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Abstract— The quality of life for upper limb amputees can be 

greatly improved by the adoption of poly-articulated myoelectric 

prostheses. Typically, in these applications, a pattern recognition 

algorithm is used to control the system by converting the 

recorded electromyographic activity (EMG) into complex multi-

degrees of freedom (DoFs) movements. However, there is 

currently a trade-off between the intuitiveness of the control and 

the number of active DoFs. We here address this challenge by 

performing simultaneous multi-joint control of the Hannes 

system and testing several state-of-the-art classifiers to decode 

hand and wrist movements. The algorithms discriminated multi-

DoF movements from forearm EMG signals of 10 healthy 

subjects reproducing hand opening-closing, wrist flexion-

extension and wrist pronation-supination. We first explored the 

effect of the number of employed EMG electrodes on device 

performance through the classifiers optimization in terms of 

F1Score. We further improved classifiers by tuning their 

respective hyperparameters in terms of the Embedding 

Optimization Factor. Finally, three mono-lateral amputees 

tested the optimized algorithms to intuitively and simultaneously 

control the Hannes system. We found that the algorithms 

performances were similar to that of healthy subjects, 

particularly identifying the Non-Linear Regression classifier as 

the ideal candidate for prosthetic applications. 

I. INTRODUCTION 
 

Myoelectric prosthetic devices represent a real 

opportunity for enabling upper limb amputees to perform 

various activities of daily living (ADLs). These prostheses 

typically exploit flexor and extensor muscles of the wrist 

through surface electromyographic (EMG) electrodes [1]. 

Additionally, the level of recorded muscular contraction 

modulates the speed of the prosthesis, implementing a 

proportional control [2]. Due to the high complexity of the 

muscular system, the relationship between EMG signals and 

upper limb movements is remarkably nonlinear and generally 

only dual-site control has been employed [3]. Moreover, the 

prosthesis control is narrowed to the single articulation 

preventing the simultaneous movement of multiple joints. 

Indeed, when two or more DoFs are considered, only one joint 

is controlled at a time, and co-contraction strategies are used 
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to switch between DoFs [4]. Other groups have attempted the 

direct control of multi-DoF prostheses by implementing a 

multi amplitude strategy using dual-site electrodes, by 

thresholding the muscle contraction intensity [5]. However, 

this strategy is not intuitive, with movements appearing to be 

clumsy and unnatural, therefore preventing users from feeling 

the prosthesis as part of their body [6]. In order to overcome 

these limits, pattern recognition algorithms were adopted by 

many groups to decode the intended movement, with the final 

goal of increasing the controllability of multi-DoF prosthetic 

devices [7-9]. However, current pattern recognition 

approaches demonstrated poor performance with DoFs higher 

than 2 [10]. Another limitation of these studies is that the 

outcomes achieved during laboratory experiments are poorly 

assessed in real ADL applications [2]. Therefore, there is an 

urgent need of a reliable and stable classifier able to deal with 

unknown situations typical of ADLs [11-14]. We addressed 

this challenge by implementing a pattern recognition control 

specifically optimized for the Hannes system, a novel poly-

articulated hand prosthesis [15], to generate a robust, intuitive 

and human-like simultaneous DoFs control. Concerning the 

previous work where only hand opening and closing were 

actively controlled [15], we here include the classification of 

other two DoFs of the wrist. We optimized and tested several 

pattern recognition algorithms that process information 

coming solely from the EMG electrodes embedded in the 

prosthetic device. We then implemented the resulting best 

performing algorithm for simultaneous online control of the 

Hannes system joints. Our group already tested pattern 

recognition algorithms for translating muscular activity into 

virtual hand movements in 2 DoFs only (rest, hand opening-

closing (HOC), wrist pronation-supination (WPS)) [16]. We 

here extend this work by including the detection of wrist 

flexion-extension (WFE) for the real-time control of the 

Hannes prosthesis [16]. We assessed the performance of the 

detection algorithms for the control of the Hannes prosthetic 

hand both with 10 healthy subjects and with 3 trans-radial 
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amputees. The examined classifiers were: Non-Linear 

Logistic Regression (NLR) [17], Regularized Least-Square 

(RLS) [18], Artificial Neural Network (ANN) [19], Support 

Vector Machine (SVM) [20], and Linear Discriminant 

Analysis (LDA) [17]. For NLR, RLS and LDA methods, we 

combined pattern recognition with an “abstention” criterion. 

This consists in evaluating the likelihood of the decoded joint 

movement and enabling an “abstention” criterion (i.e. 

confidence-based rejection) [21]. The hyperparameters 

calibration and the integration of abstention inside each 

algorithm greatly improved the classifier accuracy. The 

increased number of DoFs to be simultaneously classified 

could lead to lower algorithms accuracy with respect to 

simpler settings [15, 16], nevertheless we here show that 

performances were still suitable for prosthetic control. We 

also found that both for amputees and able-bodied subjects, 

the NLR outperformed the other classifiers.  

II. MATERIALS AND METHODS 

A. Subjects 

We involved ten healthy subjects aged between 22 and 33 

years (27.1 ± 3.2) and three mono-lateral amputees (trans-

radial amputation of the dominant limb, already users of 

active prostheses). Written informed consent was obtained 

from all subjects. The study adhered to the standard of the 

Declaration of Helsinki and was approved by the Bologna-

Imola ethical committees (CP-PPRAS1/1-01). 

B. Experimental Protocol 

Six Ottobock EMG electrodes (13E200=50 AC) were 

attached to an elastic band (Fig. 2 A) wrapped around the 

forearm or stump approximately 5cm distal to the olecranon. 

These electrodes measured muscular electrical activities 

during grasping, WPS and WFE movements (Fig. 1 A). 

Muscles involved were identified by manual inspection and 

they were: Extensor Carpi Radialis Longus (EMG0), Extensor 

Digitorum (EMG2), Extensor Carpi Ulnaris (EMG4), Palmaris 

Longus and Flexor Carpi Ulnaris (EMG1), Flexor Carpi 

Radialis (EMG3) and the Brachioradialis Muscle (EMG5). 

After electrodes positioning, users were placed in front of 

a display showing the virtual Hannes system (Fig. 2 E). We 

required subjects to sequentially execute HOC, WPS and 

WFE 10 times. Then, we also recorded 16 repetitions of 

resting position (2s time-window and 1kHz sampling 

frequency) and combined their samples into a random 

distribution, obtaining a total of 24 repetitions (4 repetitions x 

6 gestures). This resting data was then randomly arranged for 

each gesture to create an indecision region. 

C. Processing of EMG signals 

EMG signals followed the same processing already 

described in [16]. Briefly, a custom EMG-master board 

implements the A/D conversion of the input data, which are 

subsequently sent to the PC via Bluetooth. We then used a 

customized version of the EMG - Data Acquisition & 

Training Software (E-DATS [16, 17], Fig. 2 E) to both collect 

data and offline train the algorithms. The model generation 

was realized through a MATLAB script (MathWorks). 

 

Figure 2. Experimental Setup. A: EMG electrodes, B: power supply, C: 

EMG processing board, D: Hannes system, E: E-DATS software, F: 

Hannes system in a non-immersive virtual-reality on Unity. 

 
Figure 1. sEMG activities related to each gesture. A: EMG signals and Hannes system speed during different gestures. B: available degrees of freedom of 

the Hannes system. C: Amputee performing Real-Time control of Hannes and VR. 



  

Following classifier training, real-time recognition of the 

available gestures was performed. Afterward, the Hannes 

system, equipped with the resulting best classifier, was 

controlled in real-time by each subject. 

D. Train and test the algorithms 

Algorithms (see paragraph II.F) were first calibrated, in 

order to obtain internal parameters able to satisfy high 

performances with the lowest computational effort during the 

online control, as detailed in [16]. For the LDA algorithm, we 

split the dataset into a training set (70% of the data) and a test 

set (30% of the data). The other algorithms were used after 

down-sampling the data from 1kHz to 40Hz, obtaining a 

training group (4% of the data) and a test set (96% of the data). 

The training group was in turn divided into a training set 

(2.4% of the data for offline tuning of the internal parameters), 

validation set (0.8% of the data for tuning the 

hyperparameters to prevent overfitting), and threshold 

optimization set (0.8% of the data for tuning the likelihood 

threshold for the abstention criterion). Afterward, we used the 

resulting best algorithm, already calibrated, for online 

decoding of hand motion using a real-time PC simulation 

based on pattern recognition (Model evaluation in Fig. 3). The 

optimized model was then uploaded (Model upload in Fig. 3) 

to the EMG processing board (TiVa Cortex-M4) for final 

online classification (Hannes in Fig. 3), used to freely control 

the Hannes with sampling frequency set to 300Hz. 

E. Hannes hand 

The Hannes prosthetic system consists of: (i) a set of six 

EMG electrodes, (ii) a custom EMG processing unit, (iii) a 

myoelectric poly-articulated prosthetic hand (Fig. 2 D), (iv) 

an active WFE, (v) an active WPS, and (vi) a battery pack 

(Fig. 2 B). The EMG processing unit (“EMG-Master” Fig. 2 

C) acquires the analog sensor output and synthesizes the 

control signals for each active joint. The extent of the 

activation is proportional to the RMS of the six EMG signals, 

normalized in the range 0 to 100%. An exception is the WPS, 

which is always controlled at the maximum velocity. The 

references are then sent to the respective motor control boards 

within the prosthetic system. Each motor driver has an on-

board control loop to ensure the correct joint movement: 

closed-loop speed control for the hand and WFE, and open-

loop for the WPS. A detailed description of the mechanical 

design of the prosthetic hand is provided in [15]. To the 

architecture described in [15], the current system adds the two 

active DoFs for the wrist. The WFE consists of a custom 

drivetrain based on a worm gear, ideal to withstand the high 

external loads. The overall range of motion achieved is ±65°. 

Similarly, the WPS consists of a standard motor-gearbox 

actuation and it can provide 360° rotation. The “de-facto” 

standard quick disconnect system by Ottobock was replicated, 

as described in [15]. 

F. Algorithms and hyperparameters optimization 

Following previous work on prosthetic control [13], we 

compared supervised machine learning algorithms: NLR [17], 

RLS [18], ANN [19], SVM [20], and LDA [17]. We first 

estimated the minimum number of EMG electrodes for each 

classifier by computing, for each configuration of EMG 

sensors, the F1Score performance. For the NLR classifier, we 

optimized the polynomial degree (D), which plays an 

important role since it represents the complexity of the 

algorithm, as described in [16]. The higher the complexity, 

the greater the computational burden required to the 

processing board. Regarding the ANN, we investigated the 

importance of the number of hidden layers by fixing the 

number of neurons to the highest value (30) and then we 

optimized the number of neurons, considering the previously 

obtained optimal number of hidden layers. Furthermore, in 

RLS, LDA and NLR, the maximization of the voluntary 

gestures recognition was implemented through the addition of 

a Likelihood threshold [13]. The threshold, ranging between 

0.7 and 1, was optimized for each subject and each algorithm 

in terms of F1Score [22]. During offline optimization, in the 

cases of movements under threshold or simultaneous supra-

threshold movements, the classifier abstained without 

classifying. During online classification, supra-threshold 

movements belonging to the same DoF were considered as 

“abstentions”, while supra-threshold movements belonging to 

different DoFs produced simultaneous movements. We used 

the test set (paragraph II.D) to assess the performance of each 

algorithm in terms of F1Score and Embedding Optimization 

Factor (EOF), considering different configurations of 

hyperparameters. The EOF explains the trade-off between 

performance accuracy and complexity of the algorithm, 

which is strongly related to the computational burden on the 

EMG processing board [17]. This index is associated to the 

available memory on the EMG-Master. Therefore, it may 

happen that in some cases (e.g. full configuration of EMG 

sensors), the model has too many parameters for the available 

flash memory, resulting in EOF obtaining negative scores (see 

[17] for EOF calculation). We compared the performance of 

each algorithm in terms of F1Score, EOF, classification 

(percentage of correctly decoded movements, i.e. accuracy), 

and abstention (percentage of not assigned movements). 

Afterward, the optimized hyperparameters were exploited to 

build optimal classifiers on the amputees dataset. We used 

Wilcoxon-Signed-Rank test and Bonferroni correction [23] 

for statistical analysis.  

III. RESULTS 

A. Variation of EMG electrodes number  

The minimum number of EMG electrodes was first 

determined to optimize the performance of each algorithm, 

highlighted by the absence of statistical difference in the 

 

Figure 3. Diagram of the model generation and Hannes control. 



  

F1Score (NS in Fig. 4). Then, starting from the setup with 6 

EMG electrodes, we successively decreased the number of 

sensors by ignoring EMG signals coming from muscles with 

lower activity, according to the following order: EMG5, 

EMG2, EMG3, EMG4. Regarding the LDA and the NLR 

classifier, the best configuration was obtained either with five 

or six electrodes. For SVM and ANN, only four electrodes 

were required to maximize the performance, while for RLS 

the full configuration with 6 EMG sensors saturated the 

performance. However, F1score was highest for NRL and 

LDA with any configuration of electrodes, while in other 

cases, it was always lower than 65%. 

B. NLR: variation of polynomial degree D  

Regarding the NLR classifier, we swept the polynomial 

degree (D-value) in the range 1-7 to assess the performance 

in terms of EOF. As represented in Fig. 5, we obtained the 

optimal behavior for D = 2. 

C. ANN: variation of network architecture  

Concerning the ANN classifier, we evaluated how the 

number of hidden layers affects performance using a 

configuration of 4 EMG electrodes. We tested the EOF 

performance when varying the number of hidden layers (L) 

from 1 to 10 (according to [17]) and keeping fixed to 30 the 

number of neurons. We found optimal EOF values with L=5 

or greater (Fig. 6 A). Subsequently, we considered as the 

optimal choice L = 5 and we varied the maximum number of 

neurons (N) between: [1, 5, 10, 15, 20, 23, 24, 25, 26, 27, 28, 

29, 30]. We compared the performance of the different 

configurations to establish the best hyperparameters setup. 

We set N=1 since we found that performances do not degrade 

when considering more neurons (Fig. 6 B). 

 

Figure 5. NLR optimization with 5 electrodes: EOF performance when 

varying the maximum D-value. NS: not significant. 

 

Figure 4.  Performance of F1Score when varying the number of electrodes for each classifier. In the NLR the D-value is fixed to 7, while for ANN the 

number of hidden layers is 10 and the number of neurons is 30. NS: not significant. 

 

Figure 6. ANN optimization with 4 EMG sensors. A: EOF performance 

when the maximum number of hidden layers varies and the maximum 

number of neurons is fixed to 30. B: EOF performance when the 

maximum number of neurons varies and the maximum number of hidden 

layers is fixed to 5. NS: not significant. 



  

D. Analysis of algorithms performance  

Fig. 7 highlights the behavior of the classifiers in terms of 

F1Score, EOF, classification, and abstention obtained by the 

various algorithms in their optimized configurations (i.e. 

optimal values of hyperparameters). With respect to F1Score, 

EOF and classification (Fig. 7 A, B and C), NLR always 

reached the highest value. Although the F1Score has no 

statistical difference between NLR and LDA (gold standard), 

the former obtained less dispersed results, as indicated by 

small standard deviation. However, the highest abstention 

was reached by NLR (Fig. 7 D). 

E. Tests on amputees 

With trans-radial amputees, we used the optimal 

configurations of the classifiers obtained from the analysis on 

able-bodied subjects. Moreover, we compared the 

performance obtained by amputees with those of the healthy 

subjects to assess whether the algorithms perform differently 

in the two cases. TABLE I highlights the values of F1Score, 

EOF, classification, and abstention achieved by amputees. 

Scores of the patients matched those obtained by able-bodied 

subjects: NLR had the highest classification score, followed 

by LDA. F1Scores and EOF were highest for NLR, followed 

by LDA for patients #1 and #3, vice versa for the other 

subject. NLR obtained greater abstentions. During the 

experiments, the amputees verbally expressed their 

satisfaction towards the improved controllability of the tested 

system with respect to their usual prosthesis. 

IV. DISCUSSION 

We tested multiple supervised machine learning 

algorithms to decode prosthesis movements. We found NLR 

and LDA algorithms as top performers, with respect to EOF, 

with a configuration of 5 EMG electrodes. In a previous study 

including only 1 DoF for the wrist [16], our group found that 

3 EMG electrodes were enough for NLR to reach top 

performance. We here show that the successful decoding of 3 

DoFs movements came at the cost of increasing the number 

of EMG electrodes needed (from 3 to 5). NLR maintained the 

same performance when the degree of polynomial complexity 

is higher or equal than 2. This guarantees that the 

computational burden is still kept at a minimum, even with a 

greater number of decoded classes, with respect to [16].  

Regarding the ANN algorithm, we optimized the architecture 

of the network with respect to our previous study [16]. Indeed, 

the optimal maximum number of hidden layers decreased to 

5 (6 in [16]) and that of neurons decreased to 1 (24 in [16]). 

However, the performances dramatically dropped as both 

classification and F1scores decreased to 51.3% and 56.1%, 

respectively (80.3% and 80.2%, respectively, in [16]), 

presumably as an effect due to the increased number of 

decoded classes that causes less separation of gestures into the 

parameter hyperspace. Differently from [10], where they 

achieved degraded performance  for the 3-DoFs control, we 

here  discovered that, with the same number of DoFs, the NLR 

algorithm is the most suitable for a prosthesis control based 

on pattern recognition. Although no statistical difference was 

found between NRL and LDA algorithms, NRL showed 

smaller standard deviations (see Fig. 7 A). NLR and LDA 

were also the best performing algorithms for amputees, who 

succeeded in the control of the Hannes system through the 

residual muscular activity of the stump. With respect to other 

classifiers, NLR also reached a higher percentage of 

abstentions. Nonetheless, due to the high classification 

frequency, set to 300Hz, 300 movements per second were 

decoded. Consequently, latency between movement 

intentions and resulting action was not perceived by users 

even in case of high abstention rate. The abstention criterion 

reduced the number of classification artifacts, leading to more 

robust and consistent classification with respect to the state of 

the art systems in a similar context [24, 25]. The NLR 

algorithm was therefore implemented on the microcontroller 

board for online control of Hannes. Subjects could then freely 

explore the human-like behavior of the system, which was 

able to achieve simultaneous and intuitive control of multi-

DoFs, a fundamental feature for bioinspired prosthetic use, 

not yet achieved by current state-of-the-art systems [2, 25]. 

Indeed, as reported by amputees, the NLR classifier allows 

 
Figure 7. Algorithms comparison. A: Performance of F1Score. B: EOF 

index. C: Percentage of correctly classified outputs. D: Percentage of 

abstention. NS: not significant. 



  

the reliable translation of the gesture intentions into actual 

movements (Fig. 1 C). However, online control was not 

systematically tested as for the offline phase, leaving online 

control to be further assessed in future experiments. 

Moreover, we need to increase the number of amputated 

subjects in order to properly perform statistical analysis. 

Finally, to truly assess the validity of NLR for simultaneous 

multi-joint prosthetic control, it will be fundamental to 

perform tests outside the lab and in the context of ADLs. 

V. CONCLUSION 

We here assessed the ability of multiple supervised machine 

learning algorithms to simultaneously control upper limb 

prosthesis through EMG signals detected at the forearm level 

of healthy subjects. NLR turns out to be the best operating 

algorithm and we further supported this result by tests on 

trans-radial amputees controlling the Hannes system (see the 

attached VIDEO). We will now extend this study to a wider 

amputees population in the context of ADLs, in order to truly 

test NLR control of prosthetic devices in real life context. 
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TABLE I: AMPUTEES RESULTS. In bold are highlighted the best 

performances of each index (F1Score, EOF, classification, and 

abstention) for each amputee. The number of electrodes is fixed from 

the results on the able-bodied subjects. 

S. Alg. 
EMG 

sensors 

F1Score 

[%] 

EOF  

[%] 

Classification 

[%] 

Abstention 

[%] 

1 

NLR 5 99.73 99.77 99.96 82.21 

RLS 6 38.22 -2.62 42.27 52.99 

ANN 4 54.63 70.64 49.21 - 

SVM 4 59.37 61.86 55.06 - 

LDA 5 97.86 98.80 98.51 57.88 

2 

NLR 5 93.81 96.71 98.91 77.95 

RLS 6 35.09 -2.63 37.47 56.04 

ANN 4 44.45 61.54 41.70 - 

SVM 4 50.88 54.23 47.54 - 

LDA 5 94.73 97.18 94.59 54.88 

3 

NLR 5 99.91 99.86 99.99 77.08 

RLS 6 44.75 -2.61 48.12 56.82 

ANN 4 49.29 66.02 44.61 - 

SVM 4 55.31 59.28 51.64 - 

LDA 5 96.46 98.08 96.69 53.63 

 


