hourly profile of individual users based on monthly electricity con
sumption data [31]. The purpose of this research is therefore similar to 
that of the present article, but with a different objective, namely to 
reconstruct the electrical load for a single user through similar data to 
those used in our research. The results they obtained, at the individual 
user level, resulted in a NMAE of approximately 26 %. The proposed 
methodology, at the aggregate level, achieves a lower NMAE of 20 % 
when analyzing the profiles for an entire year and 18 % during 
contemporaneity between the aggregate consumption and production of 

Table 12 
The normalized curve values used to calculate the weights for monthly con
sumption scaling.  

Parameter Month Value 

RAEm January 13.32 % 
February 12.83 % 
April 5.84 % 
May 1.05 % 
June 2.27 % 
July 5.62 % 
August 3.14 % 
September 8.48 % 
October 18.06 % 
November 11.38 % 
December 9.46 %  
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the power plants, demonstrating competitive performance at the 
aggregate level in terms of load profiling, 

6. Conclusions and further works 

In this paper, we present a comprehensive approach to address the 
lack of high-resolution consumption data for REC members during the 
“design” phase of an REC project, where a feasibility study and simu
lation are required to assess the feasibility of the project and to define 
the optimal design of the REC, that is, to propose a methodology that can 
be employed by potential aggregators to accurately assess the energy 
performance of an REC during the initial evaluation phase. We have 
developed a non-intrusive approach to reconstruct the hourly electrical 
load profiles of residential users in order to estimate the energy shared 
within RECs. Our approach involved extensive data preprocessing and 
the development of a load pattern recognition process to identify typical 
electrical load profiles. We then created a classification tool that is able 
to assign the shape of load profiles using predictive attributes extracted 
from monthly energy bills. We reconstructed the hourly electrical load 
profiles for an REC case study using a data-driven rescaling process that 
is based on evaluating the scaling coefficients associated with the most 
energy-intensive timeframe. Our analysis revealed an NMAE and an 
NRMSE between the simulated aggregate load profile and the real pro
file of approximately 20 % and 26 %, respectively. Moreover, we 
calculated the NMAE and the NRMSE during contemporaneity between 
the aggregate consumption and production of the power plants, and 
obtained values of about 18 % and 23 %. In addition, we assessed the 
ability of the method to estimate shared energy within an REC and ob
tained MRAE and RAE values of 8.31 % and 0.12 %, respectively. These 
results demonstrate the viability of our methodological framework, 
which can be used to estimate shared energy within RECs, even in those 
data-scarce scenarios that are encountered during the "design" phase of 
an REC project. Moving forward, our potential future research en
deavors will include leveraging on diverse datasets, both public and 
private, demonstrating the applicability of the proposed framework in 
different contexts, exploring alternative classification models and 
rescaling methodologies, and evaluating the errors that occur when 
estimating shared energy relative to the size and characteristics of the 
RECs. Furthermore, extending the proposed methodology to encompass 
user typologies other than the residential sector holds promise for 
further advancements in the field of RECs. 
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