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Abstract—Recent advances in Machine Learning (ML)
brought several advantages also within computer network man-
agement. For programmable data planes, however, it is more
challenging to benefit from these advantages, given their limited
resource capabilities colliding with the complexity of ML models.
In this paper, we propose ART, an attempt to simplify ML-based
solutions for routing, so that they can “fit”, i.e., be executed,
on P4 switches. To provide such model simplification, ART
relies on efficient knowledge distillation techniques, converting,
in particular, Deep Reinforcement Learning (DRL) models into
a simpler Decision Tree (DT). Our evaluation results validate
the accuracy of the extracted model and the application of the
model logic directly into switches with little impact, paving the
way for a more reactive data plane programmability via machine
learning integration.

Index Terms—in-network machine learning, P4, reinforcement
learning

I. INTRODUCTION

Control plane and data plane programmability have im-
proved the quality of several network management services.
Classical problems (traffic routing, congestion control) and
recent ones (traffic prediction/classification, anomaly detec-
tion) finds new ways of being deployed, leading to improved
network performance and an easy way of controlling network
devices for the operators. An established trend involves the
use of Machine Learning (ML) and Deep Learning (DL)
models to solve these problems, where in this paper we
focus on routing approaches [1], [2]. The goal of these data-
driven solutions is to mine past traffic conditions, acquir-
ing information on what may be the optimal routing for
current or future network flows [1], [3], [4]. In particular,
several Reinforcement Learning-based approaches exist for
routing [2], [5]–[8]. For example, QR-SDN [9] showcases the
application of Q-learning to reduce network latency through
optimizing multipath routing within a Software-Defined Net-
working (SDN) framework. Similarly, within SDN scenarios,
RSIR [10] presents a knowledge plane that collaborates with
the management plane of a centralized SDN controller to
ascertain the shortest routing path and distribute the load
based on link-state information representing the network’s
state. While these solutions have sound design, they rely on
centralized (Software-Defined) controllers that inherently lack
the agility to swiftly adapt to sudden traffic fluctuations.

To keep up with the traffic rate, recent solutions are
designed to run computations and applications in network
devices exploiting the programmability and flexibility of SDN

architectures and data-planes, e.g., Switch-ASIC, network
interface cards (NICs), FPGA-based network devices, P4-
enabled switches [11]. This paradigm is referred to in the liter-
ature as In-Network Machine Learning, when ML processes,
either training or inference, are done entirely in the network.
In-network applications can adjust to growing demands on
cloud network infrastructure by potentially operating at a line
rate and handling all incoming traffic or a specific subset
thereof. Such a paradigm is promising since network devices
are already deployed within the network, and any data used
for inference is routed through them.

Current solutions are hindered by switch hardware limi-
tations and thus limit the usage of programmable switches
to either collect important features for the model [12] or the
run of trained ML models for the inference task [13]. To the
best of our knowledge, no available solution can run adaptive
ML-based routing decisions directly inside the switches [14].

To cope with this challenge while meeting the hardware
constraints, e.g., of P4 switches, we propose a solution called
Adaptive Routing with Trees (ART). In ART, we apply Deep
Reinforcement Learning (DRL) to routing. The algorithm
learns how to route based on the current network utilization
with the help of the P4 switch network telemetry capabilities.
Measurements collected with P4 are then fed in the DRL
model, to adapt routing tables dynamically.

The trained DRL is then distilled into a Decision Tree (DT)
that can be easily installed in P4 in the form of flow rules.
The distillation process follows a teacher-student approach
and allows the conversion of a complex decision process (the
one of the Deep Neural Network of DRL) into a lightweight
and interpretable model, i.e., the Decision Tree. In particular,
every P4 switch runs a learning agent that feeds the DRL and
decides the forwarding port for the incoming packet according
to the IP destination and the current port utilization.

Our experimental results obtained over an emulated net-
work in Mininet show that ART can effectively learn to route
packets to avoid network congestion while minimizing the
additional overhead. In turn, ART reduces packet delays and
increases the throughput while minimizing packet losses.

The rest of the paper is structured as follows. Section II
describes the ART’s design and components, while Section III
presents and discusses our experimental results. Finally, Sec-
tion IV concludes the paper.
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Fig. 1: ART’s components. The P4-programmable switches
exchange traffic metrics to the control plane where resides
the DRL model. Such a model is then distilled into DTs that
well fit the P4 packet processing (data plane).

II. SYSTEM DESIGN

A very recent trend is to automatically route data packets
by using information about the network traffic. This process
is often based on reinforcement learning (RL) to find the best
route for all source-destination pairs by using only a few link-
state metrics (i.e., available bandwidth, loss, and delay) as fea-
tures of the RL process. Despite the advantages of automation
and adaptability to various network conditions, RL models
are poorly suited for programmable switch architectures. To
address these limitations without losing the advantages of RL-
based routing, we have developed ART, represented in Fig. 1.

As visible from the figure, ART revolves around using
three components: (i) the SDN controller, that interacts with
the P4 switches, (ii) a Deep Reinforcement Learning (DRL)
module, which implements the learning algorithm needed to
route packets, (iii) a Decision Tree (DT) module that uses the
trained DRL to build the routing rules which will be injected
into the P4 code.

A. Switch-Controller Interaction

P4, a common networking programming language, enables
the definition of a switch’s data plane processing in a high-
level structure and generates efficient code that can be exe-
cuted on various hardware targets, including ASICs, FPGAs,
and CPUs [11]. It provides a way to define how packets
should be processed by a network device, including how they
are parsed, matched against rules, and modified. However,
programming in P4 is widely recognized as challenging due
to the impossibility of having loop cycles, the restriction of
if-else conditions to specific code areas, and the debugging
process, which involves going through huge log files that
record each received and forwarded packet. Furthermore,
while highly used and adapted to different scenarios, P4
does not have a restart mechanism that automatically allows
stopping the code, updating it, and rebooting it [15], [16].

Current solutions can hardly change routing rules at the
varying network and traffic conditions [17]. To overcome it,
in ART we decided to use the P4Runtime API [18] to enable
a continuous interaction between the SDN controller and
the P4-based switches. P4Runtime uses a gRPC connection
between the controller and the switch to manipulate the P4
elements (e.g., add, update, or delete table entries, read the
values of counters) and even perform packet manipulation.
Data Plane. In ART, every time a packet is received, the
switch parses it and extracts three values: the destination IP
address, the packet’s size, and the timestamp. These extracted
fields are then forwarded to our controller via P4Runtime
using the digest mechanism to avoid sending unnecessary
packet information. The P4 switch can thus send the packet
out to the port using the language’s match-action paradigm.
The controller rules the association IP prefix-next hop.
Control plane. The controller combines the information com-
ing from the switches (i.e., packet-related data and timestamp)
and the network load to build the metrics used to take routing
decisions. These values are then sent to our DRL module,
which computes the reward function and decides which port
to forward the packet to according to the link utilization and
capacity (see Section II-B for details). The match-action rule
is then transmitted to the P4Runtime API to populate a pre-
configured table on the P4 code. When it is time to forward
the packet, our P4-programmed switch uses the information
stored in the table to choose the egress port. Finally, the
timestamps received from switches are used to compute the
packet latency, the metric that is then used as an indicator of
the goodness of the routing decision.

As emerged from this discussion, the switch-controller
interaction is key to route packets but may also introduce
excessive overhead. Aware of the latency that this continu-
ous interaction with a centralized controller may entail, we
programmed the P4 switches to asynchronously digest every
received packet to the controller, in order to parse packets at
line rate. Moreover, the DT model used for routing is updated
only every f received packets. We set f equal to 1, 000, as
this value is a good trade-off between responsiveness and
performance.

B. DRL module in ART

Despite the presence of an external SDN controller, we
train a DRL model per switch, which leads to a decentralized
architecture where each switch is an agent of the model.
In other words, this turns our solution into a Multi-Agent
Reinforcement Learning (MARL) setting [19]. Choosing a
MARL strategy over a single-agent one offers significant ad-
vantages. First, a MARL strategy allows for exploring differ-
ent decision-making approaches among individual switches,
proving robustness in response to varying network condi-
tions and traffic patterns. Second, a decentralized approach
like MARL improves scalability and enhances the network’s
ability to handle complex scenarios, guaranteeing elevated
performance while efficiently allocating resources [20].



Each agent (i.e., switch) of our MARL environment
chooses the forwarding port according to the reward output
in a scenario where other agents also try to reach the same
goal independently. To schematize this, each agent of our
topology i ∈ M operates within a shared environment where,
for each given state s ∈ Si, it performs an action a ∈ Ai

that brings him to a new state s′ ∈ Si and computes the
reward function r ∈ Ri. In this context, the objective is
to find the optimal policy πi for the agent i ∈ M so that
πi : Si → Ai maximizes the local reward r ∈ Ri, defined as
Ri : Si×Ai → R, and the state transitions with a probability
function of P : Si × Ai × Si → [0, 1]. At each time step
t, given the state st ∈ S and the corresponding actions of
the agents at = (a1t , . . . , a

M
t ) ∈ A, each agent receives an

individual reward rit+1, representing the learning model and
corresponding to the chosen action at at the state st. It is
important to remark that each agent has a local view of the
environment, locally computing the reward and deciding the
action, but then the agent’s choice has a global impact on the
MARL environment.

In ART, for each agent i, the action at ∈ Ai that can be
taken is a discrete number [1, N ] ∈ N corresponding to the
ports available for the switch. While the set of states Si corre-
sponds to the agent’s input which is composed of three values:
(i) the packet’s destination, (ii) the packet’s size and, (iii)
the port’s utilization. Our solution starts from executing the
distributed DRL module, which invokes a customized network
environment using the gymnasium library. The environment
calls the P4Runtime API at startup, which connects to the
corresponding switch. Then, for each switch, our API waits
for the digested packets from the data-plane and forwards it to
the DRL module that computes the reward according to three
main factors: (i) the packet’s latency, (ii) the links capacity,
and (iii) the links utilization. In ART, we computed the reward
function Ri considering two values: the contribution given by
the packet’s latency ri2 and the one given by the chosen port’s
utilization ri1. In detail,

ri1 =
1

1 + latency
(1)

and

ri2 =
port utilization

port capacity
(2)

To summarize, the reward function for each agent i is:

Ri = ri1 − λ ∗ ri2 (3)

where the λ is the model’s hyperparameter chosen according
to the algorithm’s performance.

According to the reward function, the DRL module chooses
the forwarding port, which is communicated to the P4Runtime
API to finally inject this information inside a P4 table used by
the ingress pipeline to forward the packet to the chosen next
hop. This operation is performed for each received packet in
order to train the DRL module.

C. DT module in ART

After every f packets, the trained model is distilled into a
DT module that predicts possible forwarding ports according
to the same input space. This procedure helps build an
interpretable DT model that will be used to construct and
retrieve splitting criteria of the tree and inject them directly
inside the P4 code in the form of match-action rules.

The choice of generating a DT model and injecting its
rules inside the P4 code has two reasons. (i) First, it is
well known that switches have a limited amount of available
resources (e.g., CPU, RAM) [21]. This means that adopting
a DRL technique might be unfeasible and could require
the use of external modules (e.g., Data Processing Unit) to
provide faster data processing capabilities or would require
distillation of these techniques into look-up tables (LUT), as
in [22]. In this latter case, however, the linear increase in
LUT adoption can lead to an exponential increase in memory
consumption, which could have a negative impact on the
overall performance of the network. (ii) Second, with the
injection of DT rules directly inside the ingress pipeline’s
tables, the P4 code does not constantly interact with the API at
the reception of a packet, making the entire packet processing
phase smoother. Moreover, this conversion is made possible
since existing DRL-based routing systems can be viewed
as rule-based decision-making systems, and DT models can
represent this class of solutions.

To reach this goal, we use a teacher-student training
methodology [23], where the DT model (i.e., the student)
reproduces the trained DRL (i.e., the teacher) by considering
the tuple < action, state > generated by the model for each
connected switch. In ART, for each episode of the trained
DRL model and until the DRL model is not terminated, we
predict an action based on the current state of the environ-
ment. This value is then applied to the topology, taking the
action as input and returning the next state, the reward, and a
boolean indicating whether the episode is terminated. For each
episode’s action, our agent interacts with the environment,
transitioning from the current state to the next one. These
sets of actions and states are then used to train the DT.

One specific challenge we faced in this conversion is
that traditional DT algorithms often produce an excessively
large number of branches to match the performance of Deep
Neural Networks (DNNs). To address this issue, we utilize
two key observations to reduce the number of branches
to a manageable level for network operators. Firstly, it is
common for appropriate policies to consistently recommend
the same action for a significant portion of observed states.
By leveraging the output data from the teacher DRL, the DT
can effectively reduce the decision process and the number of
branches. Secondly, different input-output pairs have varying
impacts on the policy’s performance. To address this, we
employ a specialized resampling technique [24] that enables
the teacher DRL to guide the DL in prioritizing actions that
lead to the best outcomes.

In conclusion, in ART we limit the DT branches to the



if root > dest_addr:
left_node

else
right_node

if node > Pkt_size:
left_node

else
right_node

Action: check the
DT_root register and
go to the next level

Action: set the egress
port x and forward

Action: check the
DT_length register and

go to the next level

Fig. 2: Workflow of the injected DT model. The left side of
the figure shows the level of the DT as just trained from the
DRL. The right side shows the cascade of if-else conditions
according to the splitting criteria and the related performed
action.

first two levels of depth. This choice is mainly motivated
by implementation reasons and switch constraints, along with
an evaluation of similar performance for other injected level
depths. While at first thought, one might think that installing
more rules would lead to a higher level of accuracy, in
reality, this is not always true: injecting many rules and if-else
conditions into P4 can significantly increase the complexity of
the code, resulting in a slower processing time, thus degrading
the overall performance [25].

When constructing the DT, the splitting criteria rely signifi-
cantly on two key values: the packet’s destination address and
its size. These values are injected into the ingress pipeline of
the P4 code with the P4Runtime API, which facilitates the
dynamic configuration and orchestration of network policies.
This API stores these values into specific registers based on
the corresponding DT level, which are then queried using
a cascade of if-else conditions to find the appropriate for-
warding port. An example of this process is illustrated in
Fig. 2. The right side of the figure shows an example of
the possible DT’s splitting criteria. In the root layer of this
example, the condition is to verify whether the root value,
previously injected into a register by the P4Runtime API,
is lower than the received packet’s destination address. It
is important to note that the DRL model encodes the root
value of the studied topology so that each destination address
corresponds to a single value. This encoded value is then
received by the DT during its training phase. Our packet
first undergoes a size check at the first level to verify if it is
smaller than the value received from the API. It subsequently
progresses to the second level, where it is set to be forwarded
to the leaf-output egress port.

In conclusion, as mentioned earlier, to further make this
approach feasible, the DT generation and injection process is
performed every f received packets, allowing ART to contact
the centralized controller with a low frequency.

III. EVALUATION

To measure ART’s performance, we deployed it on a
simulated environment using Mininet, a network emulator
specifically designed for software-defined networks (SDN).

Fig. 3: Fat-tree network topology used in our evaluation.
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Fig. 4: Accuracy of the distilled DTs expressed as fidelity
compared to original DRL models.

This powerful emulator can be used in conjunction with
the Behavioral Model Version-2 (BMV2) software to deploy
P4-programmable switches. To do so, Mininet allows net-
work programmers to run and debug their code into packet-
processing pipeline actions of the C++11 software switch as
it would be on real hardware.

We evaluated our solution over a data-center topology com-
posed of 10 servers and 9 switches arranged in a leaf-spine
fashion where all the links have 100 Mbps bandwidth, as vis-
ible in Fig. 3. In all the experiments, we simulated congestion
with iperf3, a networking tool used to measure performance
according to different settings (e.g., throughput, protocol).
Adopting iperf3 allowed us to reproduce increasing network
loads by sending packets from each server to the others,
thus verifying how the network behaves when congested and
replicating the transmission as in [26]. At increasing network
loads, we evaluated ART’s performance by computing the
RTT, throughput, and packet loss while also determining the
confidence interval at a 95% level. Finally, we compared these
results to relevant works: a traditional routing protocol such as
OSPF, which forwards packets using a longest prefix match-
action criteria; a centralized SDN solution, QR-SDN [9], that
uses a tabular reinforcement learning (RL) model to perform
routing across the network; and a prototyped in-network RL,
referred to as IN-RL, where the RL model runs directly in
the P4 switches by using C++ external functions, as described
in [27].
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Fig. 5: Performance comparison with benchmarks in terms of (a) RTT (normalized to OSPF for clarity), (b) throughput, and
(c) packet loss, at varying network load in the topology. ART can jointly improve these three metrics.

A. Evaluation Results

To evaluate our solution, we started by generating increas-
ing traffic using iperf3 to quantify the routing strategy at
different network loads. We start our evaluation process by
measuring the fidelity between the trained DRL model and the
distilled DT for the top four switches of the network (Fig. 4).
The fidelity is computed as the number of times the actions
of DT match the ones of the original DRL model: having
a high fidelity ensures that the decision-making process of
a more lightweight DT matches the learned behavior of a
more complex model. We measure such a fidelity for three
depth levels of the DT, namely, depth level 1, DL− 1, depth
level 2, DL − 2, and depth level 3, DL − 3, when the tree
has three layers. As visible from the figure, while one single
layer in the DT leads to an average 60% of fidelity, two levels
of the DT already achieve a satisfying level of fidelity, on
average 99.9%. Although we do not see fidelity degradation
even with more deep trees, we limit the DT to the first two
layers. This decision also helps to contain the complexity of
the resulting P4 code, where each split decision from the DT
is stored in specific registers. By limiting the DT injection
to the first two levels, we ensure that the P4 code remains
manageable and efficient, as it focuses on critical decision
points without introducing extremely long if-else conditions,
a potential bottleneck in scenarios where real-time decision-
making is essential.

We then report the comparisons of our solution against
other benchmarks in Fig. 5. In Fig. 5a, we computed the
Round Trip Time (RTT) for all the aforementioned solutions
at increasing network load and normalized the results to the
traditional routing protocol OSPF. We can see that when the
network load is low (from 10% to 20%), all the RL-based
solutions perform worse than OSPF. This outcome is a clear
consequence of the overhead introduced by any ML-driven
approach, showing how the computational time of adopting
RL models can heavily affect the forwarding decision, thus
bringing higher RTTs. However, benefits can be clearly seen
when the network starts to be more congested. When the
network load increases, the RL-based solutions perform better
than the traditional routing protocol. In particular, ART is able
to achieve lower RTTs at all network loads despite a heavily

congested network (from 30% of network load). Conversely,
other benchmarks perform better than OSPF only when the
network is either not too congested (from 30% to 40%) or
heavily congested (from 70% to 90% of network load).

We then visualize the average traffic throughput that our
network can offer at different network conditions (Fig. 5b).
The figure shows how ART can achieve higher throughput
than the other solutions despite the network’s congestion
level. The learned DTs of the switch can efficiently react
to the upcoming network congestion and re-route packets
over an unloaded path. It is important to remember that the
throughput does not necessarily align with the evaluated RTT,
as it is independent of the sent or received packets. Therefore,
this result about throughput is particularly important as it
demonstrates that ART can preserve the throughput of TCP
flows. In general, we can also observe how the idea of in-
network machine learning well fits routing problems, and
IN-RL leads to higher throughput than traditional centralized
solutions as QR-SDN.

Another important measure to consider when assessing a
solution is packet delivery, which shows how well the network
reacts to congestion. A significant number of packet losses
results in poor transmission quality since the client might
repeatedly send packets, which circumstance badly affects our
host’s performance and network resources. Fig. 5c shows the
percentage of packet loss at increasing network loads when
sending UDP packets. For this test, we select UDP as the
transmission protocol because TCP already implements a re-
transmission process on the sending host and we are interested
in network-oriented decisions. It is visible from the figure
that when our network is not heavily congested (from 10% to
30% of load), all solutions behave quite similarly, leading to a
few losses. However, when the network load increases (from
50% to 90%), ART is able to deliver more packets than the
alternatives. Having a reactive mechanism running directly in
the switches allows ART’s implementation to quickly react to
congested scenarios, notably reducing overhead in telemetry
and re-configuration.



IV. CONCLUSION

In this paper, we introduce ART, a decentralized ma-
chine learning (ML) solution utilizing the innovative Deep
Reinforcement Learning (DRL) mechanism to enhance the
routing process within the network. Notably, to fit the con-
straints introduced by P4 programmable switches, such a
power and memory-consuming model is transformed into a
simpler Decision Tree (DT). The routing strategy enables
the consideration of current link loads, facilitating packet
rerouting through less congested paths. In our experimental
evaluations, we compare ART against three benchmarks: a
traditional routing implementation, a centralized RL-based
solution, and a hybrid solution where the RL model runs
inside the switch. Preliminary results demonstrate that the
absence of interaction with a centralized SDN controller,
along with simple yet accurate DT, reduces RTT and packet
loss, even under network congestion, while also achieving
superior throughput.
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