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Self-assembling molecular systems are typically difficult to characterize due to their
complex internal structural dynamics. However, such intrinsic complexity plays a
key role in determining emergent collective behaviors that have a strong impact on
the physical properties of the entire molecular system.

This thesis proposes diverse methodologies that allow shedding light on the
dynamic behavior of complex molecular systems. Employing a combination of mul-
tiscale molecular models, molecular simulations, and innovative statistical analysis,
the work presented herein deepens the understanding of molecular and supramolec-
ular systems, and the properties that emerge within them. In the first part of this
thesis, I describe the use of minimalistic Coarse-Grained (mCG) models to study
different classes of self-assembled supramolecular polymers. Such models allow
investigating how these polymers dynamically communicate with each other in dif-
ferent systems and diverse external conditions, controlling the collective properties
of the supramolecular material. Moving forward, the study expands to include an-
other class of self-assembling supramolecular systems, i.e bi-component dynamical
micelles. This part of the research incorporates the combination of high-dimensional
structural descriptors - i.e. the Smooth Overlap of Atomic Position (SOAP) - and
of advanced Machine Learning approaches to identify relationships between the
chemical species that constitute such soft systems and their structural and dynamical
features. The thesis then introduces a new descriptor, named Local Environment
and Neighbor Shuffling (LENS), which tracks the changes in the identity-based
neighborhood around each particle. This tool, able to efficiently detect local fluctua-
tions in time, demonstrates its versatility across different systems, illustrating how
changes in the local neighborhoods relate to the collective dynamics of the systems.
Afterward, employing the comprehensive statistical approach proposed in the first
part of this thesis, complemented with a LENS-based analysis, we investigate the
stimuli-responsiveness of two classes of complex supramolecular polymers having
different cooperativity degrees. We thus characterize how cooperativity determines



the different responses of the systems’ equilibrium picture and communication net-
work, specifically when perturbed by an external chemical stimulus. Furthermore, by
integrating the dynamic characterization provided by LENS with a structural SOAP-
based analysis, we demonstrate how it is possible to obtain unique microscopic-level
structure-dynamic relationships relating the structural environment that populate a va-
riety of molecular systems to the dynamical events that originate from them. Finally,
I propose two exploratory works which contain ongoing results. In the first work,
combining mCG models and SOAP-based characterization, we link the topology of
the self-assembling building blocks to the equilibrium supramolecular structure that
they generate by a high throughput exploration based on a Genetic Algorithm. This
provides insights into the rational design of self-assembling molecules, revealing
how the topology of an individual component may influence the structural properties
of the whole assemblies. The second work provides an in-depth comparison of the
structural characterization given by the SOAP and the Atomic Cluster Expansion
(ACE) descriptors, understanding in what regimes they give equivalent results.

Overall, this thesis proposes a novel perspective and advanced analytical tools for
studying molecular systems and their internal complexity. Integrating computational
modeling, simulations, and advanced analysis methods, we provide a new approach
to studying the underlying principles of such complex systems. This not only enriches
our fundamental understanding of molecular and supramolecular systems’ behavior
but also opens new venues for the design of complex materials with controlled
emergent properties.
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