
Doctoral Dissertation
Doctoral Program in Computer and Control Engineering (36𝑡ℎcycle)

Speaker Verification and Language
Recognition

By

Salvatore Sarni

Supervisor(s):
Prof. S. Cumani

Politecnico di Torino
2024

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Salvatore Sarni
2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

Acknowledgements

I would like to thank all the people with whom I collaborated during these years at
Politecnico di Torino. In particular, a lot of gratitude goes to my PhD tutor Prof.
Sandro Cumani for giving me such an opportunity and for his support throughout the
development of this work. A big thank goes to my family for their constant support.

Abstract

Automatic systems for identity recognition are ubiquitous. A person’s identity can be
found and matched exploiting some of its biometrical traits. The trivial operation of
unlocking a smartphone hides some form of verification, usually face or fingerprint
verification. Personal assistants answer our questions only after verifying our identity
through our voices. Speaker verification is the main focus of this work. In speaker
verification, given an identity and an audio utterance, the system should be able to
assess if the audio was spoken by such identity.

The starting point of the verification pipeline is the audio. Due to their nature,
voice recordings come with different durations and from various sources. A fixed
dimensional utterance representation that contains speaker-discriminant information
is then required. The advances in the field of Deep Learning made Deep Neural
Networks (DNN) the state-of-the-art technique to process utterances and extract such
representations, namely the embeddings. In this work, we explore the latest and most
common architecture employed for the speaker verification task.

The nature of audio and the need to model its long-range temporal dependencies
resulted in a variety of solutions, from Time Delay Neural Networks (TDNN) to
Residual Networks (ResNet) and finally, the latest experiments with Transformers
models. Architectures are typically trained on a set of background speakers using
a multi-class classification paradigm. The network processes the acoustic features
and aggregates them using a pooling layer, obtaining a fixed-length embedding from
which speaker posterior probabilities are then computed, typically with a softmax
layer.

The need to identify or verify a language arises for a plethora of applications.
Language-dependent systems may be required to automatically adapt their model
to the language being spoken. Given the small number of languages compared
to that of potential speakers, the number of classes is reduced and while training

v

data is generally abundant, low-resource languages pose a significant challenge.
Nevertheless, speaker verification methods can be successfully adapted. In this work,
we focus on extending state-of-the-art DNN-based embedding models to the language
recognition task.

To assess whether two embeddings convey the same information, being the
speaker or the language, a scoring system is needed. Various backend classifiers
can be used for this purpose, ranging from distance metrics to probabilistic models.
However, no matter how the score is obtained, it needs to be interpreted and each
application may have a specific threshold for accepting or rejecting the same speaker
(or language) hypothesis. An optimal system should exhibit consistent performance
across different applications, regardless of the chosen threshold.

Different techniques can be employed to address the calibration problem. In
this study, we introduce a new generative model that can effectively use additional
information from the audio, such as utterance duration. Moreover, logistic regression
and score normalization are two distinct state-of-the-art approaches used to improve
calibration. In this study, we explore a combination of both methods as well as a
possible alternative to the score normalization approach.

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Speaker Recognition . 2

1.2 Language Recognition . 2

1.3 Backend Model . 2

1.4 Outline . 3

2 Audio modeling 4

2.1 Feature extraction . 4

2.1.1 Sampling, quantization and filtering 4

2.1.2 Mel-scaled filter banks . 6

2.1.3 Mel-Frequency Cepstral Coefficients 7

2.2 Speaker verification with Latent Variable Models 9

2.2.1 i-vector . 9

2.2.2 Embeddings . 10

3 Deep Learning for embeddings extraction 12

3.1 Neural Networks . 12

Contents vii

3.1.1 Feedforward Neural Networks 13

3.1.2 Training . 16

3.2 Speaker and language recognition architectures 22

3.2.1 Time Delay Neural Network 23

3.2.2 ResNet . 25

3.2.3 Attention . 27

3.2.4 ECAPA-TDNN . 30

3.2.5 Neural Networks for Language Recognition 32

4 Backends 35

4.1 Scoring . 35

4.1.1 PLDA . 36

4.1.2 PSVM . 39

4.1.3 Bayes Decision . 41

4.2 Calibration . 43

4.2.1 Distribution of PLDA scores 46

4.2.2 The 𝑉Γ model, a generative model for mismatched data . . . 53

4.2.3 Utterance-dependent calibration 56

4.3 Score-Normalization . 59

4.3.1 Impostor score statistics as quality measures 62

4.3.2 From adaptive score normalization to adaptive data normal-
ization . 66

5 Experimental Results 70

5.0.1 Hardware Setup . 70

5.1 Speaker Embeddings . 70

5.1.1 Datasets . 71

5.1.2 Augmentation . 72

viii Contents

5.1.3 Extraction . 73

5.1.4 Evaluation . 73

5.2 Speaker Embedding Results . 73

5.2.1 Neural Networks for Speaker Verification 74

5.3 Language Embedding Results . 78

5.3.1 NIST Language Recognition Evaluation 2022 78

5.3.2 LRE22 Embedding Extractors 79

5.3.3 LRE22 Backends . 80

5.3.4 LRE22 Results . 81

5.4 Calibration and Normalization Results 84

5.4.1 The VΓ-Var Model . 85

5.4.2 C-Norm . 98

5.4.3 AD-Norm . 103

6 Conclusions 108

Bibliography 109

List of Figures

2.1 The A and 𝜇–law . 6

2.2 Audio Feature Extraction . 8

3.1 Artificial neuron model . 13

3.2 Feedforward Neural Network . 14

3.3 Convolutional layer . 15

3.4 Max Pooling layer . 16

3.5 Overview of the main components that make up an architecture used
in speaker recognition. 23

3.6 TDNNs unit cell . 24

3.7 Single residual block . 25

3.9 Building blocks of the Conformer and ECAPA architectures. 31

3.10 CNN block . 33

4.1 Score distributions for target and non target scores 43

4.2 Scores distributions and bayes error plots for calibrated and non-
calibrated scores . 44

4.3 Gaussian-distributed score densities for a single speaker. 60

4.4 Gaussian-distributed score densities for three different speakers . . . 61

4.5 Score densities for three different speakers after Z-norm. 61

x List of Figures

4.6 Bayes error plots of the minimum cost for the synthetic scores of
Figures 4.4 and 4.5 . 62

5.1 1-D convolution with dilation detail 74

5.2 Best EER and primary cost for tested network 76

5.3 Results for the different sub-systems 82

5.4 Ablation study on our primary submission to the NIST LRE22 . . . 83

5.5 Mini-epochs performance for different architectures 84

5.6 𝐶𝑙𝑙𝑟 for different calibration approaches with different embedding
frontends on SRE 2019 short segments. 89

5.7 Calibration transformation and Bayes error plots on SRE 2019
evaluation data . 91

5.8 Calibration transformations of duration-aware models 92

5.9 Results for different embedding extractors and different classifiers
on the SITW Evaluation dataset. 102

5.10 Results for different embedding extractors and the PSVM classifier
on the SRE 2019 Evaluation dataset. 103

5.11 Minimum 𝐶∗
𝑙𝑙𝑟

for different normalization approaches 104

5.12 𝐶∗
𝑙𝑙𝑟

as a function of the cohort size on SRE 2016 and SRE 2019 . . 107

List of Tables

3.1 Modified ResNet34 for speaker verification 26

5.1 Hardware and software specifications of the workstation used to run
the Model Trainer and the Link Evaluator. 71

5.2 Statistics of the datasets used. 72

5.3 Details of the Extended TDNN (left) and Factorized TDNN (right)
architectures implementation. 74

5.4 Results with TDNN-based architectures 75

5.5 Results with different architectures 77

5.6 NIST LRE2022 target langauges 78

5.7 Summary of the proposed architectures for our primary system for
LRE 22 . 80

5.8 Results on the SRE 2019 evaluation dataset with short segments. . . 88

5.9 Results on the SRE 2019 evaluation dataset with original segments. 94

5.10 Comparison of length-normalization-aware calibration models on
the SRE 2019 evaluation dataset. 95

5.11 Results on SRE 2010 with an i-vector frontend. 95

5.12 Results on SRE 2010 with an i-vector frontend and length normalization. 96

5.13 Results on SRE 2012 with an e-vector frontend. 98

5.14 Results for different embedding extractors and different classifiers
on the SITW Evaluation dataset. 100

xii List of Tables

5.15 Results for different embedding extractors and the PSVM classifier
on the SRE 2019 Evaluation dataset. 103

5.16 Comparison of different normalization approaches on SRE 2016
datasets. 105

5.17 Comparison of different normalization approaches on SRE 2019
datasets. 106

Chapter 1

Introduction

A spoken utterance carries different kinds of information at several degrees. The
advancement in computational power and the application of complex solutions to
complex problems has facilitated the research and development of tools that extract
such information. The increasing need for security or the automation of different
operations has led to the rapid growth of several fields related to the identification
and verification of a person’s characteristics. Speaker recognition is a field of study
that involves identifying and verifying the identity of an individual based on their
unique vocal characteristics. The primary objective of speaker recognition is to create
systems that can differentiate between different voices and match them with their
corresponding identities. This technology has several potential use cases, including
security, law enforcement, and authentication.
On the other hand, language recognition focuses on identifying the language being
spoken in an audio recording or speech signal. The objective of language recognition
is to accurately identify and classify spoken languages based on their unique phonetic,
prosodic, and spectral characteristics. Some potential applications include speech-to-
text transcription or frontend to multilingual automatic systems.
With the advent of deep learning and neural networks, these fields, among others,
have made significant progress in recent years and have become an integral part of
many everyday devices and services.
This work will present the author’s contribution to the speaker verification and
language recognition fields while introducing and analyzing the deep neural networks
model that represents a part of the state-of-the-art approaches in these fields.

2 Introduction

1.1 Speaker Recognition

Speaker recognition systems are designed to recognize speakers by analyzing their
voices. The field of speaker recognition is divided into two subtopics: speaker
identification and speaker verification.
Speaker identification is a multi-class classification problem where the system is
required to identify the speaker among a set of enrolled speakers for a given test
utterance.
Speaker verification, instead, is a binary classification problem where the system has
to determine whether a test audio and an enrollment utterance belong to the same
speaker or not.
Furthermore, speaker identification can be classified into two tasks: closed-set and
open-set. In the closed-set scenario, the number of enrolled speakers is fixed and
limited, while in the open-set scenario, the set of enrolled speakers is not limited,
and the system needs to distinguish between known and unknown speakers. Making
open-set speaker identification a more demanding task.

1.2 Language Recognition

Similarly to speaker recognition, language recognition can be viewed as a multi-class
classification problem. Its objective is to identify the language spoken in a given
utterance. The set of languages can be defined and limited, which results in a
closed-set scenario. Conversely, in an open-set scenario, the test utterance could
belong to a language that is not specified in the given set.

1.3 Backend Model

In recent years neural networks have become the state-of-the-art for extracting speaker
or language information-rich utterance representations. However, to determine if
two embeddings encode the same information, an additional step is necessary.
The classifier, which is the first component of the backend, may have different
characteristics to tackle different requirements and scenarios. Nonetheless, the

1.4 Outline 3

score it produces still needs to be interpreted. Calibration is the final step where an
appropriate threshold is chosen to optimize the performance for specific applications.

Speaker verification and language recognition are the main focus of this work.
The two fields share some common concepts and techniques, in the following we will
discuss our work on the deep neural networks frontend while introducing the current
state-of-the-art. Then, we will introduce and discuss the author’s contribution to
the state–of–the–art techniques employed in the backend classifier and calibration
models.

1.4 Outline

The work is organized as follows:

• Chapter 2 introduce the basic concept and tools in feature extraction while
presenting some background works

• In Chapter 3 we present and examine our work on the most recent frontend
techniques used both in speaker verification and language recognition, that is
deep neural networks

• Chapter 4 will present some of the backend classifier models and the calibration
issue

• The experimental results related to the author’s contribution are collected in
Chapter 5

• Finally in Chapter 6 we drawn conclusions and explore possible future works

Chapter 2

Audio modeling

An audio signal is continuous, meaning it is represented by an infinite number of
values. However, computers and other digital systems can only handle discrete
signals that have a finite number of values. In this chapter, we will discuss some
techniques used to transform an audio sample into something that can be used
and interpreted by a machine. These transformations, which are commonly called
feature extraction, represent a crucial first step in many different language or speaker
recognition systems.

2.1 Feature extraction

In this section, we will explore the first step taken by any automatic system when
recognizing a speaker or language. This involves extracting a digital representation
of the most relevant aspect of the analog signal.

2.1.1 Sampling, quantization and filtering

In order to process or store an analog signal in a digital format, it must be sampled
and quantized.
Sampling is the process of taking discrete samples of an analog signal at regular
time intervals. This corresponds, in the time domain, to a multiplication of the input
signal with a sequence of impulses

∑
𝑘

𝛿(𝑡 − 𝑘𝑡𝑠), where 𝑡𝑠 is the sampling time. The

2.1 Feature extraction 5

sampled signal 𝑦𝑠 (𝑡) is thus defined as

𝑦𝑠 (𝑡) =
∑︁
𝑘

[𝑦(𝑘𝑡𝑠)𝛿(𝑡 − 𝑘𝑡𝑠)] (2.1)

where 𝑦(𝑡) is the input signal. In the frequency domain, the Fourier transform of
𝑦𝑠 (𝑡) is defined as a sequence of impulses convoluted with the spectrum of the analog
signal

𝑌𝑠 (𝜔) =
1
𝑡𝑠

∑︁
𝑘

𝑌

(
𝜔+ 2𝜋𝑘

𝑡𝑠

)
(2.2)

The Nyquist-Shannon sampling theorem states that in order to accurately represent
an analog signal in a digital format, the sampling frequency must be at least twice
the highest frequency component of the signal. However, since frequencies higher
than 4 kHz are hardly sensed by the common human hears, it follows that 8 kHz is an
acceptable sampling frequency.
Quantization is the process of mapping the continuous range of possible values of
an analog signal with a finite set of discrete values, with an inevitable loss. Linear
quantization uniformly divides the input range and assigns the amplitude of each
sample to the nearest value of the corresponding interval. In this scenario, the
absolute value of the quantization error will be constant for any given input. However,
the amplitude distribution of an audio signal is highly non-linear. Logarithmic
quantization solves this issue by applying a linear quantization to the logarithm of
the acoustic signal. Moreover, the 𝜇–law (used in American communication nets)
and the A-law (used in European communication nets) [1] are two examples of
functions used in practice, due to the fact that the logarithm is not defined in zero.
When working with telephone speech, values are commonly represented using 8
bits. However, in practice, a larger number of bits is used to perform an initial linear
quantization. Finally, one of the laws shown in Figure 2.1 is utilized to map these
values to 8 bits.
To obtain a more flat spectrum of the signal for a given frequency band, a first order
pre-emphasis filter is used to filter the discretized samples. The transfer function in
the frequency domain is defined as

𝐻 (𝑧) = 1− 𝑎𝑧−1 (2.3)

6 Audio modeling

Figure 2.1 The A and 𝜇–law

Equivalent, in time-domain, to

𝑌 (𝑘) = 𝑌 (𝑘) − 𝑎𝑌 (𝑘 −1) (2.4)

where 𝑎 is a constant, typically 𝑎 = 0.95 in real applications.

2.1.2 Mel-scaled filter banks

In audio signals (Fig.2.2a), frequencies usually change over time. Therefore,
performing a Fourier transform on the entire signal would result in the loss of
information about their changes over time. Since it is reasonable to assume that the
frequencies in a signal remain stable over a brief period of time, the signal is split
into frames, with a duration of about 10ms. A set of samples is grouped together as:

𝑋𝑡 (𝑛) = 𝑌 (𝑀𝑎𝑡 +𝑛) 0 ≤ 𝑛 ≤ 𝑁𝑎 −1,0 ≤ 𝑡 ≤ 𝑇 −1 (2.5)

where 𝑁𝑎 is the grouping window size, 𝑀𝑎 the size of the shift, and𝑇 is the duration in
frames of the signal. Grouping the audio signal into frames can cause the distortion of
the spectrum of the samples within each frame (this is known as Gibs phenomenon),
a Hamming window is utilized to mitigate the impact of the samples located near the
frame’s edges

𝑋̂𝑡 (𝑛) = 𝑋𝑡 (𝑛)𝑊 (𝑛) 0 ≤ 𝑛 ≤ 𝑁𝑎 −1,0 ≤ 𝑡 ≤ 𝑇 −1 (2.6)

2.1 Feature extraction 7

where

𝑊 (𝑛) =

𝑐+ (1+ 𝑐) cos(𝜋𝑛

𝑁−1 −
𝜋
2) 𝑖 𝑓 0 ≤ 𝑛 ≤ 𝑁 −1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2.7)

and c = 0.54 in real applications. This method produces a better approximation of
the original signal’s spectrum (Fig.2.2b), sacrificing the information encoded in the
samples at the edges of each frame. To address this issue, the window is only shifted
by half its size. As a result, the samples located at the borders of a frame are now
situated in the middle of the preceding or succeeding frame. At this point, the data
within each frame undergoes the Fourier Transform

𝑋 𝑓 (𝑗) = 𝐹 (𝑋̂𝑡 (𝑛)) (𝑗) 0 ≤ 𝑛 ≤ 𝑁𝑎 −1,0 ≤ 𝑡 ≤ 𝑇 −1 (2.8)

Since the human auditory system cannot perceive phase variations, the focus is on
the amplitude spectrum. Filters that emulate the human auditory system are used to
define frequency bands on the mel scale [1] for dividing the acoustic signal spectrum
(Fig.2.2c). For each band, the energy of the corresponding samples is then evaluated.

𝐸𝑖 (𝑓) =
𝐻𝑖∑︁
𝑗=𝐿𝑖

|𝑋 𝑓 (𝑗) |2 1 ≤ 𝑖 ≤ 𝑁 𝑓 (2.9)

where 𝐸𝑖 (𝑓) is the energy of the 𝑖–th band, 𝐿𝑖 is the lower bound of the corresponding
band, 𝐻𝑖 is its higher bound and 𝑁 𝑓 is the number of bands.

2.1.3 Mel-Frequency Cepstral Coefficients

A Discrete Cosine Transform (DCT) can be applied to decorrelate the filter bank
coefficients and create a compressed representation of the filter banks. Mel-Frequency
Cepstral Coefficients (MFCC) [1, 2] (Fig. 2.2d) are obtained by computing the DCT
of the logarithm of the energy parameters 𝐸𝑖 (𝑓). The 𝑖–th MFCC for frame 𝑘 is
given by

𝐶𝑖 (𝑘) =
𝑁 𝑓∑︁
𝑗=1

log(𝐸 𝑗 (𝑘)) cos
[
𝑖(𝑗 − 1

2
) 𝜋
𝑁 𝑓

]
0 ≤ 𝑖 ≤ 𝑁 𝑓 (2.10)

8 Audio modeling

(a) Waveform (b) Spectrogram

(c) MelSpectrogram (d) MFCC

Figure 2.2 Audio Feature Extraction

and the total energy of the frame can be evaluated as

𝐸 (𝑘) =
𝑁 𝑓∑︁
𝑗=1
𝐸 𝑗 (𝑘) (2.11)

The information conveyed by cepstral parameters with higher indices diminishes, and
both 𝐸 (𝑘) and 𝐶0(𝑘) contain the same information. Consequently, we can discard
the high index parameters and 𝐶0(𝑘). Usually between 12 and 24 cepstral parameters
are selected.

Using the differential counterparts of MFCCs, also known as depstral parameters,
can lead to a more accurate acoustic signal model. These parameters are determined
by estimating the temporal derivative of MFCCs. To ensure that the variances of
both the depstral parameters and MFCCs are comparable, a gain, denoted as G, may
be introduced

Δ𝐶̄𝑖 (𝑘) = 𝐺
𝑁∑︁

𝑗=−𝑁
𝑗𝐶̄𝑖 (𝑘 − 𝑗) 1 ≤ 𝑖 ≤ 𝑝 (2.12)

2.2 Speaker verification with Latent Variable Models 9

where N is half the size of the window used to approximate the derivative. Similarly,
differential energy can be evaluated as

Δ𝐸 (𝑘) =
𝑁∑︁

𝑗=−𝑁
𝑗𝐸 (𝑘 − 𝑗) (2.13)

Additionally, the second-order derivatives of cepstral coefficients may be calculated in
a similar manner. Once cepstral parameters and their derivatives have been obtained,
they may be combined to form the feature vector.

𝑂𝑡 = {𝐶̄1(𝑡), ..., 𝐶̄𝑝 (𝑡),Δ𝐶̄1(𝑡), ...,Δ𝐶̄𝑝 (𝑡),
ΔΔ𝐶̄1(𝑡), ...,ΔΔ𝐶̄𝑝 (𝑡), 𝐸 (𝑡),Δ𝐸 (𝑡),ΔΔ𝐸 (𝑡)} (2.14)

2.2 Speaker verification with Latent Variable Models

Speaker recognition systems deal with audio recordings originating from different
sources, which may vary in duration and contain varying amounts of speaker-related
information. The first challenge faced in building such a system is to obtain a
fixed-dimension representation containing only the most relevant features. Gaussian
Mixture Models (GMMs) [3, 4] were one of the first successful approaches employed
to extract speaker information from audio utterances. Later, the combination of Joint
Factor Analysis (JFA) with the GMM model led to the development of the i-vector
representation, a long-standing state-of-the-art approach in speaker verification.

2.2.1 i-vector

Speaker-related information can be extracted by using a GMM universal background
model (UBM) [5, 6]. The UBM is obtained by training a single GMM over a large set
of utterances from different speakers. For each utterance, a GMM can then be trained
by adapting its means starting from the UBM ones. Joint Factor Analysis (JFA) can
be used to improve this process [7, 8]. JFA represents a speaker’s utterances through
a supervector 𝑀:

𝑀 = 𝑚 +𝑉𝑦 +𝑈𝑥 +𝐷𝑧 (2.15)

10 Audio modeling

where 𝑚 is a speaker-independent supervector derived by concatenating the UBM
means, and 𝑉 , 𝑈, and 𝐷 define the subspaces for speaker, session, and residual
noises. The vectors 𝑦, 𝑥, and 𝑧 characterize the speaker, session, and common
factors. Speaker factors are assumed to take the same value for all utterances of
the same speakers, whereas the other factors are utterance-dependent. JFA offered
a framework for speaker modeling and scoring of test utterances. However, the
classical JFA approach is computationally intensive. Consequently, JFA has primarily
been employed as a feature extractor. In classical JFA modeling, two distinct spaces
are defined: the speaker space, denoted by the matrix V, and the channel space,
denoted by the matrix U. This configuration enables JFA to effectively estimate
and compensate for channel effects [9, 10]. However, some results obtained in [11]
showed that channel factors may contain useful information about the speaker, even
if channel factors were assumed to only model channel and noise. Consequently, an
adapted version of JFA was proposed, where a single subspace is estimated, assuming
that most of the pertinent information lies within it [12]. The supervector 𝑀 is
defined as:

𝑀 = 𝑚 +𝑇𝑤 (2.16)

here 𝑚 represents again the speaker-independent supervector, which can be derived
from a Universal Background Model (UBM) supervector. The rectangular matrix
𝑇 encompasses both channel and speaker information, and its columns span the
subspace where the GMMs are situated. Finally, 𝑤 is a random vector that encodes
a GMM in the subspace associated with 𝑇 . The i-vector was a fundamental step
in speaker representation and one of the latest state-of-the-art before the advent of
approaches derived from deep learning and neural networks. Initially, there were
attempts to improve the performance of i-vectors by integrating components trained
with deep neural networks [13, 14]. Nevertheless, significant progress has been made
by directly extracting speaker representations using neural networks. As a result,
neural-networks based speaker embeddings have now become the latest standard in
speaker verification.

2.2.2 Embeddings

Given an input with 𝐷 dimensions, an embedding is a vector with 𝑑≪ 𝐷 dimensions
that represents the input in the new space. An embedding extractor has to map
similar objects close to each other in this new space. Embeddings offer a fixed

2.2 Speaker verification with Latent Variable Models 11

and low-dimensional representation of the input, which can be useful in various
applications, such as movie recommendation systems or face recognition [15, 16].
In our case, they can be used to extract speaker or language-related information
from raw audio data [17, 18]. There are different techniques to extract embeddings,
with deep learning being the state-of-the-art approach for many tasks. Deep neural
models can build a hidden representation of the input that can be used to optimize
a final objective. Networks can be trained to optimize different functions and the
embeddings are extracted from one or more of their hidden layers [19]. The number
of units defined within each architecture defines the dimension of the embedding
space.

In speaker recognition, networks are trained to classify speakers [18, 20]. The
network inputs consist of the acoustic features of a speech segment and the cor-
responding speaker’s identity, represented by a label. The network has to learn
the distinct characteristics of each speaker in the hidden layers, which results in
speakers who share similar traits being projected closer in the embedding space. The
same network can then be used to extract embeddings from speakers that were not
encountered during the training phase [21]. Similar considerations apply to the task
of language recognition [22].

In the upcoming chapter, we will introduce and examine the state-of-the-art
techniques utilized for extracting these embeddings, as well as analyze the author’s
contributions to such techniques.

Chapter 3

Deep Learning for embeddings
extraction

3.1 Neural Networks

In this chapter we introduce the fundamental concepts of artificial neural networks
(ANN), which have been instrumental in the development of our work on calibration
and normalization of speaker verification scores and our novel contributions to the
extraction of effective language embeddings [23]. It should be noted that the goal of
the following sections is not to provide a comprehensive overview of the history of
ANNs. Rather, the focus is on presenting the principles and key concepts that have
been utilized to solve the problem of speaker verification and language recognition.

The current concept of a "neural network" was first introduced in [24]. In this
work, the primary focus was on constructing a mathematical model to replicate
the functions of the human brain, which relies on networks of basic processing
units called neurons, Figure 3.1. The perceptron, introduced in [25], marked an
advancement in this model by proposing that each neuron should learn a specific
function. This type of architecture is able to learn and realize all elementary logical
operations. However, for those functions that require a non-linear separation rule, a
single perceptron is not sufficient. Instead, a Multi-Layer perceptron architecture is
needed, where a layer consists of perceptrons at the same architectural level.

3.1 Neural Networks 13

Figure 3.1 Artificial neuron model

Activation Functions The parameters of each node (Fig. 3.1) can be rearranged
into a weights vector 𝑤 = [𝑤1,𝑤2, ...,𝑤𝑛]𝑇 and a biases vector 𝑏 = [𝑏1, 𝑏2, ..., 𝑏𝑛]𝑇 .
Given the activation function 𝜎(·), the output is computed through vectors multipli-
cation as

ℎ = 𝜎(𝑤𝑇𝑥 + 𝑏) (3.1)

Activation functions can be used to introduce a non-nonlinearity to the node. Some
examples of activation functions include:

• logistic: 𝜎(𝑧) = 1
1+𝑒−𝑧

• tanh: 𝜎(𝑧) = 𝑒𝑧−𝑒−𝑧
𝑒𝑧+𝑒−𝑧

• Rectified Linear Unit (ReLU): 𝜎(𝑧) = 𝑚𝑎𝑥(0, 𝑧)

In our work, we mainly used the ReLU function.

3.1.1 Feedforward Neural Networks

The multilayer perceptron is an example of a feedforward neural network. In these
architectures, depicted in Figure 3.2, information flows unidirectionally from the
input layer through one or more hidden layers to the output layer. Each perceptron,
or in general a node, is connected to nodes in the preceding and succeeding layers
through weighted connections (Fig. 3.1). The weights, in combination with the
biases, form the parameters adjusted during training to learn the desired function.
Multilayer perceptrons also incorporate fully connected (FC) layers, where each node

14 Deep Learning for embeddings extraction

in one layer connects to every node in the next layer. These FC layers are particularly
effective at capturing complex data relationships.

𝑥1

𝑥2

𝑥3

𝑥4

ℎ
(1)
1

ℎ
(1)
2

ℎ
(1)
3

ℎ
(1)
4

ℎ
(1)
5

ℎ
(2)
1

ℎ
(2)
2

ℎ
(2)
3

𝑦1

𝑦2

𝑦3

𝑦4

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 3.2 Feedforward Neural Network

Advancements in hardware have expanded the capacity to tackle more complex
problems by adding layers, nodes, and parameters to neural network architectures.
This development has given rise to the field of deep neural networks and deep learning.
However, for specific data types like images, these architectures often demand a
significant number of parameters, making them inefficient and challenging to train.
To address this, various layers have been developed to reduce both parameters and
complexity, with the convolutional layer emerging as one of the most successful
solutions.

Convolutional Layer The convolutional layer [26, 27], shown in Figure 3.3, is
a key component in neural networks. Its design exploits the properties of the input
data and is especially suited for processing images. Unlike fully connected layers,
they connect neurons to small sections of the previous layer, reducing the overall
parameter complexity. Each convolutional layer contains learnable filters that are
applied across the input features. Neurons in a convolutional layer are arranged in
three dimensions: width, height, and depth. While width and height specify the filter
dimensions, depth is determined by the input size. For example, a three-channel

3.1 Neural Networks 15

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

In

∗
1 0 1
0 1 0
1 0 1

K

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

In∗K

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 3.3 Convolutional layer

image typically requires a first convolutional layer with a depth of three. The nature
of the input and the way the filter moves across its space defines three kinds of
convolution: 1-dimensional (1D), 2D, or 3D. It is important to note that audio can be
treated both as a sequence of frames or as an image, depending on which features
are extracted (Fig. 2.2). As a result, both 1D and 2D convolution techniques can be
effective.

Normalization Normalization is a crucial technique in deep learning, employed
to standardize the input of neural network layers. This standardization enhances the
efficiency and effectiveness of the learning process by ensuring that input features
have consistent scales, thereby addressing issues like vanishing and exploding
gradients. Common normalization techniques include batch normalization [28],
instance normalization [29], and layer normalization [30]. While instance and layer
normalization have gained prominence, particularly in attention and transformer
models, our primary focus in this discussion is on batch normalization (often referred
to as BN or batchnorm). Batch normalization plays a central role in our work and is
widely recognized as a well-established normalization technique. To clarify, in this
context, a ’batch’ (denoted as B) refers to the set of training samples 𝑥 considered at
any given forward step. For every value 𝑥 the output is defined as:

𝑦 =
𝑥− 𝜇B√︃
𝜎2
B + 𝜖

∗𝛾 + 𝛽 (3.2)

16 Deep Learning for embeddings extraction

where 𝜇B and 𝜎2
B are respectively the mean and the variance of the batch, and 𝜖 is a

small value added to the variance to avoid division by zero. Finally, the normalized
values are scaled and shifted using the two learnable parameters 𝛾 and 𝛽.

Pooling Pooling is a technique extensively used in deep learning to reduce the
dimensionality of outputs from convolutional layers in a neural network. Its purpose
is to downsample feature maps by summarizing information within small regions.

The most common method of pooling is max pooling [31] (Fig. 3.4), where only
the maximum value of a small region of the feature map is forwarded. This operation
reduces the size of the feature map while preserving the most relevant information.
Alternative pooling methods include average pooling, which computes the average
value of the region, and L2-norm pooling, which forwards the L2-norm.

In the context of speaker verification, one of the simplest and most commonly
used pooling strategies is to compute the mean and standard deviation along the
time dimension. Additionally, attention mechanisms have gained popularity and are
frequently integrated at this stage (Section 3.2.3).

Similar to pooling, embedding extraction aims at preserving the most important
information contained within an input into a smaller, fixed representation. This
similarity can be observed in modern approaches to speaker and language recognition,
where embeddings are commonly extracted from a fully connected layer that follows
the pooling operation.

9 6 8 6
1 7 3 8
4 6 9 2
7 5 6 1

In

9 8
7 9
Out

Figure 3.4 Max Pooling layer

3.1.2 Training

The function of a neural network can be expressed as 𝑓 (𝑥;Θ), where Θ denotes the
network’s parameters. The training process of a neural network revolves around the

3.1 Neural Networks 17

adjustment of these parameters to improve the accuracy of its prediction. Neural
networks can be trained using various strategies, broadly divided into supervised
learning, unsupervised learning, and reinforcement learning.

Supervised learning is a machine learning approach where the parameters of a
function are trained using labeled examples. This drives the network to establish
associations between input data and the corresponding output labels provided during
training. In contrast, unsupervised learning aims at discovering latent patterns,
structures, or representations within the data, without relying on predefined labels.
When a model can only depend on a small portion of labeled data in relation
to a significant amount of unlabeled data, this form of learning is referred to as
semi-supervised learning. Conversely, when label information is derived from the
input data itself, the training process is categorized as self-supervised learning. In
the context of reinforcement learning, the model, referred to as an agent, must
independently acquire the optimal strategy or policy through a process of trial-and-
error. In this case, there is no need for labeled data, but rather the agent must interact
with a simulated environment which provides positive or negative feedback based
on its actions. This simulation is necessary for the agent to learn and improve its
performance over time. In this work we will concentrate on supervised learning.

The distance between the output of the network function, given its current
parameters and a target reference value is measured using a loss function. To
compute the loss function, let’s consider an input vector 𝑥𝑝 = (𝑥0𝑝

, 𝑥1𝑝
, ..., 𝑥𝑁𝑝

) and
the corresponding reference output vector 𝑦𝑝 = (𝑦0𝑝

, 𝑦1𝑝
, ..., 𝑦𝑀𝑝

), where N and M
represent the number of input and output units, respectively. The loss function is
defined as follows:

𝐽 (Θ) =
∑︁
𝑖

𝑙𝑜𝑠𝑠(𝑓 (𝑥𝑝;Θ), 𝑦𝑝) (3.3)

In a neural network, the weights are updated using the gradient of the parameters.
The process is iterative and at each iteration, the parameters are updated following

Θ← Θ−𝜂𝛿𝐽 (Θ)
𝛿Θ

(3.4)

where 𝜂 is the learning rate, until the loss function reaches a minimum value.

18 Deep Learning for embeddings extraction

Backpropagation Backpropagation [32] is an algorithm employed to minimize
the loss function through gradient descent. This algorithm efficiently computes the
gradient for every weight by using a recursive equation

𝜕𝐽 (Θ)
𝜕𝑤𝑙

𝑗 ,𝑘

= 𝛿𝑙𝑗 𝑦
(𝑙−1)
𝑘

(3.5)

with

𝛿
(𝑙)
𝑖

=


𝜕𝐽 (Θ)
𝜕𝑦
(𝑙)
𝑗

·𝜎′
𝑙
(𝑧(𝑙)
𝑗
) if 𝑙 is the output layer(∑𝑞

𝑖=1 𝛿 𝑗
(𝑙+1) ·𝑤 (𝑙+1)

𝑖, 𝑗

)
·𝜎′

𝑙
(𝑧(𝑙)
𝑗
) if 𝑙 is a hidden layer

In this equation, 𝑦 (𝑙)
𝑗

represents the output of unit 𝑗 in layer 𝑙, and 𝑞 is the size of units
in layer 𝑙 +1. 𝜎𝑙 is the activation function of layer 𝑙 and 𝑧(𝑙)

𝑗
=

∑𝐾
𝑖=0𝑤

(𝑙)
𝑖, 𝑗
· 𝑦 (𝑙−1)
𝑖

is the
activation value from unit 𝑗 in layer 𝑙. To compute these values, forward propagation
needs to be calculated. Once the gradient is obtained, gradient descent can be applied
to update the weights and minimize the loss function.

𝑤
(𝑙)
𝑗 ,𝑘
← 𝑤

(𝑙)
𝑗 ,𝑘
−𝜂 · 𝜕𝐽 (Θ)

𝜕𝑤
(𝑙)
𝑗 ,𝑘

(3.6)

Optimizers The strategy adopted to update the weights of a neural network in
order to minimize its loss is commonly known as optimizer. In gradient descent [33],
the weights are updated by following the direction defined by the negative gradient.
However, calculating the gradient for all training samples at the same time is not
feasible. Instead, the weights are updated iteratively using a subset of the input data.
The extreme case, when each iteration is done using only one sample at a time, is
known as Stochastic Gradient Descent (SGD). To achieve a balance between the two
methods, a generic number of samples higher than one is used, which is known as
mini-batch gradient descent. This is the most commonly used approach in practice.

The Natural Gradient Descent (NGD) [34] is a second order optimizer defined
as

Θ = Θ−𝜂𝐹−1 𝛿𝐽 (Θ)
𝛿Θ

(3.7)

where 𝐹 is the Fisher matrix. However, the necessity of the Fisher matrix (or the
Hessian) for second-order optimization makes this method impractical for deep

3.1 Neural Networks 19

learning models due to the large number of parameters. Nevertheless, these matrices
can effectively be approximated and in some of our testing we have used the NGD
with the Fisher matrix approximation defined in [35].

To speed up gradient descent and prevent the model from converging to local
minima a momentum is used in the update rule [36]. At each step, Θ𝑡 is updated
keeping track of the previous update Θ𝑡−1, thus introducing inertia to the current
update

Θ𝑡← Θ𝑡−1−𝜂
𝛿𝐽 (Θ)𝑡
𝛿Θ

−𝛾 𝛿𝐽 (Θ)𝑡−1
𝛿Θ

(3.8)

where 𝛾 is the momentum term.
Some methods, like [37, 38], have introduced an adaptive learning rate strategy,
where 𝜂 is divided by a different quantity related to the previous update for each
parameter. For instance, in [39], a running average 𝐸𝑡 was recursively defined

𝐸𝑡 = 𝛾𝐸𝑡−1 + (1−𝛾)
(
𝛿𝐽 (Θ)𝑡
𝛿Θ

)2
(3.9)

with 𝛾 playing a similar role to the momentum term. The updated values are now
obtained as

Θ𝑡← Θ𝑡−1−
𝜂

√
𝐸𝑡 + 𝜖

𝛿𝐽 (Θ)𝑡
𝛿Θ

(3.10)

where 𝜖 is a small constant to avoid zero division. Adaptive moment estimation
(Adam) [40] combines the adaptive learning rates with the momentum. Given the
gradient 𝑔 = 𝜕𝐽 (Θ)

𝜕Θ
, the two moments 𝑚𝑡 and 𝐸𝑡 are initialized to zero and at each

iteration computed as

𝑚𝑡 =
𝛽1 ∗𝑚𝑡−1 + (1− 𝛽1) ∗ 𝛿𝐽 (Θ)𝑡𝛿Θ

1− 𝛽𝑡1
(3.11)

𝐸𝑡 =

𝛽2 ∗𝐸𝑡−1 + (1− 𝛽2) ∗
(
𝛿𝐽 (Θ)𝑡
𝛿Θ

)2

1− 𝛽𝑡2
(3.12)

where 𝛽1 and 𝛽2 are fixed values. It is important to note that the second moment
𝐸𝑡 functions as an approximation of the Fisher/Hessian matrix, constrained to be

20 Deep Learning for embeddings extraction

diagonal. The update rule is then defined as follows

Θ𝑡← Θ𝑡−1−𝜂
𝑚𝑡√
𝐸𝑡 + 𝜖

(3.13)

Schedulers Choosing the correct learning rate is a critical factor in the success
of an optimizer. If the learning rate 𝜂 is too large, the training process can become
unstable and diverge. On the other hand, if the learning rate is too small, the
convergence can be slow or the process can get stuck in a suboptimal local minimum.
Generally, the training begins with a learning rate that is gradually decreased when
the loss reaches a plateau. Learning rate schedulers are employed to follow certain
functions or rules to achieve a specific trend for 𝜂, such as a linear or exponential
decrease (Section 5.2).

Loss Function In the context of classification, the choice of a loss function depends
on the specific problem at hand. For our task, which involves classifying speakers
or languages, we employ the cross-entropy (CE) loss function [3]. CE measures
the dissimilarity between two distributions, which implies that our network’s output
needs to represent a distribution. To achieve this, the softmax activation function
is typically employed in the output layer of neural networks. This function maps
the network’s output values into a probability distribution, which is then used to
compute the cross-entropy loss. In a scenario with 𝐾 classes and an output vector
𝑧 = [𝑧1, ..., 𝑧𝐾]𝑇 , the softmax function is defined as follows

𝜎𝑗 (𝑧) =
𝑒𝑧 𝑗∑𝐾
𝑘=1 𝑒

𝑧𝑘
(3.14)

The loss for a set of 𝑁 samples can then be expressed as:

𝐿𝑠 = −
1
𝑁

𝑁∑︁
𝑖=1

log
𝑒 𝑓𝑦𝑖∑𝐶
𝑗=1 𝑒

𝑓 𝑗
(3.15)

where 𝑦𝑖 is the target label, 𝑁 and 𝐶 are the number of training samples and classes
and 𝑓 𝑗 is the output of the last fully-connected layer.

While softmax and cross-entropy loss excel in classification tasks, they do not
guarantee well-separated and discriminative embeddings for previously unseen
speakers. This limits their ability to generalize effectively. The ability to discriminate

3.1 Neural Networks 21

unseen speakers can be improved by forcing samples belonging to the same class to
be projected closer together and sufficiently far from samples of other classes in the
embedding space. This has been addressed by introducing a margin into the loss
function.

Angular Softmax The loss function, as defined in Equation (3.15), can be refor-
mulated to introduce the concept of separation margin. Given the function of the
last fully connected layer 𝑓𝑖, 𝑗 =𝑊𝑇

𝑗
𝑥𝑖 + 𝑏 𝑗 and 𝑓𝑖,𝑦𝑖 =𝑊

𝑇
𝑦𝑖
𝑥𝑖 + 𝑏𝑦𝑖 , where 𝑥𝑖 is the 𝑖-th

training sample and,𝑊 𝑗 and𝑊𝑦𝑖 are the 𝑗-th and 𝑦𝑖-th column of the weight matrix
𝑊 , (3.15) can be rewritten as:

𝐿 = − 1
𝑁

𝑁∑︁
𝑖

log

(
𝑒
𝑊𝑇

𝑦𝑖
𝑥𝑖+𝑏𝑦𝑖∑

𝑗 𝑒
𝑊𝑇

𝑗
𝑥𝑖+𝑏 𝑗

)
= − 1

𝑁

𝑁∑︁
𝑖

log

(
𝑒∥𝑊𝑦𝑖 ∥∥𝑥𝑖 ∥ cos(𝜃𝑦𝑖 ,𝑖)+𝑏𝑦𝑖∑
𝑗 𝑒
∥𝑊 𝑗 ∥∥𝑥𝑖 ∥ cos(𝜃 𝑗 ,𝑖)+𝑏 𝑗

)
(3.16)

in which 0 ≤ 𝜃 𝑗 ,𝑖 ≤ 𝜋 denotes the angle between𝑊 𝑗 and 𝑥𝑖. For the binary case, the
separation rule defined by (3.16) is (𝑊1−𝑊2)𝑥+𝑏1−𝑏2 = 0, assuming ∥𝑊𝑖∥ = 1, 𝑏𝑖 = 0
the derived decision boundary is cos(𝜃1) − cos(𝜃2) = 0. A sample 𝑥 belonging to
class 1 is correctly classified if cos(𝜃1) > cos(𝜃2). In [41] the authors suggest to
impose a more stricter boundary: cos(𝑚𝜃1) > cos(𝜃2), with 𝑚 > 2, resulting in:

𝐿𝑎𝑛𝑔 =
1
𝑁

∑︁
−𝑙𝑜𝑔

(
𝑒∥𝑥𝑖 ∥ cos(𝑚𝜃𝑦𝑖 ,𝑖)

𝑒∥𝑥𝑖 ∥ cos(𝑚𝜃𝑦𝑖 ,𝑖) +∑ 𝑗≠𝑦𝑖
𝑒∥𝑥𝑖 ∥𝑐𝑜𝑠(𝜃 𝑗 ,𝑖)

)
(3.17)

In (3.17), 𝜃𝑦𝑖 ,𝑖 is constrained to be in the range of [0, 𝜋
𝑚
]. In order to make the function

optimizable and remove this constrain, cos(𝑚𝜃𝑦𝑖 ,𝑖) is replaced by a monotonically
decreasing angle function 𝜙(𝜃𝑦𝑖 ,𝑖).
In [42] the authors proposed to use 𝜙 = cos(𝜃) −𝑚, defining the Additive Margin or
CosFace loss. Thus (3.17) becomes:

𝐿𝑎𝑚𝑠 = −
1
𝑁

𝑁∑︁
𝑖=1

log

(
𝑒𝑠·(cos𝜃𝑦𝑖 ,𝑖−𝑚)

𝑒𝑠·(cos𝜃𝑦𝑖 ,𝑖−𝑚) +∑ 𝑗≠𝑦𝑖
𝑒𝑠·cos𝜃𝑖, 𝑗

)
(3.18)

where 𝑠 is a scaling factor, that can be either learnable or fixed.

22 Deep Learning for embeddings extraction

Additive Angular Margin ArcFace or Additive Angular Margin has been
proposed in [43] and quickly adopted also in speaker verification. In this formulation
𝜙 is defined as 𝜙(𝜃𝑦𝑖 ,𝑖) = cos(𝜃𝑦𝑖 ,𝑖 +𝑚). A unified loss can then be defined as:

𝐿 = − 1
𝑁

𝑁∑︁
𝑖=1

log
𝑒𝑠[cos(𝑚1𝜃𝑦𝑖 ,𝑖+𝑚2)−𝑚3]

𝑒𝑠[cos(𝑚1𝜃𝑦𝑖 ,𝑖+𝑚2)−𝑚3] +∑ 𝑗≠𝑦𝑖
𝑒𝑠·cos𝜃𝑖, 𝑗

(3.19)

The definition of the function 𝜙 and the choice of the margin can play a crucial
role [44]. Various approaches have been proposed, with some methods, such as
elasticFace [45] and Dyn-ArcFace [46] that relax the fixed definition of the additive
margin. Promising results have been achieved with the subcenter ArcFace [47] and
InterTop-K [48]. In this case, for each class, 𝐾 positive sub-centers are defined.
This allows ArcFace to find one dominant sub-class representing the majority of the
examples and non-dominant sub-classes that will include hard or noisy examples. The
goal is to obtain a more robust network against new examples and noisy conditions.
In our experiments, we have evaluated different solutions. Our results and some
comparisons will be presented in Chapter 5.

3.2 Speaker and language recognition architectures

In the following sections, we will present the architectures that we have employed for
embedding extraction.

In our work, we utilized neural networks trained for speaker or language clas-
sification. The general network structure can be broken down into three primary
components, as illustrated in Figure 3.5. The first component works at the frame level,
analyzing individual utterance frames to capture short-term temporal relationships.
The second component, the pooling layer, summarizes this information and generates
a fixed-length output. Finally, the third component operates at the segment level,
capturing long-term relationships by considering information spanning the entire
utterance. Typically, the embeddings are obtained from the segment level.

The architecture of these components is shaped by several factors, including
which activation functions are used, the number of neurons in each layer, and the
overall number of layers. Although a large variety of neural network architectures is

3.2 Speaker and language recognition architectures 23

In
pu

tL
ay

er

Fr
am

e
Le

ve
l

Po
ol

in
g

Se
gm

en
tL

ev
el

O
ut

pu
tL

ay
er

Figure 3.5 Overview of the main components that make up an architecture used in
speaker recognition.

available, in this work we focused on a limited set of architectures, mainly due to the
temporal nature of the data we are analyzing.

The primary objective of the network is to create a representation of the speaker
based on their speech. To achieve this, the network has to effectively handle both
short-term and long-term acoustic dependencies, capturing the key characteristics of
the speaker’s voice.

In the following sections, we will review well-known architectures in speaker
verification, as well as our own solutions for language recognition. More details on
their implementation will be provided in Chapter 5.

3.2.1 Time Delay Neural Network

To effectively capture the nonlinearity present in the data, a feedforward network
needs to be sufficiently complex. Specifically, when dealing with speech data, the
network must be able to represent and capture the time-dependent relationship
between spectral coefficients and higher-level features. Additionally, it should be
able to learn time-invariant abstractions, or features, from the data, while keeping
the number of parameters small compared to the training set dimension. To satisfy
these requirements, the Time Delay Neural Network (TDNN) was introduced [49].
In the TDNN, a delay (𝐷𝑖) is applied to each input, and the units at each layer
receive input not only from the layer below but also from their time-delayed outputs.
Differently from a classic unit, Figure 3.1, the TDNN unit takes in a moving window
[𝑥𝑡−𝑚, ..., 𝑥𝑡 , ..., 𝑥𝑡+𝑛] centered around the input feature 𝑥𝑡 , Figure 3.6. Each neuron
processes the same features within different windows using different sets of weights.

24 Deep Learning for embeddings extraction

Figure 3.6 TDNNs incorporate temporal context for each input 𝑥 by additionally
analyzing neighboring inputs denoted as [𝐷𝑖, ..., 𝐷 𝑗]

.

Variants To improve the performance and quality of the speaker embeddings
extracted from the classic TDNN, several alternatives have been developed. Some of
these alternatives have been utilized in our work:

• Extended Time Delay Neural Network: the Extended-TDNN (ETDNN) was
described in [50]. The frame level layers process speech frames with a narrow
temporal context that is centered on the current frame 𝑡. In ETDNN, the time-
delayed layers are interleaved with fully connected layers (FNN). The pooling
layer combines the frame level representation computing a set of statistics, such
as mean and standard deviation, for each input segment. Speaker embeddings
are extracted from the two fully connected layers at the segment level.

• Factorized Time Delay Neural Network: In [51] the weights of the layers at the
frame level are forced to be semi-orthogonal. The goal of this approach is the
reduction of the number of parameters using Singular Value Decomposition
(SVD). Given the parameter matrix𝑀 , the condition to enforce is 𝑃 =𝑀𝑀𝑇 = 𝐼.
The function to minimize is 𝑓 = 𝑡𝑟 (𝑄𝑄𝑇), where 𝑄 is defined as 𝑄 ≡ 𝑃− 𝐼.
The update of the weight is then computed as

𝑀← 𝑀 − 1
2𝛼
(𝑀𝑀𝑇 −𝛼2𝐼)𝑀 (3.20)

In the basic case 𝛼 = 1, however, if the objective is to constrain 𝑀 as a scaled
semi-orthogonal matrix, 𝛼 can assume any value. In our work, we utilized the
floating case [51] where 𝛼 =

√︁
𝑡𝑟 (𝑃𝑃𝑇)/𝑡𝑟 (𝑃) and, again, 𝑃 ≡ 𝑀𝑀𝑇 . Another

3.2 Speaker and language recognition architectures 25

important addition to this architecture is the presence of skip connections,
where the input of a layer is concatenated with the output of an early layer.

• Dense Time Delay Neural Network: The need to reduce the number of
parameters was explored in [52]. The core unit of the DTNN is an FNN
bottleneck layer followed by a TDNN layer, with a skip connection linking the
input and the output of the unit. The authors also proposed a multi-branch
architecture, where the TDNN layers of each branch have different contexts.

3.2.2 ResNet

In general, increasing the number of layers produces better results. However, this
practice also introduces certain challenges that can negatively impact the ability to
train such architectures. Deep residual learning [53] was introduced to address this
problem. In this approach, residual connections are utilized to establish a direct
link between the input and the output of specific layers, effectively bypassing some
intermediate layers, (Fig. 3.7). This design allows gradients to flow through the
network without being diminished by the activation function, mitigating the vanishing
gradient problem [53].

weight layer1

weight layer1

+

x

x
identity

relu

relu

Figure 3.7 Single residual block

TDNN and its derivation were designed to work on audio as a sequence of
frames/frequencies. However, in practice, features extracted from audio can also

26 Deep Learning for embeddings extraction

Table 3.1 Modified ResNet34 for speaker verification from [55]

Layer name Structure Output

Input - 1×𝑁 ×𝑇
Conv2D 3×3, stride-1 128×𝑁 ×𝑇

ResBlock-1
[
3×3,128
3×3,128

]
×3, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 128×𝑁 ×𝑇

ResBlock-2a

3×3,128
3×3,128
1×1,128

 ×1, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 128×𝑁/2×𝑇/2

ResBlock-2b
[
3×3,128
3×3,128

]
×3, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 128×𝑁/2×𝑇/2

ResBlock-3a

3×3,256
3×3,256
1×1,256

 ×1, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2 256×𝑁/4×𝑇/4

ResBlock-3b
[
3×3,256
3×3,256

]
×5, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 256×𝑁/4×𝑇/4

ResBlock-4a

3×3,256
3×3,256
1×1,256

 ×1, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 256×𝑁/8×𝑇/8

ResBlock-4b
[
3×3,256
3×3,256

]
×2, 𝑠𝑡𝑟𝑖𝑑𝑒 = 1 256×𝑁/8×𝑇/8

Flatten(C, F) - (256∗𝑁/8) ×𝑇/8
StatsPooling - (256∗𝑁/8) ∗2

Dense - 256
FC #Speakers

be treated as images (Fig. 2.2), and 2D convolution-based ResNets have been
successfully used for speaker and language recognition [54–56].

Modified ResNet34 The ResNet34 architecture, initially introduced in [53],
consists of 34 layers organized into residual blocks. Originally designed for image
processing, the architecture has been adapted to better handle audio features. Specifi-
cally, in [55] the authors proposed to enhance its audio processing capabilities by
increasing the number of channels in the initial layers while decreasing the expansion
rate in deeper layers as shown in Table 3.1. This proved to be more effective than the
classic architecture.

Res2Net The Res2Net layer is designed to enhance the representation capacity
of deep neural networks by allowing the integration of multi-scale features at different
resolutions. The Res2Net [57] layer is constructed by dividing the input feature
map into multiple sub-maps. Each submap undergoes independent convolutional
operations, and the results are then combined and further processed through additional
convolutional layers to produce the final output. This approach allows Res2Net

3.2 Speaker and language recognition architectures 27

layers to capture multi-scale information without requiring excessive computational
resources. While not directly utilized in our work, it remains one of the key
components of the ECAPA-TDNN architecture (Section 3.2.4).

3.2.3 Attention

Attention is a mechanism that allows neural networks to focus on specific parts of
the input data that are automatically supposed most relevant for a given task. This is
achieved by assigning specific weights to different parts of the input. The weights
are learned during training and are based on the importance of each feature to the
output of the model.

Multi-head self-attention The Multi-head self-attention (MSA) [58] is the core
component of the Transformer architecture. While CNNs are able to extract local
features, MSA focuses on learning the relationships between different positions in
a sequence, even when there is a high temporal distance between them. Given a
sequence 𝑋 with shape 𝑇 ×𝐷, self-attention is computed over 𝐻 independent heads,
each with dimensionality 𝐷ℎ = 𝐷/𝐻. MSA defines three FC layers, with weight
𝑊
(𝑞)
𝑖

, 𝑊 (𝑘)
𝑖

and 𝑊 (𝑣)
𝑖

with shape 𝐷 ×𝐷ℎ. These weights are used to obtain three
different representations of the input: query 𝑄, key 𝐾 and value 𝑉

𝑄𝑖 = 𝑋𝑊
(𝑞)
𝑖

𝐾𝑖 = 𝑋𝑊
(𝑘)
𝑖

𝑉𝑖 = 𝑋𝑊
(𝑣)
𝑖

∀𝑖 ∈ 1, ..., 𝐻 (3.21)

Self-attention of each head is then concatenated and linerly projected to obtain the
MSA

𝑌 = 𝑀𝑆𝐴(𝑋) = [𝐴1, 𝐴2, ..., 𝐴𝐻]𝑊𝑦 (3.22)

where𝑊𝑦 has shape 𝐷 ×𝐷 and

𝐴𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝑄𝑖𝐾

𝑇
𝑖√

𝐷ℎ

)
𝑉𝑖 (3.23)

Attentive Pooling Attention has found a prominent application in speaker recogni-
tion, particularly in the pooling layer. Researchers have utilized a soft self-attention
technique to derive weighted statistics from the temporal pooling layer [59]. The

28 Deep Learning for embeddings extraction

statistics pooling layer, which takes frame-level features 𝑜𝑡 (𝑡 = 1, ..., 𝑡 = 𝑇) as input,
calculates the mean vector 𝜇 and the second-order standard deviation 𝜎 as:

𝜇 =
1
𝑇

𝑇∑︁
𝑡

𝑜𝑡 (3.24)

𝜎 =

√√√
1
𝑇

𝑇∑︁
𝑡

𝑜𝑡 ⊙ 𝑜𝑡 − 𝜇 ⊙ 𝜇𝑡 (3.25)

It is reasonable to assume that some frames are naturally more informative than
others. For example, frames containing silence or noise may not provide valuable
speaker characteristics. Attention automatically evaluates the significance of each
frame by generating a scalar score 𝑒𝑡 = 𝑣𝑇 𝑓 (𝑊𝑜𝑡 +𝑏) + 𝑘 for each frame-level feature.
Here, 𝑓 (·) denotes a non-linear activation function. The score is then normalized
using the softmax function.

𝛼𝑡 =
exp(𝑒𝑡)∑𝑇
𝜏 exp (𝑒𝜏)

(3.26)

The weighted mean and standard deviation are obtained:

𝜇̃ =
1
𝑇

𝑇∑︁
𝑡

𝛼𝑡𝑜𝑡 (3.27)

𝜎̃ =

√√√
𝑇∑︁
𝑡

𝛼𝑡𝑜𝑡 ⊙ 𝑜𝑡 − 𝜇 ⊙ 𝜇𝑡 (3.28)

Numerous extensions have been introduced for attentive pooling, with the primary
objective of training distinct sets of weights for different subsets of features. A
more comprehensive formulation was shown in [48]. In this approach, the frame-
level features 𝐻 = [ℎ1, ℎ2, ..., ℎ𝑇], ℎ𝑡 ∈ R𝑑 can be splitted in 𝐻 heads. Each head,
𝑜𝑡 = [𝑜1

𝑡 , 𝑜
2
𝑡 , ..., 𝑜

𝐻
𝑡], 𝑜ℎ𝑡 ∈ R𝑑/𝐻 , has𝑄 trainable queries. The scalar score 𝑒ℎ𝑡 can then

be calculated as:

𝑒ℎ𝑡 =

{
(𝑜ℎ𝑡)𝑇𝑤𝑎 n=1

𝑓 ((𝑜ℎ𝑡)𝑇𝑤𝑏)𝑤𝑐 n=2
(3.29)

3.2 Speaker and language recognition architectures 29

where 𝑤𝑎, 𝑤𝑏 and 𝑤𝑐 are the weight matrixes of size 𝑑ℎ × 𝑑𝑠, 𝑑ℎ × 𝑑𝑘 and 𝑑𝑘 × 𝑑𝑠
respectively. The scores are then normalized:

𝛼
𝑞

𝑡,ℎ
=

exp (𝑒ℎ𝑡)∑𝑇
𝜏 exp (𝑒ℎ𝜏)

(3.30)

The weighted mean and standard deviation are now obtained as concatenation
𝐸𝜇 = [𝜇̂1, 𝜇̂2, ..., 𝜇̂𝐻] where 𝜇̂ℎ = [𝜇1

ℎ
, 𝜇2

ℎ
, ..., 𝜇

𝑄

ℎ
], with:

𝜇
𝑞

ℎ
=

1
𝑇

𝑇∑︁
𝑖

𝛼
𝑞

𝑡,ℎ
· (𝑜𝑡𝑖)𝑇 (3.31)

𝜎
𝑞

ℎ
=

√√√
𝑇∑︁
𝑖

𝛼
𝑞

𝑡,ℎ
· (𝑜ℎ

𝑖
)𝑇 · (𝑜ℎ

𝑖
)𝑇 − 𝜇𝑞

ℎ
· 𝜇𝑞

ℎ
(3.32)

Standard deviation 𝐸𝜎 can be obtained in the same way with 𝜎𝑞
ℎ
. We can notice

that (3.27) and (3.28) can be obtained from (3.31) and (3.32) with (𝐻 = 1,𝑄 = 1, 𝑛 =
2, 𝑑𝑠 = 1), while the case with (𝐻 > 1,𝑄 > 1, 𝑛 = 2, 𝑑𝑠 = 𝑑ℎ) is called Multi-Query
Multi-Head Attention (MQMHA) [48].

Squeeze&Excitation A similar approach has been taken with the Squeeze & Exci-
tation (SE) layer [60], which adaptively recalibrates channel-wise feature responses.
The SE layer can be added to existing neural network architectures, enhancing their
performance. The SE layer (Fig. 3.8a) operates in two steps: it starts with a squeeze
operation that compresses one (or more) dimensions of the feature map into a channel
descriptor. Then, it performs an excitation operation, which learns a set of weights
to selectively amplify or suppress individual channels within the feature map based
on their importance. This design allows the SE layer to capture interdependencies
between the channels of a feature map. Moreover, the SE layer has been modified to
better suit the characteristics of audio data. In [61, 62] the squeeze operation was
applied either along the frequency or the time axis, resulting in the frequency-wise
SE (Fig. 3.8b) or temporal-wise SE, respectively. In [63] a composite approach is
introduced, involving two separate squeeze operations along both the frequency and
time axes, which generate weighted maps that are then combined, as illustrated in the
figure.

30 Deep Learning for embeddings extraction

Channel

Fr
eq

ue
nc

y

Time

Channel
Fr

eq
ue

nc
y

Time Channel

Linear
+ ReLU Channel

Linear
+ Sigmoid

Channel

Channel

Fr
eq

ue
nc

y

Time

Element-
wise

multiplication

Channel

Fr
eq

ue
nc

y

Time

A
dd

iti
ve

Po
ol

in
g

B
ro

ad
ca

st
in

g

(a) Squeeze & Excitation block

Channel

Fr
eq

ue
nc

y

Time

Channel

Fr
eq

ue
nc

y

Time Fr
eq

ue
nc

y

Linear
+ ReLU

Fr
eq

ue
nc

y
Linear

+ Sigmoid

Fr
eq

ue
nc

y

Channel

Fr
eq

ue
nc

y

Time

Element-
wise

multiplication

Channel

Fr
eq

ue
nc

y

Time

A
dd

iti
ve

Po
ol

in
g

B
ro

ad
ca

st
in

g

(b) Frequency Wise Squeeze & Excitation block

Conformer Convolutional Neural Networks (CNNs) are proficient in local
spatial modeling but struggle when dealing with long-range dependencies. This
limitation prompted the widespread adoption of Transformer-based architectures for
sequence processing tasks. The Conformer is a powerful architecture that combines
CNNs for local features and transformer layers for global context, which can be used
to obtain a more robust speaker representation. The Conformer [64] block relies on
multi-head self-attention (MHSA) and convolution modules as its key components.
MHSA incorporates a relative positional encoding scheme from Transformer-XL [65],
making it adaptable to inputs of varying lengths. The convolutional operations are
implemented by pointwise and 1D depthwise convolution layer [66], and Batch-Norm.
Figure 3.9a shows the structure of a Conformer block.

3.2.4 ECAPA-TDNN

In [67], the Emphasized Channel Attention, Propagation and Aggregation in TDNN
(ECAPA-TDNN) neural network was introduced. It combines some of the solutions

3.2 Speaker and language recognition architectures 31

LayerNorm

+

Feed Forward

+

Convolution
Module

+

Multi-Head
Self Attention

+

Feed Forward

(a) Conformer Block

Input

Conv1D+ReLU+BN

Res2 Dilated
Conv1D+ReLU+BN

Conv1D+ReLU+BN

SE-Block

+

Output

(b) ECAPA Res2Net block [67]

Figure 3.9 Building blocks of the Conformer and ECAPA architectures.

presented in the previous paragraphs. The SE-Res2Net block (Fig. 3.9b) is the
fundamental component of the architecture. The network structure includes a
TDNN block, followed by multiple SE-Res2Net blocks. These blocks merge the
1-dimensional convolution, the residual architecture of a Res2Net layer, and the
time-wise Squeeze&Excitation operation. The output of the SE-Res2Net is then
concatenated. The statistical pooling is replaced by channel- and context-dependent
pooling, extending the concept introduced in equations (3.27) and (3.28) for attentive
pooling.

DepthFirst architectures The advent of transformer-based architectures, such
as Vision Transformer (ViT), has paved the way for a new state-of-the-art in
image classification. However, these architectures have only achieved state-of-the-art
performance when they are combined with some of the convolution-based architecture
priors in the more general vision field. This inspired the authors of [68] to review the
ConvNet architecture and incorporate some of the solutions and concepts developed
for the new transformer-based architecture. The same approach was applied to
speaker verification-oriented architectures like ResNet and ECAPA-TDNN, [69]. In
various tests, it was found that the depth of a network was the most discriminant
feature for a network producing good results. Therefore, a depth-first approach was
proposed, which involves modifying the usual components to significantly increase
the network’s depth while keeping the complexity and number of parameters tractable.

32 Deep Learning for embeddings extraction

• DF-ResNet: in the depth-first ResNet, the basic block is replaced with a
bottleneck block [70], which increases the number of parameters. However,
this does not improve the performance. To reduce the number of parameters,
the 2D-convolutional layer is replaced with a depthwise 2D-convolution, in
which each input channel is convolved with a different kernel. A further
reduction is achieved by inverting the dimension of the layers in the block,
[71]. Following the approach in [68], a separate subsampling is applied. The
number of parameters is greatly reduced at this stage, which allows for an
increase in the number of layers in each stage, resulting in a deeper architecture
with similar complexity as the starting one and better performance.

• DF-ECAPA: a similar approach is suggested for the ECAPA-TDNN architecture.
The dilated convolutions utilized in the Res2Net block are replaced with 2D
convolution with a large kernel set to 5. The number of channels at each stage
is then halved, making the design closer to a ResNet and greatly reducing the
number of parameters. At this point, the number of layers in each block can be
increased.

3.2.5 Neural Networks for Language Recognition

In this section, we will discuss the architectural approaches for language recognition.
Building upon the success of speaker verification architectures in language-related
tasks [72, 73]. From the models introduced earlier, we outline the solutions developed
to enhance the performance of such systems. We introduce the CNN-ECAPA [61]
for language recognition. Inspired by the results we achieved with it, we extended
similar modifications to other architectures. The effectiveness of these solutions was
assessed in the NIST Language Recognition Evaluation 2022 (LRE22). We present
the detailed results in Section 5.3.1.

CNN-ECAPA

We initially explored the ECAPA architecture to tackle the language detection problem.
This architecture has been shown to be highly effective in speaker verification and
has quickly become one of the state-of-the-art architectures. We obtained acceptable
results also for the language recognition task. In order to improve its performance,

3.2 Speaker and language recognition architectures 33

46
(L

og
-M

el
)

T

3×3 Conv
Stride 2
ReLU

Batch Norm

C

23

T

Residual
Module

Residual
Module

3×3 Conv
Stride 2
ReLU

Batch Norm
C

12 T

T

C
×1

2

ETDNN
or

FTDNN
or

ECAPA
or

Conformer

Figure 3.10 CNN block

we experimented with the modification proposed in [61]. This change involves the
addition of 2D CNN layers before the input layer of the original architecture, which
has been shown to enhance ECAPA’s performance in speaker verification. The CNN
block illustrated in Figure 3.10 involves several layers, including a 2D convolutional
layer, two 2D convolutional residual blocks, and a final 2D convolutional layer. The
block’s output dimensions are then reduced to one dimension by collapsing the
channel and frequency dimensions. It is worth noting that the ECAPA architecture
predominantly employs 1D convolution, following the TDNN strategy. The inclusion
of 2D convolution to process the input helps the network to reveal more complex
relationships in the succeeding stages.

CNN-TDNN

We also investigated other TDNN-based designs to tackle the language evaluation
challenge, specifically ETDNN and FTDNN. Both ETDNN and FTDNN, like ECAPA,
have been widely utilized in the domain of speaker verification. We extended these
architectures by introducing the same 2D CNN block (Fig. 3.10) to the front of both
architectures, which resulted in significant improvements in the language evaluation
task.

34 Deep Learning for embeddings extraction

ResNet and Conformer

Finally, we explored the ResNet34 (Section 3.2.2) and Conformer (Section 3.2.3)
architectures. In the case of the conformer, we also experimented with the CNN
block, which led to better results compared to the standard subsampling architecture.
However, for the final system, even better results were achieved by utilizing a 1-
dimensional subsampling layer. This subsampling layer draws inspiration from TDNN
and is implemented using 1D convolution, as opposed to the 2D implementation
depicted in Figure 3.10.

These modules and architectures have been utilized as speaker embedding
extractors for our backend classifier (Section 5.1) and have played a pivotal role
in our submission to the language recognition evaluation organized by NIST [74].
In Chapter 5 we provide details on the implementation and training strategies we
followed, and in Section 5.3.4 we will analyze our language recognition model.

Chapter 4

Backends

Neural networks are trained to classify a closed and known set of speakers. The
ability to extract meaningful embeddings for new and unseen speakers is the main
goal of the speaker verification task. To obtain a model that can generalize speaker
characteristics, networks are trained with a large number of speakers. Nevertheless,
there is often a discrepancy between the data used for training and the new testing
data. This difference can lead to suboptimal performance in the subsequent steps. In
this chapter, we present the theory behind the currently utilized scoring methods and
explore solutions to address the issue of data mismatch.

4.1 Scoring

In speaker verification, the objective is to determine whether two spoken utterances
originate from the same identity. This process involves employing some sort of
scoring function to assess the similarity between two or more embeddings. This
can be accomplished through simple similarity measures, often using distance-based
methods like cosine similarity. Alternatively, more advanced techniques can be
employed, such as Probabilistic LDA and Pairwise Support Vector Machines. Some
of these methods try to build a probabilistic model for each speaker, enabling the
computation of log-likelihood ratios (LLR). However, to address the mismatch
between training and testing conditions, further steps are often necessary before and
after scoring. Furthermore, certain scoring functions rely on specific assumptions
about the properties of the embeddings. To improve their performance, preprocessing

36 Backends

and normalization techniques become necessary to align the embeddings with such
assumptions.

4.1.1 PLDA

Historically, dimensionality reduction techniques such as Principal Component
Analysis (PCA) or Linear Discriminant Analysis (LDA) were commonly used as
feature extraction methods for object recognition. However, these methods would
only extract the features and require additional steps to perform the actual recognition
task. By removing dimensions associated with high intra-speaker variability, LDA
is a long-standing method used to perform dimensionality reduction. Defining the
within–class, 𝑆𝑊 , and between-class, 𝑆𝐵, covariance matrices as:

𝑆𝑊 =

𝐾∑︁
𝑘=1

∑︁
𝑖 |𝑥𝑖∈𝐶𝑘

(𝑥𝑖 − 𝜇𝑘) (𝑥𝑖 − 𝜇𝑘)𝑇

𝑆𝐵 =

𝐾∑︁
𝑘=1

𝑁𝑘 (𝜇𝑘 − 𝜇) (𝜇𝑘 − 𝜇)𝑇
(4.1)

where 𝑥𝑖 is a 𝐷-dimensional vector that belong to 𝐾 classes 𝐶𝑘 , 𝜇 is total mean, 𝜇𝑘
and 𝑁𝑘 are the mean and number of samples for class 𝑘 , LDA search for a linear
transformation

𝑦𝑖 =𝑊
𝑇𝑥𝑖 (4.2)

where𝑊 is a 𝐷′×𝐷 matrix, with 𝐷′ < 𝐾 −1, which maximize the Fisher criterion:

𝐽 (𝑊) = 𝑡𝑟 [(𝑊𝑆−1
𝑤 𝑊

𝑇) (𝑊𝑆𝐵𝑊𝑇)] (4.3)

The right eigenvectors of 𝑆−1
𝑊
𝑆𝐵 corresponding to the 𝐷′ largest eigenvalues provide

the solution for 𝑊 . LDA projects the speaker vector into a smaller space trying
to minimize the intra-class variability and maximize the between-class variability.
However, the reduced data still needs to be classified. Probabilistic LDA (PLDA) was
introduced in [75] as an effective technique for solving this classification problem.
Currently, PLDA and the models derived from it are considered the state-of-the-art
approach in speaker verification.

4.1 Scoring 37

PLDA assumes that it is possible to break down an embedding as:

𝑥𝑖 𝑗 = 𝜇+𝑈ℎ𝑖 +𝑉𝑤𝑖 𝑗 + 𝜖𝑖 𝑗 (4.4)

where 𝜇 is the global mean of the dataset,𝑈 contains the basis for the between-speaker
subspace and ℎ𝑖 is a hidden variable that is assumed to be shared by embeddings
belonging to the same speaker. The channel effects of a specific audio segment
𝑗 , from speaker 𝑖, are described by 𝑤𝑖 𝑗 . The matrix 𝑉 contains the basis for the
within-speaker subspace. Finally, 𝜖𝑖 𝑗 describes the residual information and noise.
The first and most widely adopted model is the Gaussian PLDA (GPLDA), which
assumes a Gaussian distribution for the latent variables

ℎ𝑖 ∼ N(0, 𝐼)
𝑤𝑖 𝑗 ∼ N(0, 𝐼)
𝜖𝑖 𝑗 ∼ N(0,Λ−1)

with Λ being diagonal. A more complex model was introduced in [76], known as
the Heavy-Tailed PLDA (HTPLDA). In this formulation, the priors for the latent
variables are assumed to follow a Student’s 𝑡 distribution

ℎ𝑖 ∼ N(0, 𝑢−1
𝑖 𝐼) 𝑢𝑖 ∼ G(𝑛𝑖/2, 𝑛𝑖/2)

𝑤𝑖 𝑗 ∼ N(0, 𝑢−1
𝑖 𝑗 𝐼) 𝑢𝑖 𝑗 ∼ G(𝑛𝑖 𝑗/2, 𝑛𝑖 𝑗/2) (4.5)

𝜖𝑖 𝑗 ∼ N(0, 𝑣−1
𝑖 𝑗 Λ

−1) 𝑣𝑖 𝑗 ∼ G(𝜈/2, 𝜈/2)

HTPLDA consistently outperforms GPLDA when applied to non-processed em-
beddings. However, GPLDA can achieve similar performance when appropriate
preprocessing and normalization techniques are applied. Finally, given the significant
computational complexity associated with HTPLDA, our primary focus in this work
is on GPLDA.

Two Covariance Model

Assuming that both the speaker and channel subspaces are full rank simplifies
the model, leading to the two-covariance model [77]. This simplified model is
fundamental to our work on score calibration and normalization. We assume that an

38 Backends

embedding is generated by a random variable Φ

𝚽 = Y+E (4.6)

where 𝑌 represent the speaker identity and 𝐸̄ embed the residual noise. The
embedding 𝜙 can be seen as the sum between the speaker model 𝑦𝑠 and some
Gaussian noise 𝑧𝑟

𝜙 = 𝑦𝑠 + 𝑧𝑟 (4.7)

The prior distribution is assumed to be Gaussian:

𝑃(𝑦) ∼N(𝑦 |𝜇, 𝐵−1) 𝑃(𝜙 |𝑦) ∼N(𝜙 |𝑦,𝑊−1) (4.8)

where 𝐵−1 and 𝑊−1 denotes the between and within class coveariance matrices,
while 𝜇 is the global mean of the dataset. It can be noted that the left prior in (4.8)
is conjugate to the likelihood on the right. Given a set of embeddings 𝜙1, ..., 𝜙𝑛

extracted from audio of the same speaker, we can compute the posterior for 𝑦 in
closed form. The result is a normal posterior

𝑃(𝑦 |𝜙1, ..., 𝜙𝑛) ∼N(𝑦 |𝐿−1𝛾, 𝐿−1) (4.9)

with

𝛾 = 𝐵𝜇+𝑊
𝑛∑︁
𝑖=1
𝜙𝑖 (4.10)

𝐿 = 𝐵+𝑛𝑊

Speaker Verification Log-Likelihood Ratio

We can use these models to infer the speaker’s identity. Given an enrolled speaker 𝑠𝑒
and a test speaker 𝑠𝑡 , a set of their embeddings 𝜙𝑒1, ..., 𝜙𝑒𝑛 and 𝜙𝑡1, ..., 𝜙𝑡𝑚 respectively,
we can compute the likelihood of the observed embeddings under the same speaker,
𝐻𝑠, and different speaker, 𝐻𝑑 , hypothesis [76, 78] to find if the test and enrollment
utterances belong to the same speaker. This is represented by the log-likelihood ratio
(LLR)

𝑙 = log
𝑃(𝜙𝑒1 , ..., 𝜙𝑒𝑛 , 𝜙𝑡1 , ..., 𝜙𝑡𝑚 |𝐻𝑠)
𝑃(𝜙𝑒1 , ..., 𝜙𝑒𝑛 , 𝜙𝑡1 , ..., 𝜙𝑡𝑚 |𝐻𝑑)

(4.11)

4.1 Scoring 39

Expressing 𝑃(𝜙1, ..., 𝜙𝑘 |𝐻𝑠) as:

𝑃(𝜙1, ..., 𝜙𝑘 |𝐻𝑠) =
𝑃(𝜙1, ..., 𝜙𝑘 |y0)𝑃(y0)
𝑃(y0 |𝜙1, ..., 𝜙𝑘)

(4.12)

and defining

𝑄(𝜙1, ..., 𝜙𝑘) =
𝑃(y0)

𝑃(y0 |𝜙1, ..., 𝜙𝑘)
(4.13)

where y0 is any value of the hidden variable that prevents the denominator from
being zero, allows to reformulate the log-likelihood ratio as:

𝑙 = log
𝑄(𝜙𝑒1 , ..., 𝜙𝑒𝑛 , 𝜙𝑡1 , ..., 𝜙𝑡𝑚)
𝑄(𝜙𝑒1 , ..., 𝜙𝑒𝑛)𝑄(𝜙𝑡1 , ..., 𝜙𝑡𝑚)

(4.14)

A closed form for the LLR can be derived once we fix a value for y0

log𝑄(𝜙1, ..., 𝜙𝑘) =
1
2
(log |𝐵| − 𝜇𝑇𝐵𝜇− log |𝐿𝑆 | +𝛾𝑇𝑆 𝐿

−1
𝑆 𝛾𝑆) (4.15)

here the set of embeddings 𝜙1, ..., 𝜙𝑘 is denoted by 𝑆, and 𝐿𝑆 and 𝛾𝑆 are defined as
in (4.10) for the posterior distribution of y give the embeddings in 𝑆 [78].

4.1.2 PSVM

In the case of one embedding per speaker, an alternative to PLDA is the Pairwise
Support Vector Machine (PSVM) [79, 80], which belongs to the class of discriminative
methods. Discriminative models search for a decision rule that optimizes a criterion
for a given set of training patterns, given an enrollment embedding 𝜙𝑒 and a test
embedding 𝜙𝑡 . From the two-covariance model, the log-likelihood ratio can be
written as:

log 𝑙 =
1
2
(log |𝐵 | − 𝜇𝑇𝐵𝜇− log |Λ̃| +𝛾𝑇𝑒,𝑡Λ̃𝛾𝑒,𝑡) (4.16)

−1
2
(2log |𝐵 | −2𝜇𝑇𝐵𝜇−2log |Γ̃| +𝛾𝑇𝑒 Γ̃𝛾𝑒

+𝛾𝑇𝑡 Γ̃𝛾𝑡)

where
Λ̃ = (𝐵+2𝑊)−1 Γ = (𝐵+𝑊)−1

𝛾𝑒,𝑡 = 𝐵𝜇+𝑊 (𝜙𝑒 +𝜙𝑡) 𝛾𝑖 = 𝐵𝜇+𝑊𝜙𝑖
(4.17)

40 Backends

Collecting all the terms that do not depend on the embeddings in the term 𝑘̃ and
replacing (4.17) in (4.16), the LLR can be rewritten as

log 𝑙 = 𝜙𝑇𝑒Λ𝜙𝑒 +𝜙𝑇𝑡 Λ𝜙𝑡 +𝜙𝑇𝑒 Γ𝜙𝑒 +𝜙𝑇𝑡 Γ𝜙𝑡 + (𝜙𝑒 +𝜙𝑡)𝑇𝑐+ 𝑘 (4.18)

where
Γ =

1
2
𝑊𝑇 (Λ̃− Γ̃)𝑊 Λ =

1
2
𝑊𝑇 Λ̃𝑊

𝑐 =𝑊𝑇 (Λ̃− Γ̃)𝐵𝜇 𝑘 =
1
2
𝑘̃ + 1

2
(𝐵𝜇)𝑇

(
˜Λ−2Γ̃

)
(𝐵𝜇)

(4.19)

The LLR written as (4.18) is quadratic for the embeddings and PSVM can be
discriminatively trained to find the parameters Γ,Λ, 𝑐 and 𝑘 . However, SVM aims to
find a linear separation, but in the feature space Φ𝑒,𝑡 = [𝜙𝑒𝜙𝑡]𝑇 the score function
(4.18) is not linear. Recalling that we can rewrite 𝑥𝑇 𝐴𝑦 as the Frobenius inner
product

〈
𝐴,𝑥𝑦𝑇

〉
= 𝑣𝑒𝑐(𝐴)𝑣𝑒𝑐(𝑥𝑦𝑇), where the 𝑣𝑒𝑐(·) operation stacks the columns

of a matrix into a vector, we can write (4.18) as:

log 𝑙 =
〈
Λ, 𝜙𝑒𝜙

𝑇
𝑡 +𝜙𝑇𝑡 𝜙𝑒

〉
+
〈
Γ, 𝜙𝑒𝜙

𝑇
𝑒 +𝜙𝑇𝑡 𝜙𝑡

〉
(4.20)

+ 𝑐𝑇 (𝜙𝑒 +𝜙𝑡) + 𝑘

Expanding the feature space as:

𝜑(Φ𝑒,𝑡) =


𝑣𝑒𝑐(𝜙𝑒𝜙𝑇𝑡 +𝜙𝑇𝑡 𝜙𝑒)
𝑣𝑒𝑐(𝜙𝑒𝜙𝑇𝑒 +𝜙𝑇𝑡 𝜙𝑡)

𝜙𝑒 +𝜙𝑡
1


=


𝜑Λ(𝜙𝑒 +𝜙𝑡)
𝜑Γ (𝜙𝑒 +𝜙𝑡)
𝜑𝑐 (𝜙𝑒 +𝜙𝑡)
𝜑𝑘 (𝜙𝑒 +𝜙𝑡)


(4.21)

and stacking the parameters as:

𝜑(Φ𝑒,𝑡) =


𝑣𝑒𝑐(Λ)
𝑣𝑒𝑐(Γ)
𝑐

𝑘


=


𝑤Λ

𝑤Γ

𝑤𝑐

𝑤𝑘


(4.22)

we can write (4.18) as an explicit dot-product

𝑆(Φ𝑒,𝑡) = 𝑆(𝜙𝑒, 𝜙𝑡) = log 𝑙 (𝜙𝑒, 𝜙𝑡) = 𝑤𝑇𝜑(Φ𝑒,𝑡) (4.23)

4.1 Scoring 41

4.1.3 Bayes Decision

Once the backend classifier is trained it is used to score two embeddings. At this
stage, a decision still has to be made [81]: accept the true hypothesisH𝑇 , acting as
both embedding belong to the same speaker, or reject it,H𝐹 . In order to make this
decision, a threshold 𝑡 must be defined, so that:

𝑠 ≥ 𝑡→H𝑇
𝑠 < 𝑡→H𝐹

(4.24)

where the score 𝑠 could be a LLR. The choice of the threshold needs to account for
the performance metric that we aim at optimizing. In this work, we consider Bayes
risk, which measures the expected cost of using a classifier over a given dataset [82].
To introduce the risk, we start defining a cost 𝐶 (𝑎 |𝑘) that quantifies the price of the
specific action 𝑎, for example accept H𝑇 or reject it, when the sample belongs to
class 𝑘 . Given a classifier R that provides class posterior probabilities 𝑃(𝐶 = 𝑘 |𝑥,R)
for a given sample 𝑥, we can define the expected cost of action 𝑎 according to the
classifier knowledge as:

𝐶𝑥,R (𝑎) =
𝐾∑︁
𝑘=1

𝐶 (𝑎 |𝑘)𝑃(𝐶 = 𝑘 |𝑥,R) (4.25)

For an easier analysis, we can match the set of actions with the set of labels. In the
binary case, the action 𝑎 can assume two values: H𝑇 , accept the true hypothesis,
or H𝐹 , reject it. Their combination defines four costs. In the following, we also
assume that choosing the right action 𝑎 has no cost, while the cost of false negative
errors 𝐶 𝑓 𝑛 = 𝐶 (H𝐹 |H𝑇) and the cost of false positive errors 𝐶 𝑓 𝑝 = 𝐶 (H𝑇 |H𝐹) are
assumed to be ≥ 0. The expected Bayes cost (4.25) for the two actions becomes:

𝐶𝑥,R (H𝑇) = 𝐶 𝑓 𝑝𝑃(HF |𝑥,R)
𝐶𝑥,R (H𝐹) = 𝐶 𝑓 𝑛𝑃(HT |𝑥,R)

(4.26)

It follows that the optimal decision is defined as:

𝑎∗(𝑥,R) =

H𝑇 if 𝑟 (𝑥) > 0

H𝐹 if 𝑟 (𝑥) < 0
(4.27)

42 Backends

with
𝑟 (𝑥) = log

𝐶 𝑓 𝑛𝑃(H𝑇 |𝑥,R)
𝐶 𝑓 𝑝𝑃(H𝐹 |𝑥,R)

(4.28)

When R is a generative model, 𝑟 can be expressed as a function of costs, prior
probabilities, and conditional likelihood

𝑟 (𝑥) = log
𝜋𝑇𝐶 𝑓 𝑛

(1− 𝜋𝑇)𝐶 𝑓 𝑝

·
𝑓𝑋 |H ,R (𝑥 |H𝑇)
𝑓𝑋 |H ,R (𝑥 |H𝐹)

(4.29)

where 𝜋𝑇 is the prior probability for classH𝑇 . The decision rule can be expressed as:

𝑟 (𝑥) ≶ 0⇔ log
𝑓𝑋 |H ,R (𝑥 |H𝑇)
𝑓𝑋 |H ,R (𝑥 |H𝐹)

≶ − log
𝜋𝑇𝐶 𝑓 𝑛

(1− 𝜋𝑇)𝐶 𝑓 𝑝

(4.30)

This implies that the threshold is directly defined by the triplet (𝜋𝑇 ,𝐶 𝑓 𝑛,𝐶 𝑓 𝑝), defining
the working point for an application. An effective prior can be defined as:

𝜋̃ =
𝜋𝑇𝐶 𝑓 𝑛

𝜋𝑇𝐶 𝑓 𝑛 + (1− 𝜋𝑇)𝐶 𝑓 𝑝

(4.31)

so that the triplet (𝜋̃,1,1) is equivalent to (𝜋𝑇 ,𝐶 𝑓 𝑛,𝐶 𝑓 𝑝) in terms of optimal decisions
[82].
The score reflects the confidence of the classifier in accepting the target speaker
hypothesis, H𝑇 . Analyzing a typical plot of these scores, as in Figure 4.1, some
common characteristics appear, such as the average higher values for the target scores,
the different variance of the distributions, and the overlap between them. Moreover, it
becomes evident that the choice of a threshold has a significant impact on determining
the number of false negative errors 𝑃 𝑓 𝑛 and false positive errors 𝑃 𝑓 𝑝. Adjusting the
threshold results in different error counts.

The Equal Error Rate (EER) is the point where 𝑃 𝑓 𝑝 = 𝑃 𝑓 𝑛. Although EER is a
widely used metric for evaluating system performance, it does not assess the quality
of the threshold. To address this, the two errors are combined taking into account the
prior probability of a target 𝜋𝑇 and the expected cost of these two types of errors,
𝐶 𝑓 𝑝 and 𝐶 𝑓 𝑛. The weighted combination of 𝑃 𝑓 𝑝 and 𝑃 𝑓 𝑛 defines the un-normalized
Detection Cost Function (𝐶𝑑𝑒𝑡) [83, 84]:

𝐷𝐶𝐹𝑢 (𝜋𝑇 ,𝐶 𝑓 𝑛,𝐶 𝑓 𝑝) = 𝜋𝑇𝐶 𝑓 𝑛𝑃 𝑓 𝑛 + (1− 𝜋𝑡)𝐶 𝑓 𝑝𝑃 𝑓 𝑝 (4.32)

4.2 Calibration 43

Figure 4.1 Score distributions for target and non target scores

and its normalized version:

𝐷𝐶𝐹 (𝜋𝑇 ,𝐶 𝑓 𝑛,𝐶 𝑓 𝑝) =
𝐷𝐶𝐹𝑢 (𝜋𝑇 ,𝐶 𝑓 𝑛,𝐶 𝑓 𝑝)

min(𝜋𝑇𝐶 𝑓 𝑛, (1− 𝜋𝑇)𝐶 𝑓 𝑝)
(4.33)

The best possible value of the detection cost function and its normalized version
achievable by adjusting the threshold 𝑡, are denoted as𝐶𝑚𝑖𝑛

𝑑𝑒𝑡
and minDCF, respectively.

The performance of a system can be evaluated using the 𝐷𝐶𝐹 and 𝐶𝑚𝑖𝑛
𝑑𝑒𝑡

for a specific
working point (i.e. a triplet, or an effective prior 𝜋̃). A possible way to summarize
the performance over a wide range of working points is the Cost of log-likelihood
ratio 𝐶𝑙𝑙𝑟 [84, 82, 85], which combines 𝐶𝑑𝑒𝑡 values computed with bayes optimal
decisions for different application priors.

4.2 Calibration

As discussed in the previous section, effective decision-making requires selecting a
threshold tailored to the specific application. Well-calibrated speaker verification
systems compute the log-likelihood ratio

𝑥 = 𝐿𝐿𝑅(𝑒) = log
𝑃(𝑒 |S,M)
𝑃(𝑒 |D,M) (4.34)

where the trial 𝑒 is the trial pair of speaker embeddings,M is a statistical model for
𝑒 and S and D represent the same and different speaker hypothesis, respectively.
From (4.30) the optimal threshold is

𝑡 = −𝑙𝑜𝑔 𝜋̃

1− 𝜋̃ (4.35)

44 Backends

Figure 4.2 On the left, distributions of calibrated and non-calibrated scores obtained
by a gaussian classifier on artificial data. On the right, the corresponding Bayes error
plot

Thus, the classifier does not depend on the application while the threshold only
depends on the prior probabilities and the cost of false negative and false positive
errors.
In practice, many systems struggle with generating well-calibrated scores. For
example, PSVM provides non-probabilistic scores, and even in cases, such as PDLA,
where scores are represented as LLR, miscalibration remains a challenge. As already
anticipated this miscalibration arises from disparities between the training and testing
populations or inaccuracies in the model assumptions. The distance between the
minimum cost, 𝐷𝐶𝐹𝑚𝑖𝑛, obtained with the optimal threshold for the evaluation set,
and the cost, 𝐷𝐶𝐹𝑎𝑐𝑡 , obtained with the theoretical threshold, defines the additional
cost due to miscalibration. 𝐷𝐶𝐹 can be calculated over a set of working point
(𝜋𝑇 ,𝐶 𝑓 𝑛,𝐶 𝑓 𝑝) to compare different application points. The Bayes plot (Fig. 4.2) is
utilized to visualize the difference between the actual and minimum DCF for a given
set of scores.

In case of significant miscalibration, score calibration is necessary to map the
scores to well-calibrated LLR. To map scores 𝑠 to well-calibrated scores, we can
assume a linear mapping function 𝑓𝑐𝑎𝑙

𝑓𝑐𝑎𝑙 (𝑠) = 𝛼𝑠+𝛾 (4.36)

4.2 Calibration 45

From the definition of well-calibrate scores (4.34) and (4.30), it follows

𝑙𝑜𝑔
𝑃(𝐶 =H𝑇 |𝑠)
𝑃(𝐶 =H𝐹 |𝑠)

= 𝛼𝑠+𝛾 + 𝑙𝑜𝑔 𝜋̃

1− 𝜋̃ = 𝛼𝑠+ 𝛽 (4.37)

The most common model used to find 𝛼 and 𝛽 is the Prior-weighted Logistic
Regression (Log-Reg) [86, 87]. As a discriminative and supervised method, Log-Reg
requires labeled data (calibration samples) sharing some degree of similarity with
the test population.
Generative models, instead, estimate the calibration transformation using a statistical
modelM ′ , which describes the distribution of the observed scores. The score 𝑠 is
modeled as a sample of a Random Variable (R.V.) 𝑆, with 𝑓𝑆 |S and 𝑓𝑆 |D representing
the conditional densities given the target and non-target hypotheses

𝑥′ = 𝑓𝑐𝑎𝑙 (𝑠) = log
𝑓𝑆 |S (𝑠)
𝑓𝑆 |D (𝑠)

(4.38)

There are two ways to define the statistical model. One way is to use an explicit
expression for target and non-target densities, which implicitly defines the calibration
transformation. Alternatively, we define an explicit model for the calibration 𝑓𝑐𝑎𝑙

along with a model for the distribution of calibrated scores, which are constrained
to satisfy the Log-Likelihood Ratio (LLR) property, as discussed in [88]. The
authors of [88] show that for a well-calibrated system, the LLR of the LLR must
be the LLR. This property limits the types of distributions that can represent well-
calibrated LLR scores and highlights a strong relationship between the target and
non-target distribution, i.e. if the non-target distribution is Gaussian, then also
the target distribution must be. From this, they proposed constrained Gaussian
densities with a linear calibration model (CMLG). The work in [89] demonstrated
that Variance-Gamma (𝑉Γ) distributions are effective models for well-calibrated
LLR obtained through PLDA and introduced the Constrained Maximum Likelihood
Variance-Gamma (CMLVG) model. In the CMLVG model, both target and non-target
scores can be seen as the result of an affine transformation of well-calibrated scores,
which are modeled using random variables following 𝑉Γ distributions

𝑋 |D ∼𝑉Γ(𝜆,𝛼, 𝛽, 𝜇) 𝑋 |S ∼𝑉Γ(𝜆,𝛼, 𝛽+1, 𝜇) (4.39)

46 Backends

where the 𝑉Γ is defined as

𝑓𝑉Γ (𝑥 |𝜆,𝛼, 𝛽, 𝜇) =
𝛾2𝜆 |𝑥− 𝜇 |𝜆−

1
2𝐾𝜆− 1

2
(𝛼 |𝑥− 𝜇 |)

√
𝜋Γ(𝜆) (2𝛼)𝜆−

1
2

𝑒𝛽(𝑥−𝜇) (4.40)

with 𝜆 > 0, 𝛼 > |𝛽 | and 𝛾2 = 𝛼2− 𝛽2.

A benefit of generative models like the 𝑉Γ in (4.39) and (4.40) is that the
distribution parameters can be estimated both in a supervised and in an unsupervised
way from calibration data that closely mimics evaluation data. As for LR and the
CMLG model, this approach is effective when the calibration transformation is
close to a linear function. While generative methods are able to manage global
sources of miscalibration (global calibration), they do not address trial-dependent
miscalibration, such as utterance duration. In fact, standard Log-Reg and generative
models perform global calibration, the transformation that maps scores to LLRs only
depends on the score itself. Furthermore, speaker vector distributions do not directly
align with the underlying model assumptions. When distinct calibration sources
affect each trial, unique transformation methods become necessary. For example,
calibration models designed for long utterances may not be suitable for shorter ones.
To address trial-level miscalibration, side-informations, like utterance duration, can
be incorporated into the discriminative calibration transformation, as discussed in
[90], [91], [92], and [93]. We therefore extended the analysis of well-calibrated
PLDA scores [89] to explicitly address distribution mismatches between training
and evaluation populations. We introduced a non-linear, generative score model
that characterizes target and non-target score distributions in terms of 𝑉Γ densities.
Furthermore, we extended the model to account for trial-level miscalibration sources.
Our investigation also revealed that speaker-embedding statistics, such as the squared
norm of an utterance embedding, can serve as a measure of utterance-level uncertainty
and improve the calibration process. The first model to handle duration was presented
in [94]. The full model was later presented in our work [95]

4.2.1 Distribution of PLDA scores

Recalling the Two Covariance Model (4.6), a speaker vector 𝜙, whether i-vector or a
speaker embedding, is generated by the 𝑀-dimensional R.V. Φ. This model assumes
that the speaker identity represented by 𝑌 and the residual noise 𝐸̄ follow a priori

4.2 Calibration 47

normal distribution

Y ∼ N(mM ,BM) E ∼ N(0,WM) (4.41)

where mM is the global dataset mean, while BM and WM can be viewed as
between-class and within-class covariance matrices. Since PLDA is invariant to
affine transformations, we can assume mM = 0 and BM and WM to be diagonal.
Given two speaker vectors z =

[
𝜙𝑇E , 𝜙

𝑇
T
]𝑇 , the PLDA will compute the score as

ℓ(z) = 𝐾M −
1
2

z𝑇
(
Σ−1
M,𝔖
−Σ−1
M,𝔇

)
z (4.42)

where

ΣM,𝔖 =

[
TM BM
BM TM

]
ΣM,𝔇 =

[
TM 0
0 TM

]
with TM = BM +WM . Assuming BM ,WM are diagonal, (4.42) can be rewritten as
a sum of 𝑀 terms

ℓ(z) =
𝑀∑︁
𝑖=1

1
2

z𝑇𝑖 A𝑖z𝑖 + 𝑘𝑖 (4.43)

where z𝑖 =
[
𝜙E,𝑖 , 𝜙T ,𝑖

]𝑇 stacks the 𝑖-th components of the speaker vectors 𝜙E , 𝜙T ,
and

A𝑖 =
BM,𝑖

T2
M,𝑖
−B2
M,𝑖

[
−BM,𝑖

TM,𝑖
1

1 −BM,𝑖

TM,𝑖

]
(4.44)

TM𝑖
= BM,𝑖 +WM,𝑖 (4.45)

𝑘𝑖 =
1
2

logT2
M,𝑖
− 1

2
log

(
T2
M,𝑖
−B2
M,𝑖

)
(4.46)

The values of BM and WM are estimated from the training population. PLDA still
relies on the assumption that both the training and the evaluation population are
similarly distributed (4.6). Unfortunately, the domain of the two populations could
be different, and a different model may be better suited to describe the evaluation
population. This discrepancy in models impacts the distribution of PLDA scores,
resulting in scores that are poorly calibrated. Assuming that the PLDA model
used for scoring is different from the (unknown) one modeling the evaluation trials,

48 Backends

we consider an evaluation trial as a sample of a Random Variable (R.V.) Z with
conditional distributions defined as:[

𝚽E
𝚽T

]
|𝔖 ∼ N (m,𝚺𝔖) Σ𝔖 =

[
TE BC
BC TT

]
(4.47)[

𝚽E
𝚽T

]
|𝔇 ∼ N (m,𝚺𝔇) Σ𝔇 =

[
TE 0
0 TT

]
where TE = BC +WE and TT = BC +WT . This correspond to the PLDA model Φ
defined for enrollment E and test T

ΦE = YC +EE ΦT = YC +ET
𝑌C ∼ N(m,BC) 𝑌C ∼ N(m,BC) (4.48)

𝐸E ∼ N(0,WE) 𝐸T ∼ N(0,WT)

In this model, WE and WT represent the within-class variability within the enrollment
and test segments. These may vary from one segment to another, due to the different
levels of information carried by spoken segments and the potential uncertainty in
extracting speaker vectors. The common between-class variability of the evaluation
population is captured by the matrix BC. To ensure the tractability of the model,
we make the assumption that BC, WE , and WT are all diagonal. While this may
appear as a strong assumption, it is justified by the fact that the model that we derive
outperforms current calibration state-of-the-art models. Furthermore, we adopt the
assumption that the mean m is m = 0, although it is worth highlighting that this can
be estimated using a small set of unlabelled calibration samples and compensated
using unlabeled evaluation samples. As demonstrated in [89], a trial z is a realization
of R.V. Z, we can use a R.V. L = 𝑙 (Z) to describe the score.
It is worth noting that, given a R.V. 𝑋 (𝜔) defined over the probability space (Ω,A,P),
and an event 𝐻, then 𝑋 |𝐻 is not a R.V. over (Ω,A,P(·)). However, from [96]
we can interpret conditioning as acting on the probability rather than just on the
probability distribution. Meaning that (𝑋 |𝐻) (𝜔) can be defined as a R.V. which is
functionally identical to 𝑋 (𝜔), (𝑋 |𝐻) (𝜔) := 𝑋 (𝜔), but is defined on the probability
space (Ω∩𝐻, {𝐻∩ 𝐴} : 𝐴 ∈ A,P(·,A)/P(A)). Not mixing R.V.s defined over different
spaces allows us to work with the R.V.s Z𝔖 ∼ Z|𝔖 and Z𝔇 ∼ Z|𝔇, each defined
on its own probability space, whose distributions corresponds to the conditional
distributions of R.V. Z, given the 𝔖 or 𝔇 hypotheses. Finally, with an abuse of

4.2 Calibration 49

notation, we will use Z|𝔖 and Z|𝔇 to denote both the conditional distribution Z|𝔖
and Z|𝔇, and the distribution of R.V. Z𝔖 and Z𝔇. The same considerations apply
to score distributions L|𝔖 and L|𝔇. It follows that the distribution of target and
non-target scores can be obtained considering R.V.s

Z𝔖 ∼ Z|𝔖 Z𝔇 ∼ Z|𝔇

This makes the scores realizations of two R.V.s

L|𝔖 = ℓ(Z|𝔖) L|𝔇 = ℓ(Z|𝔇) (4.49)

Under the same and different speaker hypotheses, given BE ,WE and WT diagonal,
the R.V.s of the different components of the speaker vectors Z𝑖 =

[
𝚽E,𝑖 ,𝚽T ,𝑖

]
are

independent

Z𝑖 |𝔖 ∼ N
(
0,𝚺𝔖,𝑖

)
Z𝑖 |𝔇 ∼ N

(
0,𝚺𝔇,𝑖

)
(4.50)

where

Σ𝔖,𝑖 =

[
TE,𝑖 BC,𝑖
BC,𝑖 TT ,𝑖

]
Σ𝔇,𝑖 =

[
TE,𝑖 0

0 TT ,𝑖

]
(4.51)

and BC,𝑖, TE,𝑖 and TT ,𝑖 are the 𝑖-th elements of the diagonals of BC, TE and TT ,
respectively. From (4.43), we can use a sum of 𝑀 independent R.V. to express the
distribution of PLDA scores for target and non-target cases

L|𝔖 = ℓ(Z|𝔖) =
𝑀∑︁
𝑖=1
L𝑖 |𝔖 L|𝔇 = ℓ(Z|𝔇) =

𝑀∑︁
𝑖=1
L𝑖 |𝔇 (4.52)

L𝑖 |𝔖 = ℓ(Z𝑖 |𝔖) =
1
2

Z𝑇𝔖,𝑖A𝑖Z𝔖,𝑖 + 𝑘𝑖 L𝑖 |𝔇 = ℓ(Z𝑖 |𝔇) =
1
2

Z𝑇𝔇,𝑖A𝑖Z𝔇,𝑖 + 𝑘𝑖
(4.53)

𝑍𝔖,𝑖 ∼ Z𝑖 |𝔖 ∼ N(0,𝚺𝔖,𝑖) 𝑍𝔇,𝑖 ∼ Z𝑖 |𝔇 ∼ N(0,𝚺𝔇,𝑖) (4.54)

We define a standard normal distributed R.V. X ∼ N(0, I), the Cholesky decomposi-
tion C𝔖 and C𝔇 as

𝚺𝔖,𝑖 = C𝔖,𝑖C𝑇
𝔖,𝑖 𝚺𝔇,𝑖 = C𝔇,𝑖C𝑇

𝔇,𝑖

50 Backends

and the eigendecomposition

M𝔖,𝑖 ≜ C𝑇
𝔖,𝑖A𝑖C𝔖,𝑖 = U𝔖,𝑖D𝔖,𝑖U𝑇

𝔖,𝑖 M𝔇,𝑖 ≜ C𝑇
𝔇,𝑖A𝑖C𝔇,𝑖 = U𝔇,𝑖D𝔇,𝑖U𝑇

𝔇,𝑖

(4.55)

Then the conditional distributions of L𝑖 can be expressed as:

L𝑖 |𝔖 ∼
1
2

X𝑇C𝑇
𝔖,𝑖A𝑖C𝔖,𝑖X+𝑘𝑖 L𝑖 |𝔇 ∼

1
2

X𝑇C𝑇
𝔇,𝑖A𝑖C𝔇,𝑖X+𝑘𝑖

∼ 1
2

Y𝑇
𝔖D𝔖,𝑖Y𝔖 + 𝑘𝑖 ∼ 1

2
Y𝑇
𝔇D𝔇,𝑖Y𝔇 + 𝑘𝑖 (4.56)

where, since U𝔖,𝑖 and U𝔇,𝑖 are orthogonal,

Y𝔖 = U𝔖,𝑖X ∼ N (0, I) Y𝔇 = U𝔇,𝑖X ∼ N (0, I) (4.57)

We can see that the determinant of A𝑖 (Eq (4.44)) is negative, it follows that also the
determinant of M𝔖,𝑖 and M𝔇,𝑖 are negative. As a result, we can infer that the two
eigenvalues of M𝔖,𝑖 and M𝔇,𝑖 have different signs. By examining the distribution of
quadratic, indefinite forms in (4.56), we can derive an expression for L𝑖. We omit
all suffixes to improve readability and consider quadratic forms

L =
1
2

Y𝑇DY+ 𝑘 = 1
2
𝑑+𝑌

2
+ −

1
2
|𝑑− |𝑌2

− + 𝑘 (4.58)

where D is a 2×2 diagonal matrix with diagonal elements 𝑑+ > 0 and 𝑑− < 0

D =

[
𝑑+ 0
0 𝑑−

]
(4.59)

and Y follows a standard normal distribution:

Y =

[
𝑌+

𝑌−

]
∼ N

([
0
0

]
,

[
1 0
0 1

])
. (4.60)

𝑌+and 𝑌− are independent, and 𝑌2
+ and 𝑌2

− follow a Gamma-distribution

𝑌+ ∼ Γ
(
1
2
,
1
2

)
𝑌− ∼ Γ

(
1
2
,
1
2

)
(4.61)

4.2 Calibration 51

meaning that L coincides with a difference of independent, Gamma-distributed R.V.s

L = 𝐺+−𝐺− + 𝑘 𝐺+ ≜
1
2
𝑑+𝑌

2
+ 𝐺− ≜

1
2
|𝑑− |𝑌2

−

𝐺+ ∼ Γ
(
1
2
,

1
𝑑+

)
𝐺− ∼ Γ

(
1
2
,

1
|𝑑− |

)
(4.62)

The Moment Generating Function (MGF) of L is

𝑀L (𝑡) = 𝑒𝑘𝑡𝑀𝐺+ (𝑡)𝑀𝐺− (−𝑡)

= 𝑒𝑘𝑡 (1− 𝑑+𝑡)−
1
2 (1− 𝑑−𝑡)−

1
2

= 𝑒𝑘𝑡
(
1−Tr(D)𝑡 +det(D)𝑡2

)− 1
2 (4.63)

where Tr and det denote the trace and determinant operators, respectively. For
a random variable 𝑋 following the VΓ(𝜆,𝛼, 𝛽, 𝜇) distribution, the MGF can be
expressed as:

𝑀𝑋 (𝑡) = 𝑒𝜇𝑡
(
1− 2𝛽

𝛾2 𝑡 −
𝑡2

𝛾2

)−𝜆
(4.64)

where 𝛾2 = 𝛼2− 𝛽2.
This derivation show that L is 𝑉Γ-distributed [89], and the parameters can be
recovered by inspection:

𝜆 =
1
2

𝜇 = 𝑘 𝛾2 = − 1
det(D) 𝛽 = −1

2
Tr(D)
det(D) (4.65)

From (4.65) and (4.56) it can be derived that L𝑖 |𝔖 and L𝑖 |𝔇 are also VΓ-distributed.
And from (4.55) we have that

Tr(D𝔖,𝑖) = Tr(M𝔖,𝑖) = Tr(A𝑖𝚺𝔖,𝑖) Tr(D𝔇,𝑖) = Tr(M𝔇,𝑖) = Tr(A𝑖𝚺𝔇,𝑖)
det(D𝔖,𝑖) = det(M𝔖,𝑖) = det(A𝑖𝚺𝔖,𝑖) det(D𝔇,𝑖) = det(M𝔇,𝑖) = det(A𝑖𝚺𝔇,𝑖)

(4.66)

so that

L𝑖 |𝔖 ∼ VΓ

(
1
2
, 𝛼𝔖,𝑖, 𝛽𝔖,𝑖, 𝑘𝑖

)
L𝑖 |𝔇 ∼ VΓ

(
1
2
, 𝛼𝔇,𝑖, 𝛽𝔇,𝑖, 𝑘𝑖

)
(4.67)

52 Backends

with parameters

𝛽𝔖,𝑖 = −
1
2

Tr(A𝑖𝚺𝔖,𝑖)
det(A𝑖𝚺𝔖,𝑖)

𝛽𝔇,𝑖 = −
1
2

Tr(A𝑖𝚺𝔇,𝑖)
det(A𝑖𝚺𝔇,𝑖)

𝛾2
𝔖,𝑖 = −

1
det(A𝑖𝚺𝔖,𝑖)

𝛾2
𝔇,𝑖 = −

1
det(A𝑖𝚺𝔇,𝑖)

(4.68)

𝛼2
𝔖,𝑖 = 𝛾

2
𝔖,𝑖 + 𝛽

2
𝔖,𝑖 𝛼2

𝔇,𝑖 = 𝛾
2
𝔇,𝑖 + 𝛽

2
𝔇,𝑖

The relationship between the parameters of the speaker vectors distribution BM,𝑖,
WM,𝑖, BC,𝑖, WE,𝑖, WT ,𝑖 and the parameters in (4.68) can be expressed through the
ratios

𝜂E,𝑖 =
TM,𝑖

TE,𝑖
𝜂T ,𝑖 =

TM,𝑖

TT ,𝑖
(4.69)

𝜌E,𝑖 =
BC,𝑖
WE,𝑖

𝜌T ,𝑖 =
BC,𝑖
WT ,𝑖

𝜌M,𝑖 =
BM,𝑖

WM,𝑖

(4.70)

The scaling differences between the training population and the enrollment and test
population are characterized by the ratios 𝜂E,𝑖 and 𝜂T ,𝑖. While the ratios 𝜌M,𝑖, 𝜌E,𝑖

and 𝜌T ,𝑖 indicate the between-to-within class variability for the training, enrollment,
and test populations. Moreover, we can express 𝜂E,𝑖 and 𝜂T ,𝑖 as functions of 𝜌E,𝑖 and
𝜌T ,𝑖 and a ratio between the scale of the training population and the average scale of
enrollment and test population, 𝜂C,𝑖 =

2TM,𝑖

TE,𝑖+TT ,𝑖 . It is often reasonable to assume that
the enrollment and test populations are homogeneous, denoted as WE = WT ≜WC .
Under this circumstance, 𝜌E,𝑖 = 𝜌T ,𝑖 ≜ 𝜌C,𝑖, 𝜂E,𝑖 = 𝜂T ,𝑖 = 𝜂C,𝑖, which leads to

𝛾2
𝔖,𝑖 = 𝛾

2
𝔇,𝑖

(
1+ 𝜌C,𝑖

)2

1+2𝜌C,𝑖
𝛾2
𝔇,𝑖 = 𝜂

2
C,𝑖

1+2𝜌M,𝑖

𝜌2
M,𝑖

(4.71)

𝛽𝔖,𝑖 = 𝜂C,𝑖
1+ 𝜌C,𝑖

1+2𝜌C,𝑖

(
𝜌C,𝑖
𝜌M,𝑖

−1
)

𝛽𝔇,𝑖 = −𝜂C,𝑖

The skewness of the target distribution depends on the ratios 𝜌C,𝑖 and 𝜌M,𝑖. The
distribution will be right-skewed if 𝜌C,𝑖 is greater than 𝜌M,𝑖, meaning that along
direction 𝑖 the evaluation vectors are easier to discriminate than the training samples.
We can also notice that the between-over-within variability ratio 𝜌C,𝑖 of the evaluation
population does not play any role in shaping the non-target distribution. If we set
that 𝜌E,𝑖 = 𝜌T ,𝑖 = 𝜌M,𝑖 and 𝜂E,𝑖 = 𝜂T ,𝑖 = 1, which correspond to the assumption that
the evaluation population follows the same distribution as the training population,

4.2 Calibration 53

we can go back to the results showed in [89]. We lack a closed-form solution for
the distribution L|𝔇 and L|𝔖 for the general case. Nevertheless, assuming that the
ratios 𝜂C,𝑖, 𝜌M,𝑖, 𝜌E,𝑖 and 𝜌T ,𝑖 are the same for along any directions 𝑖

𝜂C,𝑖 = 𝜂C 𝜌M,𝑖 = 𝜌M 𝜌E,𝑖 = 𝜌E 𝜌T ,𝑖 = 𝜌T ∀𝑖 (4.72)

then L|𝔇 and L|𝔖 are again VΓ-distributed, with

L|𝔖 ∼ VΓ

(
𝑀

2
, 𝛼𝔖, 𝛽𝔖,

𝑀∑︁
𝑖=1

𝑘𝑖

)
L|𝔇 ∼ VΓ

(
𝑀

2
, 𝛼𝔇, 𝛽𝔇,

𝑀∑︁
𝑖=1

𝑘𝑖

)
(4.73)

and the parameters 𝛼𝔇, 𝛽𝔇, 𝛼𝔖, 𝛽𝔖 can be computed from (4.68) using any index 𝑖.

4.2.2 The 𝑉Γ model, a generative model for mismatched data

Assuming that the covariance matrices, for any of the speaker vector directions, are
linked to a common set of normalized variances as

BM,𝑖 = 𝜉𝑖𝑏M WM,𝑖 = 𝜉𝑖𝑤M

BC,𝑖 = 𝜉𝑖𝑏C WE,𝑖 = 𝜉𝑖𝑤E WT ,𝑖 = 𝜉𝑖𝑤T , (4.74)

for scalars 𝜉𝑖 ≠ 0, and that, the distribution of the speaker vectors, with M-dimension,
is described by (4.47), then equation (4.73) can be used to describe the distribution
of target and non-target scores. The work in [89] has shown that assuming that only a
small set of "effective" speaker vector dimensions significantly influences the scores
and that the assumption made in (4.74) is a valid approximation. In fact, most speaker
vector dimensions exhibit low between-over-within variability ratios, minimizing
their contribution to the PLDA scores. Thus, we can assume that the scores are
generated by a speaker vector with the effective dimensions approximately following
the assumptions in (4.74). To incorporate this behavior into the distributions of target
and non-target scores, we can utilize the 𝜆 parameter of the 𝑉Γ distributions [89].
Our model can be derived starting from the score model

L|𝔖 ∼ VΓ (𝜆, 𝜇,𝛼𝔖, 𝛽𝔖) L|𝔇 ∼ VΓ (𝜆, 𝜇,𝛼𝔇, 𝛽𝔇) (4.75)

54 Backends

where 𝜆 and 𝜇 are shared parameters modeling the shape and the location, while
𝛼𝔇, 𝛼𝔖, 𝛽𝔇, 𝛽𝔖 depend on the parameters 𝑏M ,𝑤M , 𝑏C ,𝑤E ,𝑤T through

𝛼2
𝔖 = 𝛾2

𝔖 + 𝛽
2
𝔖 𝛼2

𝔇 = 𝛾2
𝔇 + 𝛽

2
𝔇

𝛽𝔖 = −1
2

Tr(A𝚺𝔖)
det(A𝚺𝔖)

𝛽𝔇 = −1
2

Tr(A𝚺𝔇)
det(A𝚺𝔇)

𝛾2
𝔖 = − 1

det(A𝚺𝔖)
𝛾2
𝔇 = − 1

det(A𝚺𝔇)
A = 𝚺−1

M,𝔇
−𝚺−1
M,𝔖

(4.76)

𝚺𝔖 =

[
𝑡E 𝑏C

𝑏C 𝑡T

]
𝚺𝔇 =

[
𝑡E 0
0 𝑡T

]
𝑡M = 𝑏M +𝑤M 𝑡E = 𝑏C +𝑤E 𝑡T = 𝑏C +𝑤T

𝚺M,𝔖 =

[
𝑡M 𝑏M
𝑏M 𝑡M

]
𝚺M,𝔇 =

[
𝑡M 0
0 𝑡M

]
The solution for the𝑉Γ parameters is invariant to a scaling factor 𝜉 > 0 for the variance
terms in (4.76). The model is over-parametrized so in the following analysis we fix
𝑤M = 1. For the PLDA LLR, both distributions are expected to share the location
parameter 𝜇, which should be linked to the remaining parameters, 𝑏M , 𝑏C ,𝑤E ,𝑤T .
However, often is better to use a shared location parameter estimated from the data
and independent of the other parameters. This allows modeling bias terms of PLDA-
derived models, such as Pairwise Support Vector Machines (PSVM) [79, 80, 97] or
discriminative PLDA [98]. While these bias terms are optimal for the training set
and the specific training loss, they may result in poor calibration for the evaluation
data. Moreover, in the previous derivations we did not consider the effects of linear
terms introduced in the scoring function of PSVM or discriminative PLDA. These
dataset shifts or the equivalent effects of linear terms would result in more complex
distributions, and we do not know of a closed-form solution, even with the isotropic
assumption. Nonetheless, we can assume that the shift is small enough so that its
impact can be modeled through a linear transformation of the 𝑉Γ distributions. The
proposed 𝑉Γ model becomes

L|𝔖 ∼ VΓ

(
𝜆, 𝜇𝔖,

𝛼𝔖

𝑎𝔖
,
𝛽𝔖

𝑎𝔖

)
L|𝔇 ∼ VΓ (𝜆, 𝜇𝔇, 𝛼𝔇, 𝛽𝔇) (4.77)

4.2 Calibration 55

where we have added 𝑎𝔖 to handle the scale disparities between the target and
non-target distributions, and 𝜇𝔖 and 𝜇𝔇 to characterize the two independent location
parameters. The non-target class does not require a scaling parameter, as the
original parameter can be estimated to account for it. The 8 free parameters 𝚷 =

(𝜆, 𝜇𝔇, 𝜇𝔖, 𝑏M , 𝑏C ,𝑤E ,𝑤T , 𝑎𝔖) fully describe our model. When both enrollment
and test data are affected by independent and identically distributed nuisance, we
can tie 𝑤E = 𝑤T = 𝑤C, decreasing the parameters to 7. We denote this model as
𝑉Γ-Var, as its parameters can be seen as "effective" variances. To train the model,
we maximize the weighted likelihood, over a set of calibration scores (S𝔖, S𝔇) [89]

argmax
𝚷

𝜁

|S𝔖 |
∑︁
𝑠∈S𝔖

𝑓L|𝔖 (𝑠;𝚷) +
1− 𝜁
|S𝔇 |

∑︁
𝑠∈S𝔇

𝑓L|𝔇 (𝑠;𝚷) (4.78)

where 𝑓L|𝔖 (𝑠;𝚷) and 𝑓L|𝔇 (𝑠;𝚷) are the VΓ densities for the target and non-target
distributions (4.75) and 𝜁 is a weighting factor. The calibration transformation
defines a non-linear transformation of the scores as

𝑓𝑐𝑎𝑙 (𝑠;𝚷) =
VΓ

(
𝑠 |𝜆, 𝜇𝔖, 𝛼𝔖𝑎𝔖 ,

𝛽𝔖
𝑎𝔖

)
VΓ (𝑠 |𝜆, 𝜇𝔇, 𝛼𝔇, 𝛽𝔇)

(4.79)

with the 𝑉Γ densities defined in (4.40). The set of parameters can be obtained
in a discriminative fashion with the prior-weighted logistic regression, setting the
objective function

argmin
𝚷

𝜋

|𝑆𝔖 |
∑︁
𝑠∈𝑆𝔖

log
(
1+ 𝑒− 𝑓𝑐𝑎𝑙 (𝑠;𝚷)−log 𝜋

1−𝜋
)

+ 1− 𝜋
|𝑆𝔇 |

∑︁
𝑠∈𝑆𝔇

log
(
1+ 𝑒 𝑓𝑐𝑎𝑙 (𝑠;𝚷)+log 𝜋

1−𝜋
)

(4.80)

where 𝜋 is the effective prior for the target class. In the experiment and results section
we will show that the generative and discriminative models obtain close results (more
details in Section 5.4.1), showing that our model effectively characterizes the score
distributions.

56 Backends

4.2.3 Utterance-dependent calibration

In our model, we assume that the score of a trial 𝑧 =
[
𝝓𝑇E ,𝝓

𝑇
T
]𝑇 is a sample of the

𝑉Γ distributions in (4.75). The within-class variability for the enrollment and test
speaker vectors, described by 𝑤E and 𝑤T , is typically considered constant. However,
to accommodate factors specific to individual utterances, such as utterance duration,
we suppose that the values of 𝑤E and 𝑤T can vary across utterances. Specifically,
the effective within-class variance 𝑤𝑖 of each speaker-vector 𝜙𝑖 becomes a function
of both i.i.d. and utterance-dependent miscalibration sources.

Utterance duration

The accuracy of a speaker verification system is heavily influenced by the duration of
an utterance. Inspired by i-vector models [12], our goal is to model the influence of
utterance duration on 𝑤𝑖. The i-vector model offers a means to consider uncertainty
in i-vectors by utilizing the i-vector posterior covariance matrix (2.16) [99]–[100].
To incorporate i-vector uncertainty at the trial level, we adopt a similar approach to
equation (4.47). This involves replacing the covariance matrices TE and TT with
TE = BC +WE +CE,𝑖 and TT = BC +WT +CT ,𝑖, where CE,𝑖 and CT ,𝑖 are the i-vector
posterior covariances for enroll and test i-vectors of trial z𝑖. The i-vector posterior
covariance matrix C possesses a complex expression that relies on zero-order statistics
for an utterance, computed on a Universal Background Model (UBM). Nonetheless,
it can be reasonably approximated, as discussed in [101], by a matrix defined as

C ≈ (I+𝐷M)−1 (4.81)

where M depends on the UBM and the i-vector model parameters, and 𝐷 indicates the
utterance duration. To further simplify the computation and its efficiency, we assume
that C shares its principal direction with WM , WE , and WT . This assumption,
which derives from a similar approximation utilized in [102], allows for their joint
diagonalization. Each component C 𝑗 of C can be expressed as C 𝑗 =

1
1+𝐷𝜂−1

𝑗

=
𝜂 𝑗

𝜂 𝑗+𝐷 .
This means that the effects of utterance duration on the within-class variability of
speaker vectors can be encoded by the i-vector posterior covariance matrix. In
our score model, we incorporate utterance duration through a similar functional

4.2 Calibration 57

relationship and represent the effective variances 𝑤E,𝑖 and 𝑤T ,𝑖 for a trial 𝑧𝑖 as

𝑤E,𝑖 = 𝑤E +
𝜓

𝐷E,𝑖 +𝜂
𝑤T ,𝑖 = 𝑤T +

𝜓

𝐷T ,𝑖 +𝜂
(4.82)

where 𝐷E,𝑖 and 𝐷T ,𝑖 represent the duration of the enrollment and test segments, and
𝜓 and 𝜂 are additional model parameters shared across all trials.

In the novel 𝑉Γ-Var + Dur, we assume 𝑤E = 𝑤T = 𝑤C , as we did for the 𝑉Γ-Var
model. It is important to note that in situations where uncertainty estimates are
unavailable (e.g., in the case of x-vectors [103]) or cannot be integrated at the
classification level (e.g. PSVM), this approach can model speaker vector uncertainty.

Speaker vector norms

Length normalization is a common pre-processing step applied to the embeddings to
enhance the classification performance of the standard PLDA. We can demonstrate
that the squared norm of a speaker vector can be regarded as a measure of utterance-
specific variability, linking the effect of length normalization to the reduction of
intra-trial mismatch. The following analysis is derived from the simplified Heavy-
Tailed PLDA (HT-PLDA), introduced in [104]:

𝚽𝑖 = m+UY+E𝑖 (4.83)

Y ∼ N(0, I) E𝑖 |𝑉𝑖 ∼ N(0,𝑉𝑖W) 𝑉−1
𝑖 ∼ Γ

(𝑎
2
,
𝑎

2

)
where 𝑉𝑖 is a hidden R.V. that represents an utterance-dependent scaling factor. The
HT-PLDA model assumes a gamma prior for the inverse of 𝑉𝑖. We can assume that
the dimensionality of Y is 𝐷 ≪ 𝑀. This assumption is derived from the standard
PLDA, where the speaker subspace has a much lower dimension than the speaker
vector space. We further assume that the speaker vectors have been withened so that
m = 0, W = I, and the 𝐷-dimensional speaker subspace corresponds to the first 𝐷
principal directions of the speaker vector space. The speaker vector can be partitioned
into two components:

U =

[
U
0

]
𝚽𝑖 =

[
𝚽𝑢
𝑖

𝚽𝑛
𝑖

]
=

[
UY+E𝑢𝑖

E𝑛𝑖

]
(4.84)

58 Backends

where U is a 𝐷 ×𝐷 matrix, 𝚽𝑢
𝑖 refers to the first 𝑑 components of 𝚽𝑖, while 𝚽𝑛

𝑖

represents to the remaining components of Pℎ𝑖𝑖, that do not depend on the speaker
factor y. A similar distinction applies to the noise terms E𝑢𝑖 , E𝑛𝑖 . Typically, length
normalization is applied to whitened vectors. When the whitening operation is
performed on the covariance of speaker vectors, it results in E𝑛𝑖 being approximately
standard normal distributed, as per our assumption. Given a set of vectors 𝑘 belonging
to a single speaker, the marginal density is

𝑓𝚽1...𝚽𝑘
(𝜙1 . . . 𝜙𝑘)

=

∫
𝑓𝚽1...𝚽𝑘 |Y,𝑉1...𝑉𝑘

(𝜙1 . . . 𝜙𝑘 |y, 𝑣1 . . . 𝑣𝑘) 𝑓Y (y)𝑑y
𝑘∏
𝑖=1

𝑓𝑉𝑖
(𝑣𝑖)𝑑𝑣𝑖

=

∫ 𝑘∏
𝑖=1

𝑓𝚽𝑢
𝑖
|Y,𝑉𝑖

(
𝜙𝑢𝑖 |y, 𝑣𝑖

)
𝑓Y (y)𝑑y

𝑘∏
𝑖=1

𝑓𝚽𝑛
𝑖
|𝑉𝑖

(
𝜙𝑛𝑖 |𝑣𝑖

)
𝑓𝑉𝑖
(𝑣𝑖)𝑑𝑣𝑖

=

𝑘∏
𝑖=1

𝑓𝚽𝑛
𝑖

(
𝜙𝑛𝑖

) ∫ 𝑘∏
𝑖=1

𝑓𝚽𝑢
𝑖
|Y,𝑉𝑖

(
𝜙𝑢𝑖 |y, 𝑣𝑖

)
𝑓𝑉𝑖 |𝚽𝑛

𝑖

(
𝑣𝑖 |𝜙𝑛𝑖

)
𝑑𝑣𝑖 𝑓Y (y)𝑑y (4.85)

The LLR for a given trial depends only on the integral term of equation (4.85). It is
worth highlighting that𝑉𝑖 |𝚽𝑛

𝑖 acts as a prior for the conditional likelihood of 𝚽𝑢
𝑖 |𝑌,𝑉𝑖,

with (
𝑉−1
𝑖 |𝚽𝑛

𝑖 = 𝜙
𝑛
𝑖

)
∼ Γ

(
𝑎 +𝑀 −𝐷

2
,
𝑎 +

𝜙𝑛
𝑖

2

2

)
(4.86)

Instead of dealing with the posterior distribution directly, we replace the posterior
distribution for𝑉𝑖 with a Maximum-a-Posteriori (MAP) point estimate approximation.

𝑣MAP
𝑖 =

𝑎 +

𝜙𝑛

𝑖

2

𝑎 +𝑀 −𝐷 +1
(4.87)

The posterior distribution of 𝑉𝑖 |𝚽𝑛
𝑖 = 𝜙

𝑛
𝑖

takes the form of an inverse-Gamma
distribution with the same parameters of (4.86). The MAP estimate for 𝑉−1

𝑖
has

a similar formal expression, although it is slightly different. By substituting the
random variable 𝑉𝑖 with the MAP estimate (4.87), we return to a standard PLDA
model. In this model, the noise variance for embedding 𝑖 is directly associated with
the estimated value 𝑣MAP

𝑖
I.

It is noteworthy that matrix U can be approximated by the subspace discovered
through Linear Discriminant Analysis. By doing so, we can avoid estimating the HT-
PLDA model. Consequently, the norm of the embedding computed in the complement

4.3 Score-Normalization 59

of the LDA subspace aligns with the MAP solution. Under the assumption that
the speaker subspace has a small dimension and the between-to-within variability
ratio is generally low across most embedding directions, the norm of the original
whitened embedding serves as a further approximation of the MAP solution. Through
the application of length normalization, the distribution of the noise term becomes
approximately independent of the utterance, while introducing a dependency of
the speaker factor distribution on the utterance. Once we have established that
utterance-dependent variability can be approximated by vMAP

𝑖
, we can incorporate it

in our calibration model. This can be achieved by defining effective enrollment and
test variances as

𝑤E,𝑖 = 𝑤C +𝜓

U𝑐𝜙E,𝑖

2
𝑤T ,𝑖 = 𝑤C +𝜓

U𝑐𝜙T ,𝑖

2 (4.88)

where U𝑐 is a projection matrix corresponding to the complement of an LDA
subspace, and 𝜓 is a parameter that can be estimated by Maximum Likelihood over
the calibration set.

4.3 Score-Normalization

Utterance-dependent variability measures, such as duration, have been introduced
in both discriminative [90–92] and generative models [95, 94] to address trial-level
miscalibration sources. An alternative technique for addressing trial-dependent
miscalibration is score normalization [6, 105, 76, 106–108]. The score normalization
goal is to align the distribution of non-target (impostor) scores from various enrollment
speakers and test segments to a fixed, common distribution, typically a standard
Gaussian. This normalization process involves using impostor cohorts, which consist
of unlabeled impostor scores computed for both the enrollment and test sides of a
trial. Trial scores are normalized using the impostor score statistics. Symmetric
normalization (S-norm) [76] and Adaptive S-norm (AS-norm) [107, 108] are some
of the most established and successful approaches.

S-norm is achieved by averaging Z-normalized [6] and T-normalized [105] scores.
For a trial (𝑒, 𝑡) and an impostor cohort, {𝑥𝑖}𝑁𝑖=1, with 𝑁 samples, S-norm is defined
as:

𝑠𝑠−𝑛𝑜𝑟𝑚 (𝑒, 𝑡) =
1
2

(
𝑠(𝑒, 𝑡) − 𝜇(𝑒)

𝜎(𝑒) + 𝑠(𝑒, 𝑡) − 𝜇(𝑡)
𝜎(𝑡)

)
(4.89)

60 Backends

Figure 4.3 Gaussian-distributed score densities for a single speaker.

where 𝑠(𝑒, 𝑡) corresponds to the unnormalized score for the trial (𝑒, 𝑡). Statistics,
𝜇(𝑒) and 𝜎(𝑒) are the mean and standard deviation of the impostor scores 𝑠(𝑒, 𝑥𝑖)𝑁𝑖=1.
Likewise, 𝜇(𝑡) and 𝜎(𝑡) for the set 𝑠(𝑥𝑖, 𝑡)𝑁𝑖=1. These statistics can also be obtained
from an adaptively selected cohort, as in AS-norm [107, 108]. The adaptive strategy
selects the subset so that the cohort used for computing the enrollment 𝑒 statistics
behaves similarly to the test utterance 𝑡, and vice versa. Using an adaptive score
normalization approach can lead to more diverse cohorts, covering a wider range of
potential conditions. As a result, adaptive score normalization methods often yield
improved accuracy compared to non-adaptive techniques. One advantage of score
normalization is its ability to utilize unlabeled datasets with only a single repetition
per impostor speaker, without the need to add side information. On the other hand,
while calibration approaches can utilize unlabeled datasets to estimate calibration
parameters, they still rely on multiple repetitions per speaker and to address trial-level
miscalibration effectively they require additional side information. However, due to
the lack of information about the distribution of target scores, score normalization is
not able to achieve global calibration. Therefore, global calibration remains necessary
and an additional dataset, with multiple repetitions, is still required. Additionally,
in particular cases, score normalization suffers a second disadvantage. In fact,
although score normalization is generally effective in aligning score distributions and
improving trial-level calibration, there are instances where it may amplify trial-level
miscalibration. This can be shown by considering a simple scenario in which we fix
an enrollment speaker 𝑖 and assume that both impostor and target scores are generated
by Gaussian-distributed random variables, as in Figure 4.3

We also assume that the scores are well-calibrated LLRs. From [88], the same-
speaker and different speaker distribution densities 𝑓𝔖 and 𝑓𝔇 are required to be
related by:

𝑓𝔖(𝑠) =N
(
𝑠

����12𝑣𝑖, 𝑣𝑖) 𝑓𝔇(𝑠) =N
(
𝑠

����−1
2
𝑣𝑖, 𝑣𝑖

)
(4.90)

4.3 Score-Normalization 61

Figure 4.4 Gaussian-distributed score densities for three different speakers. Densities
with the same variance correspond to the same speaker.

Figure 4.5 Score densities for three different speakers after Z-norm.

where 𝑣𝑖 is a variance term. It is important to notice that a larger variance means that
trials are easier to discriminate. The amount of information carried by an utterance
is linked to its nature, including factors like different noise levels and durations. This
implies that even for well-calibrated verification models, we should expect score
distributions with different variances for each distinct enrolled speaker. Figure 4.4
represents a scenario with three different speakers with different variances. The target
and non-target score distributions for each speaker share the same variance value.

By construction, the corresponding scores of each speaker are well-calibrated.
The pooled scores for the three speakers will also be well-calibrated if we assume
that trials are obtained by uniformly sampling over the three enrolled speakers

Since we want to show the possible negative effect of score normalization, we
apply Z-normalization to the scores in Figure 4.4. The results are shown in Figure
4.5, the scores of each speaker have been normalized to align the impostor densities
with standard Gaussian distributions. The results show that the non-target score
densities overlap, while the target ones have different locations but the same scale.

It is clear that after normalization, the pooled scores are no longer well-
calibrated and do not adhere to the LLR property anymore. Figure 4.6 shows
that Z-normalization has introduced trial-level miscalibration. In fact, even if an
optimal threshold can be found for one speaker, it will be sub-optimal for the other
two speakers.

62 Backends

Figure 4.6 Bayes error plots of the minimum cost for the synthetic scores of Figures
4.4 in red and 4.5 in blue.

The Bayes error plots in Figure 4.6 provide additional confirmation that the
normalized scores result in higher costs across a wide range of application priors. To
address both limitations we have proposed to integrate the impostor score statistics
into a global discriminative calibrator [109]. In [110] we also introduced adaptive
cohort selection for Data Normalization as a further way to address the second issue.

4.3.1 Impostor score statistics as quality measures

Prior logistic regression is a common discriminative approach used to achieve global
calibration and it can be enriched with side information, such as utterance duration,
to address trial-level calibration. We propose to utilize the impostor score statistics
outlined in score normalization as side information, to enhance trial-dependent
miscalibration while obtaining good global calibration [109]. In Z-normalization,
the scores of a specific group of enrollment speakers are recalibrated using a speaker-
dependent transformation. It is important to notice that we will extend the discussion
to S-norm to incorporate both sides of a trial in our model.
Although in the previous chapter we have introduced 𝑉Γ distributions as better
suited to describe scores, for the sake of simplifying the derivation of this model
we assume that for a given speaker 𝑖, the scores represent samples from Gaussian-
distributed random variables 𝑋𝔇,𝑖 and 𝑋𝔖,𝑖. It is also assumed that these scores are
well-calibrated, up to a speaker-dependent affine transformation:

𝑋𝔖,𝑖 ∼ 𝑎𝑖𝑋𝑐𝑎𝑙𝔖,𝑖
+ 𝑏𝑖 𝑋𝔇,𝑖 ∼ 𝑎𝑖𝑋𝑐𝑎𝑙𝔇,𝑖

+ 𝑏𝑖 (4.91)

where

𝑋𝑐𝑎𝑙
𝔖,𝑖
∼ N

(
𝑠

����12𝑣𝑖, 𝑣𝑖) 𝑋𝑐𝑎𝑙
𝔇,𝑖
∼ N

(
𝑠

����−1
2
𝑣𝑖, 𝑣𝑖

)
(4.92)

4.3 Score-Normalization 63

The parameters 𝑎𝑖 and 𝑏𝑖 represent the enrollment-dependent miscalibration, while
𝑣𝑖 is the variance of the well-calibrated R.V.s 𝑋𝑐𝑎𝑙

𝔇,𝑖
and 𝑋𝑐𝑎𝑙

𝔖,𝑖
. Knowing both 𝑎𝑖 and 𝑏𝑖

of each enrolled speaker the calibrated score can be obtained as:

𝑠𝑐𝑎𝑙 =
𝑠− 𝑏𝑖
𝑎𝑖

(4.93)

It should be noted that fixing 𝑎𝑖 = 1 for all speakers allows us to compute 𝑏𝑖 from the
mean 𝑚𝔇,𝑖 and variance 𝑣𝑖 of 𝑋𝑐𝑎𝑙

𝔇,𝑖
:

𝑏𝑖 = 𝑚𝔇,𝑖 +
1
2
𝑣𝑖 (4.94)

Since 𝑚𝔇,𝑖 and 𝑣𝑖 are usually unknown, they can be replaced using values derived
from the set of impostor scores for speaker 𝑖. However, in practice, the value of 𝑎𝑖 is
not given, making it challenging to estimate both 𝑎𝑖 and 𝑏𝑖 without knowledge of the
target score distribution for speaker 𝑖. Score normalization circumvents this problem
by assuming that, up to a speaker-dependent affine transformation, for each speaker,
their impostor scores have been generated by R.V.s with the same distribution

𝑋𝔇,𝑖 ∼ 𝑎𝑖𝑋𝑐𝑎𝑙𝔇
+ 𝑏𝑖 𝑋𝑐𝑎𝑙

𝔇
∼ N

(
−1

2
𝑣, 𝑣

)
(4.95)

Since a successful score-normalization implies that for each speaker the normalized
scores should be well-calibrated:

𝑋𝔖,𝑖 ∼ 𝑎𝑖𝑋𝑐𝑎𝑙𝔖
+ 𝑏𝑖 𝑋𝑐𝑎𝑙

𝔖
∼ N

(
1
2
𝑣, 𝑣

)
(4.96)

The resulting assumption is that the distributions of the calibrated scores have the
same mean and the same variance 𝑣𝑖 = 𝑣 for all speakers. Under these conditions,
both 𝑎𝑖 and 𝑏𝑖 can be estimated up to speaker-independent (global) factors, that
can be managed through a global linear calibration. When datasets are close to the
same-variance assumption score normalization produces close to optimal results.
However, as previously demonstrated, in certain applications this assumption is not
accurate enough and leads to worse trial-level calibration. To derive our model,
instead of the same-variance assumption, we assume that the scaling factor 𝑎𝑖 is
shared among the speakers. Assuming 𝑎𝑖 = 𝑎 for each speaker is equivalent to
the assumption that most of the trial-dependent miscalibration is the result of a

64 Backends

speaker-dependent (trial-dependent generally) shift, while the amount of information
carried by different utterances is modeled by different variance values. In this case,
miscalibrated scores are assumed to be generated by R.V.s with distributions

𝑋𝑐𝑎𝑙
𝔖,𝑖
∼ 𝑎𝑋𝑐𝑎𝑙

𝔖,𝑖
+ 𝑏𝑖 𝑋𝑐𝑎𝑙

𝔇,𝑖
∼ 𝑎𝑋𝑐𝑎𝑙

𝔇,𝑖
+ 𝑏𝑖 (4.97)

where 𝑋𝑐𝑎𝑙
𝔇,𝑖

and 𝑋𝑐𝑎𝑙
𝔖,𝑖

are the calibrated R.V.s defined in (4.92). Combining the two
equation

𝑋𝑐𝑎𝑙
𝔖,𝑖
∼ N(𝑚𝔖,𝑖, 𝑣𝔖,𝑖) 𝑋𝑐𝑎𝑙

𝔇,𝑖
∼ N(𝑚𝔇,𝑖, 𝑣𝔇,𝑖) (4.98)

where the parameters 𝑚𝔇,𝑖, 𝑣𝔇,𝑖, 𝑚𝔖,𝑖 and 𝑣𝔖,𝑖, of the target and non-target scores
are tied as:

𝑚𝔖,𝑖 =
1
2
𝑎𝑣𝑖 + 𝑏𝑖 𝑚𝔇,𝑖 = −

1
2
𝑎𝑣𝑖 + 𝑏𝑖 (4.99)

𝑣𝔖,𝑖 = 𝑣𝔇,𝑖 = 𝑎
2𝑣𝑖 (4.100)

From (4.97) the calibrated score can then be obtained as

𝑠𝑐𝑎𝑙 =
𝑠− 𝑏𝑖
𝑎

(4.101)

And retrieving 𝑏𝑖 = 𝑚𝔇,𝑖 + 1
2
𝑣𝔇,𝑖

𝑎
from (4.99), 𝑠𝑐𝑎𝑙 can be defined as:

𝑠𝑐𝑎𝑙 =
1
𝑎
𝑠− 1

𝑎
𝑚𝔇,𝑖 −

1
2𝑎2 𝑣𝔇,𝑖 (4.102)

Also, in this case, 𝑚𝔇,𝑖 and 𝑣𝑖 are unknown but can be estimated from a set of
impostors. Nonetheless, the scale parameter 𝑎 has to be estimated, which requires
information about the target score distribution. To determine the value of 𝑎 we can
employ Maximum Likelihood, or we can notice that (4.102) is equivalent to a linear
calibration model with a speaker-dependent shift. The terms 𝑚𝔇,𝑖 and 𝑣𝔇,𝑖 can be
treated as side-information (quality measures) [91], which is linearly combined with
a re-scaled score. Hence, to estimate this calibration transformation we can use a
discriminative linear fusion model, such as prior-weighted logistic regression [86].
Additionally, the model can be extended to automatically estimate the weights of
different terms from the data. The calibration model, enriched with impostor side

4.3 Score-Normalization 65

information, is defined as:

𝑠𝑐𝑎𝑙 = 𝛼𝑠+ 𝛽𝑚𝔇,𝑖 +𝛾𝑣𝔇,𝑖 + 𝑘 (4.103)

where the values of 𝛼, 𝛽, 𝛾 and 𝑘 are found by training a prior-weighted logistic
regression. This model presents two benefits. Firstly, it combines normalization
and calibration to optimize a proper scoring rule. Secondly, unlike conventional
score normalization methods, the ability of the model to estimate the weights of
different terms allows it to prevent the introduction of trial-dependent miscalibration
(estimating 𝛽 ≈ 𝛾 ≈ 0) in scenarios that deviate from our model assumption. The
model in (4.102) is derived from the Z-norm style approach. By adding test statistics
(T-norm) as side information, (4.102) can be extended to handle both enrollment
and test statistics. Given a trial (𝑒, 𝑡), we define the mean 𝑚𝑒 and variance 𝑣𝑒 of
the scores, which are determined by comparing the enrollment utterance against
the normalization cohorts, similarly 𝑚𝑡 and 𝑣𝑡 are obtained by comparing the test
utterance. The new calibration transformation becomes

𝑠𝑐𝑎𝑙 = 𝛼𝑠(𝑒, 𝑡) + 𝛽𝑚𝑒 +𝛾𝑣𝑒 + 𝛿𝑚𝑡 + 𝜖𝑣𝑡 + 𝑘 (4.104)

From our experience, we have found that characterizing interactions between the test
and the enrollment impostor distributions can improve the accuracy of the model.
Thus, in the final model, we add an additional term:

𝑠𝑐𝑎𝑙 = 𝛼𝑠(𝑒, 𝑡) + 𝛽𝑚𝑒 +𝛾𝑣𝑒 + 𝛿𝑚𝑡𝜖𝑣𝑡 + 𝜁
√
𝑣𝑒𝑣𝑡 + 𝑘 (4.105)

Prior-weighted logistic regression can be trained to estimate all the model parameters
(𝛼, 𝛽, 𝛾, 𝛿, 𝜖 , 𝜁 , 𝑘). It should be noted, that other kinds of side-information, such as
utterance duration [91], can be easily introduced in our model. Also, our impostor
statistics can be used as side information in other calibration approaches [93]. Finally,
we can extend our model utilizing adaptive cohort selection to replace the statistics
in (4.105) with values computed from the selected subsets for each trial. In fact,
adaptive score normalization has demonstrated greater efficacy in scenarios where
the impostor cohort is more heterogeneous.

66 Backends

4.3.2 From adaptive score normalization to adaptive data nor-
malization

As an alternative to score-level compensation, the reduction of the mismatch be-
tween evaluation and training population at embedding level may lead to improved
performance, reducing also miscalibration issues. Additionally, in the following, we
show that score normalization can also be interpreted as a sub-optimal approach to
data-level normalization. We propose a way to integrate the most beneficial aspect
of score normalization, namely the trial-level mismatch compensation deriving from
adaptive cohort selection, with mismatch compensation at embedding level.

In the Adaptive S-Norm [108, 107] the cohort is formed by selecting utterances
that are close to the enrollment and test segment. The statistics in (4.89) are computed
over these utterance-dependent cohorts, 𝐶 (𝑒) and 𝐶 (𝑡), and used to compute the
normalized score of a given trial (𝑒, 𝑡). Using the scores between the enrollment
segment 𝑒 and the normalization segments 𝑥𝑖 with respect to the entire impostor set,
we build the vectors

𝑣𝑡 = [𝑠(𝑒, 𝑥1) 𝑠(𝑒, 𝑥2) ... 𝑠(𝑒, 𝑥𝑁)] (4.106)

𝑣𝑖 = [𝑠(𝑥𝑖, 𝑥1) 𝑠(𝑥𝑖, 𝑥2) ... 𝑠(𝑥𝑖, 𝑥𝑁)] (4.107)

𝐶 (𝑒) is obtained by computing the Euclidean distance

𝑑𝑖 = ∥𝑣𝑒 − 𝑣𝑖∥2 (4.108)

and selecting 𝐾 impostor utterances associated with the lowest values (usually
between 200 and 400). The selected impostor utterances are the most similar to
the enrollment segment. These utterances are compared with the test segment to
obtain the score set {𝑠(𝑥𝑖, 𝑡) |𝑥𝑖 ∈ 𝐶 (𝑒)} from which the test normalization statistics
are obtained, namely the mean 𝜇(𝑡 |𝑒) and the standard deviation 𝜎(𝑡 |𝑒). To compute
the enrollment statistics 𝜇(𝑒 |𝑡) and 𝜎(𝑒 |𝑡), the method is the same, with the roles of
enrollment and test swapped. The normalized score is defined as

𝑠𝑎𝑠𝑛𝑜𝑟𝑚 (𝑒, 𝑡) =
𝑠(𝑒, 𝑡) − 𝜇(𝑒 |𝑡)

2𝜎(𝑒 |𝑡) + 𝑠(𝑒, 𝑡) − 𝜇(𝑡 |𝑒)
2𝜎(𝑡 |𝑒) (4.109)

4.3 Score-Normalization 67

Adaptive data normalization

As we have shown earlier in Section 4.3, when the original scores are well-calibrated,
score normalization has the potential to worsen trial-level miscalibration effects,
leading to a reduction of the performance. Conversely, the dataset-level and trial-
level mismatch can be lowered by directly aligning the distribution of training and
evaluation embeddings on a per-trial basis. In fact, this would further align the
evaluation data to the backend model assumption. In the Adaptive Mean (AM-norm)
[111] approach, the normalization process is moved from the score level to the speaker
vector. A mean vector is computed from a set of impostor utterances to re-center both
enrollment and test embeddings. In [110] we propose a similar approach in contrast
to score normalization. Unlike [111], however, we employ the same selection strategy
of the AS-norm to build the utterance-dependent impostor cohort. As explained
earlier, for each enrollment and test segment, we independently compute the cohort
sets 𝐶 (𝑒) and 𝐶 (𝑡), and each embedding is independently normalized by removing
the mean of the corresponding cohort

𝑒 = 𝑒−𝑚𝑒 𝑚𝑒 =
1
|𝐶 (𝑒) |

∑︁
𝑖 |𝑥𝑖∈𝐶 (𝑒)

𝑥𝑖 (4.110)

𝑡 = 𝑡 −𝑚𝑡 𝑚𝑡 =
1
|𝐶 (𝑡) |

∑︁
𝑖 |𝑥𝑖∈𝐶 (𝑡)

𝑥𝑖 (4.111)

The recognizer scoring function 𝑠(·, ·) provided by the standard backend can then be
used to score the normalized enrollment and test segments

𝑠𝑎𝑑𝑛𝑜𝑟𝑚 = 𝑠(𝑒, 𝑡) = 𝑠(𝑒−𝑚𝑒, 𝑡 −𝑚𝑡) (4.112)

The name of our approach is Adaptive Data normalization (AD-norm). Length nor-
malization is a common pre-processing step for many backends. In our methodology,
we not only re-center the L2-normalized embeddings but also perform an additional
L2-normalization to align them more accurately with the classifier assumptions.
Differently from [111], our approach eliminates the need for a specialized condition
classifier. In fact, our approach is able to automatically select impostor segments that
exhibit a certain degree of similarity to the trial segments. Moreover, because the
normalization process is independently applied to enrollment and test embeddings, it
can be efficiently computed during the extraction of embeddings without incurring

68 Backends

into additional costs during scoring. It is important to note that AD-norm can be
integrated into the clustering feature framework introduced in [112], for large-scale
clustering of speaker vectors, unlike AS-norm. The adoption of the AS-norm selec-
tion mechanism can be justified by exposing the analogies between the AD-norm
and the AS-norm. In fact, some of the effects of the AS-norm can be explained as an
imperfect application of embedding-level normalization. We assume that the training
and evaluation data share the same distribution up to a shift of the evaluation mean.
Given the scoring function of zero-mean PLDA [79, 80]

𝑠(𝑒, 𝑡) = 𝑒𝑇 𝐴𝑒 + 𝑡𝑇 𝐴𝑡 + 𝑒𝑇𝐵𝑡 (4.113)

the optimal score would be defined by re-centering the evaluation data

𝑠𝑜𝑝𝑡 =𝑠(𝑒−𝑚𝑒, 𝑡 −𝑚𝑡) (4.114)

(𝑒−𝑚𝑒)𝑇 𝐴(𝑒−𝑚𝑒) + (𝑡 −𝑚𝑡)𝑇 𝐴(𝑡 −𝑚𝑡) + (𝑒−𝑚𝑒)𝑇𝐵(𝑡 −𝑚𝑡) (4.115)

where 𝑚𝑒 and 𝑚𝑡 are the mean vectors of the distributions of the enrollment and
test segments, respectively. In AD-norm 𝑚𝑒 and 𝑚𝑡 are replaced with the respective
estimation obtained from the impostor sets 𝐶 (𝑒) and 𝐶 (𝑡). Ignoring the variance
normalization, the AS-norm score is given by

𝑠𝑎𝑠𝑛𝑜𝑟𝑚 (𝑒, 𝑡) =
1
2
(𝑠𝑡 (𝑒, 𝑡) − 𝜇(𝑒 |𝑡)) +

1
2
(𝑠𝑡 (𝑒, 𝑡) − 𝜇(𝑡 |𝑒)) (4.116)

where the mean are computed from the impostor sets 𝐶 (𝑒) and 𝐶 (𝑡). The cohort
sets of AS-norm and Ad-norm may be different, but we assume that they effectively
characterize the utterance. This guarantees that both (4.112) and (4.114) represent
the optimal scoring rule for the trial. The statistics of the AS-norm are computed as:

𝜇(𝑒 |𝑡) = 1
|𝐶 (𝑡) |

∑︁
𝑖 |𝑥𝑖∈𝐶 (𝑡)

𝑠(𝑒, 𝑥𝑖) = 𝑒𝑇 𝐴𝑒 + 𝑒𝑇𝐵𝑚𝑡 + 𝜖1 (4.117)

𝜇(𝑡 |𝑒) = 1
|𝐶 (𝑒) |

∑︁
𝑖 |𝑥𝑖∈𝐶 (𝑒)

𝑠(𝑡, 𝑥𝑖) = 𝑡𝑇 𝐴𝑡 + 𝑡𝑇𝐵𝑚𝑒 + 𝜖2 (4.118)

where 𝑚𝑒 and 𝑚𝑡 are defined as in (4.110) and the terms that do not depend on 𝑒 or 𝑡
are captured by 𝜖1 and 𝜖2. Although these terms affect the global shift of the score,
they do not impact the intra-trial calibration compensation of score normalization.

4.3 Score-Normalization 69

The normalized score is given by

𝑠𝑎𝑠𝑛𝑜𝑟𝑚 (𝑒, 𝑡) =
1
2

(
𝑡𝑇 𝐴𝑡 + 𝑒𝑡𝐵(𝑡 −𝑚𝑡)

)
+ 1

2

(
𝑒𝑇 𝐴𝑒 + 𝑡𝑡𝐵(𝑒−𝑚𝑒)

)
(4.119)

Table 4.3.2 shows a comparison between (4.119) with (4.112) and (4.114). Despite
the similarities in the expressions, some terms in AD-norm carry different weights or
are entirely absent from AS-norm.

𝑠𝑎𝑑𝑛𝑜𝑟𝑚 𝑠𝑎𝑠𝑛𝑜𝑟𝑚

𝑒𝑇 𝐴𝑒 1
2𝑒
𝑇 𝐴𝑒

−2𝑒𝑇 𝐴𝑚𝑒
𝑡𝑇 𝐴𝑡 1

2 𝑡
𝑇 𝐴𝑡

−2𝑒𝑡𝑇 𝐴𝑚𝑡
𝑒𝑇𝐵𝑡 𝑒𝑇𝐵𝑡

−𝑒𝑇𝐵𝑚𝑒 −1
2𝑒
𝑇𝐵𝑚𝑒

−𝑡𝑇𝐵𝑚𝑡 −1
2 𝑡
𝑇𝐵𝑚𝑡

We notice that the only term that is shared among AS-norm and AD-norm is 𝑒𝑇𝐵𝑡.
This term expresses the similarity of the samples and is reasonably the most important
one. If the dataset shift is sufficiently small, the terms that are not present in both
expressions can be disregarded. Based on this comparison, it can be concluded that
the mean normalization part of AS-norm serves as an approximation of the optimal
scoring rule for PLDA-derived models. The effectiveness of AS-norm highlights the
value of its cohort selection approach, which accurately captures the characteristics
of test and enrollment utterances independently from the backend. This finding
provides the rationale for employing the same methodology to compute the cohort
sets 𝐶 (𝑡) and 𝐶 (𝑒) for AD-norm.

Chapter 5

Experimental Results

In this chapter, we show the experimental outcomes of our work. The first section
provides an overview of the development of neural networks used as embedding
extractors, highlighting their progress, advancements, and refinements over time.
Within this section, we discuss our proposed improvements for embedding extraction,
which we first employed in our successful participation in the NIST LRE 2022
evaluation xSarni2023DescriptionAA. In the second section, we present the results of
our experiments on calibration and score normalization, which have been published
in [94, 95, 109, 110].

5.0.1 Hardware Setup

The majority of our deep learning models were trained on a single NVIDIA Tesla V100
GPU within a high-performance computing cluster (Table 5.1). The computational
resources required to perform our experiments were provided by the HPC cluster at
Politecnico di Torino1.

5.1 Speaker Embeddings

A good speaker embedding extractor is the starting point when tackling the speaker
verification problem. In Chapter 3 we presented the key idea behind the deep

1http://hpc.polito.it

http://hpc.polito.it

5.1 Speaker Embeddings 71

Table 5.1 Hardware and software specifications of the workstation used to run the
Model Trainer and the Link Evaluator.

Workstation hardware and software specifications

CPU model 2x Intel Xeon Scalable Processors Gold 6130 2.10 GHz 16 cores.
GPU model 4x nVidia Tesla V100 SXM2 - 32 GB - 5120 cuda cores (on 6 nodes)
Total RAM memory 21.888 TB DDR4 REGISTERED ECC
OS Centos 7.6 - OpenHPC 1.3.8.1
SW packages CUDA toolkit 10.2, Python 3.8.8, PyTorch 1.8.1

neural architectures used for embedding extraction. Different architectures have been
proposed to solve this step, each with its benefits and problems. In this section we
analyze the baseline performance of some of these solutions for speaker verification,
highlighting the architectures most suitable for our task. We will also provide details
on the modifications we employed to improve the performance of the baseline models.
The resulting architectures will be the basis for our experiments on calibration
(Section 5.4).

5.1.1 Datasets

Our networks were trained using various datasets, each containing different speech
segments of varying durations and from different speakers. In the following we
provide the details of the training datasets.

• VoxCeleb, which is comprised of two datasets - VoxCeleb1 and VoxCeleb2, is
the largest and primary dataset used for training our classifiers. These datasets
were created through speech detection and face recognition techniques and
consist of a large set of text-independent speech segments collected from
YouTube videos [113].

• Mixer is a collection of different datasets, which includes Mixer6 and Mix-
erPhone (with several versions such as Mixer5, Mixer10, etc.). This dataset
contains interviews, transcript readings, and phone conversations. Mixer6 has
longer speech segments from native speakers compared to other datasets, as
shown in Table 5.2.

72 Experimental Results

Table 5.2 Statistics of the datasets used.

Number of speaker Number of file Avg duration

VoxCeleb1 1,251 22,496 43.59 s

VoxCeleb2 5,994 145,569 46.49 s

Mixer6 594 13,088 388.65 s

MixerPhone 3,269 37,909 106.04 s

SwitchBoard 1,676 24,556 116.68 s

• Switchboard is another dataset that contains phone and cellular audio record-
ings from both sides of the conversation.

A summary of these datasets is shown in Table 5.2. Both VoxCeleb datasets
are available on the official website2, while Mixer and Switchboard are from the
Linguistic Data Consortium.

5.1.2 Augmentation

In speaker verification, the evaluation data is usually made up of speakers that were
not seen during the training phase. This means that the network must learn to
classify the speakers in the training data while also being able to extract the most
speaker-related characteristics from new and unseen data. To make the system more
robust, augmentation is often used. Augmentation can be used to increase both the
number of samples and the number of speakers. In this study, we focused on the
former by processing and transforming our data to produce additional distorted data.
This helps the networks learn a representation that is invariant to these distortions and
thus generalizes better to unseen data. We produced three versions of each segment
using one of four speech augmentation techniques:

• Music augmentation: a segment of random music is added as a background to
the original utterances.

• Noise augmentation: different noises are added to the original utterances.

2https://www.robots.ox.ac.uk/~vgg/data/voxceleb/

https://www.robots.ox.ac.uk/~vgg/data/voxceleb/

5.2 Speaker Embedding Results 73

• Babble augmentation: a random number of speech segments belonging to
different people is added to the background of the original utterance.

• Reverb augmentation: reverberation in different kinds of rooms, from small to
large, is simulated for each original utterance.

Music, speech and noises are taken from the MUSAN [114] corpus. Reverberation
is done using the Room Impulse Response and Noise Database3.

5.1.3 Extraction

The core of our experiment was conducted by processing and extracting features
from the raw audio as explained in Section 2.1. We extract a 46-dimensional log-mel
spectrogram feature vector from each utterance. We also remove silence frames from
each sample using a neural voice activity detection (VAD), as the one detailed in
[115] feature extraction section.

5.1.4 Evaluation

We conducted an evaluation to measure the effectiveness and contribution of different
modules and architecture focusing on the NIST Speaker Recognition Evaluation
(SRE). In particular, to evaluate our embedding extractor we used SRE18 data [116]
to train a PLDA model and the SRE19 Evaluation as evaluation data [117]. To
ensure consistency and robustness in our evaluations, we used the same pipeline to
assess the performance of our networks. The embeddings are centered, and their
dimensionality is reduced to 150 using LDA. We use WCCN to whiten the reduced
embeddings and finally apply L2-length normalization. We will report the Equal
Error rate and 𝐶𝑚𝑖𝑛

𝑝𝑟𝑖𝑚
as defined by NIST for the evaluation [117].

5.2 Speaker Embedding Results

From each utterance, both original and augmented, we extract all possible 3-second
segments. The duration of segments was selected based on results, with 3 seconds

3https://www.openslr.org/28/

74 Experimental Results

Figure 5.1 1-D convolution with dilation detail. Figure taken from [122]

being the best compromise between effectiveness and computational complexity. In
one epoch of training all segments are forwarded through the network.
Although ETDNN (Extended Time Delay Neural Network) showed good results
with Natural Gradient Descent, the time required for training didn’t allow us to
use it consistently. Therefore, we choose to use either Stochastic Gradient Descent
(SGD) or AdamW [118]. The majority of our experiment employed the same cyclic
scheduler [119], based on the triangular2 strategy of the CyclicLR implemented in
PyTorch.

5.2.1 Neural Networks for Speaker Verification

Time Delay Neural Network (Section 3.2.1), specifically ETDNN outlined in Table
5.3, was used as our starting point and baseline. The network is implemented
following [120], using 1-dimensional convolution exploiting the dilation parameter
(Fig. 5.1).

Table 5.3 Details of the Extended TDNN as in [120] (left) and Factorized TDNN as
in [121] (right) architectures implementation.

Layer Context Size

1 TDNN-ReLU t-2:t+2 512
2 TDNN-ReLU t 512
3 TDNN-ReLU t-2, t, t+2 512
4 TDNN-ReLU t 512
5 TDNN-ReLU t-2, t, t+3 512
6 TDNN-ReLU t 512
7 TDNN-ReLU t-4, t, t+4 512
8 TDNN-ReLU t 512
9 TDNN-ReLU t 1500
10 Pooling Full-Seq 2x1500

Layer Context 1 Context 2 Skip Conn. Size

1 TDNN-ReLU t-2:t+2 512
2 FTDNN-ReLU t-2, t t, t+2 1024
3 FTDNN-ReLU t t 1024
4 FTDNN-ReLU t-3,t t,t+3 1024
5 FTDNN-ReLU t t 3 2048
6 FTDNN-ReLU t-3,t t,t+3 1024
7 FTDNN-ReLU t-3,t t,t+3 2, 4 3072
8 FTDNN-ReLU t-3,t t,t+3 4, 6 3072
9 FTDNN-ReLU t t 1024
10 Dense Full-Seq 2048
11 Pooling Full-Seq 2x2048

5.2 Speaker Embedding Results 75

Table 5.4 Results with TDNN-based architectures trained on data shown in Table
5.2. For each utterance, three copies are obtained as detailed in Section 5.1.2.
Preprocessing and backend are reported in Section 5.1.4

Params EER DCF-08 𝐶𝑆𝑅𝐸
𝑝𝑟𝑖𝑚

TDNN (NGD) 12.67M 0.056 0.242 0.452
+ FineTuning " 0.051 0.215 0.401

CNN-TDNN 17.23M 0.040 0.188 0.375
+ Large Margin " 0.034 0.164 0.335

fwSE+CNN-TDNN 17.24M 0.036 0.176 0.353
+ Large Margin " 0.032 0.149 0.309

FTDNN 20.04M 0.038 0.180 0.375
CNN-FTDNN 24.95M 0.037 0.176 0.350
+ Large Margin " 0.033 0.156 0.311

ECAPA 8.57M 0.043 0.193 0.371
CNN-ECAPA 13.13M 0.036 0.161 0.320
+ Large Margin " 0.031 0.141 0.300

fwSE+CNN-ECAPA 13.14M 0.034 0.148 0.306
+ Large Margin " 0.029 0.130 0.273

Table 5.4 reports the best results achieved with TDNN and its derivations. Based
on our findings, the most successful approach for ETDNN was to train first with
softmax and cross-entropy loss and then finetuning. In the finetuning step we change
the last layer of the network and continue training the whole network with an angular
margin loss function, like Additive Margin [42], for a few epochs. This approach
produced a 10% decrease in both metrics.

We also tested other TDNN-based architectures including the Factorized-TDNN,
which was introduced in Section 3.2.1. We implemented this network following the
one proposed in [121] and achieved good results by factorizing the weights after
each backward step. This architecture has almost double the number of parameters
than the ETDNN, being one of the most expensive network we trained, however,
it achieves better results than a fine-tuned TDNN and comparable results with the
ECAPA-TDNN.
The ECAPA architecture implementation follows the one provided by the authors
of [67] in the speechbrain repository [123]. We conducted our tests with the small
version with channel dimension set to 512, trained with Additive Angular Margin

76 Experimental Results

Figure 5.2 Best EER and primary cost for each tested network. The size of the bubble
depends on the number of parameters.

[43], with a margin set to 0.2 and scale to 30. Although the ECAPA architecture
has fewer parameters than both ETDNN and FTDNN, it performed the best among
the base models. Inspired by the results obtained on the language task, we added
the 2D-CNN block proposed in [61] to some of our architectures. This block was
originally designed for ECAPA but proved to be beneficial also for ETDNN and
FTDNN. In Table 5.5, we reported results on Conformer (Section 3.2.3) and DTDNN
(Section 3.2.1), and the CNN block seems to improve their performance as well. In
the case of ETDNN, the CNN block decreased the 𝐸𝐸𝑅 and primary cost by almost
20% relative. Additionally, the large-margin finetuning approach further improved
the results. In this approach, the finetuning step is performed by setting a higher
margin in the angular loss and increasing the duration of the training segments.
We achieved the best results with 0.5 as margin and 10 seconds segments. Similar
improvements were observed for CNN-FTDNN and CNN-ECAPA. The first one
didn’t improve much with respect to the base architecture, but both finetuned versions
achieved better results.
We tested the inclusion of Squeeze & Excitation (Section 3.2.3) components in

our models, particularly addressing the CNN block. We added a frequency-wise SE
(fwSE) layer in the residual blocks of the CNN module. In this case the AdamW
optimizer was needed to obtain better results and more stable training. The addition
of the fwSE layer achieved results on par with the finetuned CNN-version of the

5.2 Speaker Embedding Results 77

Table 5.5 Results with different architectures trained on data shown in Table 5.2.
The augmentation strategy in Section 5.1.2 is used to obtain three copies from each
utterance. Preprocessing and backend are reported in Section 5.1.4

EER DCF-08 𝐶𝑆𝑅𝐸
𝑝𝑟𝑖𝑚

ResNet34 (clean) 17.17M 0.044 0.200 0.398

DF-resnet56 7.46M 0.479 0.219 0.441

DF-ecapa52 9.98M 0.389 0.177 0.358

DTDNN 10.66M 0.066 0.293 0.526
CNN-DTDNN 15.22M 0.054 0.251 0.485

Conformer 21.11M 0.511 0.226 0.450
CNN-Conformer 20.80M 0.042 0.195 0.410

networks. Overall, the best results in our testing were found with a large margin
finetuning of the fwSE-CNN-ECAPA.

In our experiments, we also tried other architectures and their results are displayed
in Table 5.5. We found that the resnet34-based (Table 3.1) architecture is able
to produce competitive results when trained on cleaned data only. However, due
to the high number of parameters and computational resources required to train
such models, we decided not to pursue this approach. The Conformer model also
faced similar issues, and our training didn’t lead to comparable results. From
the table, we can observe that CNN improves the results of both Conformer and
DTDNN, but the final results are still not satisfactory compared to the previous
architectures. On the other hand, the depth-first approach showed promising results,
with acceptable performance achieved with a relatively low-complexity architec-
ture. In particular, the DF-ECAPA52 architecture implemented according to [69]
has 52 layers while maintaining a comparable number of parameters as a normal
ECAPA. In Figure 5.2, we plot the best primary cost and EER of all the architectures
we tested where the size of each bubble represents their size, in millions of parameters.

78 Experimental Results

Table 5.6 NIST LRE2022 target langauges

Target Languages North African French
Afrikaans Ndebele
Tunisian Arabic Oromo
Algerian Arabic Tigrinya
Libyan Arabic Tsonga
South African English Venda
Indian-accented South African English Xhosa
Zulu

5.3 Language Embedding Results

In Section 3.2.5, we presented the architectures and solutions we developed to
improve the performance of language detection systems. In this section, we will
analyze the results we obtained when dealing with a limited amount of data for some
languages. This issue was a significant challenge in the NIST Language Recognition
Evaluation 2022, which we used to assess the performance of our models.

5.3.1 NIST Language Recognition Evaluation 2022

The objective of the NIST Language Recognition Evaluation 2022 is to assess
the current state of the art in the language detection task. In the LRE 2022 [74]
special emphasis was given to the recognition of low-resource languages. The target
languages are shown in Table 5.6. Given a speech segment and a specific target
language, the system’s task is to determine if the target language was spoken in the
segment. In the open condition, teams had the freedom to utilize any dataset they
deemed necessary. However, our focus was on the fixed condition, which imposed
restrictions on the datasets that could be used. The list of datasets approved by
NIST for training included the NIST LRE 2017 (LRE17) training and test data
[124], as well as VOXlingua-1074 data. For each of the 14 target languages, the
LRE22 Development set provided 30 audio segments, which were the only segments
labeled with one of the target languages. Each segment was further divided into
10 sub-segments by NIST, resulting in a development set with 300 audio files per
language, with nominal durations ranging from 3 to 93 seconds. Due to the scarcity

4http://bark.phon.ioc.ee/voxlingua107/

5.3 Language Embedding Results 79

of data for the target languages, we opted to exclusively employ the development set
for training our backend and fusion models.

5.3.2 LRE22 Embedding Extractors

In our experiments, we utilized two distinct subsets of the available dataset for network
training. The first subset, indicated as VOX, exclusively relied on VOXlingua-107 as
the training data source. In the second, labeled VOX+LRE, we combined the data
from LRE17 with data from VOXlingua-107. Specifically, we opted to retain only
LRE17 data labeled with languages that appeared both in LRE17 and VOX. This
was done because some of the dialects present in LRE17 are present as a single class
in VOX.

We employed two types of acoustic features: 46-dimensional Log-Mel and
23-dimensional MFCC. The 46 Log-Mel band parameters were extracted with short
time centering (STC) over speech and non-speech audio frames. Similarly, the
23-dimensional MFCCs were obtained using a frame length of 25ms and were
mean-normalized over a sliding window. In both cases, we utilized an energy-based
voice activity detection (VAD) to eliminate silence. The 23-dimensional MFCCs
were used to train a TDNN architecture, while the other architectures were trained
using the 46-dimensional Log-Mel. In Section 3.2.5 we introduced the architectures
we used as language embedding extractors. These networks, Table 5.7, were trained
using 3-second segments and a batch size of 128. Stochastic Gradient Descent
(SGD) was our primary optimizer, with a momentum of 0.9 and a weight decay of
10−4, except for the MagNetO, where we opted for a weight decay of 10−5. The
management of the learning rate was carried out using various strategies. Cyclic
learning rate [119] was the main choice, with a base value of 10−5 and a maximum
value of 10−1. The maximum learning rate was halved within each epoch, defined
as one iteration over the entire training set. An exponential schedule was used with
a starting learning rate of 0.01 and ending at 0.001, decreasing with a factor of 10
during training. In contrast, a step scheduler was used to halve the learning rate at
each epoch, starting from 10−1.

80 Experimental Results

Table 5.7 Summary of the proposed architectures for our primary system for LRE 22

Architecture Params Loss Scheduler Embedding*

Size
PCA

CNN-ECAPA 10.7M ArcFace
m=0.2, s=30

Cyclic 192 150

CNN-ETDNN 10.7M CrossEntropy Cyclic 512 200

CNN-FTDNN 18.5M CrossEntropy Cyclic 512 200

Conformer 18.4M ArcFace
m=0.2, s=30

Cyclic 192 —

TDNN 4.5M CrossEntropy Exponential 512 150

MagNetO 28.5M Arcface
m=0.2, s=40

Step 512 100

*All embeddings are taken from the last FC layer, except for CNN-ETDNN where
we used the second last FC layer.

5.3.3 LRE22 Backends

Most of the low-resource target languages are not present in VOXlingua-107 or LRE17
datasets. For this reason, we constructed our validation set by extracting embeddings
from the LRE22 Development set. This set served multiple purposes, including
testing and selecting our frontend models and training the backend classification,
calibration, and fusion models. The dimensionality of the embeddings was reduced
using Principal Component Analysis (PCA). The new dimensions were chosen to
optimize the overall system and are shown in Table 5.7. The embeddings extracted
from each frontend are preprocessed and used to train a Gaussian Linear Classifier
(GLC) [125]. We employed multi-class logistic regression [80] for calibration.
This included training a single scalar value and a set of language-dependent bias
terms to establish a linear mapping of classification scores into class-conditional
log-likelihoods. A similar methodology was applied when fusing two or more
sub-systems. Our fusion model is based on a linear approach, featuring a scalar
value for each sub-system and a bias vector for each language. The LRE22-Dev
set is utilized for training the backend classifier and both the calibration and fusion
models while also serving as evaluation data for the different systems. To maximize
the use of this data, we designed a custom leave-one-out (LOO) approach. Given the

5.3 Language Embedding Results 81

structure of the LRE22 development set, the first step consisted of the aggregation
of the segments that belong to the same audio file, obtaining 30 groups for each
language. At this point:

• For each language, the process begins by shuffling groups and, iteratively,
removing one group of segments. During each iteration, 14 groups and 140
segments are collected to train the modelM𝑖 while the removed segments are
scored with it.

• The resulting scores of each iteration are pooled together to train fusion models.
Additionally, the entire development dataset is utilized to train modelM𝑃. The
evaluation segments are scored with this model.

• The first two steps are applied to the pooled scores to train calibration and/or
fusion models. A different seed is used for reshuffling the groups. For a
given iteration 𝑖, we train a calibration model C𝑖 or a fusion model F𝑖 for each
sub-system or combination of sub-systems. These models are then applied to
the left-out raw scores.

• The performance over the development set reported in Figure 5.3, is assessed
on the pooled calibrated or fused scores. The full set of raw scores is utilized to
train the final fusion model F𝑃, which is subsequently applied to the evaluation
scores obtained by theM𝑃 backend.

5.3.4 LRE22 Results

At the beginning of our experiment, we observed that some extractors achieved
optimal performance very early in the training process, often within just a few
epochs. To account for this, we divided each epoch into 10 mini-epochs and evaluated
the performance of different networks based on the number of mini-epochs. Our
submission relied on the networks introduced in Section 3.2.5 and detailed in Table
5.7.

For each sub-system, we provide the actual primary cost (𝐶𝑝𝑟𝑖𝑚) [126] in Figure
5.3. These values are derived from both the LRE22 evaluation and development sets
using the LOO procedure detailed in Section 5.3.3. The Net Fusion results involve

82 Experimental Results

Mini-
Epochs

1 2
CNN-ECAPA

10 7 20 60
CNN-FTDNN

70 100 50
CNN-ETDNN

70 10 30
Conformer

40 30
MagNetO

200
TDNN

Fusion

0.
33

7

0.
30

4

0.
26

8

0.
23

2

0.
25

6

0.
23

3

0.
22

7

0.
23

4

0.
24

3

0.
20

2

0.
20

6

0.
21

0

0.
20

2

0.
34

0

0.
35

0

0.
33

6

0.
30

2

0.
27

8 0.
32

5

0.
16

1

(a) 𝐶𝑝𝑟𝑖𝑚 on the development set results

Mini-
Epochs

1 2
CNN-ECAPA

10 7 20 60
CNN-FTDNN

70 100 50
CNN-ETDNN

70 10 30
Conformer

40 30
MagNetO

200
TDNN

Fusion

0.
35

3

0.
31

4

0.
26

9

0.
23

9

0.
28

0

0.
23

5

0.
23

2

0.
23

4

0.
24

0

0.
21

0

0.
22

6

0.
22

4

0.
21

9

0.
33

8

0.
33

6

0.
34

3

0.
30

1

0.
30

1

0.
32

0

0.
18

7
(b) 𝐶𝑝𝑟𝑖𝑚 on the eval set results

Figure 5.3 Comparison of individual sub-system performance. Lighter bars refer to
the fusion of the same architecture at various stages (mini-epochs) of training. The
red bar shows our primary submission system results.

fusing embeddings extracted from the same architecture at various stages (mini-
epochs) of training. These results reveal that, for most architectures, embeddings from
different mini-epochs offer complementary information, leading to improved results
in both the evaluation and development sets with respect to the single embedding.
The right most bar of Figure 5.3b represents the result of our submission, which
combines all sub-systems. This submission, referred to as "T2" in [127], demonstrates
competitive performance.

We conducted an ablation study on our submission to asses the individual
contributions of each sub-system to the primary fusion. In Figure 5.4, we present
the results obtained by progressively removing each sub-system from our primary

5.3 Language Embedding Results 83

PR
IM

AR
Y

SY
ST

EM

- C
NN

Co
nfo

rm
ers

(ID
s 1

1,1
2,1

3)
- T

DN
N

(ID
15

)

- M
ag

Ne
tO

(ID
14

)

- C
NN

FT
DN

N
70

m.ep
. (

ID
7)

- C
NN

FT
DN

N
60

m.ep
. (

ID
6)

- C
NN

EC
AP

A
2 m.ep

. (
ID

2)

- C
NN

ET
DN

N
50

m.ep
. (

ID
9)

- C
NN

EC
AP

A
1 m.ep

. (
ID

1)

- C
NN

FT
DN

N
7 m.ep

. (
ID

4)

- C
NN

FT
DN

N
10

0 m.ep
. (

ID
8)

- C
NN

EC
AP

A
10

m.ep
. (

ID
3)

- C
NN

FT
DN

N
20

m.ep
. (

ID
5)

0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23

𝐶
𝑝
𝑟
𝑖𝑚

Dev
Eval

Figure 5.4 Results of our ablation study on the primary submission, which includes
all systems. From left to right on the x-axis it shows the incremental removal of
the least contributing sub-systems based on their evaluation results. The right most
system corresponds to the CNN-ETDNN sub-system (ID 10).

fusion. We systematically removed the sub-system that had the least impact on
the actual 𝐶𝑝𝑟𝑖𝑚 in the evaluation set. The first column on the left represents the
fusion of all sub-systems, and moving from left to right, we present the results after
incrementally removing the sub-system(s) with the lowest contribution. First of all,
this study shows that our primary submission achieves results close to optimal for
the eval set. The inclusion of the TDNN (ID 15) and Conformer (ID 11, 12, 13)
improved results for the development while slightly degrading the results for the
eval set. We can also notice that a smaller set of sub-systems would have achieved
similar results. Nonetheless, the inclusion of a large number of systems does not lead
to significant overfitting, as the results of development and evaluation data remain
largely consistent, highlighting the effectiveness of our training approach.

Finally, we examine the impact of the CNN block described in Section 3.2.5.
Figure 5.5 depicts the performance of different frontends across various mini-epochs.
Generally, it is evident that the early stages of training yield already good results.
Notably, in the cases of ECAPA and conformers, a limited number of mini-epochs
suffices, as further training leads to performance degradation due to overfitting.
Consistently across all models, the 2D convolution within the CNN block proves to

84 Experimental Results

1 5 10 15 20 25 30 40 50 60 70 80 90100
0.25
0.30
0.35
0.40
0.45
0.50
0.55

Mini-epochs

𝐶
𝑝
𝑟
𝑖𝑚

CNN-ECAPA - Dev ECAPA - Dev
CNN-ECAPA - Eval ECAPA - Eval

1 5 10 15 20 30 40 50

0.30

0.35

0.40

0.45

Mini-epochs

𝐶
𝑝
𝑟
𝑖𝑚

CNN Conf. - Dev Conf. - Dev
CNN Conf. - Eval Conf. - Eval

1 5 10 15 20 25 30 40 50 60 70 80 90100

0.25

0.30

0.35

0.40

Mini-epochs

𝐶
𝑝
𝑟
𝑖𝑚

CNN-FTDNN - Dev FTDNN - Dev
CNN-FTDNN - Eval FTDNN - Eval

1 5 10 15 20 25 30 40 50 60 70 80 90100

0.20

0.25

0.30

0.35

0.40

Mini-epochs

𝐶
𝑝
𝑟
𝑖𝑚

CNN-ETDNN - Dev ETDNN - Dev
CNN-ETDNN - Eval ETDNN - Eval

Figure 5.5 Mini-epochs performance for different architectures (Top-Left: ECAPA,
Top-Right: Conformer, Bottom-Left: FTDNN, Bottom-Right: ETDNN).

enhance performance. It is important to note, that also in this case, the results on
both the development and evaluation sets remain consistent.

5.4 Calibration and Normalization Results

In this section we discuss the results obtained by our calibration and normalization
models. We begin with the results of the VΓ-Var models, detailed in Section 4.2.2.
Following this, we analyze the results of the C-norm, achieved by integrating score
normalization statistics into the Log-Reg calibration model (see Section 4.3.1).
Lastly, we present our findings regarding the Adaptive Data Normalization (AD-
norm) technique in Section 4.3.2. These results are part of our work published in
[94, 95, 109, 110].

Backends classifiers

The backend classifiers we chose to test our models are based on the PLDA and
PSVM models described in Section 4.1. The training process for these classifiers
relied mainly on embeddings extracted with a DNN frontend. Specifically, we utilized

5.4 Calibration and Normalization Results 85

a TDNN architecture, and two derivations namely the Factorized TDNN (FTDNN)
and the ECAPA architecture. To evaluate the models, we utilized datasets from NIST
speaker recognition evaluations (SRE), including the SRE 20195, SRE 2016, SRE
20126 and SRE 20107 datasets. Additionally, we considered the Speaker in The Wild
dataset (SITW) [128].

5.4.1 The VΓ-Var Model

To show the effectiveness of our approach across a large variety of embeddings and
classifiers, we have employed different frontends and analyzed different backends for
the different datasets

SRE 2019 embeddings are extracted using TDNN, Factorized TDNN and ECAPA
architectures. The TDNN, based on the topology introduced in [50], employs
24-dimensional Perceptual Linear Predictors (PLP) as input features. Details
on the FTDNN and ECAPA, as well as the training dataset, can be found in
Section 5.2. While TDNN and ECAPA have been trained using augmented
data, the FTDNN was trained using only the original audio. TDNN and
FTDNN embeddings are 512-dimensional, processed with LDA to reduce
dimensions to 400 for PSVM and 200 for PLDA. ECAPA embeddings are
192-dimensional with no dimensionality reduction. Length normalization is
tested as an additional preprocessing step for both backends. Furthermore,
Within-Class Covariance Normalization (WCCN) normalization is applied for
PSVM on both raw and length-normalized embeddings. SRE 2018 Evaluation
data, which contains about 13 thousand segments, has been used to train the
PLDA model. For PSVM we added a subset of Mixer 4, 5, and 6, Switchborad
and VoxCeleb to the training list, increasing the training data to 110 thousand
segments. This is necessary since PSVM is more effective when trained with a
large amount of data. The selection of the training lists is based on the best
results of each baseline model on SRE 2019 Progress data. A subset of the
SRE 2019 Progress set was used to train the calibration models, while their
performance were evaluated on the SRE 2019 Evaluation set.

5https://www.nist.gov/publications/2019-nist-speaker-recognition-evaluation-cts-challenge
6https://www.nist.gov/itl/iad/mig/sre12-results
7https://www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-2010

https://www.nist.gov/publications/2019-nist-speaker-recognition-evaluation-cts-challenge
https://www.nist.gov/itl/iad/mig/sre12-results
https://www.nist.gov/itl/iad/mig/speaker-recognition-evaluation-2010

86 Experimental Results

SRE2012 An hybrid GMM/DNN model [13, 129] was used for the SRE 2012
system, trained on approximately 42,000 segments from SRE-04 to SRE-10
and Switchboard. Acoustic features consist of 20 PLP coefficients with their
delta and delta-delta parameters. The outputs of the DNN are 256-dimensional
and an 8-dimensional GMM is trained over each output, as explained in [130].
The resulting UBM has 2048 components. Speaker vectors are obtained
from a 400-dimensional e-vector extractor [131], which combines the speaker
subspace estimated by the JFA and the i-vector framework. Backends are
trained using the same frontend datasets. Tests are performed on the extended
tel-tel core condition (condition 5), with calibration parameters estimated on
25% of enrollment segments, while the remaining part is used as evaluation
data.

SRE2010 system relies on 400-dimensional i-vectors, estimated from a gender-
dependent UBM with 1024 components and diagonal covariance. The input
features are 45-dimensional MFCC, incorporating delta and double-delta
parameters. PLDA was used as a backend, and whitening and length normal-
ization were applied to pre-process the i-vectors. The frontend is trained with
data from Switchboard, Fisher and SRE-04 to SRE-06 datasets. The same data,
except the Fisher dataset, was used to train the backend. Tests are conducted on
the female extended tel-tel condition (condition 5). Also in this case calibration
parameters are estimated on 25% of enrollment segments, while evaluation is
performed on the remaining part.

To tackle the issue of non-zero evaluation population means, all test sets calibration
and evaluation embeddings have been recentered with respect to the calibration set
embedding mean. This allows better coping with the assumption in Section 4.2.1, i.e.
that the evaluation population has a zero-mean distribution.

SRE2019 results

In order to evaluate the effectiveness of duration-aware models, it is important to
have utterances with variable and short durations. To accomplish this, we randomly
selected segments ranging from 3 to 30 seconds in length from both the enrollment
and test segments of SRE 2019.

5.4 Calibration and Normalization Results 87

We present the performance of various calibration models in terms of 𝐶𝑙𝑙𝑟 (as
defined in [84, 82, 85]) for different frontend and backend combinations in Figure
5.6 and Table 5.8. We report the actual primary cost 𝐶𝑝𝑟𝑖𝑚 as defined by NIST for
the SRE19 evaluation in Table 5.8. Furthermore, since duration-aware models are
generally more discriminant, we also show the Equal Error Rate (EER). We report
the min costs obtained with the output of the original classifier in the first row of each
table. This is followed by the performance of four calibration models that do not use
side information. The baseline models include the prior-weighted Logistic Regression
model (Log-Reg) and the linear, Constrained ML Variance-Gamma model of [89]
(Linear VΓ). The other two models are our own, (4.77), trained with a generative
ML criterion (4.78) and a discriminative objective (4.80). The target weight of the
generative models is set to 𝜁 = 0.1. The target prior for the discriminative models is
set to 𝜋 = 0.1.

In the last three rows of the table, we present the results obtained with duration-
aware models. In this case, the baseline model is a linear Log-Reg calibration model
(4.37) enriched with quality measures (𝑄𝑀),

𝑓𝑐𝑎𝑙 (𝑠, 𝑞1, 𝑞2) = 𝛼𝑠+ 𝛽+𝑄𝑀 (𝑞1, 𝑞2) (5.1)

where 𝑄𝑀 accounts for the effects of 𝑞1 and 𝑞2. Following [90], we choose 𝑄𝑀4

defined as

𝑄𝑀4(𝑑𝑒, 𝑑𝑡) = 𝑤1(𝑙𝑜𝑔
𝑑𝑒

𝑑𝑡
+ 𝑙𝑜𝑔 𝑑𝑡

𝑑𝑐
)2−𝑤2(𝑙𝑜𝑔

𝑑𝑒

𝑑𝑡
− 𝑙𝑜𝑔 𝑑𝑡

𝑑𝑐
)2 (5.2)

where 𝑑𝑐, 𝑤2 and 𝑤3 are additional parameters, while 𝑑𝑒 and 𝑑𝑡 are the durations of
the enrollment and test segment. This𝑄𝑀 achieved the best calibration results in our
tests. The yellow background columns show the results obtained after applying length
normalization to the embeddings, while the blue background refers to embeddings
without length normalization.
The results in Table 5.8 show that for the baseline system based on ECAPA and
TDNN, the PSVM backend outperforms the PLDA one, both when length nor-
malization is applied and not. However, for FTDNN embeddings, when length
normalization is applied, PSVM produces similar 𝐶𝑙𝑙𝑟 and 𝐸𝐸𝑅 to the PLDA but
slightly underperforms in terms of 𝐶𝑝𝑟𝑖𝑚, while better 𝐶𝑙𝑙𝑟 and 𝐸𝐸𝑅 are achieved
when no length normalization is applied. Length normalization is beneficial for
PLDA in every case, but it does not seem to affect much PSVM, and it produces worse

88 Experimental Results

Table 5.8 Results on the SRE 2019 evaluation dataset with short segments. Calibration
models have been trained with target prior 𝜋 = 0.1 (discriminative models) or target
weight 𝜁 = 0.1 (generative models).

(a) ECAPA embeddings
PLDA PSVM

with L2-norm w/o L2-norm with L2-norm w/o L2-norm
𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER

Min. costs† 0.246 0.485 6.8% 0.296 0.486 8.7% 0.195 0.448 5.3% 0.204 0.452 5.6%

Log-Reg 0.264 0.495 6.8% 0.333 0.571 8.7% 0.202 0.457 5.3% 0.213 0.466 5.6%
Linear VΓ 0.270 0.488 6.8% 0.339 0.551 8.7% 0.203 0.456 5.3% 0.218 0.458 5.6%
VΓ-Var (Gen) 0.248 0.486 6.8% 0.301 0.487 8.7% 0.196 0.449 5.3% 0.205 0.454 5.6%
VΓ-Var (Disc) 0.250 0.485 6.8% 0.299 0.487 8.7% 0.197 0.449 5.3% 0.206 0.454 5.6%

Log-Reg + QM4 0.245 0.493 6.1% 0.282 0.532 6.7% 0.185 0.467 4.8% 0.186 0.484 4.7%
VΓ-Var + Dur (Gen) 0.230 0.485 6.1% 0.251 0.484 6.6% 0.180 0.447 4.8% 0.175 0.454 4.6%
VΓ-Var + Dur (Disc) 0.228 0.478 6.1% 0.243 0.461 6.6% 0.180 0.448 4.8% 0.174 0.454 4.6%

(b) FTDNN embeddings
PLDA PSVM

with L2-norm w/o L2-norm with L2-norm w/o L2-norm
𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER

Min. costs† 0.246 0.466 7.0% 0.307 0.477 9.0% 0.245 0.536 7.0% 0.255 0.529 7.1%

Log-Reg 0.259 0.482 7.0% 0.335 0.564 9.0% 0.250 0.550 7.0% 0.270 0.553 7.1%
Linear VΓ 0.263 0.474 7.0% 0.343 0.531 9.0% 0.251 0.544 7.0% 0.276 0.534 7.1%
VΓ-Var (Gen) 0.247 0.467 7.0% 0.308 0.477 9.0% 0.246 0.537 7.0% 0.256 0.531 7.1%
VΓ-Var (Disc) 0.248 0.466 7.0% 0.308 0.477 9.0% 0.246 0.537 7.0% 0.256 0.530 7.1%

Log-Reg + QM4 0.245 0.486 6.5% 0.250 0.520 6.4% 0.240 0.558 6.6% 0.241 0.591 6.3%
VΓ-Var + Dur (Gen) 0.234 0.468 6.4% 0.225 0.457 6.1% 0.246 0.537 7.0% 0.214 0.518 5.9%
VΓ-Var + Dur (Disc) 0.231 0.465 6.4% 0.225 0.454 6.1% 0.246 0.537 7.0% 0.215 0.520 5.9%

(c) TDNN embeddings
PLDA PSVM

with L2-norm w/o L2-norm with L2-norm w/o L2-norm
𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER

Min. costs† 0.285 0.514 7.9% 0.349 0.532 10.2% 0.226 0.480 6.1% 0.217 0.462 5.9%

Log-Reg 0.331 0.528 7.9% 0.443 0.652 10.2% 0.239 0.486 6.1% 0.228 0.476 5.9%
Linear VΓ 0.341 0.517 7.9% 0.451 0.623 10.2% 0.246 0.480 6.1% 0.231 0.464 5.9%
VΓ-Var (Gen) 0.292 0.526 7.9% 0.367 0.536 10.2% 0.227 0.480 6.1% 0.219 0.463 5.9%
VΓ-Var (Disc) 0.288 0.526 7.9% 0.358 0.537 10.2% 0.228 0.481 6.1% 0.219 0.464 5.9%

Log-Reg + QM4 0.314 0.529 7.2% 0.403 0.613 8.3% 0.226 0.488 5.7% 0.198 0.511 5.0%
VΓ-Var + Dur (Gen) 0.275 0.537 7.2% 0.309 0.536 8.3% 0.216 0.487 5.7% 0.190 0.465 4.9%
VΓ-Var + Dur (Disc) 0.267 0.536 7.1% 0.297 0.534 8.2% 0.213 0.479 5.6% 0.187 0.472 5.0%

† Minimum 𝐶𝑙𝑙𝑟 , minimum 𝐶𝑝𝑟𝑖𝑚, and EER computed on the classifier scores.
Models using side-information may provide lower costs.

5.4 Calibration and Normalization Results 89

PLDA with L2-norm PLDA w/o L2-norm PSVM with L2-norm PSVM w/o L2-norm
0

0.2

0.4

0.6

0.
24

6

0.
29

6

0.
19

5

0.
20

4

0.
26

4 0.
33

3

0.
20

2

0.
21

3

0.
27

0 0.
33

9

0.
20

3

0.
21

8

0.
24

8

0.
30

1

0.
19

6

0.
20

5

0.
25

0

0.
29

9

0.
19

7

0.
20

6

0.
24

5

0.
28

2

0.
18

5

0.
18

6

0.
23

0

0.
25

1

0.
18

0

0.
17

5

0.
22

8

0.
24

3

0.
18

0

0.
17

4𝐶
𝑙𝑙
𝑟

Min 𝐶𝑙𝑙𝑟 (original scores) Log-Reg
Linear VΓ VΓ-Var (Gen)
VΓ-Var (Disc) Log-Reg + QM4
VΓ-Var + Dur (Gen) VΓ-Var + Dur (Disc)

(a) ECAPA embeddings

PLDA with L2-norm PLDA w/o L2-norm PSVM with L2-norm PSVM w/o L2-norm
0

0.2

0.4

0.6

0.
24

6

0.
30

7

0.
24

5

0.
25

5

0.
25

9 0.
33

5

0.
25

0

0.
27

0

0.
26

3 0.
34

3

0.
25

1

0.
27

6

0.
24

7

0.
30

8

0.
24

6

0.
25

6

0.
24

8

0.
30

8

0.
24

6

0.
25

6

0.
24

5

0.
25

0

0.
24

0

0.
24

1

0.
23

4

0.
22

5

0.
24

6

0.
21

4

0.
23

1

0.
22

5

0.
24

6

0.
21

5

𝐶
𝑙𝑙
𝑟

Min 𝐶𝑙𝑙𝑟 (original scores) Log-Reg Linear VΓ VΓ-Var (Gen)
VΓ-Var (Disc) Log-Reg + QM4 VΓ-Var + Dur (Gen) VΓ-Var + Dur (Disc)

(b) FTDNN embeddings

PLDA with L2-norm PLDA w/o L2-norm PSVM with L2-norm PSVM w/o L2-norm
0

0.2

0.4

0.6

0.
28

5 0.
34

9

0.
22

6

0.
21

70.
33

1 0.
44

3

0.
23

9

0.
22

80.
34

1 0.
45

1

0.
24

6

0.
23

10.
29

2 0.
36

7

0.
22

7

0.
21

90.
28

8 0.
35

8

0.
22

8

0.
21

90.
31

4 0.
40

3

0.
22

6

0.
19

80.
27

5

0.
30

9

0.
21

6

0.
19

00.
26

7

0.
29

7

0.
21

3

0.
18

7

𝐶
𝑙𝑙
𝑟

Min 𝐶𝑙𝑙𝑟 (original scores) Log-Reg
Linear VΓ VΓ-Var (Gen)
VΓ-Var (Disc) Log-Reg + QM4
VΓ-Var + Dur (Gen) VΓ-Var + Dur (Disc)

(c) TDNN embeddings

Figure 5.6𝐶𝑙𝑙𝑟 for different calibration approaches with different embedding frontends
on SRE 2019 short segments. Calibration models have been trained with target prior
𝜋 = 0.1 (discriminative models) or target weight 𝜁 = 0.1 (generative models).

results for the TDNN. Both models exhibit some miscalibration error, especially for
the TDNN-PLDA one, and it is particularly evident in the PLDA models trained
using non-normalized embeddings.

90 Experimental Results

In Figure 5.7a we show different calibration transformations of the score compared
to the optimal calibration of the evaluation dataset obtained by isotonic regression
computed through the PAV [132] algorithm, applied to the length-normalized
embeddings extracted from the ECAPA frontend. This figure shows that an optimal
calibration cannot be approximated by a linear transformation over the whole
range of scores. Instead, our proposed VΓ-Var model is designed to handle the
distribution mismatches by computing a non-linear mapping, which provides a better
approximation of the calibration defined by the PAV transformation. This translates
to actual costs closer to the minimum ones, both for PLDA and PSVM, with and
without length normalization. Furthermore, from the 4th and 5th rows of Table 5.8,
it can be seen that the results obtained with the generative model are close to the ones
obtained with the discriminative model, meaning that the VΓ-Var can effectively
capture the characteristics of target and non-target score distributions. Repeating
this observation for the non-normalized embeddings the non-linearity becomes even
more evident, leading to a significant calibration loss of the linear model. Figure
5.7b shows the Bayes Error plots for the ECAPA frontend, both for models with and
without side-information. From Figure 5.7b we can notice the effects of changing
target prior 𝜋 or target weight 𝜁 . Models without side-information are reported
with a dashed line. We can notice that the choice of the prior affects the Logistic
Regression performance. Lower 𝐶𝑙𝑙𝑟 can be obtained by setting 𝜋 = 0.5, but with
the result of having a significantly higher actual primary cost 𝐶𝑝𝑟𝑖𝑚. In contrast, the
VΓ-Var models are more robust to the choice of 𝜁 , and similar results are obtained
with 𝜁 = 0.1 and 𝜁 = 0.5. As expected the duration aware models outperform the
duration agnostic models. Both Log-Reg + QM4 and the proposed VΓ-Var + Dur
achieve better calibration and discrimination for almost all frontend and backend
combinations, as evidenced by the lower 𝐶𝑙𝑙𝑟 and EER. In particular, looking at the
𝐶𝑙𝑙𝑟 , the VΓ-Var + Dur outperforms the quality measures methods, with relative
improvements ranging from 3% to 15% for length-normalized embeddings and 6% to
26% for non-normalized ones, with similar or slightly better EER values. Although
in the case of FTDNN with PSVM, Log-Reg+QM4 achieves a 2% improvement,
the best results for this frontend are achieved using our VΓ-Var + Dur approach
with non-normalized embeddings. For the 𝐶𝑝𝑟𝑖𝑚 metric, the Log-Reg+QM4 model
produces irregular results. These results are close to or slightly worse than the linear
Log-Reg when embeddings are length-normalized. For non-normalized embeddings,
the model achieves better performance with PLDA but significantly worse with PSVM

5.4 Calibration and Normalization Results 91

−30 −20 −10 0 10 20
Scores

−4

−2

0

2

4

6

LL
R

PAV
LogReg π = 0.1

LogReg π = 0.5

VΓ-Var ζ = 0.1

VΓ-Var ζ = 0.5

−3 −2 −1 0 1
Scores

−4

−2

0

2

4

6

LL
R

PAV
LogReg π = 0.1

LogReg π = 0.5

VΓ-Var ζ = 0.1

VΓ-Var ζ = 0.5

(a) Calibration transformation for short segments - duration-agnostic models - left: PLDA,
right: PSVM

−6 −4 −2 0 2 4
Prior log-odds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N
or

m
al

iz
ed

co
st

minDCF
LogReg – π = 0.1 (Cllr = 0.264− Cprim = 0.495)
LogReg – π = 0.5 (Cllr = 0.259− Cprim = 0.532)
VΓ-Var – ζ = 0.1 (Cllr = 0.248− Cprim = 0.486)
VΓ-Var – ζ = 0.5 (Cllr = 0.249− Cprim = 0.489)
LogReg + QM4 – π = 0.1 (Cllr = 0.245− Cprim = 0.493)
LogReg + QM4 – π = 0.5 (Cllr = 0.239− Cprim = 0.531)
VΓ-Var + Dur – ζ = 0.1 (Cllr = 0.230− Cprim = 0.485)
VΓ-Var + Dur – ζ = 0.5 (Cllr = 0.231− Cprim = 0.480)

−6 −4 −2 0 2 4
Prior log-odds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
N

or
m

al
iz

ed
co

st

minDCF
LogReg – π = 0.1 (Cllr = 0.202− Cprim = 0.457)
LogReg – π = 0.5 (Cllr = 0.200− Cprim = 0.479)
VΓ-Var – ζ = 0.1 (Cllr = 0.196− Cprim = 0.449)
VΓ-Var – ζ = 0.5 (Cllr = 0.196− Cprim = 0.449)
LogReg + QM4 – π = 0.1 (Cllr = 0.185− Cprim = 0.467)
LogReg + QM4 – π = 0.5 (Cllr = 0.183− Cprim = 0.491)
VΓ-Var + Dur – ζ = 0.1 (Cllr = 0.180− Cprim = 0.447)
VΓ-Var + Dur – ζ = 0.5 (Cllr = 0.180− Cprim = 0.453)

(b) Bayes error plot for short segments - left: PLDA, right: PSVM

−6 −4 −2 0 2 4
Prior log-odds

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

iz
ed

co
st

minDCF
LogReg – π = 0.1 (Cllr = 0.192− Cprim = 0.370)
LogReg – π = 0.5 (Cllr = 0.188− Cprim = 0.396)
VΓ-Var – ζ = 0.1 (Cllr = 0.179− Cprim = 0.368)
VΓ-Var – ζ = 0.5 (Cllr = 0.179− Cprim = 0.372)
LogReg + QM4 – π = 0.1 (Cllr = 0.180− Cprim = 0.371)
LogReg + QM4 – π = 0.5 (Cllr = 0.175− Cprim = 0.397)
VΓ-Var + Dur – ζ = 0.1 (Cllr = 0.167− Cprim = 0.368)
VΓ-Var + Dur – ζ = 0.5 (Cllr = 0.167− Cprim = 0.370)

−6 −4 −2 0 2 4
Prior log-odds

0.1

0.2

0.3

0.4

0.5

N
or

m
al

iz
ed

co
st

minDCF
LogReg – π = 0.1 (Cllr = 0.144− Cprim = 0.326)
LogReg – π = 0.5 (Cllr = 0.142− Cprim = 0.337)
VΓ-Var – ζ = 0.1 (Cllr = 0.137− Cprim = 0.326)
VΓ-Var – ζ = 0.5 (Cllr = 0.137− Cprim = 0.324)
LogReg + QM4 – π = 0.1 (Cllr = 0.137− Cprim = 0.326)
LogReg + QM4 – π = 0.5 (Cllr = 0.134− Cprim = 0.341)
VΓ-Var + Dur – ζ = 0.1 (Cllr = 0.132− Cprim = 0.323)
VΓ-Var + Dur – ζ = 0.5 (Cllr = 0.130− Cprim = 0.321)

(c) Bayes error plot for original segments - left: PLDA, right: PSVM

Figure 5.7 Calibration transformation and Bayes error plots for different calibration
models and different backends on SRE 2019 evaluation data, ECAPA frontend.

models. In comparison, our approach provides better 𝐶𝑝𝑟𝑖𝑚 than the Log-Reg+QM4,
although on average, it is close to the 𝐶𝑝𝑟𝑖𝑚 obtained with our VΓ-Var model. Again,

92 Experimental Results

the Bayes Error plot 5.7a helps us see that the Log-Reg+QM4 is sensitive to the prior
choice, while our model provides consistent results both for 𝜁 = 0.1 and 𝜁 = 0.5.

Enroll duration (s)

0
5

10
15

Test duration (s)

0
5

10
15C

al
ib

ra
te

d
sc

or
e

−5

0

5

fcal
(
SS

)

fcal
(
(SS+SD)/2

)

fcal
(
SD

)

Enroll duration (s)

0
5

10
15

Test duration (s)

0
5

10
15C

al
ib

ra
te

d
sc

or
e

−5

0

5

fcal
(
SS

)

fcal
(
(SS+SD)/2

)

fcal
(
SD

)

left: Log-Reg + QM4 - right: VΓ-Var + Dur (Gen)

Figure 5.8 Calibration transformations of duration-aware models for different, fixed
scores as a function of segment duration. ECAPA embeddings without length
normalization, PLDA backend.

Figure 5.8 shows the profound difference between the transformations defined
by Log-Reg+QM4 and the VΓ-Var+Dur models. The transformation is shown as
a function of the enrollment and test duration for a given, fixed verification score.
The figure displays three surfaces that correspond to the average target score 𝑆𝔖,
the average non-target score 𝑆𝔇, and their mean 𝑆𝔖+𝑆𝔇

2 for each model. While
the ECAPA-PLDA combination with non-normalized embeddings produces the
most visible differences, similar outcomes are obtained with other backends. The
figure shows that Log-Reg+QM4 applies a transformation that does not consider
the score value, since the quality measures act as an additive term to the score. In
contrast, the VΓ-Var models apply a transformation that is different for different
values of the score. Shorter durations lead to scores mapped to LLR closer to zero,
as they inherently possess greater uncertainty, which is not taken into consideration
at the classification level [99]. The VΓ-Var model compensates for the relative
overconfidence that backends show when treating shorter utterances. We can also
see that length-normalization degrades the performance of duration-aware models.
This confirms our assumption that length normalization normalizes the within-class
variance of the embeddings, which reduces the variability attributed to duration. This
decreases the effectiveness of duration-aware models since their objective is to exploit
these effects to increase accuracy. We can also observe that accounting for duration

5.4 Calibration and Normalization Results 93

variability at the calibration stage, rather than relying on length normalization,
produces better results with the PSVM backend.

Table 5.9 and Figure 5.7c show the results of the different calibration approaches
for the original SRE 2019 segments. The results align with those obtained from the
short segments, although, as expected, the duration-aware models exhibit relatively
smaller improvements. Furthermore, we report the results obtained with the VΓ-Var +
Norm model (4.88). This set of experiments analyzes the effectiveness of accounting
for the embedding norm at calibration, rather than at the classification level. We
compare the results obtained with VΓ-Var calibration for length-normalized backends
with the ones obtained with VΓ-Var + Norm for non-normalized backends in Table
5.10. In both cases, the embedding norm is computed from the entire vector. The
results in yellow are obtained from normalized embeddings using VΓ-Var calibration,
while those in blue refer to raw embeddings and VΓ-Var + Norm model. Usually,
length normalization improves the results of PLDA, but for this dataset, we can see
that encoding the embedding norm at the calibration level rather than at score level
produces better results.

The VΓ-Var + Norm model in combination with non-normalized embeddings
achieves significantly lower 𝐶𝑙𝑙𝑟 and 𝐸𝐸𝑅 for short segments for the PLDA, main-
taining a similar actual 𝐶𝑝𝑟𝑖𝑚 cost. Longer segments see no significant improvement
over length-normalized backends, but VΓ-Var + Norm shows slightly lower EER.
The 𝐶𝑙𝑙𝑟 and EER are on average significantly reduced also for the PSVM when the
norm of the embeddings is incorporated at the calibration level. The approach is
also effective in reducing the 𝐶𝑝𝑟𝑖𝑚 of the FTDNN and TDNN embeddings, while
the ECAPA frontend produces similar results. It is important to highlight that using
length-normalized embeddings with the VΓ-Var + Norm would not produce any
improvement with respect to the VΓ-Var model. This is because the norm that should
be applied at the calibration level is the norm of the input vectors of the PLDA model,
which corresponds to the norm of the length-normalized vectors. Since this norm
is the same for all the embeddings, the VΓ-Var and VΓ-Var + Norm models would
produce the same results. We also attempted to extend our model by combining both
duration and embedding norm variability as

𝑤S,𝑖 = 𝑤C +𝑤𝑑𝑢𝑟,𝑖 +𝑤𝑛𝑜𝑟𝑚,𝑖 (5.3)

94 Experimental Results

Table 5.9 Results on the SRE 2019 evaluation dataset with original segments.
Calibration models have been trained with target prior 𝜋 = 0.1 (discriminative
models) or target weight 𝜁 = 0.1 (generative models).

(a) ECAPA embeddings
PLDA PSVM

with L2-norm w/o L2-norm with L2-norm w/o L2-norm
𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER

Min. costs† 0.176 0.365 4.6% 0.204 0.358 5.6% 0.135 0.323 3.5% 0.135 0.330 3.5%

Log-Reg 0.192 0.370 4.6% 0.237 0.405 5.6% 0.144 0.326 3.5% 0.146 0.334 3.5%
Linear VΓ 0.200 0.366 4.6% 0.245 0.388 5.6% 0.147 0.326 3.5% 0.151 0.331 3.5%
VΓ-Var (Gen) 0.179 0.368 4.6% 0.210 0.360 5.6% 0.137 0.326 3.5% 0.137 0.334 3.5%
VΓ-Var (Disc) 0.179 0.367 4.6% 0.206 0.360 5.6% 0.139 0.326 3.5% 0.137 0.335 3.5%

Log-Reg + QM4 0.180 0.371 4.3% 0.217 0.395 5.0% 0.137 0.326 3.2% 0.137 0.340 3.1%
VΓ-Var + Dur (Gen) 0.167 0.368 4.3% 0.190 0.356 5.0% 0.132 0.323 3.3% 0.128 0.340 3.1%
VΓ-Var + Dur (Disc) 0.165 0.362 4.2% 0.186 0.350 5.0% 0.130 0.324 3.2% 0.127 0.334 3.1%

(b) FTDNN embeddings
PLDA PSVM

with L2-norm w/o L2-norm with L2-norm w/o L2-norm
𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER

Min. costs† 0.163 0.326 4.3% 0.185 0.329 5.0% 0.150 0.366 3.9% 0.145 0.350 3.7%

Log-Reg 0.176 0.331 4.3% 0.202 0.354 5.0% 0.158 0.370 3.9% 0.155 0.358 3.7%
Linear VΓ 0.182 0.327 4.3% 0.212 0.334 5.0% 0.160 0.367 3.9% 0.161 0.352 3.7%
VΓ-Var (Gen) 0.165 0.330 4.3% 0.186 0.330 5.0% 0.152 0.367 3.9% 0.147 0.351 3.7%
VΓ-Var (Disc) 0.165 0.329 4.3% 0.186 0.331 5.0% 0.152 0.367 3.9% 0.146 0.353 3.7%

Log-Reg + QM4 0.165 0.330 4.0% 0.172 0.349 4.3% 0.150 0.376 3.6% 0.144 0.374 3.4%
VΓ-Var + Dur (Gen) 0.155 0.332 4.0% 0.160 0.326 4.2% 0.146 0.372 3.7% 0.134 0.354 3.3%
VΓ-Var + Dur (Disc) 0.153 0.329 3.9% 0.157 0.316 4.2% 0.143 0.370 3.6% 0.133 0.353 3.3%

(c) TDNN embeddings
PLDA PSVM

with L2-norm w/o L2-norm with L2-norm w/o L2-norm
𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER

Min. costs† 0.200 0.387 5.2% 0.236 0.396 6.4% 0.164 0.366 4.2% 0.140 0.339 3.6%

Log-Reg 0.231 0.388 5.2% 0.287 0.438 6.4% 0.177 0.370 4.2% 0.150 0.340 3.6%
Linear VΓ 0.246 0.392 5.2% 0.301 0.412 6.4% 0.189 0.370 4.2% 0.154 0.341 3.6%
VΓ-Var (Gen) 0.206 0.407 5.2% 0.244 0.403 6.4% 0.165 0.366 4.2% 0.142 0.341 3.6%
VΓ-Var (Disc) 0.204 0.403 5.2% 0.238 0.406 6.4% 0.165 0.367 4.2% 0.141 0.344 3.6%

Log-Reg + QM4 0.218 0.391 4.8% 0.267 0.435 5.8% 0.169 0.366 4.0% 0.140 0.349 3.2%
VΓ-Var + Dur (Gen) 0.195 0.420 4.9% 0.223 0.409 5.8% 0.160 0.381 4.0% 0.133 0.351 3.2%
VΓ-Var + Dur (Disc) 0.191 0.431 4.8% 0.215 0.398 5.7% 0.155 0.363 3.9% 0.130 0.345 3.2%

† Minimum 𝐶𝑙𝑙𝑟 , minimum 𝐶𝑝𝑟𝑖𝑚, and EER computed on the classifier scores.
Models using side-information may provide lower costs.

5.4 Calibration and Normalization Results 95

Table 5.10 Comparison of length-normalization-aware calibration models on the
SRE 2019 evaluation dataset.

Short segments Original segments
PLDA PSVM PLDA PSVM

L2-norm Calibration 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER

ECAPA

✓ VΓ-Var (Gen) 0.248 0.486 6.8% 0.196 0.449 5.3% 0.179 0.368 4.6% 0.137 0.326 3.5%
✗ VΓ-Var + Norm (Gen) 0.229 0.483 5.9% 0.188 0.453 4.9% 0.175 0.363 4.3% 0.135 0.329 3.3%

FTDNN

✓ VΓ-Var (Gen) 0.247 0.467 7.0% 0.246 0.537 7.0% 0.165 0.330 4.3% 0.152 0.367 3.9%
✗ VΓ-Var + Norm (Gen) 0.222 0.457 6.1% 0.215 0.510 5.9% 0.160 0.319 4.1% 0.135 0.345 3.4%

TDNN

✓ VΓ-Var (Gen) 0.292 0.526 7.9% 0.227 0.480 6.1% 0.206 0.407 5.2% 0.165 0.366 4.2%
✗ VΓ-Var + Norm (Gen) 0.275 0.536 6.9% 0.198 0.464 5.1% 0.211 0.406 5.1% 0.141 0.337 3.4%

where 𝑤𝑑𝑢𝑟,𝑖 and 𝑤𝑛𝑜𝑟𝑚,𝑖 are the duration and norm components used in VΓ-Var +
Dur and VΓ-Var + Norm models. However, for SRE 2019, the addition of both terms
does not provide additional benefits, suggesting that both terms encode similar side
information.

Table 5.11 Results on SRE 2010 with an i-vector frontend.

Short segments Original (long) segments
PLDA FPD-PLDA PLDA

𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EER

Min. costs 0.288 0.756 8.1% 0.251 0.764 7.3% 0.094 0.420 2.5%

Log-Reg 0.297 0.818 8.1% 0.260 0.809 7.3% 0.098 0.444 2.5%
Linear VΓ 0.298 0.835 8.1% 0.260 0.818 7.3% 0.099 0.460 2.5%
VΓ-Var (Gen) 0.292 0.791 8.1% 0.256 0.797 7.3% 0.097 0.430 2.5%
VΓ-Var (Disc) 0.292 0.784 8.1% 0.257 0.774 7.3% 0.097 0.425 2.5%

Log-Reg + QM4 0.261 0.827 7.0% 0.260 0.832 7.2% 0.098 0.451 2.5%
VΓ-Var + Dur (Gen) 0.259 0.755 7.0% 0.256 0.798 7.3% 0.097 0.430 2.5%
VΓ-Var + Dur (Disc) 0.253 0.787 7.0% 0.257 0.774 7.3% 0.097 0.425 2.5%

SRE2010 results

The original utterances of the SRE10 test have mostly long duration. As we did for
SRE 2019, to obtain short segments, we cut the utterances randomly with durations
between 3 and 60 seconds. The duration of the sample is strongly related to the
uncertainty of the i-vector estimate. Additionally, we can obtain a measure of such

96 Experimental Results

Table 5.12 Results on SRE 2010 with an i-vector frontend and length normalization.

PLDA Calibration
𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 EERL2-norm Model

Original (long) segments

✓ VΓ-Var (Gen.) 0.097 0.430 2.5%

✗ Log-Reg 0.173 0.612 4.3%
✗ VΓ-Var (Gen.) 0.167 0.491 4.3%
✗ VΓ-Var + Norm (Gen.) 0.102 0.501 2.6%

Short segments

✓ VΓ-Var (Gen.) 0.292 0.791 8.1 %

✗ Log-Reg 0.427 0.971 12.7%
✗ VΓ-Var (Gen.) 0.415 0.914 12.7%
✗ VΓ-Var + Norm (Gen.) 0.305 0.789 8.7%

✓ VΓ-Var + Dur (Gen.) 0.259 0.755 7.0%

✗ Log-Reg + QM4 0.345 0.932 9.5%
✗ VΓ-Var + Dur (Gen.) 0.333 0.874 9.4%
✗ VΓ-Var + Norm + Dur (Gen.) 0.282 0.790 8.0%

uncertainty in the i-vector framework. For this set of experiments, we consider the
Full-Posterior-Distribution PLDA (FPD-PLDA) model [99] as an additional baseline
for the short segments. In Table 5.11 we report the results obtained on this dataset.
As before, the minimum cost for the baseline models, both for short and original
segments, is shown in the first row. The two baselines achieve similar 𝐶𝑝𝑟𝑖𝑚 for short
segments, but the FPD-PLDA produces lower 𝐶𝑙𝑙𝑟 and EER than the PLDA. In the
next four rows, the results achieved by the duration-agnostic calibration are shown.
The best results in terms of 𝐶𝑝𝑟𝑖𝑚 are obtained by the VΓ-Var models, while 𝐶𝑙𝑙𝑟 and
𝐸𝐸𝑅 are similar between the two models, a behavior that we already noticed with
SRE19. In terms of duration-aware models, the results for short segments show that
Log-Reg + QM4 achieves lower 𝐶𝑙𝑙𝑟 and EER compared to the standard Log-Reg.
We also observe a marginal degradation of the 𝐶𝑝𝑟𝑖𝑚 in both cases, however, given
the small number of evaluation trials, this may not be statistically significant. In
contrast, our models, VΓ-Var + Dur achieve better perfomrance than both Log-Reg
+ QM4 and VΓ-Var both in terms of 𝐶𝑙𝑙𝑟 and 𝐶𝑝𝑟𝑖𝑚, while providing similar EER.

5.4 Calibration and Normalization Results 97

Furthermore, it is worth noting that the results achieved by the PLDA and VΓ-Var
+ Dur and the ones obtained with FPD-PLDA and VΓ-Var are very close. This
suggests, once again, that our duration model is able to incorporate embedding
uncertainty directly at calibration level obtaining similar results to the combination of
uncertainty models and PLDA backends. Furthermore, while both approaches show
similar performances, our model eliminates the need for an explicit, and sometimes
hard-to-define, model for embedding uncertainty. The VΓ-Var approach can therefore
be applied as a substitute to uncertainty-aware backends for modeling the impacts of
uncertainty propagation directly at the score level, particularly in scenarios where an
uncertainty measure is unavailable, such as in DNNs. Finally, from Table 5.11 we can
observe that duration-aware calibration models do not improve the performance of
FPD-PLDA models, since the backend is already accounting for duration variability.
Also, as expected, duration-aware models do not improve performance for longer
utterances. Indeed, the miscalibration effects caused by duration variability tend
to disappear for longer utterances. These results align with the findings reported
for FPD-PLDA models applied to long segments in [99]. Also, in this case, we
tested the effects of length-normalization. These results are shown in Table 5.12.
We report the results of PLDA with length-normalized embeddings and VΓ-Var
calibration, and PLDA with non-normalized embeddings in conjunction with VΓ-Var
+ Norm. Given the previous result, for the original utterances, we do not show results
with duration-aware models. For these segments, we observe a strong decline in
performance when length normalization is not applied, particularly the Log-Reg
models exhibit significantly worse values compared to VΓ-Var. This difference
is reduced when we introduce the embedding norm at the calibration level, with
both 𝐶𝑙𝑙𝑟 and EER approaching the values obtained by length-normalized PLDA.
Nonetheless, there is still a significant gap in terms of 𝐶𝑝𝑟𝑖𝑚. The results obtained
with short segments are shown in the second part of the table. Once again, length
normalization proves to be essential for this dataset. The VΓ-Var + Norm model is
able to reduce the difference between non-normalized and normalized embeddings.
In this case, duration-aware model results are similar to those obtained for long
segments. Interestingly, unlike what we observed in the SRE 2019 tests, there is an
improvement when embedding norms and duration are combined. However, VΓ-Var
+ Dur applied to length normalized embeddings seems to outperform the VΓ-Var +
Norm + Dur approach.

98 Experimental Results

SRE2012 results

Table 5.13 Results on SRE 2012 with an e-vector frontend.

PLDA PSVM

𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚 𝐶𝑙𝑙𝑟 𝐶𝑝𝑟𝑖𝑚

Min. costs 0.062 0.211 0.057 0.210

Log-Reg 0.065 0.244 0.061 0.217
Linear VΓ 0.066 0.269 0.061 0.224
VΓ-Var (Gen) 0.066 0.241 0.062 0.213
VΓ-Var (Disc) 0.065 0.224 0.061 0.212

Log-Reg + QM4 0.054 0.211 0.051 0.209
VΓ-Var + Dur (Gen) 0.056 0.230 0.054 0.204
VΓ-Var + Dur (Disc) 0.055 0.186 0.053 0.199

The final results related to the VΓ models that we show are the ones obtained
with the SRE 2012 evaluation data. In this dataset, the speakers in the enrollment set
have multiple replicas of the same utterances, some of which are recorded through
different microphones. When utterances are not independent, as in this case, it
becomes hard to define an effective duration for the enrollment side. However, we
can neglect the uncertainty linked to the enrollment duration, if we assume that
enrollment embeddings have been extracted from long utterances, as shown in [133].
The results for different calibration approaches are shown in Table 5.13. We set
a large and fixed enrollment duration to train the duration-aware models. For this
dataset, good calibration results can be achieved with Logistic Regression. In terms of
𝐶𝑙𝑙𝑟 we do not see improvements with the VΓ-Var models, although we notice lower
primary costs, due to a better calibration in the low false alarm region. In the last
three rows we report the results obtained with duration-aware models. Our VΓ-Var +
Dur achieve slightly better 𝐶𝑝𝑟𝑖𝑚 while maintaing similar 𝐶𝑙𝑙𝑟 to the Log-Reg + QM4.

5.4.2 C-Norm

In this section we analyze the performance of C-norm and its adaptive version,
AC-norm (Section 4.3.1). This approach is tested on the SITW [128] and SRE 2019
[117] datasets. Our AC-norm combines a Log-Reg model with score normalization

5.4 Calibration and Normalization Results 99

statistics employed as side information. A global calibration model based on prior-
weighted logistic regression is used as a first baseline to compare our model. Score
normalization techniques, S-norm and AS-norm, implemented as in [134], are also
taken into consideration. For our adaptive version of C-norm, we use the same
strategy used to select the cohort for the AS-norm.

Evaluation metrics and data

In this analysis we used two frontends. The first extractor is based on a Factorized
Time Delay neural network [51], implemented as in [121]. The 512-dimensional
embeddings are extracted after 20 epochs of training. No augmentations were applied
to the data to train this model. Cross-entropy was employed as training loss. The
ECAPA architecture [67] served as the second extractor. This model was trained
for 10 epochs with augmented data, Additive Angular Margin softmax [43, 44] and
cross-entropy loss. Finally, we extracted 192-dimensional embeddings. Also in this
case we considered both PLDA and PSVM as our backends. The NIST SRE 2018
evaluation data and data from the training list (Section 5.1.1) have been used to train
both backend classifiers. LDA was used to reduce the FTDNN embedding size to
200 for the PLDA and 400 for the PSVM. Preprocessing for both backends also
included withening and length-normalization, WCCN was additionally applied for
PSVM embeddings.

As evaluation metrics we used the primary metrics, 𝐶𝑆𝐼𝑇𝑊
𝑝𝑟𝑖𝑚

and 𝐶𝑆𝑅𝐸19
𝑝𝑟𝑖𝑚

, defined
for the SITW and SRE 2019 tasks, and the Cost of Log-Likelihood Ratio 𝐶𝑙𝑙𝑟
[84, 82, 85]. The equal error rate (EER) and actual detection costs as defined for
NIST SRE 2008 (DCF08) are also reported. As in the previous section, to show the
normalized Detection Cost Function (DCF) corresponding to different target prior
log-odds we also provide normalized Bayes error rate [82] plots.

SITW We removed some speakers of SITW that appear in the VoxCeleb1 dataset
since it has been used to train our frontends. The development set was split
into two non-overlapping parts. 70% of the speakers were used to train
the calibration parameters for all models. The remaining part was used as
normalization cohort. The results are obtained on the SITW evaluation set.

100 Experimental Results

Table 5.14 Results for different embedding extractors and different classifiers on the
SITW Evaluation dataset. Minimum costs are reported for the unnormalized scores.
Log-Reg rows correspond to global calibration.

(a) FTDNN

PLDA PSVM
EER DCF08𝐶𝑆𝐼𝑇𝑊

𝑝𝑟𝑖𝑚
𝐶𝑙𝑙𝑟 EER DCF08𝐶𝑆𝐼𝑇𝑊

𝑝𝑟𝑖𝑚
𝐶𝑙𝑙𝑟

Min cost 3.0% 0.159 0.312 0.110 3.0% 0.144 0.292 0.109
Log-Reg 3.0% 0.161 0.316 0.113 3.0% 0.145 0.295 0.113

S-norm 3.5% 0.194 0.389 0.130 2.8% 0.146 0.301 0.107
AS-norm (𝑁 = 100) 3.0% 0.161 0.305 0.116 2.8% 0.141 0.290 0.110

C-norm 2.5% 0.145 0.298 0.098 2.5% 0.130 0.259 0.095
AC-norm (𝑁 = 100) 2.7% 0.149 0.299 0.104 2.5% 0.126 0.262 0.098

(b) ECAPA

PLDA PSVM

EER DCF08𝐶𝑆𝐼𝑇𝑊
𝑝𝑟𝑖𝑚

𝐶𝑙𝑙𝑟 EER DCF08𝐶𝑆𝐼𝑇𝑊
𝑝𝑟𝑖𝑚

𝐶𝑙𝑙𝑟

Min cost 2.7% 0.132 0.269 0.105 2.1% 0.097 0.198 0.079
Log-Reg 2.7% 0.135 0.272 0.111 2.1% 0.098 0.202 0.083

S-norm 2.6% 0.182 0.574 0.115 1.7% 0.087 0.200 0.072
AS-norm (𝑁 = 100) 2.4% 0.156 0.433 0.103 1.7% 0.090 0.197 0.073

C-norm 2.3% 0.131 0.303 0.096 1.7% 0.081 0.176 0.069
AC-norm (𝑁 = 100) 2.5% 0.128 0.285 0.102 1.7% 0.084 0.173 0.072

SRE 2019 The SRE 2019 Progress set has been used to train the calibration models.
The unlabeled portion of SRE 2018 development data [116] was used as
impostor cohort. And results are reported on the SRE 2019 Evaluation dataset.

SITW results

As for SRE datasets, the results of PSVM models on SITW are generally better
than those obtained with PLDA as can be seen in Table 5.14. In general, the best
results for C-norm were obtained using the complete cohort set, but we also report

5.4 Calibration and Normalization Results 101

the performance of AC-norm. The cohort size for AS-norm was selected using the
results on the development set, where 𝑁 = 100 was found to be optimal. We used
the same cohort value for AC-norm. To recalibrate the normalized scores obtained
with S-norm and AS-norm, we trained a prior-weighted logistic regression on the
development set. We used the same target prior, set to 0.1, to train each calibration
model. The Bayes error plots for various combinations of frontend and backend are
shown in Figure 5.9. The minimum costs computed on the original, unnormalized
scores, are shown in Table 5.14, along with the Equal Error Rate (EER) and the
actual costs associated with different score normalization and calibration methods.

S-norm appears to degrade PLDA-based systems performance (Fig. 5.9a and
5.9c, Tables 5.14a and 5.14b) with respect to other approaches. In some cases,
unnormalized scores yield better results. C-norm, however, is able to considerably
enhance the results compared to the unnormalized scores. Despite the small full
cohort size, a cohort set of size 𝑁 = 100 improves the results for AS-norm. This
is particularly true for FTDNN embeddings, while a small degradation persists in
terms of 𝐶𝑆𝐼𝑇𝑊

𝑝𝑟𝑖𝑚
for the ECAPA. As expected, the cohort selection strategy proves

ineffective in this scenario for C-norm, due to the already small full cohort size. In
fact, the value of the 𝐶𝑙𝑙𝑟 obtained with the AC-norm models is slightly worse than
the C-norm models, although, in terms of primary cost, we see an improvement for
the ECAPA-based system.

Turning to the PSVM models (Fig. 5.9b and 5.9d, right side of Tables 5.14) we
can notice overall better results for all models, particularly when paired with the
ECAPA frontend. In this case, S-norm produces much better results, approaching
the ones obtained with AS-norm. Consistently with PLDA models, C-norm with the
full cohort set delivers the best outcomes, especially in terms of 𝐶𝑙𝑙𝑟 . A significant
improvement compared to both S-norm and raw scores in obtained with the FTDNN
embeddings. A significant improvement is also shown for the actual primary cost for
ECAPA-based models, although the improvement of the other costs is relatively small.
Overall, both for PLDA and PSVM, C-norm proves to be effective and outperforms
both global calibration and score-normalization approaches.

SRE 2019 results

We also compare the same models with the SRE19 dataset, as shown in Figure 5.10
and Table 5.15. Once again, PSVM models outperform PLDA ones. In this case,

102 Experimental Results

−4 −2 0 2 4
Prior log-odds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

co
st

FTDNN - PLDA
Log-Reg
S-Norm
AS-Norm (N = 100)
C-Norm
AC-Norm (N = 100)

(a) FTDNN - PLDA

−4 −2 0 2 4
Prior log-odds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

co
st

FTDNN - PSVM
Log-Reg
S-Norm
AS-Norm (N = 100)
C-Norm
AC-Norm (N = 100)

(b) FTDNN - PSVM

−4 −2 0 2 4
Prior log-odds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

co
st

ECAPA - PLDA
Log-Reg
S-Norm
AS-Norm (N = 100)
C-Norm
AC-Norm (N = 100)

(c) ECAPA - PLDA

−4 −2 0 2 4
Prior log-odds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

N
or

m
al

iz
ed

co
st

ECAPA - PSVM
Log-Reg
S-Norm
AS-Norm (N = 100)
C-Norm
AC-Norm (N = 100)

(d) ECAPA - PSVM

Figure 5.9 Results for different embedding extractors and different classifiers on
the SITW Evaluation dataset. The AS-norm cohort size (𝑁 = 100) was selected
according to the results on the calibration set. For C-norm the best results are obtained
with the full cohort, both on the calibration and evaluation sets. As reference, the
results with adaptive selection (𝑁 = 100) are given also for AC-norm.

the adaptive models consistently outperform the non-adaptive versions. Contrary
to SITW, the full cohort is significantly larger and potentially more heterogeneous,
meaning that adaptive methods can leverage the benefits of cohort selection and
improve results over non-adaptive methods. As for SITW, C-norm outperforms
S-norm, although, in terms of 𝐶𝑙𝑙𝑟 , the improvement is marginal. A more detailed
comparison in Figure 5.10 shows that C-norm achieves similar or slightly better
performance in the low false alarm region while improving in the low false reject
region. The adaptive models have a similar behavior. AC-norm provides a steady
improvement in terms of 𝐶𝑙𝑙𝑟 compared to AS-norm, achieving better results in the

5.4 Calibration and Normalization Results 103

Table 5.15 Results for different embedding extractors and the PSVM classifier on the
SRE 2019 Evaluation dataset. Minimum costs are reported for the unnormalized
scores. Log-Reg rows correspond to global calibration.

FTDNN ECAPA

EER DCF08 𝐶𝑆𝑅𝐸19
𝑝𝑟𝑖𝑚

𝐶𝑙𝑙𝑟 EER DCF08 𝐶𝑆𝑅𝐸19
𝑝𝑟𝑖𝑚

𝐶𝑙𝑙𝑟

Min cost 4.0% 0.188 0.374 0.153 3.5% 0.162 0.326 0.136
Log-Reg 4.0% 0.188 0.380 0.158 3.5% 0.164 0.329 0.145

S-norm 3.8% 0.178 0.392 0.155 3.5% 0.166 0.356 0.147
AS-norm (400) 3.7% 0.166 0.337 0.148 3.4% 0.152 0.307 0.137

C-norm 3.7% 0.180 0.381 0.149 3.3% 0.161 0.337 0.142
AC-norm (400) 3.5% 0.162 0.336 0.142 3.2% 0.150 0.310 0.134

−4 −2 0 2 4
Prior log-odds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

co
st

FTDNN - PSVM
Log-Reg
S-Norm
AS-Norm (N = 400)
C-Norm
AC-Norm (N = 400)

(a) FTDNN - PSVM

−4 −2 0 2 4
Prior log-odds

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
al

iz
ed

co
st

ECAPA - PSVM
Log-Reg
S-Norm
AS-Norm (N = 400)
C-Norm
AC-Norm (N = 400)

(b) ECAPA - PSVM

Figure 5.10 Results for different embedding extractors and the PSVM classifier on
the SRE 2019 Evaluation dataset. The AS-norm and AC-norm cohort size (𝑁 = 400)
was selected according to the results on the calibration set.

low false reject region while maintaining similar performance in the low false alarm
region.

5.4.3 AD-Norm

In this section, we analyze the results produced by the AD-norm approach. We
used the SRE datasets, specifically SRE 2016 and the SRE 2019 Evaluation data.
We present results for two backends, PLDA and PSVM, trained using data from

104 Experimental Results

SRE16 - PLDA SRE16 - PSVM SRE19 - PLDA SRE19 - PSVM

0.41 0.42

0.34

0.26

0.38

0.30 0.31

0.21

0.36
0.31 0.32

0.25
0.32

0.25

0.35

0.23
0.30

0.26 0.24
0.19

0.27
0.23 0.23

0.19
0.27

0.23 0.23
0.18

Baseline Global centering FDA AM-norm
AS-norm AD-norm AD+AS-norm

Figure 5.11 Minimum 𝐶∗
𝑙𝑙𝑟

for different normalization approaches, out-of-domain
training set (Switchboard + Mixer 04, 05, 06)

the frontend training data (5.1.1), for an out-of-domain scenario. Additionally, we
conducted a second set of experiments by adding the SRE2018 evaluation set into the
backend training data (partially in-domain for SRE19). The unlabeled portion (2472
segments) of SRE16 data was used as normalization data for the SRE16 evaluation.
For the SRE19 test we selected 2000 segments from the SRE 2019 Progress test data.
The ECAPA architecture is used as the embedding extractor. The dimension of the
embeddings is reduced from 192 to 150 with LDA and L2-normalized. In both cases,
the embeddings are re-centered with respect to the mean of the cohort set before
applying AD-norm. The cohorts are selected with the same AS-norm strategy, as
explained in 4.3.2. A further L2-normalization step is necessary after recentering.
When testing with the PSVM backend, we also apply WCCN after L2-normalization.
In Table 5.16 and 5.16 we report the 𝐸𝐸𝑅 and 𝐶𝑚𝑖𝑛

𝑝𝑟𝑖𝑚
as defined by NIST for the two

evaluations. The first five rows show the results obtained with (i) unnormalized scores
(ii) re-centered with a mean computer over the whole impostor set and L2-normalized
(iii) FDA approach [135] (iv) AM-norm [111] (v) AS-norm. The choice of the
adaptive cohort set for the last three methods was driven by the best-performing
baseline, AS-norm. Considering the average results, we chose a cohort size equal to
200 for the remaining adaptive models. A comparison of the 𝐶𝑙𝑙𝑟 of the different
methods against our own can be found in Figure 5.11.

Table 5.16 shows that the adaptive methods outperform the global ones in all
conditions on SRE16. The results that we obtained with AM-norm, are very close to
the one reported in [111]. Overall, AM-norm and AS-norm achieve similar 𝐸𝐸𝑅
and 𝐶𝑙𝑙𝑟 , but in terms of 𝐶𝑚𝑖𝑛

𝑝𝑟𝑖𝑚
AS-norm performs better than AM-norm. A small

degradation of this metric persists also for AD-norm. However, our method is able to
outperform both AS-norm and AM-norm in terms of 𝐸𝐸𝑅 and 𝐶𝑙𝑙𝑟 . These findings

5.4 Calibration and Normalization Results 105

Table 5.16 Comparison of different normalization approaches on SRE 2016 datasets.
In bold (i) results of the best single method for each training list and backend
combination, and (ii) fusion results equal to or improving those of the best single
method.

PLDA PSVM

Training Normalization EER 𝐶𝑚𝑖𝑛
𝑝𝑟𝑖𝑚 𝐶∗

𝑙𝑙𝑟
EER 𝐶𝑚𝑖𝑛

𝑝𝑟𝑖𝑚 𝐶∗
𝑙𝑙𝑟list method

Switchboard
+

Mixer

None 11.3% 0.97 0.41 12.2% 0.99 0.42
Global 11.0% 0.81 0.38 8.1% 0.74 0.30
FDA [135] 10.5% 0.62 0.36 9.0% 0.58 0.31
AM-norm [111] 9.1% 0.67 0.32 6.9% 0.62 0.25
AS-norm [108] 8.7% 0.52 0.30 7.3% 0.47 0.26
AD-norm 7.6% 0.52 0.27 6.6% 0.49 0.23

AD+AS-norm 7.9% 0.50 0.27 6.6% 0.46 0.23

Switchboard
+

Mixer
+

SRE18

None 10.2% 0.87 0.37 8.5% 0.71 0.30
Global 9.7% 0.75 0.35 7.2% 0.60 0.26
FDA [135] 10.3% 0.62 0.36 9.1% 0.58 0.31
AM-norm [111] 8.0% 0.63 0.29 6.5% 0.53 0.24
AS-norm [108] 7.8% 0.50 0.27 7.0% 0.47 0.25
AD-norm 6.9% 0.52 0.25 6.4% 0.50 0.23

AD+AS-norm 7.2% 0.49 0.25 6.3% 0.46 0.23

highlight that although AS-norm performs slightly better in very low false acceptance
regions, AD-norm is more effective over a wider range of applications.

Moving on to SRE19 (Table 5.17), AS-norm and AD-norm perform similarly,
while AM-norm performs poorly with respect to these two methods. For the out-of-
domain scenario, AD-norm provides a slight improvement, while AS-norm achieves
lower values in presence of partially matching training and evaluation data. In
perspective, for the in-domain scenario, PLDA trained on SRE18 data only achieve
an 𝐸𝐸𝑅, 𝐶𝑚𝑖𝑛

𝑝𝑟𝑖𝑚
and 𝐶𝑙𝑙𝑟 of 4.4%, 0.38 and 0.17 respectively. It is worth noting, that,

in the PSVM case for the mixed scenario, the unnormalized score provides the best
results.

In both Tables, 5.16 and 5.17, the last row reports results obtained by taking the
average of AD-norm and AS-norm scores, after standardizing non-target scores to unit
variance. This is done because we think there may be complementary information
in the AS-norm variance normalization effect, which is not possible in AD-norm.
This assumption proves to be beneficial for all cases, the AD+AS-norm approach

106 Experimental Results

Table 5.17 Comparison of different normalization approaches on SRE 2019 datasets.
In bold (i) results of the best single method for each training list and backend
combination, and (ii) fusion results equal to or improving those of the best single
method.

SRE 2019
PLDA PSVM

Training Normalization EER 𝐶𝑚𝑖𝑛
𝑝𝑟𝑖𝑚 𝐶∗

𝑙𝑙𝑟
EER 𝐶𝑚𝑖𝑛

𝑝𝑟𝑖𝑚 𝐶∗
𝑙𝑙𝑟list method

Switchboard
+

Mixer

None 9.7% 0.59 0.34 7.1% 0.59 0.26
Global 9.0% 0.56 0.31 5.6% 0.49 0.21
FDA [135] 9.0% 0.58 0.32 6.9% 0.50 0.25
AM-norm [111] 10.3% 0.67 0.35 6.2% 0.50 0.23
AS-norm [108] 6.5% 0.52 0.24 4.9% 0.43 0.19
AD-norm 6.2% 0.46 0.23 5.1% 0.41 0.19

AD+AS-norm 6.1% 0.46 0.23 4.7% 0.39 0.18

Switchboard
+

Mixer
+

SRE18

None 6.4% 0.44 0.23 3.6% 0.36 0.14
Global 6.3% 0.45 0.23 3.8% 0.34 0.15
FDA [135] 8.7% 0.57 0.31 6.8% 0.49 0.25
AM-norm [111] 7.4% 0.51 0.27 4.4% 0.38 0.17
AS-norm [108] 4.7% 0.40 0.18 3.9% 0.35 0.15
AD-norm 5.0% 0.38 0.19 4.1% 0.36 0.16

AD+AS-norm 4.7% 0.37 0.18 3.8% 0.33 0.15

provides similar or slightly better results with respect to the best results found before.
In particular, there is a consistent improvement compared to AS-norm.

In Figure 5.12 we further analyze the effects of the cohort size, 𝐾 , for the different
normalization approaches. While SRE19 results are almost not affected by the
choice of 𝐾, this is not true for SRE 2016. The absence of cross-validation data
may complicate the selection of an optimal 𝐾 value for a given dataset. For some
combinations of backend and normalization models smaller cohort sizes may be
more effective, although the relative performance of the approaches remains similar.
A cohort size of K = 200 provides a good trade-off for the different datasets.

5.4 Calibration and Normalization Results 107

100 200 300 400 600 800
0.2

0.25

0.3

0.35

Adaptive cohort size

𝐶
∗ 𝑙𝑙𝑟

AD-norm (PLDA) AD-norm (PSVM)
AM-norm (PLDA) AM-norm (PSVM)
AS-norm (PLDA) AS-norm (PSVM)

100 200 300 400 600 800
0.15
0.2

0.25
0.3

0.35

Adaptive cohort size

𝐶
∗ 𝑙𝑙𝑟

Figure 5.12 𝐶∗
𝑙𝑙𝑟

as a function of the cohort size. Left: SRE 2016. Right: SRE 2019.

Chapter 6

Conclusions

In this work, we outlined our contribution to the language recognition task and to
the calibration problem. We have employed state-of-the-art models and techniques
well-established in the speaker verification field to address language detection with
scarce data scenarios. The models we developed proved successful, achieving highly
competitive results in the NIST language recognition evaluation challenge of 2022.

Regarding our contribution to the calibration problem, we have introduced a
generative framework that incorporates utterance-dependent mis-calibration sources.
This method can directly handle utterance duration at the calibration level and as a
generative model, it can be used in scenarios with missing labels. Moreover, it show
comparable or superior performance to discriminative methods.

We have also proposed a new discriminative approach for trial-dependent calibra-
tion, C-norm. Score normalization statistics are used as side information to enrich
the standard logistic regression model. Additionally, we have also introduced an
alternative method, the AD-norm adaptive normalization thecnique. We employed the
adaptive score normalization (AS-norm) cohort selection mechanism to effectively
re-center enrollment and test speaker embeddings. Our results show that adaptive
data normalization achieves similar or superior performance with lower scoring time
compared to AS-norm.

Bibliography

[1] Lawrence R. Rabiner and Biing-Hwang Juang. Fundamentals of speech
recognition. In Prentice Hall signal processing series, 1993.

[2] S. Davis and Paul Mermelstein. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken se. 1980.

[3] Christopher M. Bishop. Pattern recognition and machine learning (information
science and statistics). 2006.

[4] Douglas A. Reynolds and Richard C. Rose. Robust text-independent speaker
identification using gaussian mixture speaker models. IEEE Trans. Speech
Audio Process., 3:72–83, 1995.

[5] Douglas A. Reynolds. Comparison of background normalization methods for
text-independent speaker verification. In EUROSPEECH, 1997.

[6] Douglas A. Reynolds, Thomas F. Quatieri, and Robert B. Dunn. Speaker
verification using adapted gaussian mixture models. Digit. Signal Process.,
10:19–41, 2000.

[7] Patrick Kenny. Joint factor analysis of speaker and session variability: Theory
and algorithms. 2006.

[8] Patrick Kenny, Gilles Boulianne, Pierre Ouellet, and Pierre Dumouchel.
Speaker and session variability in gmm-based speaker verification. IEEE
Transactions on Audio, Speech, and Language Processing, 15:1448–1460,
2007.

[9] Patrick Kenny, Gilles Boulianne, Pierre Ouellet, and Pierre Dumouchel. Joint
factor analysis versus eigenchannels in speaker recognition. IEEE Transactions
on Audio, Speech, and Language Processing, 15:1435–1447, 2007.

[10] Niko Brümmer, Albert Strasheim, Valiantsina Hubeika, Pavel Matejka, Luká
Burget, and Ondrej Glembek. Discriminative acoustic language recognition
via channel-compensated gmm statistics. In Interspeech, 2009.

[11] Najim Dehak. Discriminative and generative approaches for long- and short-
term speaker characteristics modeling: application to speaker verification.
2009.

110 Bibliography

[12] Najim Dehak, Patrick Kenny, Réda Dehak, Pierre Dumouchel, and Pierre
Ouellet. Front-end factor analysis for speaker verification. IEEE Transactions
on Audio, Speech, and Language Processing, 19:788–798, 2011.

[13] Yun Lei, Nicolas Scheffer, Luciana Ferrer, and Mitchell McLaren. A novel
scheme for speaker recognition using a phonetically-aware deep neural net-
work. 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1695–1699, 2014.

[14] Daniel Garcia-Romero, Xiaohui Zhang, Alan McCree, and Daniel Povey.
Improving speaker recognition performance in the domain adaptation challenge
using deep neural networks. 2014 IEEE Spoken Language Technology
Workshop (SLT), pages 378–383, 2014.

[15] Paul Covington, Jay K. Adams, and Emre Sargin. Deep neural networks
for youtube recommendations. Proceedings of the 10th ACM Conference on
Recommender Systems, 2016.

[16] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified
embedding for face recognition and clustering. 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 815–823, 2015.

[17] Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables.
ArXiv, abs/1604.06737, 2016.

[18] Yochai Konig, Larry Heck, Mitch Weintraub, and Kemal S. Sonmez. Nonlinear
discriminant feature extraction for robust text-independent speaker recognition.
1997.

[19] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[20] Larry Heck, Yochai Konig, M. Kemal Sönmez, and Mitch Weintraub. Robust-
ness to telephone handset distortion in speaker recognition by discriminative
feature design. Speech Commun., 31:181–192, 2000.

[21] Zhongxin Bai and Xiao-Lei Zhang. Speaker recognition based on deep learning:
An overview. Neural networks : the official journal of the International Neural
Network Society, 140:65–99, 2020.

[22] Alicia Lozano-Diez, Oldrich Plchot, Pavel Matejka, and Joaquín González-
Rodríguez. Dnn based embeddings for language recognition. 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5184–5188, 2018.

[23] Salvatore Sarni, Sandro Cumani, Sabato Marco Siniscalchi, and Andrea
Bottino. Description and analysis of the kpt system for nist language recognition
evaluation 2022. INTERSPEECH 2023, 2023.

http://www.deeplearningbook.org

Bibliography 111

[24] Warren S. McCulloch and Walter H. Pitts. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Biology, 52:99–115,
1990.

[25] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65 6:386–408,
1958.

[26] Kunihiko Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, 36:193–202, 1980.

[27] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E.
Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Backpropagation applied
to handwritten zip code recognition. Neural Computation, 1:541–551, 1989.

[28] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. ArXiv, abs/1502.03167,
2015.

[29] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Instance normal-
ization: The missing ingredient for fast stylization. ArXiv, abs/1607.08022,
2016.

[30] Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization.
ArXiv, abs/1607.06450, 2016.

[31] Juyang Weng, Narendra Ahuja, and Thomas S. Huang. Cresceptron: a
self-organizing neural network which grows adaptively. [Proceedings 1992]
ĲCNN International Joint Conference on Neural Networks, 1:576–581 vol.1,
1992.

[32] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
internal representations by error propagation. 1986.

[33] Sebastian Ruder. An overview of gradient descent optimization algorithms.
ArXiv, abs/1609.04747, 2016.

[34] Shun-ichi Amari. Natural gradient works efficiently in learning. Neural
Computation, 10:251–276, 1998.

[35] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. Parallel training
of dnns with natural gradient and parameter averaging. arXiv: Neural and
Evolutionary Computing, 2014.

[36] Boris Polyak. Some methods of speeding up the convergence of iteration
methods. Ussr Computational Mathematics and Mathematical Physics, 4:1–17,
1964.

112 Bibliography

[37] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. J. Mach. Learn. Res., 12:2121–
2159, 2011.

[38] Matthew D. Zeiler. Adadelta: An adaptive learning rate method. ArXiv,
abs/1212.5701, 2012.

[39] Tĳmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning, 4(2):26–31, 2012.

[40] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2014.

[41] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song.
Sphereface: Deep hypersphere embedding for face recognition. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
6738–6746, 2017.

[42] Feng Wang, Jian Cheng, Weiyang Liu, and Haĳun Liu. Additive margin
softmax for face verification. IEEE Signal Processing Letters, 25:926–930,
2018.

[43] Jiankang Deng, Jia Guo, and Stefanos Zafeiriou. Arcface: Additive angular
margin loss for deep face recognition. 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 4685–4694, 2019.

[44] Xu Xiang, Shuai Wang, Houjun Huang, Yanmin Qian, and Kai Yu. Margin
matters: Towards more discriminative deep neural network embeddings for
speaker recognition. 2019 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA ASC), pages 1652–1656,
2019.

[45] Fadi Boutros, Naser Damer, Florian Kirchbuchner, and Arjan Kuĳper. Elastic-
face: Elastic margin loss for deep face recognition. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pages
1577–1586, 2021.

[46] Jichao Jiao, Weilun Liu, Yaokai Mo, Jian Jiao, Zhong liang Deng, and Xinping
Chen. Dyn-arcface: dynamic additive angular margin loss for deep face
recognition. Multimedia Tools and Applications, 80:25741 – 25756, 2021.

[47] Jiankang Deng, J. Guo, Tongliang Liu, Mingming Gong, and Stefanos
Zafeiriou. Sub-center arcface: Boosting face recognition by large-scale noisy
web faces. In European Conference on Computer Vision, 2020.

[48] Miao Zhao, Yufeng Ma, Yiwei Ding, Yu Zheng, Min Liu, and Minqiang Xu.
Multi-query multi-head attention pooling and inter-topk penalty for speaker
verification. ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6737–6741, 2021.

Bibliography 113

[49] Alexander H. Waibel, Toshiyuki Hanazawa, Geoffrey E. Hinton, Kiyohiro
Shikano, and Kevin J. Lang. Phoneme recognition using time-delay neural
networks. IEEE Trans. Acoust. Speech Signal Process., 37:328–339, 1989.

[50] David Snyder, Daniel Garcia-Romero, Gregory Sell, Alan McCree, Daniel
Povey, and Sanjeev Khudanpur. Speaker recognition for multi-speaker conver-
sations using x-vectors. ICASSP 2019 - 2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5796–5800,
2019.

[51] Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan Xu, Mahsa Arab
Yarmohammadi, and Sanjeev Khudanpur. Semi-orthogonal low-rank matrix
factorization for deep neural networks. In Interspeech, 2018.

[52] Tara N. Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana
Ramabhadran. Low-rank matrix factorization for deep neural network training
with high-dimensional output targets. 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 6655–6659, 2013.

[53] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778, 2016.

[54] Hossein Zeinali, Shuai Wang, Anna Silnova, Pavel Matejka, and Oldrich
Plchot. But system description to voxceleb speaker recognition challenge 2019.
ArXiv, abs/1910.12592, 2019.

[55] Daniel Garcia-Romero, Gregory Sell, and Alan McCree. Magneto: X-vector
magnitude estimation network plus offset for improved speaker recognition.
In The Speaker and Language Recognition Workshop, 2020.

[56] João Monteiro, Md. Jahangir Alam, and Tiago H. Falk. Residual convolu-
tional neural network with attentive feature pooling for end-to-end language
identification from short-duration speech. Comput. Speech Lang., 58:364–376,
2019.

[57] Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xinyu Zhang, Ming-Hsuan
Yang, and Philip H. S. Torr. Res2net: A new multi-scale backbone architecture.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 43:652–662,
2019.

[58] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all
you need. In Neural Information Processing Systems, 2017.

[59] Koji Okabe, Takafumi Koshinaka, and Koichi Shinoda. Attentive statistics
pooling for deep speaker embedding. In Interspeech, 2018.

[60] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. Squeeze-and-
excitation networks. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7132–7141, 2017.

114 Bibliography

[61] Jenthe Thienpondt, Brecht Desplanques, and Kris Demuynck. Integrating fre-
quency translational invariance in tdnns and frequency positional information
in 2d resnets to enhance speaker verification. In Interspeech, 2021.

[62] Saurabh Kataria, Phani Sankar Nidadavolu, Jesús Villalba, Nanxin Chen,
Paola García, and Najim Dehak. Feature enhancement with deep feature losses
for speaker verification. ICASSP 2020 - 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 7584–7588,
2019.

[63] Li Zhang, Qing Wang, and Lei Xie. Duality temporal-channel-frequency
attention enhanced speaker representation learning. 2021 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), pages 206–213,
2021.

[64] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui
Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, and Ruoming
Pang. Conformer: Convolution-augmented transformer for speech recognition.
ArXiv, abs/2005.08100, 2020.

[65] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and
Ruslan Salakhutdinov. Transformer-xl: Attentive language models beyond a
fixed-length context. ArXiv, abs/1901.02860, 2019.

[66] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weĳun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. ArXiv,
abs/1704.04861, 2017.

[67] Brecht Desplanques, Jenthe Thienpondt, and Kris Demuynck. Ecapa-tdnn:
Emphasized channel attention, propagation and aggregation in tdnn based
speaker verification. In Interspeech, 2020.

[68] Zhuang Liu, Hanzi Mao, Chaozheng Wu, Christoph Feichtenhofer, Trevor
Darrell, and Saining Xie. A convnet for the 2020s. 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 11966–11976,
2022.

[69] Bei Liu, Zhengyang Chen, and Yanmin Qian. Depth-first neural architecture
with attentive feature fusion for efficient speaker verification. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 31:1825–1838,
2023.

[70] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2015.

[71] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.

Bibliography 115

2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4510–4520, 2018.

[72] David Snyder, Daniel Garcia-Romero, Alan McCree, Gregory Sell, Daniel
Povey, and Sanjeev Khudanpur. Spoken language recognition using x-vectors.
In The Speaker and Language Recognition Workshop, 2018.

[73] Woohyun Kang, Jahangir Alam, and Abderrahim Fathan. Deep learning-based
end-to-end spoken language identification system for domain-mismatched
scenario. In International Conference on Language Resources and Evaluation,
2022.

[74] Nist 2022 language recognition evaluation plan. 2022.

[75] Sergey Ioffe. Probabilistic linear discriminant analysis. In European Confer-
ence on Computer Vision, 2006.

[76] Patrick Kenny. Bayesian speaker verification with heavy-tailed priors. In The
Speaker and Language Recognition Workshop, 2010.

[77] Daniel Garcia-Romero and Carol Y. Espy-Wilson. Analysis of i-vector length
normalization in speaker recognition systems. In Interspeech, 2011.

[78] Niko Brümmer and Edward de Villiers. The speaker partitioning problem. In
The Speaker and Language Recognition Workshop, 2010.

[79] Sandro Cumani, Niko Brümmer, Luká Burget, Pietro Laface, Oldrich Plchot,
and Vasileios Vasilakakis. Pairwise discriminative speaker verification in
the i-vector space. IEEE Transactions on Audio, Speech, and Language
Processing, 21:1217–1227, 2011.

[80] Sandro Cumani and Pietro Laface. Large-scale training of pairwise support
vector machines for speaker recognition. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 22:1590–1600, 2014.

[81] Kevin P. Murphy. Machine learning - a probabilistic perspective. In Adaptive
computation and machine learning series, 2012.

[82] Niko Brümmer. Measuring, refining and calibrating speaker and language
information extracted from speech. PhD thesis, 2010.

[83] George R. Doddington, Mark A. Przybocki, Alvin F. Martin, and Douglas A.
Reynolds. The nist speaker recognition evaluation - overview, methodology,
systems, results, perspective. Speech Commun., 31:225–254, 2000.

[84] Niko Brümmer and Johan A. du Preez. Application-independent evaluation of
speaker detection. In Computer Speech and Language, 2006.

[85] David A. van Leeuwen and Niko Brümmer. An introduction to application-
independent evaluation of speaker recognition systems. In Speaker Classifica-
tion, 2007.

116 Bibliography

[86] Niko Brümmer, Luká Burget, Jan Honza ernocký, Ondrej Glembek, Frantisek
Grézl, Martin Karafiát, David A. van Leeuwen, Pavel Matejka, Petr Schwarz,
and Albert Strasheim. Fusion of heterogeneous speaker recognition systems
in the stbu submission for the nist speaker recognition evaluation 2006. IEEE
Transactions on Audio, Speech, and Language Processing, 15:2072–2084,
2007.

[87] Niko Brümmer and George R. Doddington. Likelihood-ratio calibration using
prior-weighted proper scoring rules. In Interspeech, 2013.

[88] David A. van Leeuwen and Niko Brümmer. The distribution of calibrated
likelihood-ratios in speaker recognition. In Interspeech, 2013.

[89] Sandro Cumani. On the distribution of speaker verification scores: Generative
models for unsupervised calibration. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 29:547–562, 2021.

[90] Miranti Indar Mandasari, Rahim Saeidi, Mitchell McLaren, and David A. van
Leeuwen. Quality measure functions for calibration of speaker recognition
systems in various duration conditions. IEEE Transactions on Audio, Speech,
and Language Processing, 21:2425–2438, 2013.

[91] Miranti Indar Mandasari, Rahim Saeidi, and David A. van Leeuwen. Quality
measures based calibration with duration and noise dependency for speaker
recognition. Speech Commun., 72:126–137, 2015.

[92] Andreas Nautsch, Rahim Saeidi, Christian Rathgeb, and Christoph Busch.
Robustness of quality-based score calibration of speaker recognition systems
with respect to low-snr and short-duration conditions. In The Speaker and
Language Recognition Workshop, 2016.

[93] Luciana Ferrer, Mitchell McLaren, and Niko Brümmer. A speaker verification
backend with robust performance across conditions. Comput. Speech Lang.,
71:101258, 2021.

[94] Sandro Cumani and Salvatore Sarni. A generative model for duration-
dependent score calibration. In Interspeech, 2021.

[95] Sandro Cumani and Salvatore Sarni. The distributions of uncalibrated speaker
verification scores: A generative model for domain mismatch and trial-
dependent calibration. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 31:2204–2219, 2023.

[96] Zenna Tavares, Xin Zhang, Edgar Minaysan, Javier Burroni, Rajesh Ranganath,
and Armando Solar-Lezama. The random conditional distribution for higher-
order probabilistic inference. ArXiv, abs/1903.10556, 2019.

[97] Sandro Cumani, Ondrej Glembek, Niko Brümmer, Edward de Villiers, and
Pietro Laface. Gender independent discriminative speaker recognition in
i-vector space. 2012 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 4361–4364, 2012.

Bibliography 117

[98] Luká Burget, Oldrich Plchot, Sandro Cumani, Ondrej Glembek, Pavel Matejka,
and Niko Brümmer. Discriminatively trained probabilistic linear discriminant
analysis for speaker verification. 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4832–4835, 2011.

[99] Sandro Cumani, Oldrich Plchot, and Pietro Laface. On the use of i–vector
posterior distributions in probabilistic linear discriminant analysis. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 22:846–857, 2014.

[100] Patrick Kenny, Themos Stafylakis, Pierre Ouellet, Md. Jahangir Alam, and
Pierre Dumouchel. Plda for speaker verification with utterances of arbitrary
duration. 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 7649–7653, 2013.

[101] Ondrej Glembek, Luká Burget, Pavel Matejka, Martin Karafiát, and Patrick
Kenny. Simplification and optimization of i-vector extraction. 2011 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 4516–4519, 2011.

[102] Sandro Cumani. Fast scoring of full posterior plda models. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 23:2036–2045,
2015.

[103] David Snyder, Daniel Garcia-Romero, Gregory Sell, Daniel Povey, and Sanjeev
Khudanpur. X-vectors: Robust dnn embeddings for speaker recognition. 2018
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 5329–5333, 2018.

[104] Niko Brümmer, Anna Silnova, Luká Burget, and Themos Stafylakis. Gaussian
meta-embeddings for efficient scoring of a heavy-tailed plda model. ArXiv,
abs/1802.09777, 2018.

[105] Roland Auckenthaler, Michael J. Carey, and Harvey Lloyd-Thomas. Score
normalization for text-independent speaker verification systems. Digit. Signal
Process., 10:42–54, 2000.

[106] Douglas E. Sturim and Douglas A. Reynolds. Speaker adaptive cohort selection
for tnorm in text-independent speaker verification. Proceedings. (ICASSP ’05).
IEEE International Conference on Acoustics, Speech, and Signal Processing,
2005., 1:I/741–I/744 Vol. 1, 2005.

[107] Zahi N. Karam, William M. Campbell, and Najim Dehak. Towards reduced
false-alarms using cohorts. 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4512–4515, 2011.

[108] Sandro Cumani, Pier Domenico Batzu, Daniele Colibro, Claudio Vair, Pietro
Laface, and Vasileios Vasilakakis. Comparison of speaker recognition ap-
proaches for real applications. In Interspeech, 2011.

118 Bibliography

[109] Sandro Cumani and Salvatore Sarni. Impostor score statistics as quality
measures for the calibration of speaker verification systems. In The Speaker
and Language Recognition Workshop, 2022.

[110] Sandro Cumani and Salvatore Sarni. From adaptive score normalization to
adaptive data normalization for speaker verification systems. INTERSPEECH
2023, 2023.

[111] Mitchell McLaren, Md. Hafizur Rahman, Diego Castán, Mahesh Kumar Nand-
wana, and Aaron D. Lawson. Adaptive mean normalization for unsupervised
adaptation of speaker embeddings. In The Speaker and Language Recognition
Workshop, 2020.

[112] Sandro Cumani and Pietro Laface. Exact memory-constrained upgma for large
scale speaker clustering. Pattern Recognit., 95:235–246, 2019.

[113] Arsha Nagrani, Joon Son Chung, Weidi Xie, and Andrew Zisserman. Voxceleb:
Large-scale speaker verification in the wild. Computer Science and Language,
2019.

[114] David Snyder, Guoguo Chen, and Daniel Povey. Musan: A music, speech,
and noise corpus. ArXiv, abs/1510.08484, 2015.

[115] Kong Aik LEE, Tomi H. Kinnunen, Daniele Colibro, Claudio Vair, Andreas
Nautsch, Hanwu Sun, Liang He, Tianyu Liang, Qiongqiong Wang, Mickael
Rouvier, Pierre-Michel Bousquet, Rohan Kumar Das, Ignacio Viñals Bailo,
Meng Liu, H’ector Deldago, Xuechen Liu, Md. Sahidullah, Sandro Cumani,
Boning Zhang, Koji Okabe, Hitoshi Yamamoto, Ruĳie Tao, Haizhou Li,
Alfonso Ortega Gim’enez, Longbiao Wang, and Luis Buera. I4u system
description for nist sre’20 cts challenge. ArXiv, abs/2211.01091, 2022.

[116] The nist 2018 speaker recognition evaluation. 2018.

[117] The nist 2019 speaker recognition evaluation: Cts challenge. 2019.

[118] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In
International Conference on Learning Representations, 2017.

[119] Leslie N. Smith. Cyclical learning rates for training neural networks. 2017
IEEE Winter Conference on Applications of Computer Vision (WACV), pages
464–472, 2015.

[120] David Snyder, Jesús Villalba, Nanxin Chen, Daniel Povey, Gregory Sell, Najim
Dehak, and Sanjeev Khudanpur. The jhu speaker recognition system for the
voices 2019 challenge. In Interspeech, 2019.

[121] Jesús Villalba, Nanxin Chen, David Snyder, Daniel Garcia-Romero, Alan
McCree, Gregory Sell, Jonas Borgstrom, Leibny Paola García-Perera, Fred
Richardson, Réda Dehak, Pedro A. Torres-Carrasquillo, and Najim Dehak.
State-of-the-art speaker recognition with neural network embeddings in nist
sre18 and speakers in the wild evaluations. Comput. Speech Lang., 60, 2020.

Bibliography 119

[122] Svetlana Tchistiakova. Time delay neural network. Available at
=https://kaleidoescape.github.io/tdnn/, Nov 2019.

[123] Mirco Ravanelli, Titouan Parcollet, Peter William VanHarn Plantinga, Aku
Rouhe, Samuele Cornell, Loren Lugosch, Cem Subakan, Nauman Dawalatabad,
Abdelwahab Heba, Jianyuan Zhong, Ju-Chieh Chou, Sung-Lin Yeh, Szu-Wei
Fu, Chien-Feng Liao, E. N. Rastorgueva, Franccois Grondin, William Aris,
Hwidong Na, Yan Gao, Renato De Mori, and Yoshua Bengio. Speechbrain: A
general-purpose speech toolkit. ArXiv, abs/2106.04624, 2021.

[124] NIST 2017 language recognition evaluation plan, 2017. Avail-
able at https://www.nist.gov/system/files/documents/2017/09/29/lre17_eval_
plan-2017-09-29_v1.pdf.

[125] Najim Dehak, Pedro A. Torres-Carrasquillo, Douglas A. Reynolds, and Réda
Dehak. Language recognition via i-vectors and dimensionality reduction. In
Interspeech, 2011.

[126] NIST 2022 language recognition evaluation plan, 2022. Available at https:
//lre.nist.gov/uassets/3.

[127] Yooyoung Lee, Craig S. Greenberg, Eliot Godard, Asad Anwar Butt, Elliot
Singer, Trang Nguyen, Lisa P. Mason, and Douglas A. Reynolds. The 2022
nist language recognition evaluation. ArXiv, abs/2302.14624, 2023.

[128] Mitchell McLaren, Luciana Ferrer, Diego Castán, and Aaron D. Lawson. The
speakers in the wild (sitw) speaker recognition database. In Interspeech, 2016.

[129] Patrick Kenny, Themos Stafylakis, Pierre Ouellet, Vishwa Gupta, and Md. Ja-
hangir Alam. Deep neural networks for extracting baum-welch statistics
for speaker recognition. The Speaker and Language Recognition Workshop
(Odyssey 2014), 2014.

[130] Sandro Cumani, Pietro Laface, and Farzana Kulsoom. Speaker recognition by
means of acoustic and phonetically informed gmms. In Interspeech, 2015.

[131] Sandro Cumani and Pietro Laface. Speaker recognition using e–vectors.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26:736–
748, 2018.

[132] Bianca Zadrozny and Charles Peter Elkan. Transforming classifier scores into
accurate multiclass probability estimates. Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining,
2002.

[133] Sandro Cumani, Oldrich Plchot, and Pietro Laface. Probabilistic linear dis-
criminant analysis of i-vector posterior distributions. 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 7644–7648,
2013.

=
https://www.nist.gov/system/files/documents/2017/09/29/lre17_eval_plan-2017-09-29_v1.pdf
https://www.nist.gov/system/files/documents/2017/09/29/lre17_eval_plan-2017-09-29_v1.pdf
https://lre.nist.gov/uassets/3
https://lre.nist.gov/uassets/3

120 Bibliography

[134] Pavel Matejka, Ondrej Novotný, Oldrich Plchot, Luká Burget, Mireia Díez
Sánchez, and Jan Honza ernocký. Analysis of score normalization in multilin-
gual speaker recognition. In Interspeech, 2017.

[135] Pierre-Michel Bousquet and Mickael Rouvier. On robustness of unsupervised
domain adaptation for speaker recognition. In Interspeech, 2019.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Speaker Recognition
	1.2 Language Recognition
	1.3 Backend Model
	1.4 Outline

	2 Audio modeling
	2.1 Feature extraction
	2.1.1 Sampling, quantization and filtering
	2.1.2 Mel-scaled filter banks
	2.1.3 Mel-Frequency Cepstral Coefficients

	2.2 Speaker verification with Latent Variable Models
	2.2.1 i-vector
	2.2.2 Embeddings

	3 Deep Learning for embeddings extraction
	3.1 Neural Networks
	3.1.1 Feedforward Neural Networks
	3.1.2 Training

	3.2 Speaker and language recognition architectures
	3.2.1 Time Delay Neural Network
	3.2.2 ResNet
	3.2.3 Attention
	3.2.4 ECAPA-TDNN
	3.2.5 Neural Networks for Language Recognition

	4 Backends
	4.1 Scoring
	4.1.1 PLDA
	4.1.2 PSVM
	4.1.3 Bayes Decision

	4.2 Calibration
	4.2.1 Distribution of PLDA scores
	4.2.2 The V model, a generative model for mismatched data
	4.2.3 Utterance-dependent calibration

	4.3 Score-Normalization
	4.3.1 Impostor score statistics as quality measures
	4.3.2 From adaptive score normalization to adaptive data normalization

	5 Experimental Results
	5.0.1 Hardware Setup
	5.1 Speaker Embeddings
	5.1.1 Datasets
	5.1.2 Augmentation
	5.1.3 Extraction
	5.1.4 Evaluation

	5.2 Speaker Embedding Results
	5.2.1 Neural Networks for Speaker Verification

	5.3 Language Embedding Results
	5.3.1 NIST Language Recognition Evaluation 2022
	5.3.2 LRE22 Embedding Extractors
	5.3.3 LRE22 Backends
	5.3.4 LRE22 Results

	5.4 Calibration and Normalization Results
	5.4.1 The `3́9`42`"̇613A``45`47`"603AV-Var Model
	5.4.2 C-Norm
	5.4.3 AD-Norm

	6 Conclusions
	Bibliography

