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Strong thermal leptogenesis and the N2-dominated scenario

Michele Re Fiorentin

School of Physics and Astronomy, University of Southampton, SO17 1BJ, Southampton, U.K.

Abstract

We briefly review the main aspects of leptogenesis, pointing out the main reasons that draw attention to the so-
called N2-dominated scenario. We consider the conditions that stem out when the final asymmetry is required to be
fully independent of the initial conditions. We show that in this scenario, called strong thermal leptogenesis, when
barring special cancellations in the seesaw formula and in the flavoured decay parameters, a lightest neutrino mass
m1 � 10 meV for normal ordering and m1 � 3 meV for inverted ordering are favoured. We then focus on the S O(10)-
inspired leptogenesis models that naturally realise N2-dominated leptogenesis. We show how the combination with
the strong thermal leptogenesis conditions yields important predictions on neutrino parameters. Finally, we briefly
comment on the power of forthcoming neutrino experiments to either support or severely corner these leptogenesis
scenarios.

1. Introduction

Leptogenesis is a particularly attractive way for pro-
ducing the baryon asymmetry of the Universe, since it
relies on the seesaw mechanism that is able to explain
the observed neutrino masses and mixing.

We focus here on the standard type-I seesaw, with the
inclusion of heavy right-handed (RH) Majorana neutri-
nos, NRi, that couple to the lepton doublets via Yukawa
interactions. When the RH neutrinos mass scale is much
higher than the electroweak scale (the so called see-
saw limit), the neutrino mass spectrum splits into two
set. One is made of light, Majorana, active neutrinos νi
whose mass matrix is given by

mν = −mD D−1
M mT

D. (1)

Here DM is the diagonal Majorana mass matrix and
mD ≡ vy is the Dirac neutrino mass matrix, propor-
tional to the Higgs vacuum expectation value v and
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the RH neutrinos Yukawa couplings y. The eigenval-
ues of mν can be obtained by means of the PMNS
matrix Dm = −U† mν U∗, and turn out to be suitably
small, without the need for artificially tuned Yukawa
couplings.
The second set is composed of heavy Majorana neutri-
nos Ni, whose mass matrix basically coincides with DM

up to negligible corrections.
This elegant way of generating small neutrino masses

has however some drawbacks. The addition of heavy
RH neutrinos introduces new free parameters to the
model. For instance, if we assume, as we will always
do in what follows, the presence of 3 RH neutrinos,
the seesaw model depends on 18 free parameters that
split into the 9 so-called low-energy neutrino param-
eters, probed in experiments, and a further 9 describ-
ing the high-energy scale of the heavy neutrinos. The
seesaw mechanism on its own does not provide any ex-
planation nor prediction on their values. In this regard,
we can then either seek further theoretical input, or turn
to an apparently unrelated phenomenology such as the
baryon asymmetry of the Universe. This can be done by
means of leptogenesis.
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2. Leptogenesis and the N2-dominated scenario

Leptogenesis [1] can be realised within a standard
type-I seesaw model with the inclusion of at least 2 RH
neutrinos. As already mentioned, in this work we shall
consider 3 RH neutrinos. Their Majorana nature auto-
matically ensures lepton-number violation. The pres-
ence in the seesaw lagrangian of Yukawa couplings
to the LH lepton doublets allows the heavy neutrinos,
through their RH component, to decay into leptons and
antileptons. Due to complex Yukawa couplings and the
interference between tree-level and one-loop diagrams,
the heavy neutrinos decays are CP-violating.

CP-violation is estimated by the CP-asymmetry fac-
tors

εiα ≡ − Γiα − Γ̄iα∑
β

(
Γiβ + Γ̄iβ

) , (2)

where Γiα (Γ̄iα) are the zero-temperature decay rates
of the heavy neutrino Ni into leptons (antileptons) of
flavour α. Decays are also regulated by the so-called
flavoured decay factors

Kiα ≡ Γiα

H(T = Mi)
, (3)

where H(T = Mi) is the value of the Hubble parame-
ter when Ni becomes non-relativistic. The decay factors
Kiα do not only measure whether decays are in equi-
librium at that epoch but also give an estimate of the
efficiency of the inverse decays, responsible for the pro-
duction of Ni. Inverse decays are also the main source
of washout of the generated asymmetry, therefore Kiα

are a measure of the washout strength too.
When occurring out of equilibrium, heavy neutrino

decays can produce a net lepton asymmetry. If this
takes place at temperature T � 100 GeV, electroweak
sphaleron processes are able to partly convert the lepton
asymmetry into the baryon sector.

We focus, now, on a particular hierarchical heavy
neutrino spectrum with

1012 GeV � M3, (4)

109 GeV � M2 � 1012 GeV, (5)

M1 � 109 GeV. (6)

Since N3 is the heaviest neutrino, its contribution to the
asymmetry is negligible, and so is that of N1, which
is too light. Therefore, the final asymmetry is mainly
produced by the next-to-lightest heavy neutrino and this
scenario takes the name N2-dominated [2]. If flavour
interactions are completely neglected, heavy neutrinos

decay into a coherent superposition of flavour eigen-
states. The final value of the asymmetry is exponentially
suppressed by N1’s washout. Only when K1 � 1 the
model can produce the observed asymmetry. A numer-
ical analysis shows that this is realised in only ∼ 0.2%
of the parameter space [3].

This picture improves by taking account of flavour in-
teractions. Considering that τ-interactions are efficient
for T � 1012 GeV, and muonic ones for T � 109 GeV,
and given the heavy neutrino spectrum as in eqs. (4-
6), N2 decays in a two fully-flavoured regime, while
the washout due to N1 takes place in a three fully-
flavoured regime. Around the transition temperatures,
the behaviour cannot be described by the usual Boltz-
mann equations and a density matrix formalism must be
adopted [4]. Avoiding these regions, N1’s washout acts
separately on each flavour α = e, μ, τ, exponentially
suppressing the asymmetry by the relative flavoured de-
cay parameter K1α [5, 6, 7, 4]. Therefore, it is suffi-
cient that only one K1α is smaller than 1 in order to have
enough asymmetry produced. This is found to happen
in ∼ 30% of the parameter space, showing that thanks to
flavour effects the N2-dominated scenario can represent
a viable model of leptogenesis.

3. Strong thermal leptogenesis

The final baryon asymmetry depends in general on
the initial conditions. Moreover, the high reheating
temperatures TRH � 1012 GeV required by this sce-
nario of thermal leptogenesis1, see eq. (5), allow several
mechanism (e.g. GUT-, gravitational-, Affleck-Dine-
baryogenesis) to produce a rather high asymmetry. This
asymmetry is produced before the onset of leptogene-
sis, and is referred to as initial pre-existing asymme-
try, Np,i

B−L. At lower temperatures, leptogenesis takes
place and in general it modifies this asymmetry to a final
value Np,f

B−L. We can require

Np,f
B−L � N lep,f

B−L � NCMB
B−L , (7)

namely that the final pre-existing asymmetry is negligi-
ble in comparison to the asymmetry produced by lep-
togenesis, N lep,f

B−L , which therefore genuinely constitutes
the amount of asymmetry measured today. In this way,
full independence of the initial conditions is ensured and
leptogenesis is said to satisfy the strong thermal con-
dition [9]. With hierarchical heavy neutrino spectra, it

1In this respect, it can be interesting to notice that these high val-
ues of TRH would be even quite natural if the BICEP2 claim [8] is
confirmed.
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has been shown [9] that strong thermal leptogenesis can
be realised, but only in a two-stage process where the
heavy neutrinos show a spectrum as in eqs. (4-6). This
is one of the main reasons why the N2-dominated sce-
nario is important.

In this scenario, N2 decays in the two-flavoured
regime and efficiently washes out the τ component of
N p,i

B−L. On the other hand, N1 decays in the three-
flavoured regime, separately erasing the e and μ compo-
nents of N p,i

B−L, while the produced asymmetry survives
in the τ flavour. This translates into a set of conditions
on the relevant decay parameters

K1e,K1μ,K2τ � 1, K1τ � 1. (8)

When these conditions are imposed on the requirement
of successful leptogenesis (i.e. ηlep

B � ηCMB
B ) a pre-

cise analytical lower bound on the absolute mass scale
m1 appears [10]. Adopting the Casas-Ibarra param-
eterisation [11], we introduce a complex orthogonal
matrix Ω = D−1/2

m U†V†
L DmD URD−1/2

M , that links the
low-energy (neutrino masses and mixing) and the high-
energy (heavy neutrinos) parameters. In this way, the
expression for the decay parameters becomes

Kiα =

∣∣∣∣∣∣∣∣
∑

j

√
mj

m∗
Uα jΩ ji

∣∣∣∣∣∣∣∣
2

. (9)

Considering low values of m1, that is m1 � msol, we can
simplify the expression for K1α

K1α �
∣∣∣∣∣∣
√

m1

m∗
Uα1Ω11

+

√
msol

m∗
Uα2Ω21 +

√
matm

m∗
Uα3Ω31

∣∣∣∣∣∣
2

. (10)

Specifying α = τ, we obtain
√

matm

m∗
Uτ3Ω31 = −

√
m1

m∗
Uτ1Ω11

−
√

msol

m∗
Uτ2Ω21 +

√
K1τ eiϕτ , (11)

and substitute it in the expression for K2δ, with δ = e, μ

K1δ =

∣∣∣∣∣∣Ω11

√
m1

m∗

(
Uδ1 − Uτ1

Uτ3
Uδ3

)
+

√
K0

1δe
iϕ0

∣∣∣∣∣∣
2

. (12)

Here K0
1δ ≡ K1δ(m1 = 0), so that

√
K0

1δ eiϕ0 ≡ Ω21

√
msol

m∗

(
Uδ2 − Uτ2

Uτ3

)
+

Uδ3
Uτ3

√
K1τeiϕτ .

(13)

(a) (b)

Figure 1: (a) Scatter plot of successful strong leptogenesis models.
Initial pre-existing asymmetries are Np,i

B−L = 0.1, 0.01, 0.001 respec-
tively in red, green and blue. The solid line is the 95% confidence level
analytical lower bound. (b) Distribution of probability of m1 from the
scatter plot, colour code as in (a). These models have MΩ = 2 [10].

We can take the size of the entries of the orthogonal ma-
trix to be in general

∣∣∣Ωi j

∣∣∣2 ≤ MΩ. Usually MΩ = O(1),
so that the seesaw mechanism truly relies on the inter-
play between the electroweak and the Majorana scales,
rather than on fine-tuned cancellations. This way, the
maximum values of K1δ are obtained for

Kmax
1δ =

(
MΩ

√
m1

m∗

∣∣∣∣∣Uδ1 − Uτ1
Uτ3

Uδ3
∣∣∣∣∣ +
√

K0,max
1δ

)2
,

(14)
with
√

K0,max
1δ ≡ MΩ

√
msol

m∗

∣∣∣∣∣Uδ2 − Uτ2
Uτ3

∣∣∣∣∣ +
∣∣∣∣∣Uδ3Uτ3

∣∣∣∣∣
√

Kmax
1τ .

(15)
The strong thermal leptogenesis conditions in eq. (8)

can be specified by using the general relation in eq. (7).
For each flavour we must have Np,f

Δα
< ζN lep,f

Δα
, with

ζ � 1, where Np,i
Δα

is the fraction of pre-existing asym-
metry in the flavour α. Since the washout takes place
exponentially, we can define

Kst

(
Np,i
Δα

)
≡ 3

8π

⎡⎢⎢⎢⎢⎣ln
⎛⎜⎜⎜⎜⎝ 100ζ

NCMB
B−L

⎞⎟⎟⎟⎟⎠ + ln |Np,i
Δα
|
⎤⎥⎥⎥⎥⎦ (16)

� 18 + 0.85
(
ln ζ + ln |Np,i

Δδ
|
)
, (17)

and so we must require for each flavour δ = e, μ

K1δ � Kst. (18)

This in turn implies Kmax
1δ > Kst(N

p,i
Δδ

), namely

(
MΩ

√
m1

m∗

∣∣∣∣∣Uδ1 − Uτ1
Uτ3

Uδ3
∣∣∣∣∣ +
√

K0,max
1δ

)2
> Kst(N

p,i
Δδ

).

(19)
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Solving with respect to m1, we finally obtain

m1 >
m∗
MΩ

max
δ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
Kst(N

p,i
Δδ

) −
√

K0,max
1δ∣∣∣∣Uδ1 − Uτ1

Uτ3
Uδ3
∣∣∣∣

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (20)

when

K0,max
1δ < Kst(N

p,i
Δδ

). (21)

For normal ordering (NO), the maximum value is ob-
tained for δ = e. Moreover, imposing the other strong
thermal condition, i.e. K1τ � 1, the condition in eq. (21)
can be satisfied and a lower bound on m1 can actually
be found. Considering MΩ = 2, Np,i

B−L = 0.1, taking
the experimental values of the mixing angles and δ = 0
we have mlb

1 � 0.7 meV. This analytical lower bound
holds similarly for inverted ordering (IO), but in this
case it is generally much looser, due to the replacement
msol → matm. More precisely, an analytical lower bound
on m1 holds for IO only when MΩ � 0.9 and is therefore
much looser than for NO.

From a statistical analysis of the simulations, we have
noticed that the actual analytical lower bound is hardly
saturated. On the contrary, strong thermal leptogenesis
models tend to prefer rather high values of the abso-
lute neutrino mass scale. For natural values of MΩ (i.e.
MΩ ≤ 4), around 99% of models have m1 � 10 meV in
NO, while for IO the statistical limit is looser and 99%
of models show m1 � 3 meV.

This result is particularly interesting since it provides
us with a precise prediction that makes leptogenesis,
in its strong thermal version, testable at future experi-
ments. It can face many evidences from cosmological
observations, hwowever, the sensitivity is not yet suf-
ficient to reasonably discriminate from the hierarchical
(m1 = 0) limit. This scenario will improve in forthcom-
ing experiments, if a precision δ

(∑
mνi
) � 10 meV is

reached [12]. In this case, measurements of the sum
of the neutrino masses will be able to either support
or severely corner strong thermal leptogenesis. It must
be noticed that it is particularly important that long-
baseline neutrino oscillation experiments determine the
ordering. As we have seen, NO and IO show rather dif-
ferent features and, in particular, the lower bound for IO
is much looser.

It can be convenient to point out once again how the
simple requirement of full independence of the initial
conditions can lead us to interesting constraints on the
absolute neutrino mass scale, thus putting strong ther-
mal leptogenesis within the experimental reach.

3.1. S O(10)-inspired leptogenesis
As already mentioned, the attractive features of the

seesaw mechanism rely on the addition of extra parti-
cles. These particles are somehow added by hand to
the SM lagrangian and so is their high mass scale. A
more elegant and attractive origin of the RH neutrinos
and their mass scale can be found in Grand Unified The-
ories (GUT). In particular, it can be noticed that models
based on S O(10) as unification group [13, 14, 15, 16],
naturally include three RH neutrinos in the same irre-
ducible representation together with quarks and leptons.
RH neutrinos precisely fit in the 16 representation of
S O(10) and their mass scale is linked to low-energy pa-
rameters, such as the Dirac neutrino mass matrix mD

and the PMNS mixing matrix U. With this in mind, it
can be interesting to apply some conditions, that are di-
rectly inspired to S O(10) GUT models, to leptogenesis.
In particular:

• diagonalising the Dirac mass matrix as
mD = V†

L DmD UR, the diagonal matrix is set
to

DmD = diag (α1mu, α2mc, α3mt) , (22)

where mu, mc, mt are the up-quark masses at the
leptogenesis scale,

• the proportionality constants are fixed to be
0.1 � αi � 10,

• the unitary matrix VL is set to be � ≤ VL ≤ VCKM,
where VCKM is the Cabibbo-Kobayashi-Maskawa
quark mixing matrix.

By imposing these relations, together with the strong
thermal leptogenesis conditions in eq. (8), several pre-
cise predictions on the heavy neutrino mass spectrum
and the low-energy neutrino parameters can be ob-
tained. Numerical simulations [17] have pointed out the
following list of results.

i) The ordering of the active neutrino spectrum must be
normal,

ii) the absolute neutrino mass scale is m1 � 20 meV,

iii) the neutrinoless double-beta decay (0νββ)
effective neutrino mass is found to be
|mνee| � 0.8 m1 � 15 meV,

iv)2 a lower bound on the reactor mixing angle is found
θ13 � 2◦(0.5◦) for Np,i

B−L = 10−1(10−2),

2This lower bound was found in [18], before the measurement by
DayaBay [19].
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(a) (b)

Figure 2: Scatter plot of successful S O(10)-inspired, strong ther-
mal leptogenesis models in the plane (m1, δ), fig. (a), and
(m1, θ23) in (b). Yellow, blue, green and red dots correspond to
Np,i

B−L = 0, 10−3, 10−2, 10−1. Notice the predicted values of m1, δ and

θ23 for Np,i
B−L = 0.1 [17].

v) an upper bound on the atmospheric mixing angle is
found θ23 � 41◦(43◦) for Np,i

B−L = 10−1(10−2),

vi) the Dirac CP-violating phase must take values
δ ∈ [−π/2, π/5] for Np,i

B−L = 10−1, while for
Np,i

B−L = 10−2 we have δ � [0.4π, 0.7π],

vii) the Majorana phases tend to cluster
around (σ, ρ) � (0.8 + n, 1.25 + n)π or
(σ, ρ) � (0.7 + n, 0.75 + n)π, with n = 0, 1.

In general, we can notice that prediction (ii) is consistent
with the lower bound in eq. (20) from strong thermal
leptogenesis.

Most importantly, S O(10) is responsible for the up-
per bound on θ23, that is then constrained to the value in
(v) by strong thermal conditions. This prediction is par-
ticularly interesting, together with the value of δ given
by (vi), and are shown in fig. 2. They both provide
us with definite values that can be tested at the exper-
iments. The value in (vi) is intriguingly in very good
agreement with the current central value of the neutrino
global fits [20, 21] and will be tested in long-baseline
neutrino oscillation experiments (e.g. NOνA). On the
other hand, the octant of θ23 is still very unstable.

4. Conclusions

We have shown that the theoretical request of full in-
dependence of initial condition is able to constrain the
parameters space and give interesting results on neu-
trino masses and mixing. This goes in the direction of
the need for “testable” leptogenesis models. The lack
of strong signals of new Physics, except in Cosmology
and in the neutrino sector, can push physical speculation
towards these research fields, but it must not be forgot-
ten that each proposed model must avoid the problem

of difficult testability. With this in mind, it is evident
that the restriction to a minimal scenario of leptogene-
sis, like that provided by type-I seesaw, is not enough
to get solid predictions, even when asking for success-
ful leptogenesis. This can be avoided when strong ther-
mal leptogenesis is required, on its own, or in combi-
nation with conditions inspired to S O(10) GUT theo-
ries. Both these conditions focus the attention on the
so-called N2-dominated scenario, with the heavy neu-
trino spectrum as in eqs. (4-6). This scenario is often
neglected when dealing with leptogenesis, because one
may expect that the washout by the lightest neutrino to-
tally erases the lepton asymmetry generated by the next-
to-lightest. However, it can be shown that this is not true
when flavour effects are considered, so that the asymme-
try can survive N1’s washout in some flavour directions,
along which the washout is mild. This must not be re-
garded as fine-tuned, since successful leptogenesis can
be produced by a flavoured N2-dominated scenario in
around 30% of the parameter space [3].

Moreover, in this scenario, favourable values of
the absolute neutrino mass scale are found for NO,
m1 � 10 meV and IO, m1 � 3 meV. In NO a further
analytical lower bound is found for natural choices of
Ω (MΩ � 4), see eq. (20), while in IO the analytical
threshold is obtained only for MΩ � 0.9. These con-
straints on m1 allow the future cosmological observa-
tions, together with the determination of the neutrino
mass ordering, to test strong thermal leptogenesis.

When S O(10)-inspired conditions are taken into ac-
count, a much richer landscape of predictions arises.
In particular, negative values of the Dirac CP-violating
phase, δ � −π/4, and first-octant atmospheric mixing
angle, θ23 � 41◦, are predicted. This will enable forth-
coming neutrino oscillation experiments to seriously put
to test such scenarios of thermal leptogenesis.
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