
19 November 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A taxonomy of metrics for GUI-based testing research: A systematic literature review / Coppola, Riccardo; Alégroth,
Emil. - In: INFORMATION AND SOFTWARE TECHNOLOGY. - ISSN 0950-5849. - 152:(2022).
[10.1016/j.infsof.2022.107062]

Original

A taxonomy of metrics for GUI-based testing research: A systematic literature review

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.infsof.2022.107062

Terms of use:

Publisher copyright

© 2022. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.infsof.2022.107062

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2971245 since: 2023-09-20T14:08:46Z

Elsevier

A Taxonomy of Metrics for GUI-based Testing

Research: A Systematic Literature Review

Riccardo Coppolaa, Emil Alégrothb

aDepartment of Control and Computer Engineering, Politecnico di Torino, Turin, Italy
bBlekinge Institute of Technology, Karlskrona, Sweden

Abstract

Context: GUI-based testing is a sub-field of software testing research that
has emerged in the last three decades. GUI-based testing techniques fo-
cus on verifying the functional conformance of the system under test (SUT)
through its graphical user interface. However, despite the research domains
growth, studies in the field have low reproducibility and comparability. One
observed cause of these phenomena is identified as a lack of research rigor
and commonly used metrics, including coverage metrics.

Objective: We aim to identify the most commonly used metrics in the
field and formulate a taxonomy of coverage metrics for GUI-based testing
research.

Method: We adopt an evidence-based approach to build the taxonomy
through a systematic literature review of studies in the GUI-based testing
domain. Identified papers are then analysed with Open and Axial Coding
techniques to identify hierarchical and mutually exclusive categories of met-
rics with common characteristics, usages, and applications.

Results: Through the analysis of 169 papers and 315 metric definitions, we
obtained a taxonomy with 55 codes (common names for metrics), 17 metric
categories, and 4 higher level categories: Functional Level, GUI Level, Model
Level and Code Level. We measure a higher number of mentions of Model
and Code level metrics over Functional and GUI level metrics.

Conclusions: We propose a taxonomy for use in future GUI-based testing
research to improve the general quality of studies in the domain. In addition,
the taxonomy is perceived to help enable more replication studies as well as
macro-analysis of the current body of research.

Keywords: Software Testing, GUI-based Testing, Coverage Metrics,
Taxonomies, Software Verification and Validation

Preprint submitted to Information and Software Technology September 13, 2022

PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

Taxonomies are an important tool to synthesise, summarize or structure
knowledge [1]. This knowledge can be presented in different ways, for instance
hierarchically, in tree structures or as paradigms. Regardless of structure, the
goal of a taxonomy is to provide guidance by establishing a common view of
how to interpret and use the current state of knowledge in a specific field in
a consistent manner. Taxonomies are therefore used not only for research [1]
but also industrial practice [2] and education [3].

In Software engineering the number of taxonomies is steadily increas-
ing, as shown by Usman et al. [1]. In their systematic mapping study from
2017, they identified 271 taxonomies (from 270 papers) within the field. Out
of these taxonomies, 27 (9.96%) were connected to the sub-field of Software
Testing, covering knowledge areas such as test challenge classification [2], ba-
sic testing concept definition [4], tool classification [5],model-based testing [6],
and search-based software testing [7].

The area of Software Testing is however vast and can be divided into
several sub-areas. One of these sub-areas is Graphical User Interface (GUI)-
based testing. This research area has over the past decades evolved in terms
of techniques as well as focus, from desktop systems to web-based and mobile
applications [8]. A change that is perceived to be caused by trends of usage
of GUI-based testing in industrial practice.

Although GUI-based testing differs between platforms and domains, there
are several fundamental similarities. For instance, the purpose of the tests is
generally focused on automating system-level test cases using some type of
scenario-based tests aimed at covering higher-level requirements, e.g. feature
requirements. Furthermore, whilst various test modelling techniques are used
(e.g. graphical models, scripts and recordings) and the tests are defined
by adopting different strategies (e.g., the usage of Domain Object Model,
or DOM, or image recognition) they typically exhibit similar behaviours.
These observations are, for instance, supported by the work of Nass et al.
that demonstrated, through a systematic literature review, that challenges
in GUI-based testing are persistent regardless of what is tested [8].

However, despite the fundamental similarities of different types of GUI-
based testing, an identified challenge within research is that studies seldom

2

provide comparable results and often lack well-defined coverage metrics. This
implies—although not unique to GUI-based testing as exemplified by Sieg-
mund [9] and Miller [10]—that meta-analysis becomes difficult and can ex-
plain why replication studies are uncommon. A perceived root cause for this
state of research is the aforementioned lack of commonly-used coverage met-
rics and/or metric definitions. Hence, looking at the body of research, we
note that studies often fail to adopt, define new, or redefine existing metrics.
This unfavorable phenomenon can be explained by the research areas’ lack
of concise definitions of suitable and available metrics.

The objective of this work is to address the use of heterogeneously defined
coverage metrics in GUI-based testing research. GUI-based testing, in this
paper, refers to tests that are performed through the system under test’s
(SUT) GUI, e.g. to test the SUT’s functional conformance to its require-
ments. This is achieved through the synthesis of metric definitions found in
the body of research, that are formulated into a taxonomy. The taxonomy
shall serve as a resource for researchers to (1) browse for suitable metrics for
studies on GUI-based testing and (2) as a reference for standardized defini-
tions of said metrics. Note that the taxonomy is delimited to presenting the
metrics and their definitions, it does not cover approaches of how to measure
them. We provide the interested reader with pointers to related literature
that can serve as further readings to correctly adopt and utilize the metrics.

The taxonomy is created through an evidence-based approach [11] via
a systematic literature review based on the guidelines defined by Fink [12].
Through coding analysis of 169 papers, 315 metric definitions are synthesized
that are clustered into 55 codes that are associated with four main categories
of coverage metrics used in GUI-based testing research. These categories are
Functional level, GUI level, Model level and Code level metrics. From these
results, a hierarchical taxonomy is formulated with four layers that present
the different types, and definitions, of commonly used metrics. The paper will
present the taxonomy and discuss its use case and importance in GUI-based
testing research.

The continuation of this paper is defined as follows. In section 2, we report
an extended background and motivation for this work as well as related work.
Section 3 presents the research design and methodology that was used. The
resulting taxonomy and metric definitions are then presented in Section 4,
and are further discussed in Section 5. Finally, the paper is concluded in
Section 6 along with possible directions for future work.

3

2. Background and Related Work

Software Engineering research has been critiqued for its lack of rigour of
research design and poor use of metrics [13, 14, 9, 10]. Metrics are crucial
to the scientific process [15] and, if not well defined, can hamper or prevent
replication [9] and macro-research since results from different studies can
not be compared [16, 10]. A stated reason for this phenomenon is a lack
of common nomenclature/definitions of metrics [17], resulting in researchers
re-defining existing metrics, defining new ones, or omitting completely the
usage of metrics.

Our observations from the sub-field of Software GUI-based testing show
that the challenges of heterogeneous use of metrics and lacking guidelines
for research are also prevalent. This observation is the main justification
for this work where we aim to use an evidence-based software engineering
[12] approach to gather definitions of coverage metrics from relevant research
articles and summarize and synthesize them into a common taxonomy. We
believe, given the importance of metrics in research [15], that such a taxon-
omy could be a crucial first step to improve the quality of research in the
Software GUI-based testing sub-field. In addition, such a taxonomy would
mitigate the diverse use of metrics and thereby enable other forms of research,
i.e. replications and macro-research, that are currently underrepresented in
the area.

2.1. GUI-based Testing

GUI-based testing is defined as a form of End-to-End functional testing of
a finite System Under Test (SUT), by exercising its graphical user interface
(GUI). GUI-based testing can be conducted either manually or through the
utilization of automated tools.

Several categorizations have been provided for GUI-based testing in re-
lated literature. Alégroth et al. classify the existing approaches to GUI-based
testing in three chronological generations, based on the type of information
that is used to find user interface elements on the screen (i.e., locators).
The first generation uses exact coordinates of the interface components to be
utilized in test cases [18].

Second generation GUI-based testing tools operate directly against a
model of the GUI. Such a model can be the standard description of the
GUI in a specific domain (e.g., XML layout files for Android, or the DOM

4

model for a web page), or a specific model employed by the GUI-based testing
technique to describe the SUT’s GUI (e.g., finite state machines or FSMs).

Third generation GUI-based testing, also referred to as Visual GUI Test-
ing (VGT), uses image recognition/computer vision algorithms in order to
interact and assert AUT correctness through its pictorial GUI.

Another categorization of automated GUI-based testing techniques can be
defined based on the way the test scripts are generated. In the field of mobile
GUI testing, Linares-Vasquez et al. provide a generalizable categorization of
the different methodologies for GUI-based test case generation [19].

Automation Frameworks and APIs serve as interfaces to obtain GUI-
related information for the hierarchy of components of the GUI, and to per-
form interactions with them. Examples of these tools are Selenium [20] for
web application testing, and Espresso for mobile (Android) testing [21].

Record and Replay tools have been defined to make the writing of test
scripts for GUI-based SUTs less time-consuming and error-prone. These
tools are based on the registration of interaction sequences with a human
tester against the GUI of the software, and the automated translation of
such sequences into a repeatable test script [22].

Automated Input Generation (AIG) techniques, allow the automation
of at least part of the inputs provided to the SUT. AIG techniques can
be roughly classified into three categories: random-based input generation,
systematic input generation, and model-based input generation.

2.2. Related Work

To the best of our knowledge, no secondary large-scale study has been pro-
vided in the field of testing to systematize the available knowledge about cov-
erage metrics for GUI-based testing. A tertiary study conducted by Garousi
et al. demonstrates the absence of secondary studies focused on the concept
of testing coverage [23].

Few secondary studies have reported classifications about coverage mea-
surements for specific domains of software testing. As an example, in their
systematic literature review about the application of search-based techniques
for model-based testing, Saeed et al. describe a set of adequacy criteria for
model-based testing, creating a taxonomy of coverage metrics. The taxon-
omy is composed of the following five categories: fault-based criteria, related
to the goal of the tests in detecting faults; data coverage criteria, related to
the coverage of boundary values in the test case generation; script-flow cri-
teria, related to the coverage of statements in the SUT’s source code; model-

5

flow coverage criteria, related to the coverage of transitions and paths in the
models of the SUT; requirement-based criteria, related to the coverage of the
requirements based on which the SUT is developed [24]. The study however
is limited to model-based approaches for GUI testing and does not provide
a finer categorization of the elicited categories to individual sub-metrics.

In their systematic literature review about Automated functional testing
of mobile applications, Tramontana et al. reported a set of evaluation metrics
for test approaches. They mention and describe effectiveness metrics (i.e.,
number of failures found), code coverage metrics (e.g., LOC coverage, method
coverage, branch coverage, activity coverage), mutation coverage (i.e., ability
in finding injected faults) [25]. The study however has limited generalizabil-
ity, since it analyzed only tools for mobile applications, and does not take
into account any coverage metric for model-based testing approaches.

Some focused and smaller-scale studies have provided conceptualizations
of coverage metrics for specific testing methodologies. Rechtberger et al.
provide an overview of test coverage criteria for test case generation in the
model-based testing field, specifically for SUTs modelled as Directed Graphs.
The article summarizes 14 most common test coverage criteria for Finite-
State-Machine-based test case generation[26].

3. Study Design

The objective of this work is to identify the most commonly used coverage
metrics in GUI-based testing research, through literature review, and define
a common taxonomy for the GUI-based testing community. This taxonomy
shall serve as a guide to align how metrics are used in GUI-based testing re-
search to simplify secondary and tertiary studies as well as study replication.
The objective is justified by the lack of guidance and established, common,
metrics of the GUI-based testing research domain and an identified variance
of which and how metrics are used in the discipline.

3.1. Research Questions

To facilitate the creation of a taxonomy of codes to meet the research
objective, a set of research questions were defined to guide the study. The
answers to these questions aim to give inputs to the formulation of the taxon-
omy. As a secondary objective, the study aims to identify meta-data to give
an overview of the current state of usage of coverage metrics in GUI-based
testing literature.

6

• RQ1: Metric Definition

– RQ1.1: Which are the coverage metrics used in GUI-based testing
literature?

– RQ1.2: Which are the main categories of coverage metrics used in
GUI-based testing literature?

• RQ2: Metric statistics

– RQ2.1: Which of the elicited metric codes and categories are the
most commonly used in the GUI-based testing literature?

– RQ2.2: How varied are the definitions of metrics used in GUI-
based testing literature?

– RQ2.3: How common are metrics used in GUI-based testing liter-
ature without providing any definition?

– RQ2.4: How has the usage of different types of coverage metrics
evolved over time?

– RQ2.5: How is the usage of different types of coverage metrics
related to the domain of the SUT?

– RQ2.6: How is the usage of different types of coverage metrics
related to the GUI testing approach employed?

RQ1 aims to elicit commonly used metrics from the literature to facilitate
a synthesis of metrics for the taxonomy. Complementarily, RQ2 aims to
provide meta-data about how existing metrics are used and if the nature of
the metrics has changed over the time span investigated in our literature
review.

3.2. Methodology

The methodology used for this work can be broken down into a set of
well defined steps, which are:

1. Literature review,

2. Data extraction and analysis, and

3. Formulation of taxonomy through Coding.

7

Table 1: Search strings

Academic repository Search string

IEEE Xplore GUI AND test* AND (coverage OR metric*)
ACM Digital Library GUI AND test* AND (coverage OR metric*) on ab-

stract and title
Science Direct (GUI OR ”Graphical User Interface”) AND (metrics

OR metric OR coverage) AND (test OR testing) in
Title, abstract or author-specified keywords

SpringerLink GUI AND test* AND (coverage OR metric*) on title
Google Scholar GUI AND test* AND (coverage OR metric*) on title

All phases were conducted by using the mini-Delphi method for face-to-
face meetings, with multiple one-hour meeting sessions between the authors.
This approach was used to define the RQs, perform research planning, define
categories of the axial coding, select the final metrics, and write the final
definitions. Each meeting was closed once a consensus was reached [27].

3.2.1. Literature review

The first step of our research was aimed at finding a set of sources that
could be used to find metrics for GUI-based testing coverage. To that extent,
we performed a targeted literature review by applying a specific search string
on a set of scientific literature repositories. We followed a subset of Kitchen-
ham’s guidelines to conducting Systematic Literature Reviews [28]. We did
not perform forward or backward snowballing after the first collection.

Selected Digital Libraries. As digital libraries for our search, we selected
IEEE Xplore, ACM Digital Library, Science Direct, Springer Link, and
Google Scholar.

Search Strings. We formulated our search strings to be as broad as possi-
ble, including the mandatory terms GUI (or Graphical User Interface),
testing, and coverage (or metric, or metrics). We did not limit our
search results to specific domains or testing phases. The search strings
that we defined for each digital library are reported in table 1. Because
of the high number of results returned, we limited the search on Sci-
ence Direct to title, abstract and keywords, on ACM Digital Library
to abstract and title, and on SpringerLink and Scholar to titles. To
enable reproducibility of the study, we limited our search results to the
end of September 2021.

8

Table 2: Quality checklist

Id Question Scoring

QC-01 Is there a clear statement of the goals of the research No=0; Partially=0.5; Yes = 1
QC-02 Are the research result well described? No=0; Partially=0.5; Yes = 1
QC-03 Validity threats and limitations are described? No=0; Yes=0
QC-04 How relevant is the study, measured by citations num-

ber?
Less than five=0; five to
ten=0.5; more than ten=1;

QC-05 Does the study clearly indicate the testing methodol-
ogy and procedure interested=

No=0; Partially=0.5; Yes=1;

QC-06 Does the study clearly indicate the metrics that are
used and how they are applied?

No=0; Partially=0.5; Yes=1;

QC-07 Does the study present the benefits and drawbacks of
adapting the metrics?

No=0; Yes=1

QC-08 Does the study clearly indicate the domain on which
the metrics are applied?

No=0; Yes=1;

QC-09 Does the study provide a clear discussion of the related
work and metrics?

No=0; Yes=1.

QC-10 Does the study provide an evaluation of the metrics
on real applications?

No=0; Yes=1.

QC-11 Does the study provide mathematical formulations of
the metrics?

No=0; Yes=1.

Inclusion Criteria. To ensure gathering only the sources relevant to our
research goals, we defined the following Inclusion Criteria:

• IC1: The source is directly related to the topic of Graphical User
Interface testing;

• IC2: The source defines or adopts explicitly metrics to measure
the coverage of the test execution;

• IC3: The source explicitly describes the way the test cases are
generated and/or executed;

• IC4: The source is an item of white literature with available full-
text and it is published in a peer-reviewed journal or conference
(companion) proceedings, i.e., the source is not grey literature;

• IC5: The source is written in a language that is directly compre-
hensible by the authors: English, Italian or Swedish;

• IC6: The source has been published before September 2021.

We do not explicitly list Exclusion Criteria since we consider them as
the opposite of the inclusion criteria.

Quality assessment of sources. We performed the quality assessment phase
of the sources by utilizing a simplified version of the quality checklist

9

template provided by Keele in the guidelines for performing systematic
literature reviews for performing systematic literature reviews in Soft-
ware Engineering [29], which was tailored for the quality assessment of
sources related to GUI-based testing. The quality assessment checklist
is reported in table 2. For each item, we obtained a normalized final
quality score in the range 0-10. All the sources who had a score higher
than 5 were accepted in the final pool of sources to examine.

At the end of the analysis of the final pool of sources, in fact, we experi-
enced the inability of finding new information. We considered this situation
as evidence of theoretical saturation in the sources that we considered.

3.2.2. Data Extraction and Analysis

Once the final pool of literature sources was defined, we extracted from
each paper all the metrics that were mentioned to measure coverage. For
each metric we collected:

• The name of the metric in the paper;

• The textual definition of the metric, if present;

• The mathematical definition of the metric, if present;

• The literature reference to the source where the metric is first defined,
if present.

We defined a set of inclusion criteria for the metrics to be included in our
pool:

• ICM1: The metric has to be used in the paper, and not just mentioned.
This inclusion criterion was defined to avoid repeated inclusions of base
metrics that are only mentioned (e.g., as possible alternatives);

• ICM2: The metric has to be empirical and measurable, used for the
evaluation and assessment of testing tools, techniques and methodolo-
gies;

• ICM3: If derived from one or more lower-level base metrics, the met-
ric has to clearly state how it is computed and on which metric(s) it
depends;

10

• ICM4: The metric has to be explicitly used for GUI-based testing.

We do not explicitly list Exclusion Criteria since we consider them as the
opposite of the inclusion criteria.

3.2.3. Open Coding

To define a taxonomy of coverage metrics for GUI-based testing, we ap-
plied Ralph’s guidelines for the construction of taxonomies and followed the
Grounded Theory approach [30]. We adopted the Straussian definition of
Grounded Theory, defining upfront our research questions, instead of mak-
ing them emerge from the results themselves [31].

We identify the site for our taxonomy construction as the pool of liter-
ature sources mined in the first phase of our study. The Data Collection
necessary for the creation of the taxonomy is performed through technical
observation of the literature sources.

The codes of the taxonomy were generated by the application of the Open
Coding technique, as defined in the Straussian Grounded Theory. Open
Coding is the procedure of analyzing text data, which is examined line by
line to capture the main concepts of the theory under construction, and the
categories (codes) that can be based on them. We adopted Open Coding
as a data-driven approach for the definition of the names of the lower-level
categories of the taxonomy (from now on, referred to as codes). We hence
formulated a set of common definitions to which we assigned the individual
metrics that were defined in the literature sources, by applying the procedure
detailed in the next paragraph. We considered the categories of metrics as
mutually exclusive (i.e., 1-N relationship between codes in the taxonomy and
metric definitions in the papers).

The taxonomy has been built incrementally, adding a new code every time
a new metric mined from the literature sources was considered unclassifiable
under the already available codes. The open coding procedure was performed
together by the authors of the manuscript, in two iterations, with the set of
metrics collected from the pool of literature sources.

3.2.4. Formulation of Metric Definitions

We followed the approach below to provide an harmonization of the def-
inition to be assigned to each code in the taxonomy.

For metrics that are not provided with a definition in the paper, we
performed the following steps:

11

• A code with the same name is searched in the taxonomy. If such code
is present, the metric is assigned to that code;

• If a code which is semantically equivalent to the name of the metric in
the paper is present, the metric is assigned to that code;

• If no equal or semantically equivalent codes are present in the taxon-
omy, a new code is created in the taxonomy.

For metrics that are provided with a definition in the paper, we performed
the following steps:

• A code with the exact same definition is searched in the taxonomy. If
such code is present, the metric is assigned to that code;

• A code with a semantically equivalent definition is searched in the tax-
onomy. If such code is present, the metric is assigned to that code (e.g.,
”percentage of the activities of the application under test that have been
visited” [32] and ”percentage of reached activities” [33]);

• A code with a definition that can be mathematically derived from the
one in the paper is searched in the taxonomy. If such code is present, the
metric is assigned to that code. For instance, for a numeric metric, the
total number, the average, or the percentage, were all considered under
the same code in the taxonomy (e.g., ”number of screens (activities)”
[34] and ratio of activities explored during the execution [35]).

• If no equivalent or mathematically derived definitions are found in the
taxonomy, the metric in the paper is assigned to the most closely related
code. In this phase, the definitions in the taxonomy can be modified
and adapted to be generalizable to the metric under consideration. As
an example, we can consider the metric definitions ”Percent of event
pairs in EFG covered” [36], ”Length-n Event-sequence Coverage” [37],
and ”number and percentage of t-sets (pairs or triples of events)” [38],
which were all filed under the code ”Multiple event coverage” with a
more general definition.

For the metrics that were grouped together as one code in our taxonomy,
we adopted a majority-based procedure to define a unique common name
in the taxonomy and the associated definition. Among all the metrics filed

12

under the same code, those that presented the exact same name and definition
to the selected one were considered as supporting our final definitions.

We resorted to our experience and judgement when the metrics were not
defined explicitly, or to clarify ambiguities about the assignation of a metric
to a code in the taxonomy.

3.2.5. Axial Coding

After applying the Open Coding procedure to find lower-level codes, we
applied Axial Coding to the found codes to construct a hierarchy in the tax-
onomy of metrics (i.e., by building categories of codes). As defined in the
Straussian Grounded Theory, Axial Coding is the process of understanding
how codes and related concepts are linked to one another, to identify a struc-
ture in the taxonomy and define levels in it. Axial Coding was applied by
performing two passes (by both the authors) over all the codes of the tax-
onomy, and defining themes (i.e., higher level categories) of metrics. New
themes were added to the taxonomy every time one code could not be filed
under already available ones. Since our objective was to build a multi-level
taxonomy, Axial Coding was applied recursively until no more code merging
was feasible.

4. Results

The application of the search strings allowed to gather 1483 sources; the
number was reduced to 1392 after duplicate removal; to 177 after the appli-
cation of inclusion and exclusion criteria; finally, to 169 after the application
of the quality assessment procedure. This final pool of sources included pa-
pers published between 1998 and 2021. In figure 1 we report the distribution
of the publication years of the manuscripts, which sees a peak in 2018 (17
manuscripts) immediately followed by 2010 and 2016 (16 manuscripts).

By analyzing the manuscripts, we extracted 315 different metric mentions
and/or usages. After the application of the open coding phase of our study
protocol, we obtained 55 codes (i.e., different metric definitions). The codes
and related definitions are considered as the main contribution of our work,
and are reported in tables 3∼6. In the following sections we discuss the
categories of codes to provide a frame at a higher level of abstraction that
can give guidance about the overall usages of each cluster of metric. The
interested reader is encouraged to analyze the individual definitions of the

13

Figure 1: Number of papers per year

metrics reported in the related table after having identified a metric category
of interest.

The application of Axial Coding allowed us to devise four main categories
and 16 sub-categories of metrics.

4.1. Metrics definition (RQ1)

The inferred taxonomy is graphically reported in Figure 2. We identify
four main categories of metrics, described in the following section. For each
category of metric, we describe the sub-categories that were derived after
the application of Axial Coding to the metric definitions mined from the
papers. For each category, we considered an Others sub-category where all
the metrics that could not be associated with other categories were included.
For each category, we provide our names and definitions of the synthesized
lowest-level metrics (in tables 3∼6), along with the references to the papers
providing in their text the exact same definition as the one we synthesized.
As supporting definitions, we do not consider definitions that are partially
divergent from the final definition that we obtained at the end of the code
generation phase described in section 3.2.4.

14

Figure 2: Taxonomy of Coverage Metrics15

Functional-level metrics: We define Functional-level coverage metrics as
the metrics that are related to the execution of use cases, and verifica-
tion of functional requirements of the SUT. Functional-Based metrics
can be measured at any level of software testing exercised, including
End-2-End or exploratory testing with no access to the SUT’s code,
i.e. black-box tests. The metrics in this category are not specific to
GUI-based testing.

In table 3 we report the definitions of all the metrics of this category
that were mined from our pool of sources.

We identify three main categories of Functional-level metrics:

Issues: Measurements of how many issues are detected during the
execution of the test suite. We consider as issues multiple types of
unexpected behaviours in the execution of the SUT, ranging from
exceptions triggered to visualization bugs, freezes and application
crashes. A critical factor when considering issues is, however, that
issue types vary in criticality—Many issues of a lower severity can
require less effort to fix than single issues of high severity. This
implication must be considered when using this metric to ensure
that low- and high-severity issues are not considered in the same
way.

Usage: To be used to test the quality of the SUT and/or to com-
pare different testing tools or approaches in terms of effectiveness.
The metrics are, as stated, severity-dependent, meaning that the
metric can not be used in general, rather, should be applied ac-
cording to the level of abstraction and severity of the issue being
evaluated.

Specification: Measurements of how well the formal specifications
of the SUT features are covered by the test suite.

Usage: To be used to perform end-to-end verification of a SUT.

Test verification: Verification of the capability of the GUI-based
tests to detect injected modifications in the SUT or to behave in
the same way in presence of invariant characteristics of the SUT.

Usage: These metrics are mainly used in the verification of test
case quality, e.g. during mutation analysis.

16

Table 3: Functional-level metrics definition
Sub-Category Metric Definition Supporting defs.

Issues Number of Failures How many failures are triggered —of a cer-
tain severity type— in the execution of the
SUT.

-

Issues Number of Faults How many faults are discovered after root-
cause analysis of failures manifested during
the execution of the test casesIn the different
studies we have considered undefined cover-
age for bugs, defects and issues as synonyms
of faults.

[39, 40]

Issues Number of Crashes Number of crashes triggered during the ex-
ecution of the SUT, where a crash leads to
the termination of the SUT’s process possi-
bly with a prompt of a dialogue.

[35, 41, 42]

Issues Number of Exceptions Number of exceptions triggered during the
execution of the SUT. It includes both
caught and uncaught exceptions triggered by
the tests.

[43]

Specification Business Rule Coverage Percentage of business rules covered by the
test cases executed against the SUT.

[44]

Specification Requirements Coverage How many requirements of the SUT speci-
fication have been covered by the executed
test cases.

-

Specification Feature Coverage Ratio between the number of tested func-
tionalities of the SUT by the total number
of identified functionalities for the SUT.

-

Test verification Invariant detection Invariant detection involves running a set of
test cases and inferring, from this, a set of
properties that hold on all test cases. In-
variants represent high-level functionality of
the underlying code and should be consistent
between test runs.

[45]

Test verification Mutation score Mutation score or mutation coverage is de-
fined as the ratio between the total mutants
discovered and the total mutants injected.

[46, 47]

Others Usage-oriented Coverage Specific metric for infotainment systems.
Defined as the number of functions covered
among all those offered by infotainment sys-
tems considered.

[48]

Others Application-oriented Cov-
erage

Specific metric for infotainment systems.
Defined as the coverage of different appli-
cations that may produce incoming data for
the infotainment system.

[48]

Others Perceived Coverage Metric defined for Usability testing, where
the subjects assessed the coverage of their
testing sequences by assessing the coverage
of each feature set of the SUT in a four-step
ordinal scale

[49]

Others Data Coverage Proportion of the equivalence classes of in-
puts covered by the test cases.

[50]

Others Notification Sites Specific metric for Android wear systems.
Defined as the number of possible types of
notifications, along with possible call sites
where they are issued, that are covered by a
test suite.

[51]

17

GUI-Level: We define as GUI-Level coverage metrics the metrics that are
based on the evaluation of pictorial components of the SUT as well as
their characteristics and properties, i.e., verification that components
are rendered and/or operate correctly. The metrics in this category are
specific to GUI-based testing.

In table 4 we report the definitions of all the metrics of this category
mined from our pool of sources.

We identified two main sub-categories of GUI-level metrics:

Screen Coverage: every SUT in any domain can be organized in
different screens that are traversed by the users to access differ-
ent features. Screen coverage metrics are quantitative measures
based on the count of screens that are traversed by test suites. As
such, this metric refers to the concrete screens of the application,
that are reached during the test case through proper navigation.
Screen coverage metrics hare therefore not adequate for logical
screens that can be changed dynamically at runtime, e.g., com-
ponents in web single page applications, or fragments in Android
applications.

Usage: To cover pages of the application.

Widget Coverage: every graphical user interface can be described as
a collection of different pictorial components, that can be used to
show information to the final user or to gather his/her input. We
generally refer to these components as Widgets. Widget Coverage
metrics are quantitative measures based on the count of widgets
that are exercised during the execution of a test suite.

Usage: To test the GUIs at a finer-grained level.

Model-level Metrics: We define as Model-Level the metrics that are based
on a representation of the SUT’s GUI according to a specific model.
The metrics in this category are specific to GUI-based testing.

In our categorization of these metrics, we did not discriminate between
the different specific models that are used in the studies (e.g., State
Charts, Finite State Machines, or Oriented Graphs). Instead, we divide
these metrics into sub-categories according to the type of atomic unit
they are based on.

18

Table 4: GUI-level metrics definition
Sub-Category Metric Definition Supporting defs.

Screen Coverage Page Coverage Number of reached pages during the explo-
ration of a generic SUT1.

[33, 32, 35, 52, 35,
34, 53, 54, 48]

Screen Coverage PCOV Proportion of conceptual pages that are cov-
ered by a headless crawler.

[55]

Screen Coverage Nested Pages Specific metric for Android Wear SUTs.
Nested pages are optionally used by a notifi-
cation to display supplementary information.
The coverage metric computes the number of
such pages opened by a test suite.

[51]

Widget Coverage Simple Widget Coverage Covered graphical components of the SUT,
the so-called widgets (i.e. buttons, labels,
text fields, scroll-bars, menus).

[56]

Widget Coverage Parameter-based Widget
Coverage

Number of parameter values for the widgets
that appear in the tests.

[54]

Others Action Coverage Ratio between the number of actions exe-
cuted by the users/testers in a real test ses-
sions, and the number of theoretical distinct
actions in a session built by a GUI analyzer.

[57]

Others Cell Coverage Proportion of GUI covered by same-size
blocks, to evaluate the GUI grid quality

[58]

In table 5 we report the definitions of all the metrics of this category
mined from our pool of sources.

Base Metrics: These metrics are based on the count of the different
states (i.e., the current screen of the SUT rendered, the combina-
tion of widgets and their properties) or on the count of different
events (i.e., operations performed on the GUI that can lead to a
transition between the aforementioned states).

Usage: To be used as a foundation for derived model-level metrics.

GUI Path: These metrics are based on the count of the number of
executed paths on the conceptual model of the GUI. The path
can be defined as a sequence of single states or single events of the
model, and the number of elements composing the path can vary
between different metrics of the category.

Usage: To be used to evaluate the effects of multiple interactions
over the GUI model.

T-Way: These criteria, defined by Mayo et al., take into account the
combinatorial combinations of different events in event sequences
executed by test cases [59].

Usage: To be used when the combined effects of events need to
be tested.

19

Link-based Criteria: criteria based on the action-event links be-
tween the action model and the GUI model, as defined in the
Action-Event Framework (AEF) by Nguyen et al. [60].

Usage: To generate test cases at the model level in a behaviour-
oriented way.

Event Interaction: these criteria, defined by Reza et al., consider
combinations between GUI states (called components by the au-
thors), events, and outcomes (i.e., final states of the GUI execu-
tion) [61]. Usage: To be used when the combination between the
current screen and application state has to be tested.

Code-level metrics: We define as Code-Level the metrics that are based
on the quantitative evaluation of the coverage of elements of the source
code. The metrics in this category are not specific to GUI-based testing.

Code-level metrics are mostly gathered by using specific tooling, e.g.
EMMA or JaCoCo for coverage of Java programs, when the tested
projects are open-source or the testers have access to the source code,
i.e. white-box. Otherwise, Code-level metrics can be computed on
byte-code for closed-source apps.

In table 6 we report the definitions of all the metrics of this category
mined from our pool of sources.

We identify three main categories of Code-level metrics:

Unit-based: Coverage metrics based on the count of the number of
code units that have been covered. Units are defined as entities,
of varying sizes, in which the source code can be arranged.

Usage: When interested in the count of units in which the code is
divided and for traceability to requirements.

Line-based: Coverage metrics based on the raw count of the number
of lines of code executed by the test cases. Line-based metrics
differ based on how individual lines are identified.

Usage: When interested to measure the quantity of code inside a
specific unit.

20

Table 5: Model-level metrics definition
Sub-Category Metric Definition Supporting Refs.

Base Metrics Single State Number (or percentage) of GUI states that are covered in the SUT
by the test suite. The state is the combination of the GUI elements
visualized on screen and their properties.

[45, 62, 63, 64]

Base Metrics Single Event Number of executed available actions over all states and screens
of the SUT. It is worth noting that in many works in the selected
literature, Single Event coverage is referred to as State Coverage.
This ambiguity is caused by the adoption of models for the GUI
where the model’s states represent GUI events.

[65, 66, 67, 39, 68,
69, 70, 71, 72, 73,
74, 75, 64, 76, 37,
77, 78, 79, 80, 78]

GUI Path Multiple State Number of available sequences of n states (where n is a parameter
of the coverage metric) that are explored on the SUT with the test
suite.

[66, 74]

GUI Path Multiple Event Number of the available sequences of t events (where t is a param-
eter of the coverage metric) that are executed on the SUT with the
test suite.

[81, 82, 38, 36, 83,
74, 61, 84, 85, 64,
37, 86, 87, 88, 50,
64, 73]

GUI Path Prime Path Cov-
erage

A test path satisfies prime path coverage if and only if it starts
from a starting node and ends in a final node while covering a
prime path in the graph modelling the SUT’s GUI.

[89, 64]

GUI Path Tree Paths Num-
ber

Total number of tree paths that can be generated on the model of
the SUT’s GUI

-

GUI Path Tree depth Maximum length of the generated test sequences when the SUT’s
GUI is modelled with a tree.

[90]

T-Way Combinatorial
Coverage (CCov)

Count every event combination only once without respect to the
order.

[59, 91, 92, 93, 94]

T-Way Sequence-based
Combinatorial
Coverage (SCov)

Counts event combinations with respect to the order in which the
events are executed.

[59, 91, 92]

T-Way Consecutive-
sequence Combi-
natorial Coverage
(SCCov)

Counts event combinations that appear adjacent to each other in
a test case and respects the order of events.

[59, 91, 92]

Link-based criteria Action-one-link
coverage

This criterion requires that, for each action, only one action-event
link is covered. This means the number of generated event se-
quences is equal to the number of action sequences.

[60]

Link-based criteria Action-all-link
coverage

This criterion requires that, for each action, all action-event links
are tested.

[60]

Link-based-criteria Action n-way cov-
erage

The Action-All-Link coverage criterion can be considered as a one-
way coverage criterion over the sets of action-event links because
it covers all links of individual actions. So, it can be generalized
to the Action-N-Way (ANW) coverage criterion, which requires the
coverage of all possible combinations of action-event links of N ac-
tions.

[60]

Interaction Criteria Single event and
single outcome

The criterion requires each single outcome to be performed at least
once.

[61]

Interaction Criteria Many events and
single outcome

The criterion requires many events leading to single outcome to be
performed at least once.

[61]

Interaction Criteria Event to compo-
nent

The criterion requires that each event (transition) leading to a com-
ponent is performed at least once.

[61]

Interaction Criteria Component to
event

The criterion requires each component leading to a transition to be
performed at least once.

[61]

Interaction Criteria Component-to-
component

The criterion requires each component leading to another compo-
nent to be performed at least once.

[61]

Others Condition cover-
age

Coverage of transitions between states (i.e., events) that have guard
conditions, e.g. events triggered from forms with submit buttons
that involve the check of values given as inputs in the field.

[84, 73]

Others Invocation cover-
age

Based on the concept of Restricted-focus events, that open modal
windows. Invocation coverage is defined as the amount of
restricted-focus events in the GUI performed at least once.

[83]

Others Invocation-
termination
coverage

Coverage of all the possible length-2 sequences of events, where the
first event invokes a component C, and the second event terminates
such component.

[83]

Others Action coverage Specific metric for wearable devices, defined as the percentage of
actions that are executed by a test suite.

[51]

Others TGConfs Cover-
age

Percentage of TGConfs (i.e., number of test configuration data for
UI test patterns) that are executed by a test case. Several derived
metrics can be defined, e.g., the number of TGConfs with precon-
ditions that are checked, or the number of TGConfs covered by a
custom tester-defined script.

[95]

21

Table 6: Code-level metrics definition
Sub-Category Metric Definition Supporting refs.

Unit-based Class coverage Number (or ratio) of the classes of the SUT
source code covered by the executed test
suites.

[36]

Unit-based Method coverage Number (or ratio) of the methods called dur-
ing execution of test suite against the SUT.

[96, 42, 35, 36, 71]

Unit-based Block coverage Number (or ratio) or the blocks of the SUT
source code covered by the executed test
cases. A block is defined as a portion of
source code not having any branch point
within.

[36]

Path-based Path coverage Number (or ratio) of the total independent
execution paths in the SUT source code, that
are covered by the executed test suite.

[97]

Path-based Branch coverage Number (or ratio) of the code branches in
the SUT source code, that are covered by
the executed test suite.

-

Path-based Condition coverage Condition coverage measures the propor-
tion of conditions within decision expressions
that have been evaluated to both true and
false

-

Line-based Statement coverage Number of source code statements that are
executed by a given test suite for a SUT.

[40, 71, 72]

Line-based Line coverage Amount of code that has been exercised
based on the number of Java byte code in-
structions called by the tests.

[98, 71]

Others Event-handler coverage Number (or ratio) of event handlers called by
the test suite. An event handler is a specific
method used to handle one specific event in
an event-based SUT.

[99]

Others Call-stack coverage Number (or ratio) of call stacks tested by the
executed test suite. A call stack is a sequence
of active calls associated with each thread in
a stack-based architecture.

[100]

Others Event Call-graph coverage Given a specific event sequence from a SUT,
the call-graph coverage is the ratio between
the number of source code statements cov-
ered by the sequence of events and the total
number of statements from the methods in
the call subgraph of the events.

[98]

Path-based: Coverage metrics based on the execution paths exer-
cised by test cases, and how the decisions for certain paths were
taken during their execution.

Usage: When interested in testing the main execution paths of
the software and control cycles.

Answer to RQ1.1: We identify 55 codes (common names for metric men-
tions in literature) for GUI Coverage metrics. All names and definitions of
metrics are reported in tables 3∼6).

Answer to RQ1.2: We define a hierarchical taxonomy where codes are
grouped in 17 metric categories, and 4 higher-level categories: Functional-
Level, GUI-Level, Model-Level, Code-Level.

22

Figure 3: Number of mentions for each sub-category of metrics

Table 7: Statistics for metric sub-categories
Category Sub-category # mentions total defini-

tions
Name Vari-
ability

Undefined
mentions

Definition
variability

Functional Issues 33 7 30.3% 36.4% 14.3%
Functional Specification 4 2 0% 25% 0%
Functional Test Verification 4 3 0% 25% 33.3%
Functional Others 5 5 0% 0% 0%
Functional Total 46 17 21.7% 30.4% 20%

GUI Screen Coverage 25 12 28.0% 51.7% 8.3%
GUI Widget Coverage 5 5 60.0% 0% 8%
GUI Others 2 2 0% 0% 0%
GUI Total 32 19 31.2% 40.4% 7.3%

Model Base metrics 71 37 42.3% 47.9% 18.9%
Model GUI Path 38 32 68.4% 15.8% 12.5%
Model Interaction Criteria 11 9 0% 18.2% 0%
Model Link-based 3 3 0% 0% 0%
Model T-way 5 5 0% 0% 0%
Model Others 6 6 0% 0% 0%
Model Total 134 92 42.4% 31.4% 11.9%

Code Line-based 17 5 23.5% 70.6% 0%
Code Unit-based 19 1 5.3% 94.7% 0%
Code Path-based 64 5 7,8% 82.8% 0%
Code Others 3 3 0% 0% 0%
Code Total 103 14 9.7% 80.6% 0%

Total 315 142 27.5% 48.3% 11.1%

4.2. Statistics of coverage metrics (RQ2)
In this section, we report the statistics about the metrics that we identified

in the mined research manuscripts. In figure 3 we report the number of

23

mentions for each of the sub-categories of metrics that we identified through
coding. The most mentioned and used metrics in GUI-based testing literature
are the simplest metrics of the model-level category (i.e., Base Metrics) and
the code-based category (i.e., Line-Based). The Model-level category as a
whole is largely the one to which the most mentioned metrics belong (134
metric mentions out of 315 (42.5%)), followed by Code-level (103 out of 315
(32.7%)), Functional-level (46 out of 315 (14.5%)), and GUI-level (32 out of
315 (10.1%)).

Among Functional-level metrics, we identify 33 mentions for Issues, 3 for
Specification metrics, 4 for Test Verification, and 5 for non-categorized met-
rics. Among GUI-level metrics, we identify 25 mentions for Screen Coverage
metrics, 5 for Widget Coverage metrics, and 2 for non-categorized metrics.
Among Model-level metrics, we identify 71 mentions for Base metrics, 38 for
GUI-path metrics, 5 for Interaction-based metrics, 3 for Link-based metrics,
11 for T-way metrics and 6 for non-categorized metrics. Among Code-level
metrics, we identify 64 mentions for Line-based metrics, 17 for Unit-based,
19 for Path-based, and 3 for non-categorized metrics.

It is worth underlining the very scarce usage of GUI-targeted coverage
metrics even in testing research which is specifically about GUI-based testing.
In fact, most of the tools and techniques proposed by literature are measured
by evaluating lower-level properties on the inferred model of the GUI, or at
the code level.

We have collected statistics for each metric, according to how they were
used in the GUI-based testing research papers we mined.

For each metric, we computed: the total number of mentions, the number
of unique (different) names with which the metric was mentioned, and that
were merged under a single metric in the taxonomy by means of coding;
the number of the papers providing an explicit definition of the metric; the
total number of unique (different) definitions provided for a metric in our
taxonomy.

We finally computed for each metric three derived measures, defined as
follows:

Name V ariability =
Unique Names− 1

Total Mentions
; (1)

Undefined Mentions =
Total Mentions− Unique Definitions

Total Mentions
; (2)

24

Definition V ariability =
Unique Definitions− 1

Total Definitions
. (3)

Table 7 provides aggregate statistics each category and sub-category of
metric. In the table, we report the name variability and the undefined
mentions computed as the average over the total mentions in the code set,
weighted by the number of mentions for each code; and the definition vari-
ability, as the average over the total number of definitions for the code set,
weighted by the number of definitions for each code.

We observe an average variability of 27.5% among the definitions for the
whole set of codes, with a peak variability of 40.4% for Model-level metrics
among categories, and 68.4% for GUI Path among sub-categories. We found
48.3% undefined mentions on the whole set, with a peak of 80.6% for Code-
level metrics among categories, and 94.7% for Unit-based metrics among sub-
categories. Finally, we computed an average definition variability of 11.1%
over the whole set of metrics, with a peak variability of 20% for Functional-
level metrics among categories, and 33.3% for Test Verification metrics among
sub-categories.

For the interested reader, we report the full statistics computed at indi-
vidual metric granularity in Appendix A of the paper.

In Figure 4 we report the distribution of mentions per year, grouped by
metric categories. We identify from the graph an emerging trend for GUI-
level coverage (with the first mentions appearing in 2010) and increasing
interest towards Functional and Code-level coverage metrics. We observe a
rather constant interest in Model-level metrics throughout the years in the
sample of papers that we collected.

Answer to RQ2.1: We identify 315 metric mentions divided as follows: 134
mentions of Model-level metrics, 103 of Code-level, 46 of Functional-level, 32
of GUI-level.

Answer to RQ2.2: Overall, we measure a variability of 27.5% among the
definitions used for metrics that we assign to the same code in our taxonomy.

Answer to RQ2.3: Overall, 48.3% of the metric mentions that we found in
the selected literature were defined in neither a qualitative nor quantitative
way. When provided, definitions had a variability of 11.1%.

25

Figure 4: Number of mentions per each category per year

Answer to RQ2.4: We identify an increasing number of mentions of GUI-
Level, Code-level and Functional coverage metrics, and a constant interest
towards Model-level metrics.

The 169 papers were distributed among different domains in the follow-
ing way: the most common domain was Desktop (81 papers, the 48% of the
total set), followed by the Mobile domain (60 papers, of which 51 were specif-
ically targeted to Android) and Web (13 papers). 4 papers were explicitly
multi-domain, and 7 did not specify any domain in the text. On paper was
targeted to Android Wear, one to Automotive Infotainment systems, and one
to Embedded software.

In figure 5 we report the number of mentions to metrics of the four dif-
ferent categories for the three mostly mentioned domains (Desktop, Mobile,
Web). The distribution of the mentioned metrics is different when the indi-
vidual domains are considered. We identify a predominance of Model-level
metrics in both the Desktop and Web domain (respectively, 64% and 55%
of mentions). 31% of metrics mentioned in papers from the Desktop domain
are code-level, while a very lower number of metrics mentioned were func-

26

Figure 5: Percentage of mentions of each category per target domain

Figure 6: Percentage of mentions of each category per GUI testing approach

tional or GUI-level. By contrast, for the web domain we identified a single
mention to code-level metrics. We hypothesize that the main motivation of
this absence of code-level metrics in GUI-based web application testing is
a focus on front-end testing, and the lack of access to the back-end when
performing GUI-based testing. Finally, in the Mobile domain, we identify a
lower number of mentions to model-level metrics (20%) and a higher number
mentions to code-level metrics (46%). Studies in the mobile domain had the
highest amount of mentions to GUI-level metrics (19%) implying a higher
focus on testing screens, activities and widgets in this domain.

Answer to RQ2.5: Model-level metrics were the most mentioned in the
Desktop and Web domain, as opposed to Code-level metrics for the Mobile
domain.

27

We classified the type of GUI testing approach employed, described or
evaluated in a paper by utilizing the classification provided by Linares-
Vaszquez et al. [19]. The 169 papers were distributed among different ap-
proaches in the following way: the most common approach mentioned was
Automated Exploration: Model-based (80 papers), followed by Automated
Exploration: Systematic (44 papers, including search-based and fuzzying-
based techniques), Automated Exploration: Random (9 papers), Automation
Frameworks & APIs (8 papers) and Capture & Replay / Exploratory (6
papers). 18 papers in the final set could not be classified under any of the
mentioned approaches, since they were related to other aspects of GUI test-
ing (e.g., testing translation, refactoring or repair). 3 literature items did not
specify any specific GUI testing approach.

In figure 6 we report the number of mentions to metrics of the four dif-
ferent categories for the papers utilizing each of the GI testing approaches
considered. We identify an expected prevalence of model-level metrics in
Model-based GUI testing approaches (56% of the total). However, model-
level coverage metrics were the most used category also for Random GUI
testing approaches (38%). Code-level metrics were used consistently in all
approaches, and were prevalent for the Systematic Exploration methodology
(45%), Automation Frameworks and APIs (58%). GUI-level coverage met-
rics were utilized in all approaches with exception of Automation Frameworks
and APIs. A motivation for the absence can be the fact that in many cases
the tools implementing this approach are executed to run test cases before
the actual GUI is rendered, therefore it is not possible to access widgets and
screen information to compute these metrics. GUI-level metrics were mostly
mentioned in Capture & Replay and Exploratory testing tools, in which the
test cases are captured through direct interaction with the GUI. Finally, we
observe the presence of mentions to Functional-level coverage metrics for all
approaches, with a higher prevalence for Automation Frameworks and APIs
(25%) and Systematic Exploration (23%).

Answer to RQ2.6: Model-level metrics were the most mentioned metrics
for Random and Model-based GUI testing tools. Code-level metrics were the
most mentioned for Systematic Exploration tools, Automation Frameworks
and APIs, and Capture & Replay / Exploratory (in the last case on par with
GUI-level metrics)

28

5. Discussion

In this literature review, we have identified four categories of metrics that
are used for GUI based testing research, which in total make up 55 unique
metrics.

The objective of this work—the synthesis and the resulting taxonomy—is
to give guidance to researchers in future studies of what metrics and defini-
tions to use in their empirical research in the field of GUI-based testing.

In particular, we urge the use of this work in favour of redefining existing
metrics or developing metrics with similar or equivalent definitions to the ones
presented here. From our analysis, we identified that the latter, i.e. renaming
of metrics, is common. In fact, through our synthesis, we were able to reduce
the number of metrics from 315 to 55, i.e. a reduction of 82.9 percent. We
hypothesise that homogenizing the use of metrics will have a positive impact
on the ability to do meta-analysis and replicate studies, which are stated as
general challenges in the Software engineering area [9, 10]. However, since the
effects of this work are not possible to predict, nor study without extensive
longitudinal study, we make no explicit claims on its effect. Looking at
more mature disciplines, like physics or biology—Disciplines where the use
of common metrics is more well-established—enables us to logically infer that
it will have an impact.

We do not consider the presented taxonomy to be comprehensive, mean-
ing that further metrics and definitions may be added in the future. This
property is common to all taxonomies, regardless of field, and we hypothe-
sise that it holds true for GUI-based testing research as well. Support for
the hypothesis is given by the observed inclusion of new metrics over time as
techniques change or evolve. We do not seek to limit researchers from adding
metrics to the area, but encourage researchers to first consider existing met-
rics to, once more, simplify macro research.

To further enable study comparisons, we also urge researchers to con-
sider the levels of abstraction of metrics used. The study concludes that an
overall majority of papers utilize lower-level metrics for evaluation. Whilst
this gives insights into the comparative performance of the GUI-based test-
ing approaches to, for instance, unit testing, it does not provide comparative
measures against other GUI-based testing approaches. The reason is simply
that lower-level metrics are inherently affected more by the context of the
evaluation than higher-level metrics. Using higher-level metrics, e.g. feature
or component coverage, can at least make it more possible to evaluate ap-

29

proach efficiency. For instance by measuring the development time of the test
specification of one approach, given the requirements, to another. However,
since contextual factors will still play a part, e.g. size and type of require-
ments, contextual factors cannot be completely ignored in such comparison.
We also note that the distribution of metrics (Figure 3) is skewed towards
the lower-level metrics and model-level metrics. In fact, the GUI-level met-
rics are the least represented within our sample. Although this result is not
surprising due to the comparison-based nature of tool- and approach-based
research, we believe that more emphasis could be placed on the GUI-focused
metrics.

The variability of mentions can also be explained by the tool-support for
automated metric collection and/or analysis. This observation is supported
by, for instance, the number of failures metric since it is the outcome of
any testing tool. Other examples include page coverage, GUI events and
statement coverage, which are all top mentions from different levels of the
taxonomy—High-level referring more to GUI-level metrics whilst low-level
refer more to source code metrics. Hence, looking at the research results
from the perspective of automation, no clear correlation can be observed
between the level of a metric and automation. Instead, the ease of collecting
and/or impact/value of the metrics are more prominent markers of their use
in research.

How to decide what metrics to use for a certain context to maximize repli-
cability and meta-analysis is outside the scope of this work. We, therefore,
urge the research community to investigate guidelines or best practices for
GUI-testing research in the future, preferably on lines of the more general
Software Engineering research guidelines proposed by Runeson et al. [101].

We furthermore believe that the recommendations discussed here will
grow in importance over time as the field grows. This conclusion is judged
on the study’s finding (Figure 1) that the number of GUI-testing papers,
which use metrics, has grown every year for the last 15 years. As the body
of knowledge grows, the need for, and possibility, for synthesis and macro-
research increases. However, as discussed, such progress is stagnated by
the research practices employed in the area, supporting the need for our
taxonomy.

In summary, this study provides a taxonomy over metrics used in GUI-
based testing research. The results show that a vast amount of different
metrics are used, but more troublesome that metrics are duplicated by name
or definition, making comparison and macro-analysis problematic. We, there-

30

fore, urge the research community to use our work as a reference in an at-
tempt to homogenize the combined efforts of the growing research area.

5.1. Threats to validity

In this section, we will discuss the main threats to our study and/or
formulation of the taxonomy. As the basis for our discussion, we have used
the types of validity threats presented by Runeson et al. [101].

Internal validity: These threats concern the design of our study to be
able to answer the research questions. The first identified threat concerns
potential research bias during coding since this was based on the researcher’s
best judgement. Although preventive measures like independent review and
the Delphi method were used, we cannot guarantee that coding would have
been conducted differently by other researchers. Despite this potential threat
we still argue for the value of the taxonomy as such an artefact is currently
missing in the body of knowledge on GUI-based testing research.

Another identified threat is that we may have missed papers with ad-
ditional metrics or definitions. However, since no taxonomy is considered
comprehensive and because we based it on synthesis from multiple sources,
we see the possibility of missed metrics as a lesser threat to the value of the
taxonomy. In fact, the main impact we consider is that possibly missed met-
rics are used in more specific cases and therefore not of as general value to
the research community as the ones presented here. Note that the perceived
value of a metric was not considered in the formulation of the taxonomy, i.e.
efforts were made to mitigate potential bias of which metrics were included
due to the researchers’ preferences or experiences of certain metrics.

External validity: These threats concern the generalizability of the
study’s results. Due to the focus of the study on GUI-based testing, we
perceive the generalizability within that domain to be high, i.e. that the
results have high coverage. However, for other, adjacent, research areas (e.g.
model-based testing) we make no coverage claims despite the perceived over-
lap of many of the found metrics. We also stress that taxonomies are seldom
comprehensive and instead are built incrementally over time. As such, we
expect this taxonomy to be extended and refined over time, as also discussed
in the guidelines for taxonomies defined by Ralph et al. [30].

Another perceived threat is that the taxonomy is based on established
state-of-art research, meaning that emerging technologies, e.g. machine learn-
ing and artificial intelligence, are not well covered. These technologies may
require other metrics, which would thereby not be covered in this work. To

31

address this potential threat we refer to the previous discussion on taxonomy
comprehensiveness.

The results related to RQ2.5 may suffer of limited generalizability because
of the imbalanced number of papers specifically aimed at the different GUI-
based testing domain in the final set of literature items that were analyzed.
The same threat to external validity applies to the results related to RQ2.6
about the different testing approaches in the literature sources.

Construct validity: These threats refer to the study contexts’ ability
to answer the research questions. As an initial threat we identify that the
study is only based on academic literature, i.e. no metrics used in practice
were taken into account. Hence, although metrics used in empirical studies
were considered, only metrics used in research were taken into account. Since
the focus of the study is on research, we consider this threat to be minor.

Furthermore, the study process was based on academic best practices for
literature reviews [12, 30]. However, there are still potential threats that the
inclusion criteria for the study may have been too loosely defined or that
the time frame for the sample may been too narrow. The impact of these
potential threats is that trends or other conclusions may not have been repre-
sentative enough for the context. For instance, not covering valuable papers
with different nomenclature, e.g. GUI-based testing was in 1998 referred to
as “interactive software”. However, we once more consider this threat to be
minor due to the observed increase in metrics over time and the reuse of more
popular metrics. Hence, it is likely, but not certain, that the older metrics
are still covered in our work. In addition, due to the study’s emphasis on
state-of-art, we are more interested in metrics currently used than metrics
used over 20 years ago.

6. Conclusion and Future Work

Software engineering, and particularly its sub-field of software testing, is
still a maturing research domain. Because of this, the use of metrics, e.g.
coverage metrics, is not well defined. This leads to researchers not defining,
redefining or making up new metrics.

In this work, we have conducted a systematic literature review of the
GUI-based software testing domain to identify and synthesise commonly-
used coverage metrics. These metrics, and their definitions, have been merged
into a taxonomy in an attempt to homogenize the use of these metrics in the
GUI-based testing research domain.

32

55 metrics were identified, clustered into 17 categories belonging to 4
categories of GUI-based testing; Functional level metrics, GUI level metrics,
Model-level metrics and Code-level metrics. Meta-analysis shows that out
of the four categories, the GUI level metrics are used the least. However,
the analysis also shows that the interest in GUI-based testing research, and
mention of these metrics, is steadily growing. Thus, presenting an urgent
need for a taxonomy of this type. We believe that our taxonomy can both
help improve the quality of research in the area, enable better support for
replication studies as well as macro-level research. In addition to providing
guidance on which metrics are available and common definitions to use, we
also urge researchers to use the hierarchical taxonomy to pick metrics on a
suitable level of abstraction. Hence, utilize the most suitable metrics given
the type and level of abstraction their research method, model or tool is
applied upon.

However, as with any taxonomy, we do not claim this work to be compre-
hensive and therefore urge researchers to extend and complement the taxon-
omy in the future. Examples of improvement areas include metrics used in
research on GUI-based testing with machine learning or artificial intelligence,
which are not covered.

Furthermore, we see a need for more research into guidelines and ways of
research in the GUI-based testing domain. This includes, but is not limited
to, the design of controlled- and quasi-experiments, tool comparison studies,
and replication studies. Experiments in this area generally require human
involvement, which is notoriously difficult to control and borders on the lines
of psychological- and sociological research. Mapping best practices from these
domains into software engineering research is therefore of both interest and
import.

Tool comparison studies are common in GUI-based testing research, but
what subjects are used vary from commercial applications, open-source and
even toy examples. Each of these has different benefits and drawbacks, but
guidelines on how to leverage these benefits and drawbacks are missing. So
are guidelines of when it is suitable to use one type of subject or another,
e.g. based on research maturity.

Finally, replication studies in GUI-based research are uncommon, and
how to perform these, utilizing tools and frameworks of other researchers,
is mostly carried out ad hoc, with varying success. Once more, guidelines
could be an aid for the research community, improving both the quality and
success rate of such studies.

33

GUI-based testing is, according to this work, a growing field and we are
excited to see what solutions the future will bring.

7. Acknowledgements

Emil Alégroth would like to acknowledge that this work was supported
by the KKS foundation through the S.E.R.T. Research Profile project at
Blekinge Institute of Technology.

References

[1] M. Usman, R. Britto, J. Börstler, E. Mendes, Taxonomies in software
engineering: A systematic mapping study and a revised taxonomy de-
velopment method, Information and Software Technology 85 (2017)
43–59.

[2] E. Engström, K. Petersen, Mapping software testing practice with soft-
ware testing research—serp-test taxonomy, in: 2015 IEEE Eighth In-
ternational Conference on Software Testing, Verification and Validation
Workshops (ICSTW), IEEE, 2015, pp. 1–4.

[3] M. Azuma, F. Coallier, J. Garbajosa, How to apply the Bloom taxon-
omy to software engineering, in: Eleventh annual international work-
shop on software technology and engineering practice, IEEE, 2003, pp.
117–122.

[4] R. Roggio, J. Gordon, J. Comer, Taxonomy of common software testing
terminology: Framework for key software engineering testing concepts,
Journal of Information Systems Applied Research 7 (2) (2014) 4.

[5] K. Shaukat, U. Shaukat, F. Feroz, S. Kayani, A. Akbar, Taxonomy of
automated software testing tools, International Journal of Computer
science and innovation 1 (2015) 7–18.

[6] M. Utting, A. Pretschner, B. Legeard, A taxonomy of model-based
testing approaches, Software testing, verification and reliability 22 (5)
(2012) 297–312.

[7] M. Harman, P. McMinn, J. T. De Souza, S. Yoo, Search based software
engineering: Techniques, taxonomy, tutorial, in: Empirical software
engineering and verification, Springer, 2010, pp. 1–59.

34

[8] M. Nass, E. Alégroth, R. Feldt, Why many challenges with GUI test
automation (will) remain, Information and Software Technology 138
(2021) 106625.

[9] J. Siegmund, N. Siegmund, S. Apel, Views on internal and external
validity in empirical software engineering, in: 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, Vol. 1, IEEE,
2015, pp. 9–19.

[10] J. Miller, Can results from software engineering experiments be safely
combined?, in: Proceedings Sixth International Software Metrics Sym-
posium (Cat. No. PR00403), IEEE, 1999, pp. 152–158.

[11] B. A. Kitchenham, T. Dyba, M. Jorgensen, Evidence-based software
engineering, in: Proceedings. 26th International Conference on Soft-
ware Engineering, IEEE, 2004, pp. 273–281.

[12] A. Fink, Conducting research literature reviews: From the internet to
paper, Sage publications, 2019.

[13] C. Wohlin, A. Rainer, Challenges and recommendations to publishing
and using credible evidence in software engineering, Information and
Software Technology 134 (2021) 106555.

[14] T. Dyb̊a, T. Dingsøyr, Strength of evidence in systematic reviews in
software engineering, in: Proceedings of the Second ACM-IEEE inter-
national symposium on Empirical software engineering and measure-
ment, 2008, pp. 178–187.

[15] R. Van Solingen, V. Basili, G. Caldiera, H. D. Rombach, Goal question
metric (gqm) approach, Encyclopedia of software engineering (2002).

[16] A. Jedlitschka, M. Ciolkowski, Towards evidence in software engineer-
ing, in: Proceedings. 2004 International Symposium on Empirical Soft-
ware Engineering, 2004. ISESE’04., IEEE, 2004, pp. 261–270.

[17] L. Prechelt, On implicit assumptions underlying software engineering
research, in: Evaluation and Assessment in Software Engineering, 2021,
pp. 336–339.

35

[18] E. Alégroth, Z. Gao, R. Oliveira, A. Memon, Conceptualization and
evaluation of component-based testing unified with visual gui testing:
an empirical study, in: 2015 IEEE 8th International Conference on
Software Testing, Verification and Validation (ICST), IEEE, 2015, pp.
1–10.

[19] M. Linares-Vásquez, K. Moran, D. Poshyvanyk, Continuous, evolu-
tionary and large-scale: A new perspective for automated mobile app
testing, in: 2017 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), IEEE, 2017, pp. 399–410.

[20] A. Bruns, A. Kornstadt, D. Wichmann, Web application tests with
selenium, IEEE software 26 (5) (2009) 88–91.

[21] G. Nolan, Espresso, in: Agile Android, Springer, 2015, pp. 59–68.

[22] S. Di Martino, A. R. Fasolino, L. L. L. Starace, P. Tramontana, Com-
paring the effectiveness of capture and replay against automatic input
generation for android graphical user interface testing, Software Test-
ing, Verification and Reliability 31 (3) (2021) e1754.

[23] V. Garousi, M. V. Mäntylä, A systematic literature review of literature
reviews in software testing, Information and Software Technology 80
(2016) 195–216.

[24] A. Saeed, S. H. Ab Hamid, M. B. Mustafa, The experimental appli-
cations of search-based techniques for model-based testing: Taxonomy
and systematic literature review, Applied Soft Computing 49 (2016)
1094–1117.

[25] P. Tramontana, D. Amalfitano, N. Amatucci, A. R. Fasolino, Auto-
mated functional testing of mobile applications: a systematic mapping
study, Software Quality Journal 27 (1) (2019) 149–201.

[26] V. Rechtberger, M. Bures, B. S. Ahmed, Overview of test coverage
criteria for test case generation from finite state machines modelled as
directed graphs, in: 2022 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), IEEE, 2022,
pp. 207–214.

36

[27] S. Q. Pan, M. Vega, A. J. Vella, B. H. Archer, G. Parlett, A mini-delphi
approach: An improvement on single round techniques, Progress in
tourism and hospitality research 2 (1) (1996) 27–39.

[28] B. Kitchenham, S. Charters, Guidelines for performing systematic lit-
erature reviews in software engineering 2 (01 2007).

[29] S. Keele, et al., Guidelines for performing systematic literature reviews
in software engineering, Tech. rep., Citeseer (2007).

[30] P. Ralph, Toward methodological guidelines for process theories and
taxonomies in software engineering, IEEE Transactions on Software
Engineering 45 (7) (2018) 712–735.

[31] M. T. T. Thai, L. C. Chong, N. M. Agrawal, Straussian grounded
theory method: An illustration, The Qualitative Report 17 (5) (2012).

[32] S. Paydar, An empirical study on the effectiveness of monkey testing
for Android applications, Iranian Journal of Science and Technology,
Transactions of Electrical Engineering 44 (2) (2020) 1013–1029.

[33] Y. Li, Z. Yang, Y. Guo, X. Chen, Humanoid: A deep learning-based
approach to automated black-box Android app testing, in: 2019 34th
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), IEEE, 2019, pp. 1070–1073.

[34] P. Wang, B. Liang, W. You, J. Li, W. Shi, Automatic android gui
traversal with high coverage, in: 2014 Fourth International Conference
on Communication Systems and Network Technologies, IEEE, 2014,
pp. 1161–1166.

[35] H. N. Yasin, S. H. A. Hamid, R. J. Raja Yusof, Droidbotx: Test case
generation tool for Android applications using Q-learning, Symmetry
13 (2) (2021) 310.

[36] J. Strecker, A. M. Memon, Accounting for defect characteristics in
evaluations of testing techniques, ACM Transactions on Software En-
gineering and Methodology (TOSEM) 21 (3) (2012) 1–43.

[37] P. Li, T. Huynh, M. Reformat, J. Miller, A practical approach to testing
GUI systems, Empirical Software Engineering 12 (4) (2007) 331–357.

37

[38] S. Huang, M. B. Cohen, A. M. Memon, Repairing GUI test suites
using a genetic algorithm, in: 2010 Third International Conference on
Software Testing, Verification and Validation, IEEE, 2010, pp. 245–254.

[39] W. Song, X. Qian, J. Huang, Ehbdroid: beyond GUI testing for An-
droid applications, in: 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), IEEE, 2017, pp. 27–37.

[40] S. R. Choudhary, A. Gorla, A. Orso, Automated test input generation
for Android: Are we there yet?(e), in: 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), IEEE,
2015, pp. 429–440.

[41] H. N. Yasin, S. H. A. Hamid, R. J. R. Yusof, M. Hamzah, An empiri-
cal analysis of test input generation tools for Android apps through a
sequence of events, Symmetry 12 (11) (2020) 1894.

[42] J. Yan, H. Liu, L. Pan, J. Yan, J. Zhang, B. Liang, Multiple-entry
testing of Android applications by constructing activity launching con-
texts, in: 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), IEEE, 2020, pp. 457–468.

[43] S. Carino, J. H. Andrews, Dynamically testing GUIs using ant colony
optimization (t), in: 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), IEEE, 2015, pp. 138–148.

[44] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, S. Chandra,
Guided test generation for web applications, in: 2013 35th Interna-
tional Conference on Software Engineering (ICSE), IEEE, 2013, pp.
162–171.

[45] Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, Z. Wang, Making
system user interactive tests repeatable: When and what should we
control?, in: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 1, IEEE, 2015, pp. 55–65.

[46] I. M. Alsmadi, Using mutation to enhance GUI testing coverage, IEEE
software 30 (1) (2012) 67–73.

38

[47] I.-A. Salihu, R. Ibrahim, B. S. Ahmed, K. Z. Zamli, A. Usman, Amoga:
A static-dynamic model generation strategy for mobile apps testing,
IEEE Access 7 (2019) 17158–17173.

[48] L. Duan, A. Hofer, H. Hussmann, Model-based testing of infotainment
systems on the basis of a graphical human-machine interface, in: 2010
Second International Conference on Advances in System Testing and
Validation Lifecycle, IEEE, 2010, pp. 5–9.

[49] J. Itkonen, M. V. Mäntylä, Are test cases needed? replicated compar-
ison between exploratory and test-case-based software testing, Empir-
ical Software Engineering 19 (2) (2014) 303–342.

[50] M. Vieira, J. Leduc, B. Hasling, R. Subramanyan, J. Kazmeier, Au-
tomation of GUI testing using a model-driven approach, in: Proceed-
ings of the 2006 international workshop on Automation of software test,
2006, pp. 9–14.

[51] H. Zhang, A. Rountev, Analysis and testing of notifications in Android
wear applications, in: 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE), IEEE, 2017, pp. 347–357.

[52] Y. Koroglu, A. Sen, O. Muslu, Y. Mete, C. Ulker, T. Tanriverdi,
Y. Donmez, Qbe: Qlearning-based exploration of Android applications,
in: 2018 IEEE 11th International Conference on Software Testing, Ver-
ification and Validation (ICST), IEEE, 2018, pp. 105–115.

[53] T. Wetzlmaier, R. Ramler, Hybrid monkey testing: enhancing auto-
mated GUI tests with random test generation, in: Proceedings of the
8th ACM SIGSOFT International Workshop on Automated Software
Testing, 2017, pp. 5–10.

[54] R. C. Bryce, S. Sampath, A. M. Memon, Developing a single model and
test prioritization strategies for event-driven software, IEEE Transac-
tions on Software Engineering 37 (1) (2010) 48–64.

[55] A. Marchetto, R. Tiella, P. Tonella, N. Alshahwan, M. Harman,
Crawlability metrics for automated web testing, International Journal
on Software Tools for Technology Transfer 13 (2) (2011) 131–149.

39

[56] N. Beierle, P. M. Kruse, T. E. Vos, GUI-profiling for performance and
coverage analysis, in: 2017 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), IEEE, 2017, pp. 28–31.

[57] A. Oliveira, R. Freitas, A. Jorge, V. Amorim, N. Moniz, A. C. Paiva,
P. J. Azevedo, Sequence mining for automatic generation of software
tests from GUI event traces, in: International Conference on Intelligent
Data Engineering and Automated Learning, Springer, 2020, pp. 516–
523.

[58] A. Miniukovich, A. De Angeli, Computation of interface aesthetics, in:
Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, 2015, pp. 1163–1172.

[59] Q. Mayo, R. Michaels, R. Bryce, Test suite reduction by combinatorial-
based coverage of event sequences, in: 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation Work-
shops, IEEE, 2014, pp. 128–132.

[60] D. H. Nguyen, P. Strooper, J. G. Süß, Automated functionality test-
ing through GUIs, in: Proceedings of the Thirty-Third Australasian
Conferenc on Computer Science-Volume 102, 2010, pp. 153–162.

[61] H. Reza, S. Endapally, E. Grant, A model-based approach for testing
GUI using hierarchical predicate transition nets, in: Fourth Interna-
tional Conference on Information Technology (ITNG’07), IEEE, 2007,
pp. 366–370.

[62] Z.-W. He, C.-G. Bai, GUI test case prioritization by state-coverage
criterion, in: 2015 IEEE/ACM 10th International Workshop on Au-
tomation of Software Test, IEEE, 2015, pp. 18–22.

[63] Y. Gao, C.-G. Bai, Selecting test cases by cluster analysis of GUI states,
in: 2016 IEEE Chinese GUIdance, Navigation and Control Conference
(CGNCC), IEEE, 2016, pp. 1024–1029.

[64] E. Habibi, S.-H. Mirian-Hosseinabadi, Event-driven web application
testing based on model-based mutation testing, Information and Soft-
ware Technology 67 (2015) 159–179.

40

[65] F. Gao, L. Zhao, C. Liu, GUI testing techniques based on event inter-
active graph tree model, in: The 2010 IEEE International Conference
on Information and Automation, IEEE, 2010, pp. 823–827.

[66] S. Huang, R. Chen, Y. Jiang, Z. Hui, GUI testing based on function-
diagram, in: 2010 International Conference on Computer Application
and SystemModeling (ICCASM 2010), Vol. 5, IEEE, 2010, pp. V5–353.

[67] T. Kushwaha, O. P. Sangwan, Prediction of usability level of test cases
for GUI based application using fuzzy logic, in: Confluence 2013: The
Next Generation Information Technology Summit (4th International
Conference), IET, 2013, pp. 83–86.

[68] L. Novella, M. Tufo, G. Fiengo, Improving test suites via a novel test-
ing with model learning approach, in: 2018 IEEE 27th International
Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), IEEE, 2018, pp. 229–234.

[69] A. Memon, I. Banerjee, N. Hashmi, A. Nagarajan, Dart: a framework
for regression testing” nightly/daily builds” of GUI applications, in:
International Conference on Software Maintenance, 2003. ICSM 2003.
Proceedings., IEEE, 2003, pp. 410–419.

[70] Q. Xie, A. M. Memon, Studying the characteristics of a” good” GUI
test suite, in: 2006 17th International Symposium on Software Relia-
bility Engineering, IEEE, 2006, pp. 159–168.

[71] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu,
Z. Su, Guided, stochastic model-based GUI testing of Android apps, in:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, 2017, pp. 245–256.

[72] D. Adamo, D. Nurmuradov, S. Piparia, R. Bryce, Combinatorial-based
event sequence testing of Android applications, Information and Soft-
ware Technology 99 (2018) 98–117.

[73] H. Reza, K. Ogaard, A. Malge, A model based testing technique to test
web applications using statecharts, in: Fifth International Conference
on Information Technology: New Generations (itng 2008), IEEE, 2008,
pp. 183–188.

41

[74] Z. Hui, R. Chen, S. Huang, B. Hu, GUI regression testing based on
function-diagram, in: 2010 IEEE International Conference on Intelli-
gent Computing and Intelligent Systems, Vol. 2, IEEE, 2010, pp. 559–
563.

[75] A. Beer, S. Mohacsi, C. Stary, Idatg: an open tool for automated
testing of interactive software, in: Proceedings. The Twenty-Second
Annual International Computer Software and Applications Conference
(Compsac’98)(Cat. No. 98CB 36241), IEEE, 1998, pp. 470–475.

[76] A. Kervinen, M. Maunumaa, M. Katara, Controlling testing using
three-tier model architecture, Electronic Notes in Theoretical Com-
puter Science 164 (4) (2006) 53–66.

[77] A. Rauf, M. Ramzan, Parallel testing and coverage analysis for context-
free applications, Cluster Computing 21 (1) (2018) 729–739.

[78] Z. Yu, C. Bai, K.-Y. Cai, Mutation-oriented test data augmentation for
GUI software fault localization, Information and Software Technology
55 (12) (2013) 2076–2098.

[79] C.-Y. Huang, J.-R. Chang, Y.-H. Chang, Design and analysis of GUI
test-case prioritization using weight-based methods, Journal of Systems
and Software 83 (4) (2010) 646–659.

[80] A. Marchetto, P. Tonella, Using search-based algorithms for ajax event
sequence generation during testing, Empirical Software Engineering
16 (1) (2011) 103–140.

[81] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, A. M. Memon,
MobiGUItar: Automated model-based testing of mobile apps, IEEE
software 32 (5) (2014) 53–59.

[82] S. Carino, J. H. Andrews, Evaluating the effect of test case length on
GUI test suite performance, in: 2015 IEEE/ACM 10th International
Workshop on Automation of Software Test, IEEE, 2015, pp. 13–17.

[83] A. M. Memon, M. L. Soffa, M. E. Pollack, Coverage criteria for GUI
testing, in: Proceedings of the 8th European software engineering con-
ference held jointly with 9th ACM SIGSOFT international symposium
on Foundations of software engineering, 2001, pp. 256–267.

42

[84] L. Mariani, M. Pezzè, D. Zuddas, Augusto: Exploiting popular func-
tionalities for the generation of semantic GUI tests with oracles, in:
Proceedings of the 40th International Conference on Software Engi-
neering, 2018, pp. 280–290.

[85] S. Majeed, M. Ryu, Model-based replay testing for event-driven soft-
ware, in: Proceedings of the 31st Annual ACM Symposium on Applied
Computing, 2016, pp. 1527–1533.

[86] R. C. Bryce, S. Sampath, J. B. Pedersen, S. Manchester, Test suite
prioritization by cost-based combinatorial interaction coverage, Inter-
national Journal of System Assurance Engineering and Management
2 (2) (2011) 126–134.

[87] W. Choi, K. Sen, G. Necul, W. Wang, Detreduce: minimizing Android
GUI test suites for regression testing, in: 2018 IEEE/ACM 40th Inter-
national Conference on Software Engineering (ICSE), IEEE, 2018, pp.
445–455.

[88] A. Rauf, S. Anwar, M. A. Jaffer, A. A. Shahid, Automated GUI test
coverage analysis using ga, in: 2010 Seventh International Conference
on Information Technology: New Generations, IEEE, 2010, pp. 1057–
1062.

[89] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, S. Malek, Reducing com-
binatorics in GUI testing of Android applications, in: 2016 IEEE/ACM
38th International Conference on Software Engineering (ICSE), IEEE,
2016, pp. 559–570.

[90] I. Alsmadi, M. Al-Kabi, The introduction of several user interface struc-
tural metrics to make test automation more effective, The Open Soft-
ware Engineering Journal 3 (1) (2009).

[91] R. Michaels, D. Adamo, R. Bryce, Combinatorial-based event se-
quences for reduction of Android test suites, in: 2020 10th Annual
Computing and Communication Workshop and Conference (CCWC),
IEEE, 2020, pp. 0598–0605.

[92] R. Michaels, M. K. Khan, R. Bryce, Test suite prioritization with el-
ement and event sequences for Android applications, in: 2021 IEEE

43

11th Annual Computing and Communication Workshop and Confer-
ence (CCWC), IEEE, 2021, pp. 1326–1332.

[93] X. Yuan, M. Cohen, A. M. Memon, Covering array sampling of in-
put event sequences for automated GUI testing, in: Proceedings of
the twenty-second IEEE/ACM international conference on Automated
software engineering, 2007, pp. 405–408.

[94] R. C. Bryce, A. M. Memon, Test suite prioritization by interaction
coverage, in: Workshop on Domain specific approaches to software test
automation: in conjunction with the 6th ESEC/FSE joint meeting,
2007, pp. 1–7.

[95] A. C. Paiva, L. Vilela, Multidimensional test coverage analysis:
Paradigm-cov tool, Cluster Computing 20 (1) (2017) 633–649.

[96] J. Yan, T. Wu, J. Yan, J. Zhang, Widget-sensitive and back-stack-
aware GUI exploration for testing Android apps, in: 2017 IEEE In-
ternational Conference on Software Quality, Reliability and Security
(QRS), IEEE, 2017, pp. 42–53.

[97] A. M. Adeniyi, A. S. Olalekan, An improved genetic algorithm-based
test coverage analysis for graphical user interface software, American
Journal of Software Engineering and Applications 5 (2) (2016) 7–14.

[98] A.-J. Molnar, Live visualization of GUI application code coverage with
GUItracer, in: 2015 IEEE 3rd Working Conference on Software Visu-
alization (VISSOFT), IEEE, 2015, pp. 185–189.

[99] L. Zhao, K.-Y. Cai, Event handler-based coverage for GUI testing, in:
2010 10th International Conference on Quality Software, IEEE, 2010,
pp. 326–331.

[100] S. McMaster, A. Memon, Call-stack coverage for GUI test suite reduc-
tion, IEEE Transactions on Software Engineering 34 (1) (2008) 99–115.

[101] P. Runeson, M. Höst, Guidelines for conducting and reporting case
study research in software engineering, Empirical software engineering
14 (2) (2009) 131–164.

44

Table A.8: Statistics for Functional-level metrics
Sub-
Category

Metric Total
men-
tions

Unique
names

Total
defini-
tions

Unique
defini-
tions

Name
Variabil-
ity

Undefined
men-
tions

Definition
variabil-
ity

Issues Number of Fail-
ures

2 2 0 0 0% 100% -

Issues Number of Faults 24 9 2 1 33.3% 91.7% 0%
Issues Number of

Crashes
6 3 4 2 233.3% 33.3% 25%

Issues Number of Ex-
ceptions

1 1 1 1 0% 0% 0%

Specification Business rule
Coverage

1 1 1 1 0% 0% 0%

Specification Requirements
Coverage

1 1 0 0 0% 100% -

Specification Feature Coverage 2 2 1 1 0% 0% 0%

Test Verifica-
tion

Invariant Detec-
tion

1 1 1 1 0% 0% 0%

Test Verifica-
tion

Mutation Score 3 3 2 2 0% 33.3% 50%

Others Usage-Oriented
Coverage

1 1 1 1 0% 0% 0%

Others Application-
oriented Cover-
age

1 1 1 1 0% 0% 0%

Others Perceived Cover-
age

1 1 1 1 0% 0% 0%

Others Data Coverage 1 1 1 1 0% 0% 0%
Others Notification Sites 1 1 1 1 0% 0% 0%

Table A.9: Statistics for GUI-level metrics
Sub-
Category

Metric Total
men-
tions

Unique
names

Total
defini-
tions

Unique
defini-
tions

Name
Variabil-
ity

Undefined
men-
tions

Definition
variabil-
ity

Screen Cov-
erage

Page Coverage 23 8 10 2 30.4% 56.2% 10%

Screen Cov-
erage

PCOV 1 1 1 1 0% 0% 0%

Screen Cov-
erage

Nested Pages 1 1 1 1 0% 0% 0%

Widget Cov-
erage

Simple Widget
Coverage

4 4 4 4 75% 0% 75%

Widget Cov-
erage

Parameter-based
Widget Coverage

1 1 1 1 0% 0% 0%

Others Action Coverage 1 1 1 1 0% 0% 0%
Others Cell Coverage 1 1 1 1 0% 0% 0%

45

Table A.10: Statistics for Model-level metrics
Sub-
Category

Metric Total
men-
tions

Unique
names

Total
defini-
tions

Unique
defini-
tions

Name
Variabil-
ity

Undefined
men-
tions

Definition
variabil-
ity

GUI State Single State 14 6 8 4 35.7% 42.9% 37.5%
GUI Event Single Event 57 25 29 5 43.9% 49.1% 13.8%

GUI Path Multiple State 2 1 2 1 0% 0% 0%
GUI Path Multiple Event 31 26 26 5 80.6% 16.1% 15.4%
GUI Path Prime Path Cov-

erage
2 1 2 1 0% 0% 0%

GUI Path Tree Paths Num-
ber

1 1 0 0 0% 100% -

GUI Path Tree depth 2 2 2 1 50% 0% 0%

T-Way Combinatorial
Coverage (CCov)

5 1 3 1 0% 40.0% 0%

T-Way Sequence-Based
Combinatorial
Coverage (SCov)

3 1 3 1 0% 0% 0%

T-Way Consecutive-
Sequence Combi-
natorial Coverage
(CSCov)

3 1 3 1 0% 0% 0%

Link-based
criteria

Action-one-link
coverage

1 1 1 1 0% 0% 0%

Link-based
criteria

Action-all-link
coverage

1 1 1 1 0% 0% 0%

Link-based-
criteria

Action n-way cov-
erage

1 1 1 1 0% 0% 0%

Interaction
Criteria

Single event and
single outcome

1 1 1 1 0% 0% 0%

Interaction
Criteria

Many events and
single outcome

1 1 1 1 0% 0% 0%

Interaction
Criteria

Event to compo-
nent

1 1 1 1 0% 0% 0%

Interaction
Criteria

Component to
event

1 1 1 1 0% 0% 0%

Interaction
Criteria

Component-to-
component

1 1 1 1 0% 0% 0%

Others Condition cover-
age

2 1 2 1 0% 0% 0%

Others Invocation cover-
age

1 1 1 1 0% 0% 0%

Others Invocation-
termination
coverage

1 1 1 1 0% 0% 0%

Others Action coverage 1 1 1 1 0% 0% 0%
Others TGConfs exe-

cuted
1 1 1 1 0% 0% 0%

46

Table A.11: Statistics for Code-level metrics
Sub-
Category

Metric Total
men-
tions

Unique
names

Total
defini-
tions

Unique
defini-
tions

Name
Variabil-
ity

Undefined
men-
tions

Definition
variabil-
ity

Unit-based Class coverage 4 2 1 1 25% 75% 0%
Unit-based Method coverage 9 3 3 1 22.2% 66.7% 0%
Unit-based Block coverage 4 2 1 1 25% 75% 0%

Path-based Path coverage 2 1 1 1 0% 50% 0%
Path-based Branch coverage 16 2 0 0 6.25% 100% -
Path-based Condition cover-

age
1 1 0 0 0% 100% -

Line-based Statement cover-
age

40 4 3 1 7.5% 92.5% 0%

Line-based Line coverage 24 3 2 1 8.3% 66.7% 0%

Others Event-handler
coverage

1 1 1 1 0% 0% 0%

Others Call-stack cover-
age

1 1 1 1 0% 0% 0%

Others Event call-graph
coverage

1 1 1 1 0% 0% 0%

Appendix A. Statistics about individual metrics

Table A.8 provides the statistics for Functional-level metrics. As an exam-
ple, the most mentioned metric is the one that we named Number of Faults,
with 24 mentions. For this metric, we grouped several synonyms of the same
concept (e.g., Fault Revealing Ability, Fault Coverage) or the noun fault (e.g.
Defects, Bugs), resulting in a name variability of 33.3%. The metric was
explicitly defined in only two sources (percentage of undefined mentions of
91.7%) and the definition was the same in both cases (0% definition variabil-
ity).

Table A.9 provides the statistics for GUI-level metrics. The most men-
tioned metric is the Page Coverage metric, with 23 mentions. With this
code, we identified a set of 8 different metrics in the papers. This code had
an important name variability and definition variability especially because of
different names the screens are called based on the application domain (e.g.,
Activities for Android applications, Windows for desktop applications). Few
mentions at the GUI Level were not related to page coverage, with the sec-
ond most-mentioned metric (Simple Widget Coverage) being used in just four
different papers.

Table A.10 provides the statistics for Model-level metrics. In this cate-
gory, we identify a clear tendency to utilize base metrics for the evaluation of
model coverage (14 mentions for Single Coverage, 57 for Single Event Cover-
age) and very high variability of the names and the specific definitions in the
manuscripts. This variability is mainly due to the fact that the manuscript

47

utilizes different structures to model the GUIs of the tested SUTs, which
results in different definitions and mathematical formulations of very similar
concepts. We found many mentions (with, again, very high variability in
names) for metrics that aim to analyze the exploration of paths in the GUI
model through the evaluation of sequences of two or more events (Multiple
Event Coverage). Many metrics (e.g., all in the categories Link-based crite-
ria and Interaction Criteria) were defined in a single manuscript and did not
share commonalities with other works in the literature.

Table A.11 provides the statistics for Code-level metrics. Code-level met-
rics were widely used in the sample of literature items that we analyzed,
with a predominant utilization of Line-based coverage metrics (40 mentions
for Statement Coverage, 24 mentions for Line Coverage). Metrics of this
category have a very high percentage of mentions where no definition is pro-
vided (with a top 100% for Branch Coverage and Condition Coverage), but
at the same time no variability in the definitions, mainly because they can
build upon decades of utilization in any software testing domain.

48

