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A GENERAL REVIEW ON THE NLS EQUATION WITH

POINT-CONCENTRATED NONLINEARITY

LORENZO TENTARELLI

Abstract. The paper presents a complete (to the best of the author’s knowledge) overview on the
existing literature concerning the NLS equation with point-concentrated nonlinearity. Precisely, it
mainly covers the following topics: definition of the model, weak and strong local well-posedness,
global well-posedness, classification and stability (orbital and asymptotic) of the standing waves, blow-
up analysis and derivation from the standard NLS equation with shrinking potentials. Also some
related problem is mentioned.

AMS Subject Classification: 35Q40, 35Q55, 35R06, 81Q99

Keywords: NLS equation, concentrated nonlinearity, delta potentials, well-posedness, standing waves, stability, blow-

up, point-like limit.

1. Introduction

The standard NonLinear Schrödinger (NLS) equation, i.e.,

ı
Bψ

Bt
“ ´∆ψ ` β|ψ|2σψ, β P Rzt0u, σ ą 0, on R` ˆ Rd, (1)

is known to play a relevant role in several sectors of physics, where it appears as an effective evolution
equation describing the evolution of a microscopic system on a macroscopic or mesoscopic scale. A typ-
ical example is provided by Bose-Einstein Condensates (BEC), whose behavior is “well approximated”
in some suitable sense by the solutions of (1) (see, e.g., [43]). There are, however, other examples in
which the physical meaning of the NLS equation is totally different, such as, for instance, the prop-
agation of light in nonlinear optics, the behavior of water or plasma waves, the signal transmission
through neurons (FitzHugh-Nagumo model), etc. (see [65] and references therein).

This paper is, to the best of our knowledge, a complete overview on the literature concerning one
of the possible singular perturbations of (1): the NLS equation with point-concentrated nonlinearity
(or Schrödinger equation with nonlinear delta potential). Such equation reads as (1), but with the
nonlinearity formally multiplied times a Dirac delta measure based at the origin, i.e.

ı
Bψ

Bt
“ ´∆ψ ` β|ψ|2σψδ0, β P Rzt0u, σ ą 0, on R` ˆ Rd. (2)

The idea of introducing point perturbations of delta-type in Quantum Mechanics traces back to
1936 and is due to E. Fermi, though in a completely different context as he proposed linear point
perturbations of delta-type of the Schrödinger equation (i.e., σ “ 0 above) to model the interaction
between a slow neutron and a fixed atom (see [46]).

The interest for the nonlinear model depicted in (2), on the contrary, is much more recent (and
related to the applications of the standard NLS equation). It has been introduced in the 1990s to
describe phenomena mostly related to solid state and condensed matter physics: charge accumulation
in semiconductor interfaces or heterostructures ([27, 60, 66, 67, 70, 71]), nonlinear propagation in
a Kerr-type media in presence of localized defects ([76, 77, 79]), BEC in optical lattices where an
isolated defect is generated by a focused laser beam ([45, 64]). Other applications are also suggested
in acoustic, conventional and high-Tc superconductivity, light propagation in photonic crystals, etc.
(see, e.g., [77] and references therein). However, a rigorous mathematical derivation of the model in
these contexts is still missing.
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2 L. TENTARELLI

Still from the perspective of modeling BEC in the presence of defects or impurities (whose spatial
scale is supposed to be much smaller than the dispersion of the wave function) it is worth mentioning
that also another equation involving delta potentials has been proposed in recent years ([73, 75]):

ı
Bψ

Bt
“ p´∆ ` αδ0qψ ` β|ψ|2σψ, α P R, β P Rzt0u, σ ą 0, on R` ˆ Rd. (3)

Results on (3), which are not presented in this review, are discussed by [11, 12, 15, 44, 50, 51, 54, 59,
63, 68] in dimension one and by [3, 4, 29, 30, 49, 47] in dimensions two and three (while [52] addresses
the circle, [23] addresses the half-line and [5, 24, 25] concern some first studies on a mixed model
between (2) and (3)).

Finally, we mention that models involving delta potentials, as the one addressed by this paper,
are rigorously defined only for d “ 1, 2, 3 (more details on this point will be provided in Section 2).
Hence, we will tacitly assume this restriction on the space dimension d of Rd throughout the review.

Remark 1.1. In this paper we only focus on the case where a single nonlinear delta potential is based
at the origin, i.e. β|ψ|2σψδ0. However, anything can be suitably adapted to the case of a delta based
in other points of Rd. Moreover, some results can be adapted to the case of finitely many deltas. We
decided to limit ourselves to (2) for the sake of simplicity, but, nevertheless, we will mention the cases
in which the results are known to extend to the more general frameworks.

1.1. Organization of the paper. The paper is organized as follows.

‚ Section 2 addresses the rigorous definition of the model, starting from the linear case (Section
2.1) to the nonlinear case (Section 2.2).

‚ Section 3 addresses local well-posedness of the Cauchy problem associated with (2), both in
the weak and in the strong sense.

‚ Section 4 addresses global well-posedness of the Cauchy problem associated with (2).
‚ Section 5 addresses the classification and the stability (orbital in Section 5.1, asymptotic in
Section 5.2) of the standing waves of (2).

‚ Section 6 addresses blow-up analysis, from the first results (Section 6.1) to the the more refined
ones (Section 6.3), also mentioning the question of pseudoconformal invariance (Section 6.2).

‚ Section 7 addressed the derivation of (2) from the standard NLS equation in dimension one
(Section 7.1) and three (Section 7.2).

‚ Section 8 briefly mentions some connected problems.

Fundings. The author has been partially supported by the INdAM GNAMPA project 2022 “Modelli
matematici con singolarità per fenomeni di interazione” (CUP E55F22000270001).

2. Definition of the model

In order to give a rigorous meaning to (2) it is necessary to start from the linear analogous (σ “ 0)
and, then, go back to the nonlinear problem. According to what we said before, we limit ourselves to
present the setting in the case of a single delta based at the origin.

2.1. The linear model. The most suitable way to give a rigorous meaning to a perturbation of delta
type of the Laplacian, namely to an operator of the type ´∆ ` αδ0, with α P R, is applying the
theory of self-adjoint extensions of symmetric operators to ´∆|C8

0 pRdzt0uq (see, e.g., [18] for a general

dissertation and [2] for some basics). In particular, one can prove that nontrivial extensions exist only
for d “ 1, 2, 3 and that, for any fixed α P R, the unique self-adjoint realization of ´∆ ` αδ0 is given
by the operator Hd

α : L2pRdq Ñ L2pRdq with domain

dompHd
αq :“

!

u P L2pRdq : Dλ ą 0, Dq P C such that

u´ κdpαqqGdλ “: ϕλ P H2pRdq and ϕλp0q “ θdλ pαq q
)

(4)

and action
Hd
αu :“ ´∆ϕλ ´ κdpαqqλGdλ, @u P dompHd

αq, (5)
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where

κdpαq :“

$

&

%

´α, if d “ 1,

1, if d “ 2, 3,
θdλ pαq :“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

2
?
λ

α ` 2
?
λ
, if d “ 1,

α `
log

´?
λ
2

¯

` γ

2π
, if d “ 2,

α `

?
λ

4π
, if d “ 3,

(6)

with γ the Euler-Mascheroni constant, and Gdλ is the Green’s function of ´∆ ` λ, i.e.

Gdλpxq “ F ´1

ˆ

1

p2πqd{2p|k|2 ` λq

˙

pxq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

e´
?
λ|x|

2
?
λ
, if d “ 1,

K0p
?
λ|x|q

2π
, if d “ 2,

e´
?
λ|x|

4π|x|
, if d “ 3,

with F denoting the unitary Fourier transform of Rd (i.e., F phqrks :“ p2πq´d{2
ş

Rd e
´ık¨xhpxq dx,

whenever h P L1pRdq) and K0 denoting the modified Bessel function of the second kind of order 0,
also known as Macdonald function (see, e.g., [1, Section 9.6]). Note that dompHd

αq is a Hilbert space
if endowed with the graph norm } ¨ }2

dompHd
αq

:“ } ¨ }2
L2pRdq

` }Hd
α ¨ }2

L2pRdq
.

Remark 2.1. Note that, when d “ 1, α “ 0 represents the free Laplacian. On the contrary, it can be
recovered in d “ 2, 3 only letting α Ñ 8.

As a consequence of (4), any function in dompHd
αq admits a decomposition in a regular part ϕλ, on

which the operator acts as the standard Laplacian, and a singular part qGdλ, on which the operator
acts as the multiplication times ´λ. In addition, we recall that the two components are bound by the
so-called boundary condition ϕλp0q “ θdλ pαq q and that the strength q of the singular part is usually

called charge. The charge is uniquely determined for any u P dompHd
αq and different charges identify

different functions u P dompHd
αq (see, e.g., [3, Remark 2.1] for the case d “ 2). On the contrary, λ is a

dumb parameter in the sense that every function of dompHd
αq admits an equivalent decomposition for

any positive value of λ, due to the fact that the difference between Green’s functions with different
values of λ is in H2pRdq.

As a further evidence that the parameter λ cannot actually affect the definition of Hd
α, it is possible

to find formulations equivalent to (4) and (5) that do not involve λ. In other words, one can check
that dompHd

αq is equal to
␣

u P H1pRq XH2pRzt0uq : u1p0`q ´ u1p0´q “ αup0q
(

, if d “ 1, (7)

!

u P L2pR2q : Dq P C s.t. u´ qG2
0 “: ϕ P H2

locpR2q X H̊2pR2q, ϕp0q “ αq
)

, if d “ 2, (8)

!

u P L2pR3q : Dq P C s.t. u´ qG3
0 “: ϕ P H2

locpR3q X H̊1pR3q X H̊2pR3q, ϕp0q “ αq
)

, if d “ 3,(9)

where

Gd0pxq “ F ´1

ˆ

1

p2πqd{2|k|2

˙

pxq “

$

’

’

&

’

’

%

´
log |x|

2π
, if d “ 2,

1

4π|x|
, if d “ 3,



4 L. TENTARELLI

and that

Hd
αu “

$

’

&

’

%

´
d2u

dx2
, in Rzt0u, if d “ 1,

´∆ϕ, in Rdzt0u, if d “ 2, 3,

@u P dompHd
αq. (10)

In view of the previous definitions, it is not evident that Hd
α is the proper (self-adjoint) realization

of the delta perturbation of the Laplacian. However, easy computations yields that, in the sense of
distributions,

Hd
αu “ ´∆u´ κdpαqqδ0, @u P dompHd

αq.

Note also that, when d “ 1, there results q “ up0q, so that one can rigorously claim that Hd
α “

´ d2

dx2
` αδ0. Thus, the construction provided before is not strictly necessary for d “ 1. This is due

to the fact that ´ d2

dx2
` αδ0 is a form bounded perturbation of the Laplacian, which makes the one-

dimensional case considerably different from the other ones because of the KLMN Theorem (see, e.g.,
[72, Theorem X.17]).

Remark 2.2. It is worth mentioning that the one-dimensional case is special also from another point
of view. Indeed, only in this case, the one described above is not the unique class of nontrivial self-
adjoint extension of ´∆|C8

0 pRzt0uq. In fact, when d “ 1 there is a four parameters family of self-adjoint

extensions (while in d “ 2, 3 there is only a one parameter family of self-adjoint extensions). However,
these further generalizations are not of delta type and go beyond the aims of the present review, so
that are omitted.

Remark 2.3. Another way to obtain delta perturbations of the Laplacian is by studying the asymptotic
behavior of perturbations of the Laplacian consisting of smooth suitably shrinking potentials (both
local and nonlocal). This can be found, for instance, in [18] and brings exactly to the operator Hd

α

introduced before.

The spectrum σpHd
αq varies with the dimension as follows

σpHd
αq :“

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

$

&

%

r0,`8q, if α ě 0,

tℓ1αu Y r0,`8q, if α ă 0,

,

.

-

if d “ 1,

tℓ2αu Y r0,`8q, if d “ 2,

$

&

%

r0,`8q, if α ě 0,

tℓ3αu Y r0,`8q, if α ă 0,

,

.

-

if d “ 3,

with

ℓdα :“

$

’

’

’

&

’

’

’

%

´α2{4, if d “ 1, and α ă 0,

´4e´4πα´2γ if d “ 2, and α P R,

´16π2α2, if d “ 3, and α ă 0.

(11)

where, as usual in the context of the operator theory, the presence or the absence of the negative
eigenvalue ℓdα distinguish between an attractive delta potential and a repulsive delta potential (note
that in d “ 2 the delta potential is always attractive). In the cases in which ℓdα is present its eigenspace
is spanned by Gd

´ℓdα
.

Moreover, the quadratic form associated with Hd
α reads

Qd
αpuq :“

$

’

&

’

%

›

›

›

›

du

dx

›

›

›

›

2

L2pRq

` α|q|2, if d “ 1

}∇ϕλ}2L2pRdq
` λp}ϕλ}2L2pRdq

´ }u}2L2pRdq
q ` θdλ pαq |q|2, if d “ 2, 3,



A GENERAL REVIEW ON THE NLS EQUATION WITH POINT-CONCENTRATED NONLINEARITY 5

for every u P dompQd
αq, where

dompQd
αq “ Vd :“

$

&

%

H1pRq, if d “ 1,

tu P L2pRdq : u´ qGdλ “: ϕλ P H1pRdqu, if d “ 2, 3.

We introduced the notation Vd for the form domain to underline that, in contrast to the operator
domain, it does not depend on α. In addition, Vd Ľ H1pRdq, when d ‰ 1, and it is a Hilbert space
when endowed with the norm

}u}2Vd :“

$

&

%

}u}2H1pRq, if d “ 1,

}ϕλ}2H1pRdq
` |q|2}Gdλ}2L2pRdq

, if d “ 2, 3

(equivalent for every fixed λ ą 0, when d “ 2, 3). In fact, also the three-dimensional case admits an
analogous representation for the quadratic form, which arises letting λ Ñ 0, i.e.

Q3
αpuq “ }∇ϕ}2L2pR3q ` α|q|2, @u P V3,

with

V3 “ tu P L2pR3q : u´ qG3
0 “: ϕ P H1

locpR3q X H̊1pR3qu.

In this case the norm can be equivalently written as }u}2V3 “ }∇ϕ}2L2pR3q
` |q|2. On the contrary, in

the two-dimensional case it is not known whether this kind of representation is available due to the
low regularity of the regular part when λ “ 0. Such a difference is a consequence of the fact that
G3
λ Ñ G3

0 , while G2
λ Ñ `8, pointwise as λ Ñ 0.

Remark 2.4. We also mention that, whenever ℓdα exists, it satisfies

ℓdα “ Qd
α

´

fdp´ℓdαqGd
´ℓdα

¯

“ inf
uPVd

}u}
L2pRdq

“1

Qd
αpuq,

with fd : R` Ñ R` given by

fdpλq :“

$

’

’

’

’

&

’

’

’

’

%

2
4
?
λ3, if d “ 1,

2
?
πλ if d “ 2,

2
4
?
4π2λ, if d “ 3, .

Finally, we recall that, since Hd
α is self-adjoint, as a consequence of Stone’s theorem, for every

ψ0 P dompHd
αq, there exists a unique function ψ P C0

locpr0,`8q; dompHd
αqq X C1

locpr0,`8q;L2pRdqq

which strongly solves
$

&

%

ı
Bψ

Bt
“ Hd

αψ

ψp0, ¨q “ ψ0

(12)

in the sense that the former is satisfied as an equality in C0
locpr0,`8q;L2pRdqq and the latter as

an equality in dompHd
αq. On the other hand, as the first equation in (12) is invariant under gauge

transformations and time translations, the associated mass, i.e.

Mptq “ Mpψpt, ¨qq :“ }ψpt, ¨q}2L2pRdq
, (13)

and energy, i.e. 1
2Q

d
αpψpt, ¨qq in the linear case, are preserved along the flow. Moreover, there exists

a L2pRdq-strongly continuous unitary group pUdptqqt such that ψpt, ¨q “ Udptqψ0. However, since the
explicit form of the kernel of Udptq is not easily manageable (see [18]), it is customary to represent the
solution as

ψpt, xq “ pUdptqψ0qpxq ` ı

ż t

0
Udpt´ s, xqκdpαqqpsq ds, (14)
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where Udptq is the free propagator of Rd, with kernel

Udpt, xq :“ F ´1pe´ı|k|2tqrxs “
e´

|x|2

4ıt

p4ıπtqd{2
,

and qp¨q is the unique solution of

qptq `

ż t

0
Kdpt´ sqcdpαqqpsq ds “ mdfdptq, (15)

with

cdpαq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

eıπ{4

2
?
π
α, if d “ 1,

4πpθ21 pαq ´ ı{8q, if d “ 2,

4
?
πeıπ{4α, if d “ 3,

md :“

$

’

’

’

&

’

’

’

%

1, if d “ 1,

4π, if d “ 2,

cdp1q, if d “ 3,

fdptq :“

$

’

&

’

%

pU1ptqψ0qp0q, if d “ 1

ż t

0
Kdpt´ sqpUdpsqψ0qp0q ds, if d “ 2, 3,

and

Kdptq :“

$

’

’

&

’

’

%

1
?
t
, if d “ 1, 3,

ż `8

0

ts´1

Γpsq
ds, if d “ 2.

(16)

Since at any time t the solution qptq of (15) is the coefficient of the singular part of ψpt, ¨q, with a little
abuse of notation, it is called charge and thus (15) is called linear charge equation.

2.2. From linear to nonlinear. In view of the previous section, the nonlinear problem arises simply
letting the “strength” α of the delta perturbation depend on the unknown ψ, and more precisely on
the charge q, as follows:

α “ αpqq :“ β|q|2σ β P Rzt0u, σ ą 0.

As a consequence, the associated Cauchy problem reads
$

&

%

ı
Bψ

Bt
“ Hd

β,σψ

ψp0, ¨q “ ψ0

(17)

where Hd
β,σ is now a nonlinear map with domain

dompHd
β,σq :“

!

u P L2pRdq : Dλ ą 0, Dq P C such that

u´ κdpβ|q|2σqqGdλ “: ϕλ P H2pRdq and ϕλp0q “ θdλ
`

β|q|2σ
˘

q
)

(18)

and action

Hd
β,σu “ ´∆ϕλ ´ κdpβ|q|2σqqλGdλ, @u P dompHd

β,σq, (19)

with κd still defined by (6) (an equivalent definition can be constructed from (7)-(8)-(9)-(10)). Con-
sistently with the linear case, strong solutions on an interval r0, T s of (18) have to be meant as
functions in C0pr0, T s; dompHd

β,σqq X C1pr0, T s;L2pRdqq which satisfy the former as an equality in

C0pr0, T s;L2pRdqq and the latter as an equality in dompHd
β,σq. Note that dompHd

β,σq is no more a
linear space, but nevertheless a notion of convergence is still defined there by a natural analogous of
the graph norm.
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Furthermore, it is worth mentioning that, since in this context no general theory is available, the
study of (17) relies on the study of the nonlinear versions of (14) and (15), that is

ψpt, xq “ pUdptqψ0qpxq ` ı

ż t

0
Udpt´ s, xqκdpβ|qpsq|2σqqpsq ds, (20)

and

qptq `

ż t

0
Kdpt´ sqcdpβ|qpsq|2σqqpsq ds “ mdfdptq. (21)

More precisely, all the methods are based on proving that (21), also known as nonlinear charge
equation, has a unique solution with sufficiently “nice” features so that the function ψ defined by (20)
is a solution of (17) with the required regularity.

3. Local well-posedness and conservation laws

In this section we present results concerning the local well-posedness of (17) and the associated
conservation laws. The first results on local well-posedness of (17) that appeared in the literature
concerned existence and uniqueness of weak solutions, where in this context a weak solution of (17)
on an interval r0, T s is a function ψ such that

ψpt, ¨q “ ϕλpt, ¨q ` qptqGdλ P Vd, @t P r0, T s, and

$

’

’

’

’

&

’

’

’

’

%

ı
d

dt
xχ, ψpt, ¨qyL2pRdq “ x∇χλ,∇ϕλpt, ¨qyL2pRdq ` λpxχλ, ϕλpt, ¨qyL2pRdq ´ xχ, ψpt, ¨qyL2pRdqq

` θdλ
`

β|qptq|2σ
˘

q˚
χqptq, @χ “ χλ ` qχGdλ P Vd, @t P r0, T s,

ψp0, ¨q “ ψ0, in Vd.

Given this definition one can state the first well-posedness result.

Theorem 3.1 (d “ 1 in [17], d “ 2 in [34], d “ 3 in [8]). Let β P Rzt0u, σ ą 0 and ψ0 P Vd. Therefore:

(i) if d “ 1, 3, then there exists T ą 0 such that (17) admits a unique weak solution on r0, T s;
(ii) if d “ 2, σ ě 1{2 and p1 ` |k|εqF pψ0q P L1pR2q, for some ε ą 0, then there exists T ą 0 such

that (17) admits a unique weak solution on r0, T s

In addition, letting

T dβ,σpψ0q :“ suptT ą 0 : there exists a unique weak solution of (17) on r0, T su, (22)

there results that

Mptq “ Mp0q and Edβ,σptq “ Edβ,σp0q, @t P r0, T dβ,σpψ0qq,

where Mptq is the mass associated with ψpt, ¨q, defined by (13), and Edβ,σptq is the energy associated

with ψpt, ¨q, defined by

Edβ,σptq “ Edβ,σpψpt, ¨qq :“

$

’

’

’

&

’

’

’

%

1

2
}Bxψpt, ¨q}2L2pRq `

β|qptq|2σ`2

2σ ` 2
, if d “ 1

1

2
}∇ϕλpt, ¨q}2L2pRdq

`
λ

2
p}ϕλpt, ¨q}2L2pRdq

´ }ψpt, ¨q}2L2pRdq
q `

θdλ

´

β|qptq|2σ

σ`1

¯

|qptq|2

2
, if d “ 2, 3.

Remark 3.2. Conservations of mass and energy are not surprising since the invariances pointed out in
the linear case are still present in the nonlinear case. Moreover, one can easily see that, setting β “ α
and σ “ 0, there results Edβ,σptq “ 1

2Q
d
αpψpt, ¨qq. As a consequence, in d “ 3 it is possible to find a

form of the energy where the parameter λ does not appear.
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Remark 3.3. In fact, as a byproduct of the proof of Theorem 3.1, one has that the weak solution of
(17) belongs to C0pr0, T s;Vdq, for any T P p0, T dβ,σpψ0qq.

The further assumptions required in the two-dimensional case are mainly due to the different qual-
itative behavior of the integral kernel of the charge equation Kd, defined by (16). Indeed, whereas in
odd dimensions the 1

2 -Abel kernel possesses nice regularizing properties in Sobolev spaces, in the two-
dimensional case the Volterra function of order -1 has no regularizing properties in those spaces due
to its highly singular behavior at the origin (for details see [34, 36]). Moreover, while in odd dimension
Theorem 3.1 can be extended to finitely many nonlinear delta potentials, in the two-dimensional case
the possibility of such an extension is open (and far from being understood).

Finally, again in odd dimension, it is possible to strengthen the results of Theorem 3.1. Note that
the following statement does not coincide with the ones contained in the original sources. It is written
in such a way to be consistent with the notation used in Theorem 3.1.

Theorem 3.4 (d “ 1 in [35, case s “ 1], d “ 3 in [32]). Let d “ 1, 3, β P Rzt0u, σ ą 0 and ψ0 P

dompHd
β,σq. Then, there exists a unique strong solution of (17) on r0, T s, for every T P p0, T dβ,σpψ0qq

(with T dβ,σpψ0q defined by (22)).

Remark 3.5. In d “ 2 such a result on strong solutions is still missing due again to the features of the
kernel of the charge equation, mentioned above.

4. Global well-posedness

The study of global well-posedness consists of detecting those cases in which the quantity T dβ,σpψ0q

defined by (22) is equal to `8; namely, the cases in which the solution is global-in-time.
In this context, the crucial points usually are:

(i) proving the so-called blow-up alternative, i.e.

T dβ,σpψ0q ă `8 and lim sup
tÕT d

β,σpψ0q

}ψpt, ¨q}Vd ă `8 ùñ contradiction (23)

or equivalently

T dβ,σpψ0q ă `8 and lim sup
tÕT d

β,σpψ0q

|qptq| ă `8 ùñ contradiction; (24)

(ii) proving that conservations of mass and energy entail a-priori boundedness for }ψpt, ¨q}Vd , or
|qptq| on r0, T dβ,σpψ0qq.

For the sake of clarity we distinguish the result on the defocusing case, i.e. β ą 0, from those on
the focusing case, i.e. β ă 0.

Theorem 4.1 (d “ 1 in [17], d “ 2 in [34], d “ 3 in [8]). Let β, σ ą 0 and ψ0 P Vd and let T dβ,σpψ0q

be defined as in (22). Therefore:

(i) if d “ 1, 3, then T dβ,σpψ0q “ `8;

(ii) if d “ 2, σ ě 1{2 and p1 ` |k|εqF pψ0q P L1pR2q, for some ε ą 0, then T 2
β,σpψ0q “ `8.

Moreover, in these cases the weak solution of (17) belongs to L8pr0,`8q;Vdq.

Remark 4.2. Note that the presence of further assumptions when d “ 2 in Theorem 4.1 is only due
to the fact that they are necessary in Theorem 3.1.

Theorem 4.3 (d “ 1 in [17], d “ 3 in [8]). Let d “ 1, 3, β ă 0, σ P p0, 1s and ψ0 P Vd and let T dβ,σpψ0q

be defined as in (22). Therefore:

(i) if σ ă 1, then T dβ,σpψ0q “ `8;

(ii) if σ “ 1, then there exists µdβ ą 0 such that T dβ,1pψ0q “ `8 whenever Mpψ0q ă µdβ.

Moreover, in these cases the weak solution of (17) belongs to L8pr0,`8q;Vdq.
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The limitations on σ displayed by Theorem 4.3 are sharp, in the sense that, as we will see in Section
6, beyond the threshold σ “ 1, solutions which are not global-in-time may arise. As a consequence, the
power σ “ 1 is usually called L2-critical power, while smaller powers are called L2-subcritical powers
and larger powers are called L2-supercritical powers. In addition, also the threshold on the mass µdβ,
present in the case σ “ 1, is sharp in the same sense as before. As a consequence, such parameter is
called L2-critical mass. It can be in fact explicitly computed and reads:

µdβ :“

$

’

’

&

’

’

%

´
2

β
, if d “ 1,

1

´32π2β
, if d “ 3.

(25)

Finally, it is worth mentioning that also the absence of d “ 2 in Theorem 4.3 is sharp. Indeed, as
we will see again in Section 6, in the two-dimensional case solutions which are not global-in-time may
be found for any value of σ. In other words, the reason for which there is no L2-critical power in d “ 2
is that in this case any power is L2-supercritical. Consistently, the concept of L2-critical mass is not
defined in this case.

Remark 4.4. Concerning the extension of the previous theorems to the case of finitely many nonlinear
deltas, this is known for Theorem 4.1(i), for Theorem 4.3(i) and, in the case d “ 1, for Theorem 4.3(ii).

5. Standing waves

A further point of interest in the study of (17) is given by the standing waves, i.e. solutions of the
equation of the form ψdβ,σ,ωpt, xq “ eıωtudβ,σ,ωpxq, for some ω P R usually called frequency. Clearly, the
search for such solutions reduces to the search for the functions

udβ,σ,ω P dompHd
β,σq that satisfy pHd

β,σ ` ωqudβ,σ,ω “ 0.

These are usually called bound states of the NLS with concentrated nonlinearity, can be completely
classified in any dimension and are positive up to the gauge invariance eıθ, θ P r0, 2πq.

Theorem 5.1 (d “ 1 in [24] and [35, case s “ 1], d “ 2 in [7], d “ 3 in [13]). Let σ ą 0. Up to gauge
invariance, the bound states of the NLS with concentrated nonlinearity are of the form

udβ,σ,ωpxq :“ qdβ,σpωqGdωpxq

with

qdβ,σpωq :“

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

˜

22σ`1ωσ`1{2

´β

¸1{2σ

, if d “ 1,

ˆ

logp
?
ω{2q ` γ

´2πβ

˙1{2σ

, if d “ 2,

ˆ ?
ω

´4πβ

˙1{2σ

, if d “ 3,

where

‚ if d “ 1, 3, then ω varies in p0,`8q and β varies in p´8, 0q; while,
‚ if d “ 2, then ω varies in p0, 4e´2γq whenever β varies in p0,`8q, and in p4e´2γ ,`8q whenever
β varies in p´8, 0q.

Note that the difference between the odd and the even dimensions is remarkable. Indeed, in d “ 2
there is a branch of bound states also in the defocusing case β ą 0. This is a phenomenon which
possesses an analogous neither in the context of the NLS with concentrated nonlinearity nor in the
context of the standard NLS.

Remark 5.2. In fact, it is also possible to compute explicitly Edβ,σpudβ,σ,ωq and Mpudβ,σ,ωq as functions

of the frequency ω. As a consequence, one can establish the following qualitative behaviors (that are
relevant in the study of the orbital stability discussed below). If d “ 1, 3, then
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‚ whenever σ ă 1
– Edβ,σpudβ,σ,ωq is negative, continuous and decreasing on R` and

lim
ωŒ0

Edβ,σpudβ,σ,ωq “ 0, lim
ωÑ`8

Edβ,σpudβ,σ,ωq “ ´8,

– Mpudβ,σ,ωq is continuous and increasing on R` and

lim
ωŒ0

Mpudβ,σ,ωq “ 0, lim
ωÑ`8

Mpudβ,σ,ωq “ `8;

‚ whenever σ ą 1
– Edβ,σpudβ,σ,ωq is positive, continuous and increasing on R` and

lim
ωŒ0

Edβ,σpudβ,σ,ωq “ 0, lim
ωÑ`8

Edβ,σpudβ,σ,ωq “ `8,

– Mpudβ,σ,ωq is continuous and decreasing on R` and

lim
ωŒ0

Mpudβ,σ,ωq “ `8, lim
ωÑ`8

Mpudβ,σ,ωq “ 0;

‚ whenever σ “ 1, Edβ,1pudβ,1,ωq “ 0 and Mpudβ,1,ωq “ µdβ (with µdβ defined by (25)), for all ω ą 0.

If on the contrary d “ 2, then

‚ whenever β ă 0
– E2

β,σpu2β,σ,ωq is continuous on p4e´2γ ,`8q, decreasing on p4e´2γ , 4e´2γ`1{σs and increasing

on r4e´2γ`1{σ,`8q, and

lim
ωŒ4e´2γ

E2
β,σpu2β,σ,ωq “ 0, lim

ωÑ`8
E2
β,σpu2β,σ,ωq “ `8,

– Mpu2β,σ,ωq is continuous on p4e´2γ ,`8q, increasing on p4e´2γ , 4e´2γ`1{σs and decreasing

on r4e´2γ`1{σ,`8q, and

lim
ωŒ4e´2γ

Mpu2β,σ,ωq “ lim
ωÑ`8

Mpu2β,σ,ωq “ 0;

‚ whenever β ą 0
– E2

β,σpu2β,σ,ωq is continuous and increasing on p0, 4e´2γq, and

lim
ωŒ0

E2
β,σpu2β,σ,ωq “ ´8, lim

ωÕ4e´2γ
E2
β,σpu2β,σ,ωq “ 0,

– Mpu2β,σ,ωq is continuous and decreasing on p0, 4e´2γq, and

lim
ωŒ0

Mpu2β,σ,ωq “ `8, lim
ωÕ4e´2γ

Mpu2β,σ,ωq “ 0.

5.1. Orbital stability. The most natural question concerning the bound states is about their stabil-
ity. In particular, one starts discussing orbital stability.

Precisely, a bound state udβ,σ,ω is said orbitally stable when, for every ε ą 0, there exists δ ą 0 such

that: if }ψ0 ´ eiθudβ,σ,ω}Vd ă δ for some θ P r0, 2πq and ψ is a weak solution of (17) on r0, T dβ,σpψ0qq,

then ψ can be continued to a solution on r0,`8q and

sup
tPR`

inf
θPr0,2πq

}ψpt, ¨q ´ eiθudβ,σ,ω}Vd ă ε.

Otherwise udβ,σ,ω is said orbitally unstable.

The results on orbital stability established in this context are (mainly) obtained by using the
methods introduced by [55] (and the qualitative behaviors pointed our in Remark 5.2). Preliminarily,
set

ad :“

$

&

%

0, if d “ 1, 3,

4e´2γ , if d “ 2,
(26)
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Theorem 5.3 (d “ 1 in [24], d “ 2 in [7], d “ 3 in [13]). Let σ ą 0 and let β ă 0, when d “ 1, 3, and
β P Rzt0u, when d “ 2. Therefore,

(i) if d “ 1, 3 and σ ă 1, then udβ,σ,ω is orbitally stable for every ω ą ad; while, if d “ 2, β ą 0

and σ ě 1{2, then u2β,σ,ω is orbitally stable for every ω P p0, a2q;

(ii) if d “ 3 and σ ě 1 or if d “ 2, β ă 0 and σ ě 1{2, then udβ,σ,ω is orbitally unstable for every
ω ą ad.

First note that the case d “ 1, σ ě 1 is not explicitly addressed by the literature. However, this
lack is not significant in the sense that it is not due to challenges in the proof, but rather to the fact
that historically the discussion on the one-dimensional case mainly focused on other issues. In this
case, the result and proof should be analogous to those of the dimension three.

Note also that, again, the features of the dimension two are remarkable. Here, the transition
between stability and instability does not occur at some specific power, i.e. the L2-critical power, but
switching from defocusing to focusing. As a consequence, here any focusing power nonlinearity can
be legitimately considered L2-supercritical. On the contrary, the threshold σ ě 1{2 is not significant
since, again, it is connected to local well-posedness and is purely technical.

Finally, in strict connection with orbital stability, one can wonder in which cases the bound states
are actually ground states at some fixed mass µ ą 0 of the NLS with concentrated nonlinearity, i.e.
functions u P Vd such that }u}2

L2pRdq
“ µ and

Edβ,σpuq “ Edβ,σpµq :“ inf
vPVd

}v}2
L2pRdq

“µ

Edβ,σpvq.

Theorem 5.4 (d “ 1 in [24], d “ 2 in [7]). Let σ ą 0 and let β ă 0, when d “ 1, and β P Rzt0u,
when d “ 2. Therefore,

(i) if d “ 1 and σ ă 1 or if d “ 2 and β ą 0, then Edβ,σpµq P p´8, 0q, for all µ ą 0, and

udβ,σ,ω is the unique (up to gauge invariance) ground state at mass Mpudβ,σ,ωq of the NLS with

concentrated nonlinearity, for every ω ą a1 in the former case and every ω P p0, a2q in the
latter case;

(ii) if d “ 1 and σ “ 1, then

E1
β,1pµq “

#

0, if µ P p0, µ1βs,

´8, if µ ą µ1β,

and all the bound states pu1β,1,ωqωą0 are actually ground states at mass µ1β of the NLS with
concentrated nonlinearity;

(iii) if d “ 1 and σ ą 1 or if d “ 2 and β ă 0, then Edβ,σpµq “ ´8, for all µ ą 0.

Combining the results of Theorems 5.1 and 5.4 and of Remark 5.2 one sees that:

‚ in case (i), there exists a unique positive ground state at mass µ, for every µ ą 0;
‚ in case (ii), positive ground states at mass µ exist if and only if µ “ µ1β and are infinitely
many;

‚ in case (iii) no bound state is in fact a ground state.

Finally, we mention that the previous result has never been explicitly discussed for d “ 3. However,
it should be possible to prove a result analogous to the case d “ 1, using the same techniques.

5.2. Asymptotic stability. Another perspective on stability is that of the asymptotic stability, which
roughly speaking means that, if the initial datum of (17) is “close” to a bound state, then the solution
gets asymptotically “closer and closer” to a, possibly distinct, bound state.

The results mentioned below only deal with the case d “ 3. Analogous results are obtained for
d “ 1 in [28, 62], but for another class of nonlinearities, which is very general from a certain point of
view, but does not take into account powers. Nevertheless, it is reasonable to guess that one should
obtain the same outcomes also for powers. Nothing is known, instead, for d “ 2.
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In order to state the results, some preliminary definitions are required. First, we set L1
wpR3q :“

L1pR3, p1`|x|´1q dxq. Moreover, let Lσω : L2pR3qˆL2pR3q Ñ L2pR3qˆL2pR3q be the operator defined
by

Lσω :“

˜

0 H3
α1pσ,ωq

` ω

´H3
α2pσ,ωq

´ ω 0

¸

where

α1pσ, ωq :“ ´p2σ ` 1q

?
ω

4π
, and α2pσ, ωq :“ ´

?
ω

4π
,

which is a byproduct of the linearization of H3
β,σ around a bound state of frequency ω. Such an

operator possesses two purely imaginary eigenvalues ˘ıξσ,ω, with ξσ,ω :“ 2σω
?
1 ´ σ2 (only defined

for σ ď 1), whose eigenspaces are spanned by

Φσ,ωpxq :“ G3
ω´ξσ,ωpxq

ˆ

1
ı

˙

´

?
1 ´ σ2 ´ 1

σ
G3
ω`ξσ,ωpxq

ˆ

1
´ı

˙

and its complex conjugate. Let us also denote by Φ1
σ,ω and Φ2

σ,ω the first and the second components
of Φσ,ω, respectively.

Theorem 5.5. Let d “ 3, β ă 0, ω ą 0 and θ P r0, 2πq. Therefore:

(i) ([13]) if σ P p0, 1{
?
2q and ψ0 P V3 X L1

wpR3q with }ψ0 ´ eıθu3β,σ,ω}V3XL1
wpR3q sufficiently small,

then there exist ω8 ą 0, ψ8 : R3 Ñ C and r8 : R` ˆR3 Ñ C, with ψ8, r8ptq P L2pR3q, for all

t ą 0, and }r8ptq}L2pR3q “ Opt´5{4q as t Ñ `8, such that the weak solution ψ of (17) satisfies

ψpt, xq “ eıω8tu3β,σ,ω8
pxq ` pU3ptqψ8qpxq ` r8pt, xq, as t Ñ `8;

(ii) ([14]) there exists σ˚ P

ˆ

1
?
2
,

?
3 ` 1

2
?
2

ȷ

such that, if σ P p1{
?
2, σ˚q and ψ0 P V3 X L1

wpR3q and

satisfies

ψ0 “ eıω`ϑu3β,σ,ω ` eıω`ϑ
“

pz ` zqΦ1
σ,ω ` ıpz ´ zqΦ2

σ,ω

‰

` f

for some ϑ P R, z P C and f P L2pR3q X L1
wpR3q such that

|z| ď
?
ε, and }f}L1

wpR3q ď Cε3{2

with C ą 0 and ε ą 0 small, then there exist ω8, k8 ą 0, b P R, ψ8 : R3 Ñ C and
r8 : R` ˆ R3 Ñ C, with ψ8, r8ptq P L2pR3q, for all t ą 0, and }r8ptq}L2pR3q “ Opt´1{4q as
t Ñ `8, such that the weak solution ψ of (17) satisfies

ψpt, xq “ eıω8t`ıb logp1`εk8tqu3β,σ,ω8
pxq ` pU3ptqψ8qpxq ` r8pt, xq, as t Ñ `8.

6. Blow-up analysis

The last question on (17) discussed by the literature is the so called blow-up analysis, that is the
search for solutions that blow-up in a finite time. By (22), (23) and (24) this is equivalent to prove
that T dβ,σpψ0q ă `8.

6.1. First results. First blow-up results are based on a method, introduced by [53], which essentially
relies on the detection of the properties of the so called moment of inertia associated with a solution
ψ of (17) with initial datum ψ0, i.e.

Mdptq :“

ż

Rd

|xψpt, xq|2 dx.

Precisely, in this context the main point is proving that

d2Mdptq

dt2
“ 8Edβ,σpψ0q ` gdβ,σp|qptq|2q, (27)
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with

gdβ,σpyq :“

$

’

’

&

’

’

%

4β
σ ´ 1

σ ` 1
yσ`1, if d “ 1, 3,

2

ˆ

1

π
´

4βσyσ

σ ` 1

˙

y, if d “ 2.

Equality (27) is usually called Virial Identity and enables one to establish, in some cases, uniform
concavity of Md depending on the energy of the initial datum. Since positivity and uniform concavity
are not consistent with globality-in-time it is clear how this method allows to detect the cases in which
blow-up solutions arise.

Remark 6.1. Note that by Theorem 4.1 blow-up analysis is meaningful only when β ă 0 and, for
d “ 1, 3, when σ ě 1.

Preliminarily, recall that a Schwartz function is a C8pRdq-function which decays faster than the
reciprocal of any polinomial as |x| Ñ `8 and whose derivatives of any order decay faster than the
reciprocal of any polinomial as |x| Ñ `8.

Theorem 6.2 (d “ 1 in [17], d “ 2 in [6], d “ 3 in [9]). Let β ă 0, σ ą 0 and ψ0 P Vd and let T dβ,σpψ0q

be defined as in (22). Moreover, assume that:

(i) when d “ 1, 3, σ ě 1; while,
(ii) when d “ 2, σ ě 1{2 and the regular part of ψ0 is a Schwartz function.

Then
Edβ,σpψ0q ă inf

ωąad
Edβ,σpudβ,σ,ωq ùñ T dβ,σpψ0q ă `8, (28)

where pudβ,σ,ωqωąad is the family of the bound states given by Theorem 5.1 and ad is defined by (26).

Some comments are in order. First, infωąad E
d
β,σpudβ,σ,ωq can be explicitly computed and there

results

inf
ωąad

Edβ,σpudβ,σ,ωq “

$

&

%

0 if d “ 1, 3,

´
σ

4πpσ ` 1qp´4πσβq1{σ
if d “ 2.

On the other hand, (28) is sharp in the sense that above this energy threshold one has, for instance,
standing waves, which are global-in-time.

Moreover, we underline that in d “ 2 the assumptions on σ and on the regularity of the initial
datum are just technical. On the contrary, it is remarkable that in this case one can find blowing-up
solutions for any focusing power nonlinearity (again, a phenomenon with no analogue neither in the
context of the NLS with concentrated nonlinearity nor in the context of the standard NLS).

Finally, note that, when d “ 1, 3 and σ “ 1, (28) does not contradict point (ii) of Theorem 4.3
since one can actually prove (using some suitable versions of the Gagliardo-Nirenberg inequalities
established in [17] for d “ 1 and in [8] for d “ 3) that in these cases

Edβ,1pψ0q ă inf
ωą0

Edβ,1pudβ,1,ωq “ 0 ùñ Mpψ0q ą µdβ,

where µdβ is again the L2-critical mass defined by (25).

6.2. Pseudoconformal invariance. In addition to Theorem 6.2, whenever d “ 1, 3, β ă 0 and σ “ 1
it is possible to explicitly construct blowing-up solutions whose initial datum satisfies Mpψ0q “ µdβ.

This can be done thanks to an additional symmetry arising in the L2-critical case, the so called
pseudoconformal invariance, which can be stated as follows.

Proposition 6.3 (d “ 1 in [16], d “ 3 in [9]). Let d “ 1, 3, β P Rzt0u and σ “ 1. If ψ is a solution
of (17) with initial datum ψ0, then, for every fixed T ą 0,

Ψd
T pt, xq :“

e
´ı |x|2

4pT´tq

pT ´ tqd{2
ψ

ˆ

1

T ´ t
,

x

T ´ t

˙
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is a solution of (17) with initial datum

Ψd
T,0pxq :“

e´ı |x|2

4T

T d{2
ψ

ˆ

1

T
,
x

T

˙

.

Hence, it is sufficient to apply the previous result with ψ equal to a standing wave to get blow-up
at the L2-critical mass.

Theorem 6.4 (d “ 1 in [16, 17], d “ 3 in [9]). Let d “ 1, 3, β ă 0 and σ “ 1. Then, for every fixed
ω ą 0, θ P r0, 2πq and T ą 0, the function

Ψd
T,β,ωpt, xq :“

e
´ı |x|2

4pT´tq
`ı ω

T´t
`ıθ

pT ´ tqd{2
udβ,1,ω

ˆ

x

T ´ t

˙

,

with udβ,1,ω a bound state given by Theorem 5.1, is a solution of (17) with initial datum

Ψd
T,0,β,ωpxq :“

e´ı |x|2

4T
`ı ω

T
`ıθ

T d{2
udβ,1,ω

ˆ

x

T

˙

that blows up at T . In other words T dβ,1pΨd
T,0,β,ωq “ T ă `8.

6.3. Further analysis. Concluding the section, we mention some finer results concerning blow-up
analysis. Note that such results are available only for d “ 1, while everything is open for d “ 2, 3.
Note also that the following results only concern the focusing case and precisely β “ ´1, for the sake
of simplicity.

The former concerns an upper bound for the blow-up rate of blow-up solutions.

Theorem 6.5 ([57]). Let d “ ´β “ 1, σ ě 1 and ψ0 P V1 and let T 1
´1,σpψ0q be defined as in (22). If

T 1
´1,σpψ0q ă `8, then there exists Cσ ą 0 such that

}Bxψpt, ¨q}L2pRq ě
a

|Epψ0q| ùñ }Bxψpt, ¨q}L2pRq ě CσpT 1
´1,σpψ0q ´ tq´

1´σc
2

with

σc :“
σ ` 1

2σ
. (29)

Furthermore, it is possible to establish a sharp dichotomy between global existence and blow-up
both in the L2-supercritical and in the L2-critical cases.

Theorem 6.6 ([57]). Let d “ ´β “ 1, σ ě 1 and ψ0 P V1 and let T 1
´1,σpψ0q be defined as in (22).

(i) On the one hand, set σ ą 1, assume

Mpψ0q
1´σc
σc Epψ0q ă Mpu1´1,σ,1q

1´σc
σc Epu1´1,σ,1q

and define

ηptq :“
}ψ0}

1´σc
σc

L2pRq
}Bxψpt, ¨q}L2pRq

}u1´1,σ,1}

1´σc
σc

L2pRq
}Bxu1´1,σ,1}L2pRq

.

Therefore:
‚ if ηp0q ă 1, then T 1

´1,σpψ0q “ `8;

‚ if ηp0q ą 1, then T 1
´1,σpψ0q ă `8 and ηptq ą 1, for every t P r0, T 1

´1,σpψ0qq.

(ii) On the other hand, set σ “ 1. Therefore:
‚ if Mpψ0q ă Mpu1´1,1,1q “ 2, then Epψ0q ą 0 and

}Bxψpt, ¨q}L2pRq ď
2Epψ0q

1 ´Mpψ0q{2
, @t P r0, T 1

´1,σpψ0qq,

so that T 1
´1,σpψ0q “ `8;
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‚ if Epψ0q ă 0, then T 1
´1,σpψ0q ă `8.

Remark 6.7. In fact, [57] presents also other results. It establishes some further regularity properties of
the weak solutions of (17) and discusses both the phenomenon of mass concentration and the features
of blow-up solutions at minimal and near-to-minimal mass in the L2-critical case.

It is also possible to establish a self-similar structure for blow-up solutions in the L2-supercritical
case.

Theorem 6.8 ([58]). Let d “ ´β “ 1, σ ą 1 and let T 1
´1,σpψ0q be defined as in (22). Then, the

function

ψpt, xq :“ νptq1{2σeıτptqζpνptqxq

weakly solves (17) (for some suitable ψ0 P V1) with limtÕT νptq “ `8, for some T ą 0, if and only if
there exists h ą 0 and k P R such that

νptq “
1

a

2hpT ´ tq
, τptq “

k

2h
log

ˆ

T

T ´ t

˙

` τp0q

and ζpzq solves

pk ` ıhσcqζ ´ ıhΛzζ ´ B2
zzζ ´ δ0|ζ|2ση “ 0

with σc defined by (29).

Remark 6.9. Note that [58] also establishes some qualitative properties of the function ζ.

Finally, it is worth mentioning a result, which is more connected to scattering theory in the cases
where global existence is guaranteed, but which is nevertheless strictly related to the blow-up analysis.
It concerns the so called asymptotic completeness.

Theorem 6.10 ([10]). Let d “ ´β “ 1, σ ą 1 and ψ0 P V1. If

Mpψ0q
1´σc
σc Epψ0q ă Mpu1´1,σ,1q

1´σc
σc Epu1´1,σ,1q,

and

}ψ0}

1´σc
σc

L2pRq
}Bxψ0}L2pRq ă }u1´1,σ,1}

1´σc
σc

L2pRq
}Bxu

1
´1,σ,1}L2pRq

and ψ is the weak solution of (17) with initial datum ψ0, then there exists ψ` P V1 such that

lim
tÑ`8

}U1p´tqψptq ´ ψ`}V1 “ 0.

Remark 6.11. Note that a suitable analogue of Theorem 6.10 holds also in the defocusing case.

7. Derivation from the standard NLS equation

As mentioned in the introduction, a rigorous mathematical derivation of the NLS with concentrated
nonlinearity from quantum many body systems in presence of impurities is still missing. What is
available, at least for d “ 1 and, partially, for d “ 3, is a derivation from the standard NLS equation
with suitably shrinking potentials. For d “ 2 nothing is known at the moment.

7.1. The one-dimensional case. In this case the result that can be proven is exactly the expected
one: the solution of (17) is the limit of the solution of a standard NLS with a suitably shrinking local
potential.

Precisely, consider the following equation

ı
Bψε
Bt

“ ´
B2ψε
Bx2

`
1

ε
V

ˆ

x

ε

˙

|ψε|
2σψε σ ą 0, ε ą 0, on R` ˆ R. (30)

It can be proved (see [37]) that for any ψ0 P H1pRq and any V P L1pR, p1 ` |x| dxqq X L8pRq,

‚ if V ě 0 and σ ą 0, or
‚ if V ă 0 in at least an open interval and σ P p0, 2q (or σ “ 2 and }ψ0}H1pRq is small),
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then the Cauchy problem associated with (30) with initial datum ψ0 admits a unique global strong
H1-solution, namely (see [78]) a distributional solution in C0

locpr0,`8q;H1pRqq of

ψεpt, xq “ pU1ptqψ0qpxq ´
ı

ε

ż t

0

ż

R
U1pt´ s, x´ yqV

ˆ

y

ε

˙

|ψεps, yq|2σψεps, yq dy ds, (31)

which is the Duhamel’s formulation of the Cauchy problem associated with (30). Then, we can state
the following theorem.

Theorem 7.1 ([31]). Let β P Rzt0u and V P L1pR, p1`|x| dxqqXL8pRq with β “
ş

R V pxq dx. Assume

also that V ě 0 or σ P p0, 1q. Therefore, for every ψ0 P H1pRq, if ψ is the weak solution of (17) and
ψε is the strong H1-solution of (31), then, for any fixed T ą 0,

sup
tPr0,T s

}ψεpt, ¨q ´ ψpt, ¨q}H1pRq ÝÑ 0, as ε Œ 0.

Remark 7.2. In fact, in [31] the approximation established by Theorem 7.1 is proved in the case of
finitely many nonlinear delta potentials by means of a standard NLS with finitely many shrinking
local potentials.

7.2. The three-dimensional case. Unfortunately, in the three-dimensional case it is still open
whether an analogous of Theorem 7.1 can be proved using local potentials. Nevertheless, it is possible
to prove a version of it with a family of nonlocal shrinking potentials.

Precisely, for every fixed σ, ε ą 0 and β P Rzt0u, consider the following equation

ı
Bψε
Bt

“ ´∆ψε `

ˆ

´ε

ℓ
` β

ε2σ`2

ℓ2σ`2
|xρε, ψεpt, ¨qyL2pR3q|

2σ

˙

xρε, ψεpt, ¨qyL2pR3qρε, on R` ˆ R3, (32)

where pρεqεą0 is defined by

ρεpxq :“
1

ε3
ρ

ˆ

x

ε

˙

,

with ρ a real, positive, spherically symmetric Schwartz function of R3, (i.e. a kernel for δ0 in R3) and

ℓ “ ℓpρq :“ xρ, p´∆q´1ρyL2pR3q.

In this case, the Duhamel’s formulation of the Cauchy problem associated with (32) is

ψεpt, xq “ pU3ptqψεp0, ¨qqpxq`

´
ıε

ℓ

ż t

0

ˆ

´ 1 ` β
ε2σ`1

ℓ2σ`1
|xρε, ψεpt, ¨qyL2pR3q|

2σ

˙

xρε, ψεpt, ¨qyL2pR3qpU3pt´ sqρεqpxq ds. (33)

One can prove (see [32]) that, whenever ψp0, ¨q P H2pR3q, there exists a unique global H2-strong
solution of (32), namely a solution of (33) in C0

locpr0,`8q;H2pR3qq X C1
locpr0,`8q;L2pR3qq.

Now, recall that in order to represent dompH3
β,σq one can use the nonlinear analogous to (9), i.e.

dompH3
β,σq “

!

u P L2pR3q : Dq P C s.t. u´ qG3
0 “: ϕ P H2

locpR3q X H̊1pR3q X H̊2pR3q, ϕp0q “ β|q|2σq
)

.

Moreover, one can check that ([32])

ψε,0 :“ ϕ0 ` q0ρε ˚ G3
0 P H2pR3q, @ψ0 P dompH3

β,σq. (34)

Theorem 7.3 ([32]). Let β P Rzt0u and ε ą 0. Assume also that σ ą 0 when β ą 0, whereas σ P p0, 1q

when β ă 0. Therefore, for every ψ0 P dompH3
β,σq, if ψ is the weak solution of (17) and ψε is the

H2-strong solution of (32) with ψεp0, ¨q “ ψε,0 (ψε,0 being defined by (34)), then, for any fixed T ą 0,

sup
tPr0,T s

}ψεpt, ¨q ´ ψpt, ¨q}L2pR3q ď Cεδ,

for some constant C ą 0 and δ P p0, 1{4q.
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8. Results on connected problems

Finally, it is worth reporting some works that address problems which are closely related in some
sense to the NLS equation with point-concentrated nonlinearities.

8.1. Nonlinear perturbations of the fractional Laplacian. First, we mention a “fractional per-
turbation” in dimension one of what we introduced in Section 2 (nothing has been done in higher
dimensions). The unique difference here is that the operator perturbed by a nonlinear Delta potential
is the fractional Laplacian p´∆qs.

The problem is again defined by a suitable modification of the linear model (studied in [69] and

partially in [35]), and reads exactly as (17) with H1
β,σ replaced by H1,s

β,σ, where H1,s
β,σ is an operator

whose definition is completely analogous to (18)-(19) with G1
λ replaced by the Green’s function of

p´ d2

dx2
qs ` λ, denoted by G1,s

λ , and ´∆ is replaced by p´ d2

dx2
qs.

Remark 8.1. As in the non fractional case, an analogous definition can be constructed from the
fractional analogous to (7)-(8)-(9)-(10).

The problem has been addressed by [35], which establishes:

(i) local well-posedness in strong sense,
(ii) conservation of mass and energy,
(iii) global well-posedness in the defocusing and the focusing subcritical case (with critical power

here depending on s);
(iv) existence of blow-up solutions in the focusing supercritical case;
(v) complete classification of the standing waves.

8.2. Nonlinearity concentrated on a sphere. Another variant of the problem introduced by Sec-
tion 2 arises as one considers a non-zero-dimensional support for the delta measure. For instance, one
may think to a smooth, compact manifold without boundary, such as, in particular, a sphere S2 Ă R3.

Here, the whole setting is more technical, even in the linear case (see [19] for S2 and [21, 20, 22]
for more complex geometries). However, the proper variant of (17) is obtained by replacing H3

β,σ with

the map HS2
β,σ, with domain

dompHS2
β,σq : “

␣

u P L2pR3q : Dλ ą 0, q : S2 Ñ C s.t.

u` G 3
λ pβ|q|2σqq “: ϕλ P H2pR3q and q “ u|S2

(

and action

HS2
β,σu “ ´∆ϕλ ` λG 3

λ pβ|q|2σqq, @u P dompHS2
β,σq,

where G 3
λ is now the Green’s potential associated with the unit sphere of the operator ´∆ ` λ in R3,

i.e.

G 3
λ phqrxs :“

ż

S2
G3
λpx´ yqhpyq dS2pyq, @h : S2 Ñ C, @x P R3.

Remark 8.2. It is possible to find a definition in which the dumb parameter λ does not appear by
suitably adapting the sphere versions of (7) and (10). Note that the link with the point-concentrated
case in d “ 1 is due to the codimension of the support of the delta, which is one in both cases.

The problem has been addressed by [48], which establishes:

(i) local well-posedness in strong sense,
(ii) conservation of mass and energy,
(iii) global well-posedness in the defocusing case for non large exponents of the nonlinearity.
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8.3. Non-autonomous point-concentrated delta potentials. Finally, we mention a class of prob-
lems where the point delta potentials are linear, but non-autonomous. This class of models is his-
torically mentioned together with nonlinear delta potentials since, even though many features are
different, the main techniques used for the investigation are the same.

Such models arise as one sets α “ αptq in (4)-(5), with α : R Ñ C a given function, and considers
the associated variant of (12). The resulting Cauchy problem involves a family of operators

`

Hd
αptq

˘

tPR,

indexed by the time variable t, which are self-adjoint at any fixed t P R. However, since the operator
is not the same at every time, standard theory based on Stone’s theorem does not apply any more,
thus requiring to rely on some specific techniques used in the context of nonlinear delta potentials.

The main reason of interest for this model descends from an effective description of the microscopic
dynamics of a quantum particle interacting with bosonic scalar quantum fields in configurations where
the fields are very intense and the average number of carriers is large, in the so called quasi-classical
limit (see [33, 39]). A typical example is given by the description of a quantum particle coupled with
both acoustic and optical phonons in a compound ionic crystal (see, e.g., [61, Chapter 4]).

Global well-posedness for this problem has been studied in [56] for d “ 1, in [26] for d “ 2 and
in [74]. Anyway, in this context, another interesting issue is the study of the asymptotic behavior of
the survival probability of the L2-normalized bound state φdαp0q

associated with the sole eigenvalue of

Hd
αp0q

(see after (11)), i.e.

survival probability :“ |xφdαp0q, ψpt, ¨qyL2pRdq|
2

where ψ is the evolution of the initial state ψ0 “ φdαp0q
. Such a quantity can be proved to vanish at

infinity, which shows a complete ionization phenomenon, and an estimate of its decay rate can be also
provided ([41, 40] for d “ 1, [26] for d “ 2 and [38] for d “ 3).

Finally, we underline that also a different non-autonomous delta model has been managed in the
literature: the so-called traveling deltas ([42]). In this case, it is no more the strength of the delta
potential which depends on time, but the the point where the delta measure is based.
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