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Spectral Ranking in Complex Networks using
Memristor Crossbars

Anil Korkmaz, Graduate Student Member, IEEE, Gianluca Zoppo, Francesco Marrone, Graduate Student
Member, IEEE, Su-in Yi, R. Stanley Williams, Senior Member, IEEE Fernando Corinto, Senior Member, IEEE

and Samuel Palermo, Senior Member, IEEE

Abstract—Various centrality measures have been proposed
to identify the influence of each node in a complex network.
Among the most popular ranking metrics, spectral measures
stand out from the crowd. They rely on the computation of the
dominant eigenvector of suitable matrices related to the graph:
EigenCentrality, PageRank, Hyperlink Induced Topic Search
(HITS) and Stochastic Approach for Link-Structure Analysis
(SALSA). The simplest algorithm used to solve this linear algebra
computation is the Power Method. It consists of multiple Matrix-
Vector Multiplications (MVMs) and a normalization step to
avoid divergent behaviours. In this work, we present an analog
circuit used to accelerate the Power Iteration algorithm including
current-mode termination for the memristor crossbars and a
normalization circuit. The normalization step together with the
feedback loop of the complete circuit ensure stability and con-
vergence of the dominant eigenvector. We implement a transistor
level peripheral circuitry around the memristor crossbar and take
non-idealities such as wire parasitics, source driver resistance
and finite memristor precision into account. We compute the
different spectral centralities to demonstrate the performance of
the system. We compare our results to the ones coming from the
conventional digital computers and observe significant energy
savings while maintaining a competitive accuracy.

Index Terms—Complex networks, Memristor crossbars, Nor-
malization circuit, Power Method, Spectral Centrality.

I. INTRODUCTION

In the past few decades, complex networks theory has
attracted considerable attention in numerous real systems
applications [1]. These models recast units as nodes of a
graph and interactions as connecting edges. Depending on the
topological structure of the system, each node has a distinct
influence in the diffusion of the information within the graph.
For instance, the identification of the most influential nodes
within traffic networks can be used as an important reference
for improving traffic flow.

Various centrality measures have been proposed to identify
the influence of each node based on their number of neigh-
bors’ distributions. Among the most popular ranking metrics,
spectral measures stand out from the crowd: EigenCentrality,
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PageRank, Hypertext Induced Topic Selection (HITS) and
Stochastic Approach for Link-Structure Analysis (SALSA).
These centrality measures evaluate nodes’ importance by
computing the dominant eigenvector of suitable matrices as-
sociated to the graph using the Power (Iteration) Method.
This algorithms has a polynomial complexity that depends on
the matrix size and relies on simple multiple Matrix-Vector
Multiplications (MVMs) [2].

Current von-Neumann architectures shuttle back and forth
massive amounts of data between memory and processing
units requiring enormous computing hardware resources and
large power consumption during the process. Analog circuits
based on memristor crossbars are promising platforms capable
of highly efficient parallel computations that can be used
to accelerate linear algebra operations. The time complexity
is independent of the matrix size [3] and computations are
performed by exploiting Kirchhoff’s and Ohm’s circuit laws.
Recently, circuits that solve the principal eigenvector’s prob-
lem have been demonstrated to be more energy efficient com-
pared to conventional computers [3]–[5]. In [3], the solution is
restricted by the knowledge of the corresponding eigenvalue
and suffers from high op-amp parameters. In [4], two different
architectures are offered for the same purpose. The open-loop
structure which can be used to perform the Power Iteration
algorithm requires a round-trip between analog and digital
domains for each iteration. The feedback structure suffers
from high op-amp parameter requirements and dependency on
matrix condition number. Moreover, this circuit can only be
used when computing PageRanks or Markov Chains’ principal
eigenvector.

The aim of this work is to present and analyze a memristor-
based computing system that accelerates the computation of
spectral centrality measures by implementing a completely
analog hardware version of the Power Method. This work takes
[5] as a reference and removes extra circuitry that is limiting
energy efficiency. In addition, it also provides a deep analysis
of the circuit non-idealities associated with the system. The
theoretical background of complex networks and centrality
measures are outlined in Section II. Section III describes the
current method used to find dominant eigenvectors. The circuit
level implementation of the Power Method using memristor
crossbars is presented in Section IV. The system performance
is evaluated in Section V. Section VI concludes the paper.



Fig. 1. (Left) Some most common centrality measures exemplified in a small network of 10 nodes. The size of each vertex is proportional to the ranking
values provided by the different algorithms. Colors show the influence that each node has in the network. These values are found as components of the
dominant eigenvector. The first row shows the non-stochastic spectral centrality measures (EigenCentrality and HITS) and the second row their stochastic
counterpart (PageRank and SALSA) that rely on a discrete random walk on the graph. (Right) The block diagram shows the different steps required by the
Power Method to compute the dominant eigenvector of a matrix. Starting from an initial condition, the system evaluates after each MVM and normalization
a stopping criterion. If the difference between the output of two successive iterations is greater than a tolerance then the process continues, otherwise it stops
and stores the data.

II. SPECTRAL CENTRALITY MEASURES

Traditionally, graph theory gives the mathematical founda-
tion for topologically characterizing complex networks, i.e.
mathematical structures used to model pairwise relations be-
tween entities. A graph consists in a set of vertices/nodes and
a set of lines/edges that connect them. The graph may be
undirected whenever there is no distinction between the two
vertices associated with each edge, or directed if there is a
specific direction between the two nodes. This introduces the
necessity of discriminating between two types of links adjacent
to a node: incoming and outgoing links.

Drawing a graph is certainly a good start to represent it.
However, when the number of nodes and edges is large, the
plot may become useless. An alternative representation of
a complex network can be attained by using the adjacency
matrix A ∈ RN×N where N is the number of nodes. Ai j is
equal to 1, if nodes i and j are connected, 0 if they are not. If
the network is undirected, the adjacency matrix is symmetric.
Otherwise, the matrix is asymmetric.

Finding important nodes is of great theoretical and practical
interest for many applications. One common assumption about
important nodes is that they are crucial for the quick diffusion
of the information in the network. Thus, if one wants to spread
information quickly, it is necessary to pass that information
to a few important nodes. For example, influencers in social
networks are important nodes used to diffuse information.
Similarly, if one removes just a few important nodes from a
network like an essential protein in a biological system, then
the whole system may collapse.

The term centrality is a measure of a network that char-
acterizes the importance of nodes and a brief overview is
given in Table I. Among the most common measures, spectral
centrality stands from the crowd [1]. The computation reduces

to determining the dominant eigenvector of suitable matrices
that describe the connectivity of the given complex network.
Since the computation can be extremely demanding in real-
world large scale networks, various approaches have been
proposed to fast compute centrality values and approximate the
solution. Some of them make use of aggregation techniques
that exploit the inherent network’s structure and the well-
known Power Iteration method to break down the problem
into subproblems that are related to the original one [6], [7].

A. Eigenvector Centrality

Eigenvector centrality (or EigenCentrality) states that the
importance of a node should be determined by the number and
importance of its neighbors (i.e., the degree of the node). Let
us consider an undirected graph (i.e. A = AT ) and consider
the vector x whose entries xi represent the centrality of a
node. This ranking metric assumes that each xi is proportional
to the sum of the neighbors’ centralities x j. This can be
mathematically formalized as follows:

xi =
1

λmax
∑

j: j→i
x j =

1
λmax

∑
j

Ai jx j (1)

or in matrix form:
x =

1
λmax

Ax (2)

where λmax is the dominant eigenvalue of the matrix A and
x is its associated column eigenvector. This measure can also
be generalized to the case of a directed graph considering the
dominant eigenvector of both matrices A and AT .

B. PageRank

PageRank considers a random walk on the graph and assigns
a score proportional to the probability of being on each single



Table I: Spectral Measures and their applications.

Spectral Centrality Properties Matrix Equation

EigenCentrality It takes into consideration the number of connections of each vertex and the
importance score of their neighbors. x = 1

λmax
Ax

PageRank It can be interpreted as the probability that a random walker lands on each
node after taking a large amount of random steps. z = Pz

HITS Given a specified topic, it ranks nodes in two different classes: hubs and
authorities based on the incoming and outgoing links of each node.

a = c1AT Aa
h = c2AAT h

SALSA It is the combination of both PageRank and HITS algorithms.
as = d1WT

c Wras

hs = d2WrWT
c hs

node after a large amount of moves [8]. Let kout
i = ∑

N
j=1 Ai j

be the number of outgoing links of the i-th node. A random
walker at page i can jump with probability

Pi j =

{
α

Ai j
kout

i
+(1−α) 1

N if kout
i ̸= 0

1
N if kout

i = 0
(3)

to each single node j. The uniform probability Pi j =
1
N is used

in the case of nodes with no outlinks. This adjustment enables
the transition matrix P to be a stochastic matrix: all non-
negative entries with columns sums equal to 1. The coefficient
α is used to make nodes accessible from all other nodes.
The PageRank vector z is the solution of the following linear
system

zi = ∑
j

Pi jz j ∀i = 1, . . . ,N (4)

or in matrix form:

z = Pz. (5)

It can be proved that stochastic matrices have a dominant
eigenvalue λmax equal to 1 and the associated eigenvector cor-
responds with the stationary distribution of a regular Markov
Chain [4], [8].

C. Hypertext Induced Topic Selection

The HITS algorithm was developed by Kleinberg [9], who
conjectured that web pages have a dual role: they provide
information on a certain subject and they are used to link to
other pages that give information on that subject. If a web
page provides reliable information on a given topic, then it
is called an authority. Hub pages link to authorities of that
topic. A page is considered to be more authoritative if it is
referenced by many hub pages that are relevant to a search
query.

Authority and hub score vectors a and h can be interpreted
as the dominant eigenvectors of the authority matrix AT A and
hub matrix AAT respectively:

a = c1AT Aa h = c2AAT h (6)

where c1,c2 are normalizing constants.

D. Stochastic Approach for Link-Structure Analysis

The SALSA algorithm was developed by Lempel and
Moran, who combined the random walk idea of PageRank
with the hub/authority classification of web pages [10].

Let Wr be the matrix generated from the adjacency matrix
A by dividing each non-zero entry by its row sum. Let Wc be
generated by dividing each non-zero entry of A by its column
sum. By ignoring rows and columns whose sum is equal
to zero we can build the stochastic hub matrix WrWT

c and
the stochastic authority matrix WT

c Wr. The stochastic version
of authority and hub scores as and hs can be interpreted as
the dominant eigenvectors of the stochastic authority and hub
matrices respectively:

as = d1WT
c Wras hs = d2WrWT

c hs (7)

where d1,d2 are normalizing constants.

III. ANALOG IMPLEMENTATION OF THE POWER METHOD

Conventionally, the Power Method has been the preferred
approach for computing the dominant eigenvector of a generic
matrix C∈RN×N . This iterative algorithm starts with an initial
condition vector x0 ∈ RN and recursively performs a MVM
between the matrix C and the current vector xk until a stopping
criterion is satisfied:

x =
1

λmax
Cx ⇒

{
xk+1 = ηCxk

x0
(8)

where η is a normalizing constant and the matrix C is constant
for each iteration. To prevent underflow/overflow, the Power
Method normalizes the products after each MVM by using a
suitable vector norm.

The convergence of the algorithm to the unique dominant
eigenvector is guaranteed if C satisfies suitable conditions pro-
vided by the Perron-Frobenius theorem [11], [12]. Moreover,
under these assumptions, it can be proved that the dominant
eigenvector’s components are all positive.

Memristor crossbars have proven their potential to solve
MVMs efficiently using the fundamental laws of circuit theory
[18]–[23]. For each column k = 1, . . . ,N, the system computes
by means of the Ohm’s Law the physical multiplication be-
tween the applied voltage v j and each memristor’s conductance
G jk, ∀ j = 1, . . . ,N. The resulting currents are then summed
according to the Kirchhoff’s Current Law, i.e. ik = ∑ j G jkv j.
For notation, the crossbar performs the product between GT



(a)

(b)

(c)

Fig. 2. (a) Analog Power Iteration solver block diagram. Each cell consist of 1T1R. A 100×100 memristor crossbar was used in simulations. RL: Row Line,
CL: Column Line, and GL: Gate Line. (b) Power Method iterative process algorithm. Numbers highlighted in red lines match with the different enumerated
blocks in the diagram. (c) Crossbar and memristor parameters of this work. A high resistance/low conductance range was chosen for the memristors in this
work which is a good compromise between medium resistance TaOx,H f O2 memristors (typically 1−10kΩ) [13]–[15] and very high resistance Ag : a−Si
memristors (26−325MΩ) [16], [17] with the similar ON/OFF ratio. The memristor precison is chosen to be 4-bits to add more practicality to the simulations
even though it is demonstrated that both medium and very high resistance memristors can be programmed to > 6− bits precision [14], [17]. Interconnect
resistance value was obtained using the parasitic extraction tool of the given process technology.

and the column vector v. In the current literature, this opera-
tion may also be referred to as Vector-Matrix Multiplication
(VMM), i.e. vT G. Unless otherwise stated, this work makes
use of the MVM notation: i = GT v.

Let us assume we want to compute the MVM defined by
i = Cv. The matrix C is converted into the finite conductance
range of memristors using the linear transformation described
in [4], [18], [20]:

γ =
Gon −Go f f

Amax −Amin

δ = Gon − γAmax

G = γCT +δ1N1T
N

(9)

where Gon and Go f f are the maximum and the minimum
memristor conductances, respectively and 1N is the vector
of all ones. This linear transformation is performed before
programming each memristor’s conductance. Once the output
vector from the crossbar ĩ = GT v is measured, the result of
the original MVM can be computed by means of the following
inverse operations:

i =
1
γ

[
ĩ−

(
δ

N

∑
j=1

v j

)
1N

]
(10)

Thus, after the analog to digital conversion, the output of the
MVM can be recovered using Eq. (10) in a digital system.

When dealing with an iterative process such as the one
defined by the the Power Method, each iteration requires a
recovering step and a subsequent normalization. Performing
Eq. (10) after each iteration is a time consuming procedure
that requires the knowledge of the sum of the input vector
∑

N
j=1 v j. However, this work considers matrices that obey

Perron-Frobenius conditions guaranteeing that the resulting
output vector xk+1 = i of the MVM yields ik > 0 ∀k = 1, . . . ,N
whenever the input vector v = xk has all positive components.
Since the output of the system is then fed back as input to the
crossbar due to the iterative process, we have that:

N

∑
j=1

v j =
N

∑
j=1

|v j|= ∥v∥1 (11)

for each input vector. If a 1−norm is used for the normaliza-
tion step, it follows that

N

∑
j=1

v j = ∥v∥1 = 1. (12)

As a consequence, Eq. (10) can be simplified in

i =
1
γ

(
ĩ−δ1N

)
(13)



Since after each iteration, the output defined by the iterative
process in system (8) is normalized, it follows that:

i
∥i∥1

=

1
γ

(
ĩ−δ1N

)
∥ 1

γ

(
ĩ−δ1N

)
∥1

=

= �
�1
γ

(
ĩ−δ1N

)
�
�1
γ
∥
(
ĩ−δ1N

)
∥1

=

=

(
ĩ−δ1N

)
∥
(
ĩ−δ1N

)
∥1

thus, the final recovering step after each MVM simply results
in the systematic simplified shift

i = ĩ−δ1N . (14)

As can be inferred from Eq. (14), if δ is relatively small, then
the eigenvectors of system (8) and

ik+1 = ηGT vk = η(C+δ1N1T
N)vk

vk+1 =
ik+1

∥ik+1∥
v0 = x0

(15)

are almost identical. However the correct matching can be
found if the recovering step defined in Eq. (14) is performed
after each iteration. To avoid the use of a digital system to
perform this operation, we added an extra row to the matrix
G and perform the augmented MVM:

i = (GT v−δ1N) =
[
GT ,δ1N

][ v
−1

]
= G̃T ṽ (16)

where ṽ ∈ RN+1, G̃ ∈ RN+1,N . Here, the multiplicative factor
1
γ

is omitted as previously highlighted in Eq. (14). Thus, by
considering the augmented MVM, the output of the system
after normalization does not need a recovering step.

This work presents a circuit architecture used to accelerate
the Power Method algorithm for solving the MVM operation
defined in Eq. (16) and the subsequent normalization of the
results. In a recent contribution [5], a sample and hold was
used to be able to read and observe each iterated output of the
MVM after the normalization step. Here, the circuit depicted in
Fig. 2(a) removes the sample and hold block and the clocking
circuitry, resulting in a lower circuit complexity, smaller area
and less power consumption. The two circuits serve different
purposes and can be used for different applications. The former
circuit can be used whenever the evolution of the output
vector is of particular interest for the user. For example,
this system can be exploited to either predict the next state
distribution vector of a discrete Markov Chain or to iteratively
compute its stationary distribution [4]. Alternatively, Power
Iteration Clustering requires knowing the evolution of the
intermediate vectors obtained by the successive MVMs of the
Power Method for solving problems of community detection
and clustering [24], [25]. Whenever the evolution of the system
is not necessary, one can compute the dominant eigenvector of
a given matrix that satisfies the Perron-Frobenius conditions
using the system depicted in Fig. 2(a). This work focuses
on the computation of spectral centrality measures using

the present architecture, which provides a faster and power
efficient solution to the eigenvector problem.

Some of the real-world problems have extensively large
number of pages/nodes to rank. To deal with this problem,
in [26] a large real-world dataset [27] is divided into sub-
networks/sub-blocks to reduce the computation complexity.
Then, individual local PageRanks for each sub-block are
computed. In a second step, these associated local scores are
weighted by the importance of the corresponding blocks. The
new local and weighted sub-block rankings are used as a
starting vector for the standard PageRank algorithm decreasing
the number of iterations significantly. For very large datasets,
the proposed circuit can be used to accelerate local and
block PageRank steps of the overall algorithm given in [26].
Subsequently, the standard PageRank algorithm can still run in
the digital domain after collecting the results from sub-blocks
and use them as the initial condition of the iterative process.

Whenever the complex network changes its properties, the
proposed system can handle this in two ways: 1) if there
are new links appearing or disappearing, we can re-program
the memristors to reflect the new topology 2) if a new node
is appearing (or disappearing) we can either turn ON (or
OFF) column transistor gates in 1T1R cells, or re-perform
the BlockRank algorithm to re-compute the new sub-blocks
to map into the crossbar.

IV. CIRCUIT DESCRIPTION

In this section, the overall analog Power Method solver
circuit architecture will be discussed. The memristor crossbar
performs the core vector matrix multiplication operation. The
main ”acceleration” and thus energy efficiency advantage of
this work mainly comes from the crossbar block. A complete
system working together with this crossbar is required to
implement the Power Method algorithm. In our previous work
[4], we have already defined a system which is a hybrid
version of the analog and digital systems that can implement
the required iterative process. However, the data transfer and
conversion between the two systems can decrease the energy
efficiency, especially if the number of iterations is high. The
accuracy and precision of the system is also affected and
reduced due to quantization process of the ADCs which is also
the main energy bottleneck for many in-memory computing
systems [28]–[31]. To prevent that round trip between the
analog and digital systems, we present a completely analog
circuit implementation of the Power Method algorithm. This
circuit has an overall feedback loop to calculate successive
iterations until the convergence is reached.

A. Multiplexers and Crossbar

The first block of the system is composed by Multiplex-
ers (MUXes). The control signal of the MUXes, INIT , is
responsible for the initialization of the system. When INIT
is high, the initial voltages are applied to the crossbar. The
applications that are going to be presented in the next section
use the same amplitude voltage inputs for all crossbar rows.
Thus, Vinitial,1, . . . ,Vinitial,N can be all tied together to the same
DC input bias voltage. This also reduces the circuit complexity



Fig. 3. Multiplexer block diagram on the left and a single multiplexer with
the corresponding signal flow. Transmission gates are used as switches. When
INIT signal goes low, iterations start until the convergence is reached.

significantly and saves extra power due to the very simple
input peripheral circuitry requirement. After the INIT signal
goes low, which can easily be controlled by an external signal
provided to the chip pins, the circuit in Fig. 2(a) operates
within the feedback loop and self iteration proceeds until
the convergence is reached. The k−th output of the previous
iteration is connected to the k−th input row of the crossbar for
the next iteration. The transmission gates are used as switches
in the analog multiplexer.

The second block of the architecture is the memristor cross-
bar. The details on the memristors and device programming
can be found in our previous and other relevant works [4],
[14], [32], [33]. For the inference phase, the selection of the
input voltages is important and needs to be done according
to the theory provided in Section II. The input vector should
be a stochastic vector, i.e. all non-negative components that
sum to 1. Let us consider a 100× 100 crossbar. If a 1V is
selected to represent the summation of all inputs, then 10mV
is required to be provided to each input. However, 10mV is
a low amplitude input voltage and this signal level is not
able to provide a good signal-to-noise ratio compared to noise
generated in the system. The other disadvantage of using a
very low amplitude input signal is that the system becomes
more susceptible to offset voltages arising from op-amps in
the current-mode termination (next) block. Because of these
reasons, we have selected a 100mV input voltage for each
row. This introduces a scaling factor of 10 for all the elements
related to the system, including the correction scheme and the
TIA feedback resistors. From Eq. (16), δ is required to be
mapped into the last row memristors’ conductance. However,
to compensate the larger currents resulting from the 10× input
voltage scaling, 10× the conductance value is mapped for
the last row, which also results in larger currents. The bias
voltage is required to be applied as a correction voltage equal
to the sum of the input vector components, which sum to
10V after the up-scaling (i.e. 10 × 1V ). It is not possible
to apply −10V input voltage for the last row due to the
restrictions from the 1V process technology considered here.
Moreover, the generation of a negative voltage is also a hard
task in chip design and is not desired. For these reasons, a
correction voltage is scaled down to the [0,Vre f ] range. As in
the previous case of scaling of input voltages, correction bias
voltage scaling also needs to be compensated using memristors

in the last row. The summation of the input voltages equals
10V (= 100mV ×100) in our case, but instead of Vc =−10V ,
Vc =Vre f −250mV = 350mV in this work. To compensate that
−10V to −0.25V change, 40× higher conductance value needs
to be mapped for the last row’s memristor.

The conductance range of the memristors can be selected to
cover this 40× higher conductance for the last row. For exam-
ple, if the systematic shift given by the δ parameter is equal
to Go f f , then Gon is required to be at least 40×Go f f , which
implies an ON/OFF ratio of at least 40. If the ON/OFF
ratio of the memristors is not able to satisfy this criteria, then
different material memristors with higher conductance range
can be used for the last row. As an alternative way, resistors
can be used for the correction row. However, in this case the
bias voltage of the last row is required to be programmable to
be able to map different δ values and to compensate process
variability of resistors, which generally implies the usage of a
DAC for programmability with increased circuit complexity.
Regardless of which matrix is mapped or which application
is in use, the summation of the all input voltages will always
be equal to the same voltage because of the normalizer, see
Eq. (12). Thus, the bias voltage applied to the last row is not
going to change for different applications if the δ parameter
is the same:

ItotRF = ∑
i

Vin,i = δVc. (17)

B. Current-Mode Termination

In many papers related to memristor crossbars, the con-
ventional method to terminate the crossbar is the use of
transimpedance (TIA) or sense amplifiers [19], [34], [35]. This
method is convenient for applications that involve both analog
and digital systems because output currents are converted
directly to voltages after crossbars and can be read by ADCs
afterwards. The TIAs are also able to set crossbar output
nodes to the reference voltage for accurate computation and
ensure that the voltage across each memristor is Vin −Vre f
between its top and bottom electrodes. However, our system
does not have an ADC connection right after the crossbar and
most importantly, the next block normalizer requires currents
to operate rather than voltages. To pass the crossbar output
currents to the next stage and to set the crossbar output nodes
to the reference voltage, a current-mode termination circuitry
employing a ”gain boosted” topology is added. As depicted in
Fig. 4(a), a two-stage amplifier with an output PMOS transistor
M0 stage is used. The M0 transistor shows the characteristics
of a common drain amplifier and is non-inverting. It forms a
negative feedback with the negative terminal of the op-amp
connected to its source node to ensure stability, see Fig. 4(b).
The output current from the crossbar sets the VGS value of
M0. If the crossbar output current is excessively high, that can
result in a large VGS value, which decreases the VDS voltage of
the op-amp’s output stage NMOS M7. This leads to a gain loss
for the op-amp and thus introduces gain errors for the reference
voltage at the output of the crossbar. To prevent this, a large
PMOS transistor 30u/100n to produce low VGS voltages even
with high currents is used. The other advantage of using a
PMOS transistor instead of an NMOS is that crossbar sees



(a)

(b)

Fig. 4. a) The schematic of the op-amp used in this work. A 62dB gain
with 1.1GHz gain-bandwidth product is obtained while consuming 149µW
power. RC compensation was added to increase the phase margin to 80◦.
b) The current-mode termination block schematic. The ro is the low output
resistance seen from the crossbar and is approximately equal to 1/gm. The
VDS voltage of the M7 transistor is equal to Vre f −VGS,M0

a very low impedance output via the source terminal of M0,
which approximately has 1/gm output resistance of ro. The use
of a large W/L ratio transistor also increases the gm value, thus,
providing even lower output resistance. A two-stage amplifier
employing Miller OTA topology is implemented. A 62dB
gain with 1.1GHz gain-bandwidth product is obtained while
consuming 149µW power.

C. Normalizer

The current-mode termination block passes the current to
the next block, normalizer. The normalization is an impor-
tant step in the Power Method algorithm. It ensures that
the algorithm converges to the correct eigenvector of the
matrix and prevents divergence. To be able to implement the
normalization step, the original Gilbert normalizer [36] and
its modified CMOS version [37] are referenced. The Gilbert
normalizer makes use of the logarithmic VBE relationship
between the BJT transistors Q1 and Q2. The voltage difference
at the emitter node for each Q1 −Q2 pair can be calculated
from:

VBE2 −VBE1 =V =
kT
q

ln
IxN

Is
− kT

q
ln

IwN

Is
=

kT
q

ln
IxN

IwN
(18)

(a)

(b)

Fig. 5. a) The original Gilbert normalizer cell. It makes use of the exponential
relationship between the BJT transistor pairs. b) The CMOS version of the
Gilbert normalizer cell. The transistor pairs operate in the sub-threshold
region. The summation of the normalized currents is controlled by the Vb
and R and is equal to Itot = Vb/R.

This voltage difference at the emitter is the same for all
pairs, thus forcing the relationship (ratio) between the currents
I1 and I2 to be the same for all pairs:

Ix1

Iw1
=

Ix2

Iw2
=

IxN

IwN
. (19)

Since the emitter nodes of all pairs Q1s and Q2s are
connected together, we can find the following relationship

IxN

∑ Ix
=

IwN

∑ Iw
. (20)

Even though the sub-threshold region current equations
of the MOSFET transistors become more complicated with
advanced technology nodes, the fundamental equations still
hold. The CMOS transistors operating in the sub-threshold
region are used to mimic the Gilbert normalizer. The sub-
threshold equations of BJT and CMOS transistors are

IC = IS · exp
(

VBE

VT

)
, (21)

ID = I0 · exp
(

VGS

VT

)
. (22)

Thus, the normalization relationship given in Eq. (20) can
be reproduced using CMOS transistors as shown in Fig. 5(b):

Io,N

Io,tot
=

In,N

Itot
. (23)



Any change in Eq. (22) resulting from the use of advanced
nodes will be introduced as an error at the output due to
the inaccurate normalization. The transistor Mb together with
the op-amp O1 form a current reference circuit to set the
summation of all normalized currents. This total current is
equal to Itot =Vb/R. In this work, we set the Itot to be 100µA.
Correction bias voltage is selected based on the summation of
the crossbar input voltages (100mV ×100= 10V ). When Itot is
selected to be 100µA together with the 100kΩ TIA feedback
resistors, then the summation of all crossbar input voltages
stays at 10V even after the normalization step and assures
an accurate correction with Vc. It is also a good practice to
make Vb programmable to compensate any unforeseen non-
idealities together with process variations that may come with
the fabrication.

All the source nodes of the M2 transistors are tied together
and connected to the drain of the Mk transistor. The op-amp O2
is connected using the same topology given in current-mode
termination, but this time with an NFET Mk. The op-amp sets
the Mk drain node to Vs and assures a sufficient VDS voltage
over the Mb transistor due to the relationship given in Eq.
(18). The main reason to select an NFET for Mk instead of a
PFET is to overcome voltage headroom issues. Some of the
crossbar columns can output a high current, which generates a
high VGS voltage for the PFET and reduces the overall voltage
headroom. The use of an NFET for Mk only adds a VDS voltage
instead of VGS and thus can be lower amplitude. The positive
terminal of the op-amp O2 connected to the Mk drain ensures
negative feedback, since the NFET output stage is an inverting
common source amplifier.

One of the possible issues with this approach is limited volt-
age headroom, see Fig. 6, due to the use of an advanced node
with a low power supply for power efficiency. If the headroom
is calculated starting from the Vs node, the total voltage drop
between the normalizer and current-mode termination is equal
to:

0 <VDS,Mk +VGS,M2 +VDS,M0 <Vre f . (24)

The reference voltage Vre f is set to be 0.6V in this work,
which is a good compromise, almost in the middle of the
supply range. In that way, TIA outputs and crossbar inputs
can use a wide range from 0.6−1V . To satisfy the constraint
given in Eq. (24), low threshold CMOS transistors were used.
If the path with normalizer bias transistor Vb is used, then the
overall voltage headroom becomes:

0 <Vb +VDS,Mb +VGS,M1 +VDS,M0 <Vre f . (25)

Using low threshold devices solved headroom issues for this
work. If issues arise from the limited headroom, a different and
older process technology with high supply voltage or using
I/O transistors can relax the headroom issues at the cost of
increased power consumption.

It is also a good practice to use high resistance/low conduc-
tance memristors in the crossbar, since normalizer transistors
operate in the sub-threshold region and smaller currents pro-
vide lower VGS voltages. The output current of each crossbar
column is matrix dependent, and for applications that have
distinct outputs (very low and very high amplitudes), some of

Fig. 6. The demonstration of the headroom situation arising from the
combination of all blocks. The two paths emerging from normalizer block
were evaluated separately. The VDS voltage over M0 transistor is equal to
Vre f - VDS,Mk +VGS,M2 . The W/L ratio of the M0, M1 and M2 transistors are
selected to be large to decrease the VGS to satify the headroom requirement
and to keep them in the sub-threshold region.

the outputs are expected to flow high current. In this case, M2
transistors can get out of the sub-threshold region and not work
as intended, which results in an extra error for the final results.
In this work, very large W/L ratio transistors (30u/100n) were
used in the normalizer block to assure sub-threshold region
operation. The downside of having large transistors is that
large parasitic capacitances decrease the stability of the overall
feedback loop.

The drains of the M1 transistors in the normalizer block
are connected to TIAs. Transimpedance amplifiers convert
the normalized currents back to voltage, since the memristor
crossbar requires voltage inputs. The same op-amp in Fig. 4(a)
is used. As previously mentioned, TIA feedback resistor is
selected in accordance with total normalized current flowing
through Mb, Itot . The multiplication between Itot and R f sets
the summation of all input voltages for the correction step. The
reference voltage of the TIAs are the same with the current-
mode termination block, that is 0.6V . Since the direction of
the normalized currents are from TIA to normalizer block,
this generates a positive polarity voltage at the output of the
TIA that is between Vre f and VDD. This sets the input range
of the memristor crossbar as well. The output swing of the
TIA is practically 0.6−0.9V , due the VDS voltage drop of the
PFET M6 in Fig. 4(a). This is an advantageous property for
the memristors in the crossbar because the linear operation
range of the memristors is generally less than 0.3V [13], [38],
[39]. It is a good practice to keep voltage difference between
memristor electrodes less than the switching threshold voltage
to ensure linearity. The TIA block completes the feedback
loop. Each TIA is then connected to the input ”0” of the each
multiplexers in Fig. 3.
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Fig. 7. (a) The normwise relative error at the output was evaluated using different memristor precision for the different matrices, stochastic and non-stochastic.
For the memristor precision five bits and more, accuracy does not change significantly. For four bits and less, memristor precision becomes the dominant error
source. (b) Different wire capacitances for each cell were simulated for a single crossbar. Two randomly selected output waveforms were used (29th and 98th
outputs). If the accuracy is important for an application, wide wires with higher capacitance can be used to decrease the effects of wire resistances but with
lower bandwidth. However, if above GHz operation is desired, wire capacitance must be less than a few femtofarads. (c) The effect of the wire resistance on
output accuracy. The output accuracy exponentially decreases with higher wire resistance after 1 Ω for both type of matrices.

D. Accuracy Analysis and Non-Idealities

There are circuit non-idealities that affect the overall ac-
curacy and performance of the system such as interconnect
resistances and capacitances, source driver resistances, finite
gain and bandwidth op-amps, transistor parasitic capacitances,
finite memristor precision/states (programming noise), mem-
ristor linearity and noise. The parasitic capacitances arising
from the circuit implementation mainly affect the stability and
settling time of the system by generating undesired poles. In
this subsection, the effects of non-idealities and systematic
errors are analyzed using a 100 × 100 crossbar. Each error
was considered separately and tested with the absence of other
errors.

One of the systematic errors in the system is finite gain
op-amps, which introduces a gain error to the architecture
and reduces the accuracy. The system has been tested using
op-amps with different open-loop gains ranging from 40dB
to 90dB and without any other systematic error, a slight
accuracy improvement has been observed, 1.1% output error
to 0.5%, respectively. The source driver resistance that drives
initial voltages is equal for each crossbar row and the parallel
memristor resistance seen by the source driver will also be
similar for each row because of the large crossbar size. Thus,
the errors arising from the source driver resistance become
insignificant. Completely removing the source driver resistance
errors requires a buffer between multiplexers and the crossbar.
However, our simulation data showed very little improvement
resulted from buffers, which were not implemented. The
system was simulated with and without any buffer, using a
100Ω and 1kΩ source driver resistance and accuracies of 0.5,
0.52 and 0.53 were obtained, respectively. The source driver
resistance is only affected by the initial voltages and thus,
is irrelevant within the iterations after the feedback loop is
established with the INIT signal.

The precision levels of the memristors directly affect the
output accuracy [4]. Memristors with higher precision provide
more accurate results. Here we tested our system using mem-
ristors with different numbers of available states (precision).

Let Nb be the number of preferred bit precision, then the
programming error is calculated as

σ =
Gon −Go f f

6(2Nb −1)
(26)

and added to the ideal conductance values of the memristors.
The coefficient 6 ensures the separation between the distinct
conductance levels (±3σ ).

Let x̃ be the measured output vector and x the output
provided by a digital software, Fig. 7(a) depicts the total
normwise relative error

Er =
∥x− x̃∥
∥x∥

(27)

as a function of the different memristor precision. As can be
seen, the error approximately halves with the increment of
the memristor precision by one bit. More interestingly, the
normwise relative error at the output is matrix dependent. The
use of a non-stochastic matrix with two-bit precision and a
stochastic matrix with the same memristor precision resulted
in different normwise relative errors, 5.97% and 14.26% in
Fig. 7(a). We also compared the importance score rankings
for each node in the system using two-bit memristors with a
non-stochastic matrix and impressively only the ranking of a
single node changed by six places in a 100 node network.

The only remaining errors are related to the interconnects,
which the IR drop effect will be less for the first row and
column and severe for the last row and column. A compre-
hensive study is performed for the interconnect resistance and
capacitance and their effect on accuracy and settling time in
this and previous related works [34], [40]–[42]. To see the wire
capacitance settling time effects resulting from the RC delay,
the crossbar was separated from the rest of the circuit and
tested with ideal peripheral circuitry. The different capacitance
values used ranged between Cw = 3,30 and 300 f F , where
Cw is the wire capacitance between two adjacent rows or
columns. Even with the unrealistically high Cw = 300 f F , two
randomly selected outputs of a 100 × 100 crossbar settled
within 15ns, see Fig. 7(b). Thus, the wire capacitance has no
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Fig. 8. (a) Noisy output waveforms obtained from the transient noise analysis. σnoise was measured to be 1.5mV .(b) The signal-to-noise ratio was calculated
using signal power and noise power for each output. The mean SNR is calculated to be 36dB using ENOB equation. (c) The random offset distribution of
the op-amp used in this work. The mean of ≈ 0mV and variance of σ = 0.62mV are obtained.

significant effect on sub-GHz operation. Then, the memristor
crossbar together with the rest of the Power Method solver was
simulated. Up to Cw = 3 f F , no stability issue was observed.
However, for the wire capacitances equal or higher than 10 f F ,
an excessive ringing was observed at the output. To stabilize
the system under high Cw conditions, a TIA compensation
capacitor value was increased, thus slowing down the overall
circuit with a longer settling time.

The IR drop resulting from wire resistances affects the
output accuracy. One of the reasons why this work selected
a 1− 10µS conductance range (or 100kΩ− 1MΩ resistance
range) was to minimize the effects of the wire resistances
[43]. As can be inferred from Fig. 7(c), with 10Ω of wire
resistance, the total error at the output exceeds 8%. If a
10−100µS conductance range was used, then the error arising
from a 1Ω wire resistance would have increased by an order
of magnitude. For these reasons, it is beneficial to use high
resistance memristors or decrease the wire resistance as much
as possible by using wider wires. Having wider wires will
result in a larger parasitic capacitance for each cell and RC
time constant of the crossbar. In addition, the stability of
the system should be analyzed. Based on the cell sizes from
[13], [19], a parasitic extraction resulted in Rw = 0.9Ω and
Cw = 3.2 f F per cell using lower level metal layers. The wire
resistance can be decreased more than an order of magnitude
by using higher level metal layers at the cost of higher layout
complexity.

The last non-ideality arising from the circuit implementation
is the thermal noise associated with memristors, resistors and
CMOS transistors in the system. A detailed noise analysis
can be found in [4]. The signal-to-noise was calculated for
a stochastic matrix mapped onto a 100× 100 crossbar using
transient noise analysis. Noisy waveforms can be found in
Fig. 8(a) for 100 outputs. The signal-to-noise ratio for each
output was calculated from the signal power divided by the
noise power, and results in a mean value of 36dB. The SNR
distribution for the outputs is in the histogram given in Fig.
8(b). The SNR can also be calculated by using the full-scale
range of the output swing (0.9− 0.6 = 0.3V ) divided by the
noise variance similar to ADCs [44] which results in 46dB
SNR. However, the first notation was used in this work.

The current for each memristor is obtained by the mul-
tiplication between the voltage across its electrodes and the
mapped conductance value. For an accurate calculation of the
MVM, this voltage needs to be precisely equal to Vin −Vre f .
However, there are several factors that cause Vre f to deviate
from its ideal value, especially related to the fabrication
processes. One of them is the random input offset for the
op-amps in the current-mode termination block. The offset
mainly arises from the mismatch and process variations of the
transistors. There are several ways to reduce the effects of the
random offset: 1) offline offset calibration, 2) implementation
of bigger devices, 3) use of an advanced technology node, 4)
lower overdrive voltage, VGS −Vthr, for the input transistors,
and 5) larger crossbar input voltage amplitude. The offsets
for each op-amp in the system can be modelled as random
samples from a gaussian distribution and will be different for
each column, which reduces the output accuracy.

To reduce the offset, large devices with low overdrive volt-
age are used for input pairs. The use of 28nm technology also
helped to obtain a lower offset. The random offset distribution
can be found in Fig. 8(c) for the op-amp given in Fig. 4(a).
After 100 runs in Cadence, the mean of ≈ 0mV and the
standard deviation of 0.6mV were measured and the resulting
distribution was (approximately) Gaussian. The offset is one
of the consequences of the mismatch and process variations
that can only been seen after chip fabrication or through Monte
Carlo simulations. So far, we have only discussed the offset
from the input pairs of the op-amps. However, mismatch and
process variations will degrade the system accuracy through
the mismatch in normalizer transistor pairs and through the
variation in op-amp gains. To analyze the effects of these non-
idealities, an analysis was performed in Cadence using Monte
Carlo simulations to determine the contribution to each block
from the mismatch and process variations. The variations
arising in each individual block were enabled separately, and
the output errors were 1.51% from the current-mode termina-
tion, 0.32% from the normalizer, and 1.14% from the TIAs
block. Based on these results, the normalizer block mismatch
had no significant contribution to the output errors and the
biggest contributor was the current-mode termination op-amps.
Then every mismatch and process variation was combined and
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Fig. 9. (a) and (d) Adjacency matrices representing the links between the 100 pages of the Email-EU-core and Higgs Twitter networks, respectively. Each
entry Ai j is blue if there is a connection between the two nodes i and j, white otherwise. (b) and (e) Transient behaviors of the feedback system converging
to the dominant eigenvector of the matrices. The former computes the PageRank of the first network whereas the latter the authorities of the second network.
(c) and (f) Comparison between the simulated importance scores provided by the system (in orange) and the correct output provided by MatLAB (in blue)
ranked from the most important to least important node.

enabled. The total normwise relative error at the output was
measured with a mean of 2.1% and standard deviation of 0.2%
for 100 runs in Cadence. It was also observed that the error
at the output linearly increased with a higher random offset in
the system.

V. CASE STUDY

In this section, two examples are illustrated in order to show
the system’s performance on different applications: PageRank
and HITS. The Cadence/Spectre software was used to simulate
the circuit and the measured output vector is denoted as x̃.
The overall output accuracy is computed in terms of the
normwise relative error between x̃ and x, and the ’true’ output,
x, provided by a digital software (i.e. MatLAB).

A. Email-EU-core network

The network was generated using anonymous email data
from a large European research institution [27]. A member
i is connected to another member j if i sent at least one
email to j. A high in-degree means the member receives a
large amount of e-mails and a high out-degree corresponds
to a member who sends plenty of e-mails. We are not only
interested in the number of people who are connected to the
different members but also on the importance of the people
to whom they are connected. As described in Section II, the

importance of a member can be specified as proportional
to the summation of importance of the immediate members
connected to him/her. The goal is to rank the members using
the PageRank algorithm. We used a subset of the Email-EU-
core network that contains 100 nodes and 1315 edges of the
biggest connected component of the original data.

We used a subset of the Higgs Twitter Dataset that contains
100 nodes and 1423 edges of the biggest connected component
of the original data. As described in Section II, HITS identifies
authorities and hubs for a given selected topic by assigning two
numbers to a page: an authority and a hub weight. The goal
is to extract users of high influence during this information
spreading process. Each output node corresponds to a different
Twitter user and the highest amplitude output signal is the most
influential account.

Performance Evaluation: The adjacency matrix of the
Email-Eu-core network, see Fig. 9(a), was mapped to the con-
ductance range given in Fig. 2(c) using four-bit precision mem-
ristors. All the non-idealities and systematic errors discussed
in Section IV are included in the circuit, including interconnect
resistance and capacitance, source driver resistance, finite gain
and bandwidth op-amps, random offset, mismatch and process
variations, and finite memristor precision. The resulting output
waveforms for the 100 node network can be found in Figure
9(b). To quantify the accuracy, a normwise relative error of



TABLE I
SUMMARY OF RESULTS AND PERFORMANCE COMPARISON

Solver for a 100× 100 Matrix Email-Eu-core
Network
(This Work)

Higgs Twitter
Dataset
(This Work)

Iterative Power
Method Solver

[16]

Haswell CPU
[39]

Google TPU
[39]

Time-to-solution* 25 ns 45 ns k** × 15 ns k × 7.69 ns k × 0.22 ns
Power 31.25 mW 31.25 mW 40 mW 145 W 40 W
Energy 0.78 nJ 1.41 nJ k × 0.6 nJ k × 1.11 µJ k × 8.8 nJ
Solutions/s/W 1.28 × 109 0.71 × 109 1.675 × 109 / k 0.89 × 106 / k 0.11 × 109 / k
Output Accuracy (% Error) 2.54 % 3.27 % 0.21 % 0.21 %

Output Bit Precision ≈ 6 bits ≈ 6 bits 8 bits 8 bits

* Time-to-solution metric for digital processors calculated from the number of operations required divided by TOPS/s
** k is the number of iterations to be performed using digital processors until the convergence is reached. The k parameter is equal to 7 for the Higgs Twitter
Dataset and 4 for the Email-EU-core Dataset

TABLE II
SUMMARY OF RESULTS AND PERFORMANCE COMPARISON

Solver for a 100× 100 Matrix Email-Eu-core
Network
(This Work)

Higgs Twitter
Dataset
(This Work)

Iterative Power
Method Solver

[5]

Haswell CPU
[45]

Google TPU
[45]

Time-to-solution* 25 ns 45 ns k** × 15 ns k × 7.69 ns k × 0.22 ns
Power 31.25 mW 31.25 mW 40 mW 145 W 40 W
Energy 0.78 nJ 1.41 nJ k × 0.6 nJ k × 1.11 µJ k × 8.8 nJ
Solutions/s/W 1.28 × 109 0.71 × 109 1.67 × 109 / k 0.89 × 106 / k 0.11 × 109 / k
Output Accuracy (% Error) 2.54 % 3.27 % 2.08 % 0.21 % 0.21 %

Output Bit Precision ≈ 6 bits ≈ 6 bits ≈ 6 bits 8 bits 8 bits

* Time-to-solution metric for digital processors calculated from the number of operations required divided by TOPS/s
** k is the number of iterations to be performed using digital processors until the convergence is reached. The k parameter is equal to 7 for the Higgs Twitter
Dataset and 4 for the Email-EU-core Dataset

2.54% was obtained. The accuracy parameter is tightly tied
to individual memristor precision in the crossbar. The outputs
settled within 0.1% error of their final value in 25ns.

The use of high resistance memristors reduces the power
consumption of the crossbar. The 200 op-amps (Current-mode
termination and TIA blocks) consumed 96% of the power in
the system, and the remaining 4% was linked to the crossbar
and normalizer. The total power consumption was:

200

∑
i=1

(Popamp,i)+Pcrossbar +Pnormalizer ≈ 31.25mW (28)

Since the power consumption is directly tied to the op-amps
in the system, it is possible to reduce it by more power
efficient op-amps at the cost of the system accuracy. The
energy consumption of the interconnect capacitance (0.5CwV 2)
was measured to be negligible. If the 10× lower resistance
range memristors are chosen for the application, for example
10 − 100µS, then the power consumption of the crossbar,
Pcrossbar, increases by 10× and brings the total power con-
sumption to 42.5mW . The SNR analysis was performed for
this application and a mean value of 37dB was obtained, which
corresponds to six-bit precision using the effective number of
bits (ENOB) calculation [44].

To determine the accuracy, ideal results obtained from
MatLAB software were compared to transistor level simulation
results. A comparison of the importance scores for the first 15
nodes can be found in Fig. 9(c). The ranking of the first 5
nodes was correct and the highest shift in importance ranking
was only 3 ranks (the 45th output was shifted three ranks up).

B. Higgs Twitter Dataset
A social network, such as Twitter, can be defined as a

graph for which nodes represent users and edges their rela-
tionships. The identification of influential users has always
been of particular interest. Several influence measures can
be considered. This analysis focuses on the application of
the HITS algorithm. Rather than analysing the entire web
structure, we are only interested in a single topic: the spread of
information after the discovery of a new particle that showed
similar characteristics as the Higgs boson [27]. We aim to
monitor social relationships among users involved in re-tweets,
replies to existing tweets and mentions of other users. In this
setting, a user i is connected to another user j if one of the
previous actions mentioned took place.

Performance Evaluation: The adjacency matrix of the
Higgs boson Twitter Dataset, see Figure 9(d), was mapped
to the memristor crossbar using the mapping algorithm given
in Section III. The major difference between the two adjacency
matrices discussed here can be observed in Figs. 9(a) and (d).
The EU mail dataset has self connections for each node i.
However, this feature cannot be found in the Twitter dataset,
since users are less likely to re-tweet themselves. If any
user does re-tweet themselves, then it creates a connection
within the same node i. The output waveforms representing the
influence scores can be found in Figure 9(e). The outputs have
settled within 0.1% of their final value in 45ns. No significant
difference was observed between the two algorithms (HITS
for Twitter dataset and PageRank for EU-mail dataset) in
terms of settling time. The same power consumption was
obtained for the two applications, because op-amps consume
the highest percentage of the power and it is constant for
different matrices. The output precision analysis also provided
very similar results with a mean of 34dB signal-to-noise ratio.
To determine the accuracy of the system, a normwise relative
error of 3.27% was obtained with four-bit memristor precision.
Similar comparison between the ideal versus simulation im-
portance rankings were also performed for the Twitter dataset
in Figure 9(f). The first 11 nodes were ranked correctly, and
the highest shift in importance ranking was only three ranks
(the 81st output was shifted three ranks down).

C. Discussion
After obtaining the results using both algorithms and differ-

ent dataset, a performance comparison between the crossbar
architecture and its digital counterparts was performed in
Table 2. In contrast with our previous architecture that can
also solve the Power Method [4], the present circuit does
not require analog-to-digital conversion between iterations,
thus offers further time and energy savings. In many systems
that utilize memristor crossbars, the main energy efficiency
bottleneck is the ADCs. The present architecture makes use
of the same amplitude voltage for all its inputs, and thus it does
not require digital-to-analog conversion even if it is used in a
hybrid system as an analog processing core. The performance
of the digital systems, TPU and CPU [45], considered for
different final accuracies, depended on the different number
of iterations k performed. The energy efficiency is given in
terms of Solutions/s/W. For the present architecture, a total



number of iterations is not meaningful because it directly
converges to the final eigenvector. In Table 2, the analog Power
Method solver provides 45× and 5750× energy efficiency
compared to the TPU and 18 core Haswell CPU, respectively.
The circuit in this work, also provides 3× energy efficiency
compared to the iterative Power Method solver circuit [5]. The
digital processors achieve higher output accuracy due to their
eight-bit digital numbers compared to the four-bit precision of
the memristors used here. A correlation between the settling
time in the analog Power Method solver and the number
of iterations using digital processors was also observed. The
HITS algorithm with the Higgs Twitter dataset converged 1.8×
slower compared to the PageRank algorithm with the Email-
EU-core dataset in this work. Analogously, convergence re-
quired 7 iterations for the Higgs Twitter dataset compared to 4
iterations for the Email-EU-core dataset, which corresponds to
1.75× more iterations. The overall optimization of the system
for Power Iteration algorithm provides significant area savings
by only occupying 0.0053mm2 for the peripheral circuitry. The
area distribution is 75% for current-mode termination and TIA
blocks, 21% for normalization, and 4% for multiplexers. The
area of the memristor crossbar depends on the material and
process technology and examples can be found in [18], [19],
[46]–[48].

VI. CONCLUSION

An analog Power Iteration solver to compute the dom-
inant eigenvector of suitable matrices was presented. Four
different applications were described that can be implemented
on the solver, namely EigenCentrality, PageRank, HITS and
SALSA. The architecture consists of purely analog elements,
does not require successive iterations and directly calculates
the dominant eigenvector, which provides significant energy
savings. A detailed analysis of the non-idealities arising from
experimental demonstrations such as interconnect resistances
and capacitances, source driver resistances, finite gain and
bandwidth op-amps, transistor parasitic capacitances, finite
memristor precision/states (programming noise), memristor
linearity and noise was performed. Their effects on output
accuracy and settling time were demonstrated. The two case
studies, the Email-EU-core network and Higgs boson Twitter
dataset, were used to illustrate the system performance and
the effectiveness of the analog solver. The results show that
the one-shot solver can be significantly more energy efficient
than their digital counterparts. The analog solver ranked the
complex network nodes with an acceptable accuracy using low
precision memristors.
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