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A B S T R A C T

Railway concrete bridges are prone to fatigue collapse, being subjected to multiple cyclic loads during their
lifetime. This paper proposes a probabilistic procedure for assessing the fatigue life of concrete railway bridges.
The procedure includes the uncertainties related to the concrete fatigue model and the concrete strength by
highlighting the relevant uncertainty of existing fatigue models. Therefore, it proposes an enhancement of
the fatigue model proposed by the Fib Code 2010 to reduce the modelling error possibly. The model has
been calibrated on an extensive data set of normal-strength concrete samples following a Bayesian approach.
Parallelly, the parameters have been reduced using a Bayesian step-wise deletion process. The paper uses the
proposed probabilistic model to estimate the fragility curves in general cases by considering appropriate ranges
for the train velocity, stress ratios and the number of cycles per year. In the second step, the paper applies the
procedure to the fragility estimate of a typical prestressed-concrete railway bridge. The bridge response has
been estimated using a finite-difference (FD) model. The FD model, simulating train–track–bridge interaction,
has been calibrated on the measured displacement response. The analyses have been referred to different
scenarios when suitable ranges of train velocities and cycles per year are considered.
1. Introduction

Fatigue represents a potential failure mechanism for structures un-
der repetitive loadings, such as traffic loads [1]. Steel structures are
particularly prone to fatigue. However, also concrete structures can
suffer from fatigue cracking [2]. Nonetheless, compared to steel, fatigue
phenomena in concrete are less predictable. Current design codes,
such as the Eurocodes (EN1992-1-1, EN1992-2, EN1991-2), include
extended rules for fatigue analysis and design of concrete bridges.

Fatigue significantly affects the life cycle of concrete. Multiple
experimental investigations proved that the fatigue life of concrete
decreases dramatically with an increase in the maximum tensile stress
level [3]. Currently, there are two main approaches for predicting the
fatigue life of concrete structures, a mechanics-based and an empirical
method. Both methods suffer from several flaws, which compromise
the successful application of these methods to concrete structures. The
mechanics-based approach is based on fracture mechanics. It aims to
analyse crack initiation and propagation. The most widely used fatigue
crack growth model was proposed by Paris, which relates the crack
growth rate and stress-intensity factor range [4]. In steel structures,
Miner’s rule is applied for fatigue evaluation considering the linear
damage accumulation [5]. In concrete structures, ASHTO, AREMA,
BBK 04, BS 5400, Eurocode 2, fib Model Code 2010, and SIA D 1033
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specifications recommend that fatigue damage in concrete structures
should be estimated using the Palmgren–Miner rule [6].

However, the prediction of crack propagation in concrete is a com-
plex phenomenon, influenced by multiple factors, including concrete
strength, reinforcing steel strength, and bonding behaviour [7]. Exper-
imental fatigue tests on concrete samples highlight a wide scatter of
cycles to failure under the same conditions. The discrepancy between
cycles to failure of concrete specimens with identical load conditions
under fatigue can be huge, spanning from 100 to 100 000 cycles [8].
The high scattering of experimental data compromises the successful
application of mechanics-based models. Besides, the scholar does not
possess adequate knowledge of structural defects, which can trigger
crack propagation. Therefore, mechanics-based approaches cannot be
considered feasible methods in engineering practice.

Fatigue phenomena in concrete generally demand an empirical
approach. The complexity for treating and interpreting experimental
results and the significant time-cost of fatigue tests fed elementary
approaches based on S–N curves [9] see Eurocode 2 [10] and Model
Code 2010 [11]. These design methods indicate the expected number
of cycles to failure for specific maximum stresses. However, the S–N
curve approach has several flaws.
vailable online 31 January 2023
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• S–N curves are successfully applied to steel structures. However,
the huge dispersion of fatigue results for concrete does not allow
a straightforward deterministic approach. There are several S–N
curves for concrete calibrated on experimental data. Still, fatigue
models from literature or code are highly conservative. They
are useful for identifying the conditions where fatigue failure is
unlikely to occur. Nonetheless, these models cannot be considered
predictive due to the large modelling error.

• S–N curves are calibrated on experimental samples loaded under a
specific stress level (S). However, traffic loads on bridge structures
lead to a wide range of stress levels during service life. Therefore,
S–N curves cannot directly predict bridge fatigue life.

• The macroscopic or phenomenological approach does not directly
consider the physical mechanism of fatigue damage [12].

Under bending fatigue loads, the stress distribution in the cross-
ection is not uniform. Hence, fatigue damage’s progress differs at
ifferent cross-section depths [13]. This phenomenon leads to a stress-
edistribution over the cross-section, which causes a variable stress
atio during the fatigue life. As a result, the stress levels of concrete and
teel change over fatigue cycles. These phenomena, observed by several
cholars [14,15], are essential and must be considered when assessing
he fatigue life of concrete structures. Nonetheless, the difficulty in
racking the time evolution of the stress ratio further supports a macro-
copic approach. S–N curves for eccentric compression are calculated
ith the initial stress ratio, although it varies as the cycles accumulate
nd affects the failure. Therefore, the authors will follow an empirical
pproach where the stress ratio is assumed to be constant and equal
o the initial one. At the same time, a probabilistic model for the S–N
urves will be used to predict the cycles to failure. The S–N curves are
btained from experimental tests and possess information about stress
edistribution caused by eccentric loading.

There is no well-acknowledged procedure for estimating the fatigue
ife of concrete structures. Many researchers agree on the need for a
robabilistic approach to fatigue. In some studies, fatigue uncertainty is
elated to the randomness of the material properties [16–18]. Multiple
robability density functions have been considered, such as the log-
ormal or Birnbaum-Saunders [19–21]. Recent papers highlight that
atigue results follow a Weibull distribution, with two or three pa-
ameters [8,22,23]. Castillo and Fernández-Canteli [24] proved that
eibull and Gumbel are the only distributions applicable to fatigue

ased on the weakest-link hypothesis, compatibility conditions and
symptotic properties. Different fatigue models have been developed
ased on one of these distributions by giving a physical meaning to
he distribution parameters or relating them to some other empir-
cal parameters fitted through experimental tests [8]. The concrete
atigue behaviour is highly different in tension and compression. This
nvestigation focuses on fatigue performance under compression since
ully prestressed concrete girders are selected as reference structures.
ccordingly, the probabilistic fatigue model is based on compressive

atigue tests.
To the authors’ knowledge, there is no research on the effect of

atigue model uncertainty on the fatigue life prediction of concrete
ailway bridges under repetitive loading. This paper introduces the
oncept of fatigue life and proposes a probability-based method for
stimating the fragility curves due to fatigue. The reliability analysis
ncludes all uncertainties related to concrete strength, fatigue model,
xpected load conditions, and predictive model of the bridge response.
fter a theoretical introduction, the procedure supports a discussion
ased on extensive parametric analyses. Then, the proposed method is
pplied to an ordinary railway concrete bridge. Estimating the fragility
urves has required the development of predictive models of fatigue
nd bridge response.

Fatigue models of technical provisions are deterministic and not
uitable for reliability analyses. Furthermore, probabilistic fatigue mod-
71

ls from the literature are characterized by a significant modelling
error, undermining the usefulness of reliability analyses. Consequently,
there is a need for a more accurate probabilistic model of concrete
fatigue, allowing its use within current technical standards. Following
the general procedure in [25], the present paper proposes a prob-
abilistic model derived from the Fib Model Code 2010 to predict
the number of fatigue cycles to failure. The model is formulated by
adding suitable correction terms to the predictive equation from the
Fib Model Code formulation. The correction terms include explanatory
functions calibrated and selected through a Bayesian approach using
the experimental data collected by [26]. The accuracy of the proposed
models is compared with that of a linear model and the one proposed by
the Fib Code 2010. The stress level is estimated from a finite difference
model of the bridge response, which models the Train–Track–Bridge
Interaction (TTBI).

It must be remarked that the fatigue performance of concrete and
steel reinforcements determines the fatigue life of a concrete bridge.
In some tests on RC beams subjected to fatigue loads, failure stems
from fatigue fracture of steel reinforcements. An RC beam should be
considered a serial system since failure might occur if either concrete or
steel reaches the fatigue cracking. However, this paper will focus on the
sole concrete contribution to fatigue to prove the significant uncertainty
related to its estimation. Isolating the concrete contribution to fatigue
will allow assigning the related uncertainty in the fatigue life estimate
to the sole concrete.

Several papers on TTBI, like [27], with experimental validation,
prove that elementary approaches based on beam models for the track
and the bridge with viscoelastic coupling can accurately seize the
experimental displacement response with a minor error, compared to
more advanced models of the TTBI [28]. The growth of the model
complexity leads to increased model parameters being calibrated. The
growth in complexity can add significant uncertainty to the math-
ematical model and dramatically increase the computational effort.
Besides, sophisticated models can only be created with great effort and
do not allow parametric studies or stochastic simulations due to the
high computational cost. To develop and validate a general procedure
for estimating the fatigue life of concrete railway bridges, the paper
presents an elementary finite difference model of the TTBI, which can
be easily used for parametric analyses and Monte Carlo simulations.
The governing equations of the track and the bridge, modelled as
Euler–Bernoulli beams, are coupled by a distributed layer of springs
representing the ballast. The two equations are solved under a moving
load excitation using a Runge–Kutta family and the finite-difference
method for the temporal and spatial discretization, respectively. The
authors validated the mathematical model of the TBBI against the
displacement response of rail bridges with a ballasted sub-structure.

In conclusion, the novel contributions of this article can be summa-
rized as follows:

• Probabilistic improvement of the fatigue model in the Fib Code
2010 for estimating the fatigue life of concrete railway bridges.
The probabilistic correction is obtained by adding suitable ex-
planatory functions to the deterministic predictive equation. The
model aims to reduce the modelling error for the reliability
analysis.

• Development of a finite difference model to evaluate the struc-
tural response of a non-classically damped Euler–Bernoulli beam
under a moving load excitation. The model has been validated
with the experimental displacement response of a ballasted bridge
under train loads. The model parameters have been optimized
using a genetic optimization algorithm.

• Assessing the effects of stress levels, fatigue model uncertainty,
traffic intensity, and train velocity on the fatigue life of concrete
railway structures.

• Application of the proposed method to a short-span ordinary
concrete bridge.
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The paper has the following organization. After the introduction
section, the paper presents the probabilistic framework for estimating
the fragility curves and the fatigue life. The third section describes
the TTBI model used to estimate stress levels, while the fourth section
presents and discusses the proposed probabilistic fatigue model. The
fifth section presents parametric analyses, where multiple fragility
curves are estimated by varying the stress levels, the train velocity, the
expected train traffic, and the fatigue model’s standard deviation. In the
sixth section, the proposed procedure for the fragility curve assessment
is applied to a full-scale railway bridge. This section discusses the prac-
tical implications of estimating the fatigue life following the proposed
method.

2. Fragility curves and fatigue life estimation

The output of fatigue tests is the number of cycles to failure. Fatigue
tests do not provide the strength reduction of concrete samples due
to cyclic loads. Therefore, the limit state function for fatigue failure
mechanisms cannot be written in terms of static or kinematic variables.
Fatigue failure may occur if the load cycles exceed the predicted
number of cycles to failure. Accordingly, the limit state function can
be written as the difference between the predicted number of cycles
to failure, representing the capacity, and the expected number of load
cycles, expressing the demand.

The limit state function can be formulated as

𝑔
(

𝐫,𝐩, 𝐬̂, 𝑛𝑦,Θ
)

= 𝐶 (𝐫, 𝐬̂,Θ) −𝐷
(

𝐫,𝐩, 𝐬̂, 𝑛𝑦,Θ
)

(1)

here 𝐶 (𝐫, 𝐬̂,Θ) is the number of cycles to failure obtained from the
robabilistic fatigue model, 𝐷

(

𝐫,𝐩, 𝐬̂, 𝑛𝑦,Θ
)

is the cumulated expected
umber of cycles at a given year obtained from the probabilistic de-
and model. In detail, 𝐫 collects the material properties of the bridge

e.g., concrete resistance), 𝐩 collects all information regarding the load
xcitation (train length, train weight, train velocity, number of trains
er years, e.g.), 𝐬̂ indicates the reference stress ratio used to homogenize
he number of load cycles of the capacity and demand models, 𝑛𝑦 is the
umber of years. The stress ratio is the ratio between the maximum or
inimum stress and the material resistance.

Theoretically, It would be possible to calibrate two probabilistic
odels, one for the capacity and one for the demand. The probabilis-

ic capacity model has been calibrated on experimental compressive
atigue tests. Conversely, the demand model is assumed deterministic
ince the authors do not possess experimental data associated with mul-
iple train transits from permanent structural monitoring. Therefore,
he lack of an adequate number of experimental data for the bridge
esponse does not allow the calibration of a probabilistic demand
odel.

The limit state function can be used to compute the fragility of a
iven structure. Fragility functions define the conditional probability
f meeting or exceeding a prescribed limit state for a given value
f the demand measure. If the demand is expressed in terms of the
umber of cyclic loads per year, the increasing number of years can
e considered as a suitable intensity measure for fragility estimation.
he events associated with a limit state function less or equal to zero
efine the failure related to the considered phenomenon. Rigorously,
ollowing Eq. (1) the fragility of a given structure can be written as
(

𝐫,𝐩, 𝐬̂, 𝑛𝑦,Θ
)

= 𝑃
[{

𝑔(𝐫,𝐩, 𝐬̂, 𝑛𝑦,Θ) ≤ 0
}

|𝑛𝑦
]

(2)

Empirical fragilities are estimated using direct Monte Carlo simula-
ions [29]. The failure probability is obtained by dividing the number
f simulations associated with exceeding the number of cycles to failure
nd the total number of simulations. The expected fatigue life in years
𝑛̂𝑦) can be obtained from the fragility curves:

ind 𝑛̂ ∶ 𝛽(𝐫,𝐩, 𝐬̂, 𝑛 ) = 𝛽 (3)
72

𝑦 𝑦
Table 1
Target 𝛽-values for elements (lifetime), ISO 2394:1998 [30].

Relative costs of Consequences of failure

safety measures Small Some Moderate Great

Low 0 1.5 2.3 3.1
Moderate 1.3 2.3 3.1 3.8
High 2.3 3.1 3.8 4.3

where 𝛽 is the reference reliability threshold provided by the code.
Table 1 provides target 𝛽-values for structural elements (lifetime) ac-
cording to ISO 2394:1998 [30].

Compared to steel, fatigue in concrete has minor consequences of
failure: the steel reinforcement prevents the dramatic consequences of
brittle failure due to the crack opening. Therefore, fatigue failure in
concrete structures has no direct consequences on global collapse. The
cracks can trigger corrosion phenomena and further cracking due to
the increment in the stress level. However, fatigue cracks in concrete
structures with shear and bending reinforcement have no direct con-
sequences on global collapse. Parallelly, the costs of safety measures
would be high. As discussed in the following sections, it is possible
to prevent fatigue cracks by reducing the stress values inside the
structure. This can only be achieved by replacing the structure or
adopting invasive structural interventions. Therefore, the reliability
target corresponding to high relative costs for safety measures and
minor consequences of failure is 2.3; see Table 1.

This paper uses 𝛽 = 2.3 to estimate the fatigue life of railway-
reinforced concrete bridges. The fatigue life cannot be considered the
expected duration of a structure before it collapses. The occurrence of
fatigue cracking does not lead to failure in structures with adequate
steel reinforcement. Therefore, the fatigue life can be considered a time
limit beyond which it is appropriate to verify the integrity of concrete
through extensive tests and, in the case of cracks, adopt adequate safety
measures to limit the consequences of the fatigue cracks (corrosion,
e.g.).

2.1. Capacity model

The limit state function compares the expected number of cycles to
failure and the expected number of cyclic loads. Following [25], the
number of cycles to failure, i.e. the capacity, can be written as:

𝑇
[

𝐶 (𝐫, 𝐬̂,𝜣)
]

= 𝑇
[

𝐶̂ (𝐫, 𝐬̂)
]

+ 𝛾 (𝐫, 𝐬̂,𝜽) + 𝜎𝜀, (4)

here 𝑇 (⋅) is a variance stabilizing transformation, 𝐶(𝐫, 𝐬̂,Θ) is the total
umber of cycles to failure, while 𝜣 = {𝜽, 𝜎} are unknown model
arameters. On the right side of Eq. (4), 𝐶̂ (𝐫, 𝐬̂) is the capacity accord-
ng to a deterministic fatigue model; generally a physics-based model
ependent on the specific engineering problem [29,31–34], 𝛾 (𝐫, 𝐬̂,𝜽) is
correction term based on pieces of evidence from the experimental

ata. The product 𝜎𝜀 is the model error, with model standard deviation
and normally distributed random variable 𝜀. The model is based on

hree assumptions: additivity (i.e., the additivity of 𝜎𝜀); homoskedas-
icity (i.e., the independence of 𝜎 from 𝐫 and 𝐬̂); normality (i.e., the
ormality of 𝜀). Through a suitable choice of 𝑇 (⋅), such assumptions can
e approximately satisfied in the transformed space within the range of
he data used to calibrate the model. Following the traditional approach
f the fatigue model, the logarithm to base ten is chosen as variance
tabilizing transformation.

.2. Demand model

The demand model gives the expected number of cycles cumulated
t a given year 𝑛𝑦. By assuming a probabilistic model of the number of
oad cycles per year, the demand model can be written as follows:
(

𝐫,𝐩, 𝐬̂, 𝑛 ,Θ
)

= 𝑛
[

𝐷 𝐫,𝐩, 𝐬̂,Θ
]

(5)
𝑦 𝑦 𝑦 ( )
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The expected number of load cycles per year (𝐷𝑦 (𝐫,𝐩, 𝐬̂,Θ)) cannot
be directly obtained from the database collecting the details of the
train traffic of the past years. The traffic load includes many train
loads, typologies and velocities. Therefore, the load cycles caused by
the traffic load vary in amplitude and stress level. However, according
to existing fatigue models, the number of cycles to failure always refers
to a given stress level, generally expressed as the ratio between the
maximum stress and material resistance.

As highlighted in the description of Eq. (1), the number of cycles for
capacity and demand are homogenized to a given stress level, defined
by vector 𝐬̂, collecting the maximum and minimum stress ratios. The
expected number of homogenized cycles per year can be estimated as
follows:

𝐷𝑦 (𝐫,𝐩, 𝐬̂,Θ) =
𝑛𝑡
∑

𝑖=1

𝑙𝑖
2𝑛𝑣,𝑖

⋅
(

𝐫, 𝐬𝑖, 𝐬̂,Θ
)

(6)

where 𝑖 indicates the 𝑖th train, 𝑛𝑡 the total number of trains per year, 𝑙𝑖
he length of the 𝑖th train, 𝑛𝑣,𝑖 the number of vehicles of the 𝑖th train,
hile 𝑖

(

𝐫, 𝐬̂, 𝐬𝑖,Θ
)

is an homogenization factor. The homogenization
actor can be expressed in terms of the capacity model. The number
f load cycles can be homogenized to their effect on fatigue, given the
tress level associated with the cycle. The 𝑖

(

𝐫, 𝐬𝑖, 𝐬̂,Θ
)

factor can be
ritten as:

𝑖
(

𝐫, 𝐬𝐢, 𝐬̂,Θ
)

=
𝐶
(

𝐫, 𝐬𝑖,Θ
)

𝐶
(

𝐫, 𝐬𝑖,Θ
) (7)

here 𝐬𝑖 is the stress ratio associated with the 𝑖th train, while 𝐬̂𝑖 is
he reference stress ratio. The proposed homogenization approach does
ot explicitly consider the load sequence’s effect since it adopts a
inear scaling based on the stress level. This approach follows current
esign codes, which estimate the fatigue life under variable amplitudes
sing the Palmgren–Miner (P–M) [35] rule and assumes a linear scal-
ng between lifetimes measured for uniform cyclic loading scenarios.
onetheless, the load sequence effect observed in compression by
olmen [36] and Petkovic et al. [37] showed that the well-known P–

rule might lead to inaccurate fatigue life estimations, as recently
onfirmed by [38]. Therefore, future research efforts will include the
oad sequence effect for predicting the fatigue life of concrete structures
nder generally variable fatigue loading scenarios.

.3. Discussion

The proposed probabilistic framework for estimating the fatigue life
f concrete railway bridges might merit the discussion of the following
spects:

• Considered sources of uncertainty;
• Homogenization approach;
• Number of cyclic loads estimation.

he paper only considers the uncertainty of the fatigue model and
aterial resistance, which affect the capacity and the demand through

he homogenization factor. The scholar could also treat the expected
rain traffic per year as a vector of random variables. It could be
ossible to estimate the variation of the railway traffic between years
y modifying Eq. (5). The demand at a given year could be obtained by
ultiplying the expected demand per year by a time-dependent factor

hat amplifies or reduces the trainload during the lifetime. However,
rain traffic does not exhibit a significant variation across the years.
his fact will be confirmed in the following sections by showing the
raffic variation of a sample bridge in the period 2017–2021.

The managing bodies of the Italian railway network distinguish
hree traffic categories:

• 𝑛𝑡,𝑑 < 40-Low traffic
• 40 ≤ 𝑛𝑡,𝑑 ≤ 100-Moderate traffic
73

• 𝑛𝑡,𝑑 > 100-High traffic
here 𝑛𝑡,𝑑 is the expected number of trains per day. The results shown
n the following sections prove that the effect of the traffic load per
ay can be negligible if the fatigue model has significant uncertainty.
herefore, modelling the train traffic as a vector of random variables
ould be considered unnecessary for this research. The paper will show
hat the fatigue model is the weak link of the entire framework. There-
ore, refining the load estimate has no significant effect on improving
he accuracy of the prediction.

The entire framework is based on a homogenization approach.
his aspect represents an element of originality. It derives from the
xisting fatigue model’s limitation, which does not predict the number
f cycles to failure if the stress level changes during the loading phase.
xperimental fatigue tests impose a constant stress level during the
ycles. Experimental fatigue tests with a variable load protocol would
dd additional scatter to the results, which are already difficult to
nterpret. Therefore, the capacity model can only give the number of
ycles to failure for a given stress level. Parallelly, the train traffic
auses load cycles variable in amplitude. Therefore, if a reference stress
evel is assumed for the capacity estimation, expressed by the vector
̂, each load cycle caused by the train must be set equivalent to the
eference stress level. Specifically, each load cycle causes specific stress
alues in the bridge cross-section. The fatigue model can be used to
et an equivalence between the number of load cycles and stress levels
ased on the number of cycles to failure corresponding to the stress
ue to the 𝑖th train transit (𝒔𝒊) and the reference one (𝒔̂), assumed in

the analyses.
The computing of the number of load cycles is based on the geomet-

ric details of the train; see Equation (6). Fig. 1 shows a schematization
of the train model. Experimental investigations, see [27], proved that a
load cycle is generally associated with the transit of two train axes cor-
responding to two vehicles. As shown in the next section, this evidence
supports modelling two train axes with an equivalent concentrated
force. The succession of almost equally spaced concentrated forces gen-
erates a cyclic excitation to the bridge with frequency 𝑓dominant, [39]:

𝑓dominant =
𝑛𝑣,𝑖
𝑙𝑖

(8)

where 𝑛𝑣,𝑖 and 𝑙𝑖 are defined after Eq. (6). As remarked by several
scholars [40], the dynamic amplification factor in railway bridges is
close to unit and generally below 2. The dynamic amplification depends
on the adimensional velocity of the train, defined as:

𝛼 =
𝑓dominant

𝑓1
(9)

where 𝑓dominant is defined in Eq. (8), and 𝑓1 is the first natural fre-
quency of the bridge. Interestingly, in low and medium-span bridges,
the dynamic effect of the loads does not cause an increment in the
number of load cycles due to the interaction between the excitation
frequency (𝑓dominant) and the modal parameters of the bridge. After
the last train vehicle left the bridge, the bridge did not significantly
manifest oscillation, as confirmed by the experimental tests used to
validate the proposed bridge model. Therefore, the number of load
cycles can be estimated from the train characteristics, while the stress
level (𝒔), caused by the train, is from the mechanical model of the
bridge.

3. Bridge modelling

The stress level vector of the 𝑖th train collects the maximum and
minimum stress ratios reached during the load cycles:

𝐬𝑖 = {𝑆𝑐,max.𝑖, 𝑆𝑐,min,𝑖} (10)

𝑆𝑐,max,𝑖 =
𝜎𝑐,max, 𝑖

𝑓𝑐
(11)

𝑆𝑐,min,𝑖 =
𝜎𝑐,min, 𝑖 (12)
𝑓𝑐
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Fig. 1. Schematization of the train loads.
where 𝑓𝑐 is the concrete resistance, 𝜎𝑐,max, and 𝜎𝑐,min are the maximum
and minimum stresses during the load cycles corresponding to the 𝑖th
train transit. The concrete resistance is considered a random variable:

𝑓𝑐 = 𝑓𝑐𝑚 + 𝜎𝑐𝜀 (13)

where 𝑓𝑐𝑚 is the mean concrete strength referred to as the concrete
resistance class of the bridge. At the same time, the product 𝜎𝑐𝜀 ex-
presses the resistance scatter, with standard deviation 𝜎𝑐 and normally
distributed random variable 𝜀. For the sake of simplicity, a constant
value for 𝜎𝑐 is adopted. Specifically, based on the extensive investiga-
tion by Shimizu et al. [41], the adopted coefficient of variation for 𝑓𝑐𝑚
is equal to 0.20.

The maximum and minimum stresses should be obtained from a
TTBI model as follows:

𝝈𝑐,max,𝑖 = (𝒑𝑖) (14)

where  is the TTBI model, and 𝒑𝑖, following the notation in Eq. (1),
collects the information of the 𝑖th train. The bridge model () is
obtained from the separate modelling of the bridge and the track.
Therefore, this section is divided into four subsections dedicated to
the track and bridge modelling and to the temporal and spatial dis-
cretization of the governing equations. Appendix A details the TTBI
model.

4. Probabilistic fatigue model

This section proposes a novel probabilistic fatigue model of concrete
derived from the Fib Model 2010 by adding suitable correction terms.
Recent models for concrete fatigue are generally validated against
high-strength concrete data [42–49]. However, most of the reinforced
concrete railway bridges are made of normal strength concrete. There-
fore, following [42], the probabilistic fatigue model is developed using
a database of 219 tests of normal-strength concrete samples. The test
results are taken from the scientific literature [36,50–53].

The paper considers reference structures for estimating the fatigue
life of a fully prestressed concrete girder. Therefore, these structures
experience cyclic eccentric compressive loads during their service life.
Therefore, theoretically, the probabilistic fatigue model should be cal-
ibrated on eccentric compressive tests. However, the lack of exper-
imental tests on eccentric compression forced the authors to collect
a database including pure compression tests. Nonetheless, the major
difference in the concrete fatigue behaviour depends on the stress
sign between tension and compression rather than the occurrence of
eccentric compression. No tension is supposed to occur in the structure
due to the full prestress condition.

Fig. 2 shows the histogram plots of the test data in terms of the
number of cycles to failure (𝐶), concrete strength (𝑓𝑐𝑘), and maximum
(𝑆𝑐,𝑚𝑎𝑥) and minimum (𝑆𝑐,𝑚𝑖𝑛) stress levels. The number of cycles to
failure reaches 107 in some concrete specimens, while most fail at
nearly 104. The concrete strength is between 20 and 70 MPa, although
the largest percentage of samples has a 44 MPa compression strength.
The maximum stress level is quite significant for all specimens. There
are no data for 𝑆𝑐,𝑚𝑎𝑥 < 0.5. This fact represents the main limitation
of existing databases of fatigue tests. Most structures experience a
maximum stress level lower than 0.5, not excessively exploiting the
material potential. Therefore, the proposed fatigue model, like the
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literature ones, will be extrapolated to estimate the number of failure
cycles when moderate stress levels occur. Moreover, testing concrete
specimens with a stress level lower than 0.5 would require extremely
time-consuming experimental tests.

4.1. Model formulation and calibration

The model for concrete fatigue follows the structure in Eq. (4):

log
[

𝐶 (𝐫, 𝐬̂,𝜣)
]

= log
[

𝐶̂ (𝐫, 𝐬̂)
]

+ 𝛾 (𝐫, 𝐬̂,𝜽) + 𝜎𝜀, (15)

The correction term 𝛾 (𝐫,𝜽) is selected as a linear combination of 𝑛
dimensionless explanatory functions ℎ𝑖(𝐫) and reads:

𝛾 (𝐫, 𝐬̂,𝜽) = 𝜽T ⋅ 𝐡 (𝐫, 𝐬̂) . (16)

The considered set of explanatory functions 𝐡 (𝐫) = {ℎ1 (𝐫) ,… , ℎ𝑛 (𝐫)} is
obtained by combining the three variables affecting 𝐶̂ (𝐫): 𝑆𝑐,max, 𝑆𝑐,min,
collected in 𝐬̂, and 𝑓𝑐𝑘 in 𝐫. 𝐫 collects the material properties of the
bridge (e.g., concrete resistance).

The number of variables involved in the capacity model is limited by
those reported in the experimental fatigue tests. The variables are three:
the maximum and minimum stress ratios and the concrete compressive
strength. Hence, the authors, rather than checking by hand which
combinations between the three parameters correspond to a significant
regressor, adopted an automatic approach by taking all combinations
between them and then a posteriori selecting the relevant ones with a
step-wise procedure. The explanatory functions should be dimension-
less to determine a general, size-independent model. However, using
dimensionless explanatory functions is a recommendation to achieve
a general model, although in some circumstances selecting dimension
variables does not impair the rigour of the procedure. In this situation,
next to the dimensionless stress ratios, the compressive strength was
also included to observe possible phenomena related to its influence on
the fatigue capacity. It is known that compressive strength can affect
the fatigue performance of concrete.

The three variables are multiplied and raised to the 𝑖th, 𝑗th and
zth power, respectively. The explanatory functions are generated by
taking all possible combinations between i, j, and z, where {𝑖, 𝑗, 𝑧} ∈ N
and 0 ≤ {𝑖, 𝑗, 𝑧} ≤ 𝑛max with 𝑛max the maximum model order. All
combinations {𝑖, 𝑗, 𝑧} are collected in a set 𝑆. The generic combination
from the set 𝑆 is a subset of three (𝑘 = 3) distinct elements of 𝑆.
Therefore, the cardinality of 𝑆 is equal to the binomial coefficient.

ℎ (𝐫)𝑖𝑗𝑧 = 𝑆 𝑖
𝑐,max𝑆

𝑗
𝑐,min𝑓

𝑧
𝑐𝑘 | card(𝑆) =

(

3𝑛max
3

)

(17)

Given a maximum model order (𝑛max) equal to three, i.e. the max-
imum exponent between 𝑖, 𝑗 and 𝑧, the number of regressors from
Eq. (16) is equal to 84.

The parameters collected into Θ are calibrated using the Bayesian
approach [54]. This method combines the prior knowledge on the
parameters, which is contained in the prior distribution of Θ, 𝑓 ′(Θ),
with the information provided by the data, which is contained in the
likelihood function, (Θ). The posterior distribution of the parameters
𝑓 ′′(Θ) is defined as follows:

𝑓 ′′ Θ = 𝑘 Θ 𝑓 ′ Θ , (18)
( ) ( ) ( )
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Fig. 2. Histogram plot of the experimental data of fatigue tests used for the model calibration, following [42].
and it is obtained by dividing the product (Θ)𝑓 ′(Θ) by the evidence
k, which is the following normalizing constant:

𝑘−1 =
[

∫𝛺Θ

 (Θ) 𝑓 ′ (Θ)dΘ
]

, (19)

where 𝛺Θ is the parameters space. The posterior distributions 𝑓 ′′(Θ)
obtained after the calibration can be used to find a point estimate
for the model by ignoring the epistemic uncertainties in the model
parameters. An alternative approach is used in the present study, which
also accounts for the epistemic uncertainties in the model parameters.
This alternative approach assumes Θ as random variables and find a
predictive estimate of 𝐶(𝐫, 𝐬̂,Θ) in agreement with [25] as follows:

𝐶̃ (𝐫, 𝐬̂) = ∫𝛺Θ

𝐶 (𝐫, 𝐬̂;Θ) 𝑓 ′′ (Θ)dΘ. (20)

Since an analytical solution for Eq. (20) is often missing, it is opportune
to find a numerical approximation of the distribution of 𝐶̃ (𝐫, 𝐬̂) by
sampling from 𝑓 ′′(Θ) and finding the corresponding realizations of
𝐶(𝐫, 𝐬̂;Θ).

Non-informative priors are chosen in the form of Gaussian distri-
bution with zero means and large variance for all the parameters. To
facilitate the use of the model and its possible implementation into
technical standards, it should be parsimonious (i.e., with a correction
term constructed using a limited number of explanatory functions
𝑛) and as accurate as possible (i.e., with a small value of standard
deviation 𝜎). However, a reduction of 𝑛 usually entails a higher value
of 𝜎. Therefore, the model has been reduced by following a step-
wise deletion of the parameters. The step-wise deletion process allows
finding a trade-off between parsimony and accuracy [55]. The stepwise
deletion process used in this paper starts with a model that includes
all the candidate explanatory functions and at each step, removes the
explanatory function with the highest coefficient of variation (COV)
of the corresponding 𝜃𝑖, as proposed in [25]. Once an explanatory
function is removed, the model is re-calibrated and the deletion process
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is repeated. The deletion process ends when either 𝜎 grows beyond an
undesirable threshold or the increment of 𝜎 is too large compared to
the reduction of the model complexity. Fig. 3 shows a workflow of the
procedure from the initial to the reduced model formulation

4.2. Deterministic fatigue model

The deterministic capacity equation is taken from the fib Model
Code 2010 [1]:

log
[

𝐶̂ (𝐫, 𝐬̂)
]

=

{

log𝑁1, if log𝑁1 ≤ 8
log𝑁2 if log𝑁1 > 8

(21)

where 𝑁1 and 𝑁2 are the numbers of cycles to failure. The two S–N
relations for 𝑁1 and 𝑁2 if 0 ≤ 𝑆𝑐,𝑚𝑖𝑛 ≤ 0.8 read:

log𝑁1 =
8

𝑌 − 1
(

𝑆𝑐,max − 1
)

(22)

log𝑁2 = 8 +
8 ln(10)
𝑌 − 1

(

𝑌 − 𝑆𝑐,min
)

log
(𝑆𝑐,max − 𝑆𝑐,𝑚𝑖𝑛

𝑌 − 𝑆𝑐,min

)

(23)

where,

𝑌 =
0.45 + 1.8𝑆𝑐,min

1 + 0.85𝑆𝑐,min − 0.3𝑆2
𝑐,min

(24)

𝑆𝑐,max =
𝜎𝑐,max
𝑓𝑐𝑘,fat

(25)

𝑆𝑐,min =
𝜎𝑐,min
𝑓𝑐𝑘,fat

(26)

and 𝑓𝑐𝑘,𝑓𝑎𝑡 is the concrete fatigue strength. These expressions can be
considered valid for concrete stored in a constant environment of
approximately 20 ◦C, 65% RH. The curves have been verified with
experiments up to 107 load cycles to failure. For log𝑁 > 8 the curves
asymptotically approach the minimum stress level of the respective
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Fig. 3. Workflow of the procedure from the initial to the reduced model formulation.
Fig. 4. Comparison between the experimental data and the S–N curves from the FIB
Model Code 2010.

curve. In the fib Model Code 2010 [1], the fatigue reference com-
pressive strength 𝑓𝑐𝑘,𝑓𝑎𝑡 is obtained from the characteristic compressive
strength 𝑓𝑐𝑘 as follows:

𝑓𝑐𝑘,fat = 0.85𝛼𝑐𝑐 (𝑡)
[

𝑓𝑐𝑘

(

1 −
𝑓𝑐𝑘

25𝑓𝑐𝑘0

)]

(27)

with 𝛼𝑐𝑐 (𝑡) is given by Eq. (28) and 𝑓𝑐𝑘0 = 10 MPa.

𝛼𝑐𝑐 (𝑡) = exp
{

𝑠
[

1 −
( 28

𝑡

)0.5]}

(28)

The expression for 𝛽𝑐𝑐 (𝑡) describes the strength evolution with time,
where 𝑠 depends on the strength class of the cement, see [1].

Fig. 4 plots the experimental data used for calibration and the S–
N curves from Eqs. (22)–(23). The plots prove that the Fib Model
is highly conservative, being almost the lower envelope of the test
data. Therefore, it cannot be used for fitting purposes, as discussed
in the next sections. Even if the Fib Model is unbiased, the fitting is
still unsatisfactory, making it unsuitable for predictions. Additionally,
the model is deterministic and does not allow estimating the failure
probability due to fatigue.
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Fig. 5. Step-wise model deletion.

4.3. Proposed model and discussion

The proposed probabilistic fatigue model, derived from the step-
wise deletion can be written as:

log [𝐶 (𝐱,𝜣)] = log
[

𝐶̂ (𝐱)
]

+ 𝜽𝒉 + 𝜎𝜀 (29)

where 𝜽 and 𝒉 are defined in Table C.9. The 𝜃𝑖 are identified by
the subscripts corresponding to the combinations of the i, j and z
coefficients of Eq. (16). The posterior statistics of 𝜣 is reported in
Table C.9. Fig. 5 plots the steps of the model deletion process. The left 𝑦-
axis in the logarithmic scale shows the coefficient of variations of the 𝜃𝑖
considered at the 𝑖th step. The right 𝑦-axis plots the standard deviation
of the model error 𝜎. The initial number of coefficients, obtained from
Eq. (16), is equal to 64. The high number of regressors can be associated
with overfitting issues. Therefore, to test the absence of overfitting, the
dataset in Fig. 2 has been divided into two subsets, for calibration and
validation purposes, respectively. The calibration set includes 80% of
the data, while the test set has the remaining 20%.

The model calibration with all terms leads to a 𝜎 equal to 0.76 until
the 23rd step. At this step, the model error has a significant increment
until stabilizing at 0.78. The further reduction of the model error leads
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Table 2
Comparison between predictive models, where 𝜎 is the standard deviation.

Models 𝜎 R2 adj-R2

First-order model 1.230 0.409 0.401
Fib model 1.580 0.023 0.018
Proposed model 0.781 0.818 0.788

to a standard deviation close to 0.9–1, observed in the linear model.
Therefore, the authors chose the 34th step for model truncation for two
reasons. Further steps lead to a significant increment of the model error,
which would become close to the one in the first-order model, thus
impairing the advantages of the more advanced formulation. Secondar-
ily, the 34th step is not associated with overfitting, as proved by the
good agreement between the fitting of the calibration set and the data
set. Therefore, the selected model possesses 20 explanatory functions,
itemized in Table C.9. The discussion of the model performance is
carried out by comparing it with the predictions of a first-order one,
shown in Eq. (30), and a modification of the deterministic model in
Eq. (31) to eliminate the bias in the estimates.

log
[

𝐶 (𝐫, 𝐬̂,𝜣)
]

= 𝜃000 + 𝜃100ℎ100 + 𝜃010ℎ010 + 𝜃001ℎ001 + 𝜎𝜀 (30)

log
[

𝐶 (𝐫, 𝐬̂,𝜣)
]

= log
[

𝐶̂ (𝐫, 𝐬̂,𝜣)
]

+ 𝜃000 + 𝜎𝜀 (31)

Table 2 compares the performances of the first-order model in Eq. (30),
the unbiased Fib Model in Eq. (31) and the proposed one. The standard
deviation of the model error reduces from the Fib Model to the first-
order and the proposed one, being nearly 1.5, 1.2 and 0.8, respectively.
As highlighted by [56], concrete fatigue evidence a highly scattered
response. Therefore, it is not possible to further reduce the modelling
error due to the significant fraction of 𝜎 related to the dataset, which
is irreducible.

The ranking between the three models in terms of R2 and adj-R2 is
more evident. The first-order model has an R2 close to 0.4. On the other
hand, the R2 of the Fib-model is extremely low, nearly about 0.023.
Conversely, the proposed model has a satisfactory R2, approximately
equal to 0.8. Fig. 6 compares the performances of the three models by
plotting the logarithms of the number of cycles to failure estimated
from the model and those taken from the dataset. Fig. 6 also plots
the bisector of the first quadrant. The higher is the distance from the
1:1 line, the worse the model performance. The first-order and the
proposed model appear quite close to the 1:1 line. Conversely, the dots
of the fib model do not align along the bisector. Instead, they are likely
to arrange along a line with a lower slope than the bisector. This fact
proves the estimated low value for the R2 in Table 2. Additionally, it
suggests that the elementary correction of the Fib model in Eq. (31) is
not enough to achieve a suitable fitting. Therefore, a more sophisticated
model should be used for predictions like the one proposed in this
paper.

5. Parametric fragility curves

This section shows a selection of fragility curves related to fatigue
failure. The parameters varied in these analyses are:

• The maximum stress level (𝑆𝑐,𝑚𝑎𝑥), see Fig. 7 and Table 3;
• The number of expected trains per day (𝑛𝑡,𝑑), see Figs. 7–9 and

Tables 3–5;
• The standard deviation of the fatigue model (𝜎), see Fig. 8 and

Table 4;
• The train velocity (𝑐), see Fig. 9 and Table 5.

The stress levels are assumed in the calculations, and they are not
obtained from a specific structure by solving the TTBI equations. There-
fore, the fragility curves are general and can refer to any structure
theoretically. Three values for the expected number of trains per day
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Fig. 6. Predicted versus the measured number of cycles to failure for the Fib model,
the first-order and the proposed ones.

have been assumed: 40, 100 and 150. These values derive from the
classification of the Italian railway network, based on small (𝑛𝑡 < 40),
moderate (40 < 𝑛𝑡 < 100) or high traffic (𝑛𝑡 > 100).

The effect of the train velocity is specific to the structure. Therefore,
the authors used the amplification factor for the stress level obtained
from the case study discussed in the following sections to estimate
velocity effects. Two standard deviations for the fatigue model are
considered, one equal to 0.78 from the proposed model, while another
equal to 1.5 arising from the Fib Model. Fig. 7 plots the estimated
failure probabilities as a function of the number of years, chosen as
intensity measure. The four plots refer to a maximum stress level equal
to 0.1, 0.15, 0.2 and 0.25. Each figure shows three fragility curves
associated with the considered traffic demand levels, 40, 100 and 150
trains per day. The parameters assumed constant in the calculations
are the concrete compression strength 𝑓𝑐𝑘 = 45, the minimum stress
level (𝑆𝑐,𝑚𝑖𝑛 = 0.01), the train velocity (𝑐 = 100 km/h) and the standard
deviation of the fatigue model (𝜎 = 0.78). These values are also reported
in the title of each figure to facilitate the reader.

Fig. 7 shows the mean of the fragility curves. The direct inspection
of Fig. 7 proves the followings:

• The fragility curves do not reach values close to 1 also for
significant intensity measures. This fact depends on the high
uncertainty of the fatigue model. Parallelly, the curves collecting
the reliability indexes prove that the reliability index can be very
low for minimal intensity measures.

• The train traffic reduces structural reliability. However, the effect
of the stress level is enormously more significant than that of the
train traffic, in the considered ranges of variation.

• There is a sharp reduction of the structural reliability between
maximum stress levels between 0.1 and 0.25. If the stress level is
lower than 0.1, fatigue cracking is unlikely to occur. Conversely,
a 10% increment of the stress level causes a boost in the failure
probability due to fatigue. Consequently, the fatigue model and
the fragility curves are highly sensitive to stress levels.

Table 3 lists the estimated fatigue lives for the curves in Fig. 7.
The fatigue life reduces dramatically for 𝑆𝑐,𝑚𝑎𝑥 between 0.1 and 0.25.
Higher values of fatigue life are associated with higher uncertainty in
the estimate, expressed in terms of standard deviation. The accurate
estimate of the stress level inside a structure is crucial for predicting the
fatigue life, and, accordingly scheduling the inspections for assessing
the integrity of concrete (sonic tests, e.g.). Fig. 8 shows the same cal-
culations plotted in Fig. 7 by adopting a higher standard deviation for
the fatigue model (𝜎 = 1.5). The uncertainty of the fatigue model does
not provide an adequate estimate of the fragility curves. The failure
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Fig. 7. Fragility curves (left y-axis) and reliability indexes (right y-axis) for railway concrete bridges with variable stress level and train traffic by assuming 𝑓𝑐𝑘 = 45, 𝑆𝑐,𝑚𝑖𝑛 = 0.01,
c = 100 km∕h, 𝑛𝑣 = 10. The standard deviation of the fatigue model (𝜎) is assumed equal to 0.78.
Table 3
Estimated fatigue life in years (𝑛̂𝑦) and associated standard deviation (𝜎𝑦) for railway
concrete bridges with variable stress level and train traffic by assuming 𝑓𝑐𝑘 = 45,
𝑆𝑐,𝑚𝑖𝑛 = 0.01, c = 100 km/h, 𝑛𝑣 = 10. The standard deviation of the fatigue model
(𝜎) is assumed equal to 0.78.

Expected Expected number of trains per day (𝑛𝑡,𝑑 )

stress level 40 100 150

𝑆𝑐,𝑚𝑎𝑥 𝑛̂𝑦 𝜎𝑦 𝑛̂𝑦 𝜎𝑦 𝑛̂𝑦 𝜎𝑦
0.1 30 358 7334 12 687 2107 7855 1671
0.15 140 28 56 11 44 6
0.2 5 1 2 / 1 /
0.25 <1 / <1 / <1 /

probability is very low, despite considering high-intensity measures.
Parallelly, except for 𝑆𝑐,𝑚𝑎𝑥 = 0.1, the reliability indexes are far below
4 for 𝑦̂ < 1. Table 4 confirms the above aspects. If the stress level is
higher than 0.1, the expected fatigue life is always lower than 1 year.

Fig. 9 plots the fragility curves by varying the expected train traffic
and the train velocity. As anticipated, the results of these plots cannot
be considered general since the stress amplification due to velocity has
been obtained from the TTBI model for the case study discussed in the
following sections. However, the considered bridge represents a typical
short-span reinforced concrete railway bridge. Therefore, the results
can be considered valid for a variety of situations. The calculations
in Fig. 9 refer to a maximum stress level equal to 0.2. The estimated
fatigue lives in years, shown in Table 5, confirm that the effect of
velocity are minor compared to those caused by the train traffic and
the stress level. In conclusion, the ranking of the parameters from the
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Table 4
Estimated fatigue life in years (𝑛̂𝑦) and associated standard deviation (𝜎𝑦) for railway
concrete bridges with variable stress level and train traffic by assuming 𝑓𝑐𝑘 = 45,
𝑆𝑐,𝑚𝑖𝑛 = 0.01, c = 100 km/h, 𝑛𝑣 = 10. The standard deviation of the fatigue model
(𝜎) is assumed equal to 1.5.

Expected Expected number of trains per day (𝑛𝑡)

stress level 40 100 150

𝑆𝑐,𝑚𝑎𝑥 𝑛̂𝑦 𝜎𝑦 𝑛̂𝑦 𝜎𝑦 𝑛̂𝑦 𝜎𝑦
0.1 620 216 227 92 155 60
0.15 3 1 1 <1 1 <1
0.2 <1 / <1 / <1 /
0.25 <1 / <1 / <1 /

Table 5
Estimated fatigue life in years (𝑛̂𝑦) and associated standard deviation (𝜎𝑦) for railway
concrete bridges with variable train velocity 𝑐 and train traffic by assuming 𝑓𝑐𝑘 = 45,
𝑆𝑐,𝑚𝑖𝑛 = 0.01, 𝑆𝑐,𝑚𝑖𝑛 = 0.2, 𝑛𝑣 = 10. The standard deviation of the fatigue model (𝜎) is
assumed equal to 0.78 based on the proposed fatigue model.

Train Expected number of trains per day (𝑛𝑡)

velocity 40 100 150

𝑐 [km/h] 𝑛̂𝑦 𝜎𝑦 𝑛̂𝑦 𝜎𝑦 𝑛̂𝑦 𝜎𝑦
30 140 38 60 12 38 8
50 163 28 54 13 42 6
150 139 29 56 11 40 9
250 148 26 59 9 39 8

most to the least influential to the fatigue life is: stress level, train traffic
and train velocity.
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Fig. 8. Fragility curves (left y-axis) and reliability indexes (right y-axis) for railway concrete bridges with variable stress level and train traffic by assuming 𝑓𝑐𝑘 = 45, 𝑆𝑐,𝑚𝑖𝑛 = 0.01,
c = 100 km∕h, 𝑛𝑣 = 10. The standard deviation of the fatigue model (𝜎) is assumed equal to 1.5, as in the Fib Model.
6. Case study

The authors estimate the fragility curves and the fatigue life for a
short-span prestressed concrete railway bridge. The bridge in Fig. 10 is
on the Orte-Falconara railway line, in the municipality of Trevi (Italy).
The viaduct consists of 46 spans of about 20 m in length. Each span
consists of 8 pre-tensioned beams equipped with four crosspieces with
rectangular cross-sections. The bridge is not particularly sensitive to
fatigue under compression since the stress ratio is not as significant
as in other structures, like multi-span continuous bridges, with slen-
der members. However, this case study represents an application of
the above procedure for assessing fatigue in an ordinary prestressed
concrete structure, which is a dominant mid-span bridge typology in
railway networks. This case study is particularly significant because
it shows that, despite the relatively low-stress ratio, the fatigue life is
insufficient, being shorter than the structural life. As later commented,
the consequence of the high uncertainty of the fatigue model is the
reduction of the fatigue life. The considered fatigue failure mode
corresponds to eccentric compression. The fatigue failure is expected
to appear by the bridge mid-span, where the maximum stress ratios
should appear in the case of a simply-supported bridge considered in
this investigation.

Fig. 11 details the cross-section of each span. The beams are 1.40 m
high. The upper and lower wings are 1.20 m and 0.70 m wide, respec-
tively. The eight beams have a shear reinforcement by the supports.
Therefore the thickness of the core of the beam varies from 16 to 33 cm.
The prestressing reinforcement is arranged in the lower wing, and,
according to the design drawings of the time, it consists of 29 cables
arranged in 3 rows, sheathed at the support. The crosspieces are also
prefabricated and are therefore born integral with the beam. They have
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a rectangular cross-section with a 40 cm width and a height equal to
the beams. There is a 20 cm thick reinforced concrete slab with 1.40
cantilevered elements, which support the side walkways to the railway
line and the parapets. The total width of the deck is about 12.40 m and
bears two running tracks. Table 6 lists the geometrical characteristics
of the bridge cross-section.

6.1. Experimental tests and model calibration

The displacement response of the bridge under a train transit is used
to calibrate the parameters of the FD model. The experimental equip-
ment consisted of two easels supporting a laser sensor. The laser sensors
are Micro-epsilon optoNCDT 1420. The sampling rate is 1000 Hz. The
C-Box/2 A controller (Micro-epsilon) synchronizes and digitizes the two
signals, which are acquired by a personal computer from an Ethernet
cable. A lead–acid battery provided power to both the laser sensors,
the controller and the personal computer. The two lasers measured the
displacement response of the 3rd and 6th beam intrados. Fig. 12 shows
the experimental setup for the Orte-Falconara bridge.

The train loads are eccentric and cause minor torsional effects. Since
the authors are modelling the bridge like an EB beam, they purged the
response from the torsional response by extracting the mean value, also
shown in Fig. 13.

As proven by [13], under eccentric compressive tests, the strains on
cross sections keep nearly perfect linear distributions. Therefore, the EB
model can be considered reasonable since it assumes the planarity of
the cross-section deformation. Besides, as recently highlighted by [28],
the modelling of the ballast contribution is particularly relevant when
estimating the load effect of the bridge. Therefore, the authors devel-
oped a TTBI model where the bridge and the rail are modelled by
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Fig. 9. Fragility curves (left y-axis) and reliability indexes (right y-axis) for railway concrete bridges with variable train velocity 𝑐 and train traffic by assuming 𝑓𝑐𝑘 = 45, 𝑆𝑐,𝑚𝑖𝑛 = 0.01,
𝑆𝑐,𝑚𝑖𝑛 = 0.2, 𝑛𝑣 = 10. The standard deviation of the fatigue model (𝜎) is assumed equal to 0.78 based on the proposed fatigue model.
Fig. 10. Views of the viaduct and of a sample span.
Fig. 11. Cross-section of the Orte-Falconara bridge. The dimensions are in meters.
EB beams coupled with a layer of springs representing the ballast.
Additionally, the choice of an analytical rather than a Finite Element
model relies on the computational cost. Rapid analyses to calculate the
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empirical fragilities demand a particularly efficient structural model.
The main limitation of the model is neglecting the effect of load ec-
centricity on stress redistribution among the eight longitudinal beams.
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Fig. 12. View of the sensors layout and experimental setup in the Orte-Falconara bridge
(1st case study) for the bridge deflection measurement using laser sensors under the
train transit.

Table 6
Input parameters of the optimization algorithm.

Description Input parameters

Label Value Unit

Beam length 𝐿 19.85 m
Discretization step 𝛥𝑥 0.5 m
Concrete specific mass 𝜌𝑐 2500 kg/m3

Cross-section area of the bridge 𝐴𝑐 6.67 m2

Ballast specific mass 𝜌𝑏 2000 kg/m3

Cross-section area of the rails 𝐴𝑟 0.01 m2

Steel specific mass 𝜌𝑠 2000 kg/m3

Cross-section area of the ballast 𝐴𝑏 5.67 m2

Bending stiffness of the bridge 𝐸𝑐𝐼𝑐 12 600 kN mm2

Young’s modulus of steel 𝐸𝑠 210 000 Mpa
Cross section area of the rails 𝐼𝑟 833.104 mm4

Velocity of the train 𝑐 110 km/h
Locomotive’s length 𝐿𝑣 5 m
Car’s length 𝐿𝑣 22 m
Locomotive weight 𝑃𝑙 300 kN
Car’s weight 𝑃𝑐 600 kN
Number of locomotives 2
Number of cars 7
Train velocity 𝑐 109 km/h

Therefore, future studies will be based on more accurate structural
models than the archetypal one used in this paper.

Following [28], the experimental time history is used to calibrate
the stiffness and damping parameters of TTBI model (𝐸𝐼𝑏, 𝑘𝑓 , 𝑐𝑓 ). The
known parameters are listed in Table 6. The calibration is carried out
using a genetic optimization algorithm [57]. The genetic algorithm per-
forms iteration of parameters with the goal of minimizing the following
objective function: The optimum parameters are defined as:

𝑿̂ = arg min𝐴𝑿corr(𝒅𝑠,𝑠,𝒅𝑠,𝑚) (32)

obj(𝐩) =
∑𝑁

𝑖=1 |
[

𝑤𝑏,𝑒𝑖 −𝑤𝑏,𝑠𝑖(𝐩)
]

𝛥𝑡𝑖|
∑𝑁

𝑖=1 |𝑤𝑏,𝑒𝑖𝛥𝑡𝑖|
(33)

where 𝑁 is the number of data points, p is the parameter vector
containing the ballasted track parameters, 𝑤𝑏,𝑒𝑖 and 𝛥𝑡𝑖 are the ex-
perimental deflection of the bridge, and 𝑤𝑠𝑖(𝐩) is the simulated beam
deflection. Note that the objective function is defined as the normalized
integral of the difference between experimental and simulated displace-
ment. This gives a measure of the discrepancy between experimental
data and model simulation.

𝒑 = {𝐸𝐼𝑏, 𝑘𝑓 , 𝑐𝑓 } = {12 600 kN mm2, 490.49 MPa, 14.50 MPa s} (34)

Eq. (34) gives the optimum parameters, while Fig. 13 compares the
experimental and simulated displacement response. The comparison is
very satisfactory. The displacement peaks are almost corresponding.
Additionally, the oscillations damp after each train load, as observed
in the experimental data. Therefore, the calibrated FD model can be
reliably used to predict the stress level inside the bridge.
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Fig. 13. Comparison between the experimental and simulated displacement response
obtained with the optimized parameters.

Table 7
Estimated fatigue life in years (𝑛̂𝑦) and associated standard deviation (𝜎𝑦) for the
considered case study bridge by assuming two values for the standard deviation of
the fatigue model.
𝜎 𝑛̂𝑦 𝜎𝑦
0.78 10 2
1.5 1 <1

6.2. Demand model

The demand model in Eq. (6) is estimated from the 2017–2021
database collecting the information of the trains that crossed the con-
sidered bridge. Fig. 14 shows the histogram plots of the most relevant
information referred to in 2017 in terms of train weight, length, number
of vehicles and velocity. The values cannot be approximated by contin-
uous probability density functions, as proven by attempting a fitting of
the weight, length and vehicles using a Weibull probability distribution.
A single train transit, as later shown, will be used for calibrating the
train–track–bridge interaction model. Conversely, the database corre-
sponding to the trains passed in 2017 is used for estimating the demand
model related to a given year following Eq. (6).

The information collected in the database has been correlated in
Fig. 15 to show the dependence between the axis weight and the
number of axes (Fig. 15(a)) and the axes weight and the number of
cycles per year (Fig. 15(b)). Fig. 15(a) proves that, in most cases,
there are 25 axes with an approximate 20ton weight. However, the
are multiple situations where different axes weights are associated with
a very different number of cycles per year. This fact endorses the
use of the discrete model in Eq. (6) based on the database of train
traffic.

7. Fatigue life assessment

Fig. 16 shows the fragility curves for the considered bridge in
Fig. 10. It plots the estimated failure probabilities as a function of
the number of years, chosen as the intensity measure. The two figures
have been obtained by varying the standard deviation of the fatigue
model, set equal to 0.78 and 1.5 following the above calculations. The
reference stress levels used for normalization are 𝒔 = {𝑆𝑐,𝑚𝑎𝑥, 𝑆𝑐,𝑚𝑖𝑛} =
{0.01, 0.18} Therefore, the parameters assumed constant in the calcula-
tions are the concrete compression strength 𝑓𝑐𝑘 = 45, and the standard
deviation of the fatigue model (𝜎 = 0.78). These values are also reported
in the title of each figure to facilitate the reader. Fig. 16(c)–(d) shows
the same results in (a)–(b) using the number of cycles as intensity
measure. Table 7 lists the estimated fatigue life by assuming the two
standard deviations. According to the proposed model, the fatigue life
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Fig. 14. Histogram plot and fitting Weibull probability distributions of the main information about the train transits in 2017.
Fig. 15. Histogram plot of the number of axes/axes weight and number of cycles per year/axes weight data.
equals ten years with a two-year standard deviation. Conversely, the
fatigue life obtained with 𝜎 = 1.5 is equal to 1 year. The above results
highlight the following aspect. If the stress level (𝑆𝑐,𝑚𝑎𝑥) exceeds the
asymptote 0.1, the fatigue life is far below the nominal life of a railway
concrete bridge. This is also valid if the proposed fatigue model with a
lower standard deviation is used. Therefore, the evaluation of the stress
level inside a concrete bridge should be as accurate as possible since the
fatigue life is extremely sensitive to the stress level.

The proposed fatigue life assessment can be used to schedule in-
depth tests to check the integrity of concrete structures. Additionally,
structural health monitoring systems for concrete bridges subjected
to repetitive loadings, like railway bridges, should include adequate
sensing solutions for the continuous tests of the concrete integrity. The
fatigue damage can trigger dangerous phenomena which can lead to a
significant reduction of structural reliability. Therefore, this model can
support more efficient maintenance planning and management savings
related to cost savings and lifetime extensions.
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8. Conclusions

This paper proposes a general probabilistic framework for estimat-
ing the fatigue life of concrete structures applied to prestressed concrete
railway bridges. The proposed approach is general and can be applied
to other engineering problems, such as the fatigue degradation of wind
power plants under wind actions. The fatigue life is obtained from the
empirical estimates of the fragility curves following a direct Monte
Carlo approach and a homogenization strategy based on S–N curves.
The fragility curves plot the failure probability as a function of the
number of years chosen as the intensity measure for the fragility esti-
mate. Failure is reached when the number of cycles obtained from the
demand model at a given year exceeds the number of cycles to failure
obtained from a probabilistic fatigue model. The paper highlights the
limits of available fatigue models, which are deterministic and affected
by a high modelling error when fitting experimental data.

Following [42], the authors used a database of fatigue tests on
normal-strength concrete samples to calibrate a probabilistic capacity
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Fig. 16. Fragility curves (left y-axis) and reliability indexes (right y-axis) for the considered case study, by assuming two standard deviations for the fatigue model (𝜎) corresponding
to the proposed one (a) and the Fib Model (b). The plots in (c) and (d) correspond to the ones in (a) and (b) where the intensity measure is the number of cycles.
model. The proposed model, calibrated following a Bayesian approach,
exhibits a good fitting of the experimental data with R2 approximately
equal to 0.8. However, it is impossible to reduce the standard deviation
below 0.8 without overfitting issues. The fatigue model is obtained by
correcting the Fib Model 2010 with 30 regressors, selected following a
model deletion process based on the coefficient of variation values [25].
The demand model used for predicting the number of load cycles per
year is obtained from a homogenization approach by uniforming the
number of cycles to the stress level using the probabilistic fatigue
model. The stress level inside the structure is estimated from an ana-
lytical train–track–bridge interaction model, calibrated on experimental
data.

The entire procedure is applied to derive fragility curves in general
cases by varying the stress level, the train traffic, the train velocity and
the fatigue model uncertainty. The significant uncertainty of the fatigue
response significantly reduces the expected fatigue life. If the stress
level (𝑆𝑐,𝑚𝑎𝑥) exceeds the asymptote 0.1, the fatigue life is far below
the expected lifetime of a concrete railway bridge. This result is also
valid if the proposed fatigue model with a lower standard deviation is
used. The train traffic reduces structural reliability. However, the effect
of the stress level is enormously more significant than that of the train
traffic in the considered ranges of variation. Therefore, the evaluation
of the stress level inside a concrete bridge should be as accurate as
possible since the fatigue life is extremely sensitive to the stress level.

The fatigue damage can trigger dangerous phenomena, leading to
a significant reduction of structural reliability. Therefore, the proposed
fatigue life assessment can be used to schedule in-depth tests to check
the integrity of concrete structures. Fatigue’s contribution to the crack-
ing of concrete railway bridges is very hard to quantify. So it is difficult
to get the real fatigue failure cycles in actual bridges. The main model
limitation originates from this observation. Accordingly, the model has
never been validated against the fatigue collapse of real bridges. Future
studies will consider other fatigue-related failure modes in reinforced
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concrete structures, such as fatigue of the steel rebars and concrete
fatigue in tension.
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Appendix A. Train–track–bridge interaction model

A.1. Mathematical model of the track

As is well known, the deflection 𝑤𝑟(𝑥, 𝑡) of a track with constant
mass per unit length 𝜌𝑠𝐴𝑟, where 𝜌𝑠 is the specific mass of steel and 𝐴𝑟
is the cross-section area of the rails, and constant bending rigidity 𝐸𝑠𝐼𝑟,
where 𝐸𝑠 is Young’s modulus of steel and 𝐼𝑟 is the cross-section inertia
of the rails, can be described by an Euler–Bernoulli beam model. The
equation of motion can be written as: [58]

𝜌𝑠𝐴𝑟𝑤̈𝑟(𝑥, 𝑡) + 𝐸𝑠𝐼𝑟𝑤𝑟,𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 𝑞𝑟(𝑥, 𝑡) + 𝑓𝑟(𝑥, 𝑡) (A.1)

where the two dots, ẅ, indicate the second time derivative of 𝑤,
and 𝑤𝑟,𝑥𝑥𝑥𝑥 is the fourth derivative of 𝑤 with respect to the spatial
coordinate 𝑥. The distributed force 𝑞𝑟(𝑥, 𝑡) results from the viscoelastic
bedding counteracting the displacement of the track:

𝑞 (𝑥, 𝑡) = 𝑞 (𝑥, 𝑡) = 𝑘
[

𝑤 (𝑥, 𝑡) −𝑤 (𝑥, 𝑡)
]

+ 𝑐
[

𝑤̇ (𝑥, 𝑡) − 𝑤̇ (𝑥, 𝑡)
]

(A.2)
𝑟 𝑏 𝑓 𝑟 𝑏 𝑓 𝑟 𝑏
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where 𝑘𝑓 and 𝑐𝑓 represent the stiffness and damping of the viscoelastic
inkler bedding, while 𝑤𝑏 is the deflection of the beam representing

he bridge substructure. The excitation function 𝑓𝑟(𝑥, 𝑡) captures the
ffect of the interaction forces between the rails and the vehicles. The
rain can be modelled by a series of moving concentrated forces with
dentical intervals, and each car is modelled by a single concentrated
orce, as shown in Fig. 1. Thus, a train composed of 𝑁𝑣 cars can be
onsidered as 𝑁𝑣 moving forces, which are numbered as 𝑃𝑘(1, 2,… , 𝑁𝑣).

Assuming the first force enters the bridge at the initial time, the time
of the 𝑘th load entering the bridge can be expressed as:

𝑡𝑘 = (𝑘 − 1)𝐿𝑣∕𝑐 (A.3)

where 𝐿𝑡 is full length of the train.

𝑓𝑟(𝑥, 𝑡) =
𝑁𝑣
∑

𝑘=1
𝑃𝑘𝛿

[

𝑥 − 𝑐(𝑡 − 𝑡𝑘)
]

(A.4)

𝑃 =
{

𝑃𝑙
2
,
(

𝑃𝑙
2

+
𝑃𝑐
2

)

, 𝑃𝑐 ,… , 𝑃𝑐 ,… , 𝑃𝑐 ,
𝑃𝑐
2

}

(A.5)

where 𝐿𝑙 is the length of the locomotive, 𝑃𝑘 is the concentrated force
elated to the 𝑘th car, 𝑃 is the vector collecting all values of 𝑃𝑘. 𝑃𝑐

and 𝑃𝑙 are loads of cars and locomotives. The boundary conditions for
a pinned-pinned track can be written as:

Left boundary: 𝑤𝑟(0, 𝑡) = 0 𝑤𝑟,𝑥𝑥(0, 𝑡) = 0 (A.6)

ight boundary: 𝑤𝑟(𝐿, 𝑡) = 0 𝑤𝑟,𝑥𝑥(𝐿, 𝑡) = 0 (A.7)

where 𝐿 is the bridge length.

A.2. Mathematical model of the bridge

The bridge can be described by Euler–Bernoulli beam. The EB has a
constant mass per unit length (𝜌𝑐𝐴𝑐+𝜌𝑏𝐴𝑏), where 𝜌𝑐 is the specific mass
of concrete, 𝐴𝑐 is the cross-section area of the beam, 𝜌𝑏 is the specific
mass of the ballast and 𝐴𝑏 is the cross-section area of the ballasted
track, and constant flexural rigidity 𝐸𝑐𝐼𝑐 , where 𝐸𝑐 is Young’s modulus
of concrete and 𝐼𝑐 the cross-section inertia of the beam. The vertical
displacement 𝑤𝑏(𝑥, 𝑡) of the bridge is governed by the following partial
differential equation [40]:

(𝜌𝑐𝐴𝑐 + 𝜌𝑏𝐴𝑏)𝑤̈𝑏(𝑥, 𝑡) + 𝐸𝑐𝐼𝑐𝑤𝑟,𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 𝑞𝑏(𝑥, 𝑡) (A.8)

The boundary conditions for a pinned-pinned track can be written as:

Left boundary: 𝑤𝑟(0, 𝑡) = 0 𝑤𝑟,𝑥𝑥(0, 𝑡) = 0 (A.9)

Right boundary: 𝑤𝑟(𝐿, 𝑡) = 0 𝑤𝑟,𝑥𝑥(𝐿, 𝑡) = 0 (A.10)

A.3. Spatial discretization

The equations of motion of the bridge–soil and the track subsystems
can be written in matrix form as:
[

(𝜌𝑐𝐴𝑐 + 𝜌𝑏𝐴𝑏) 0
0 𝜌𝑠𝐴𝑟

]{

𝑤̈𝑏(𝑥, 𝑡)
𝑤̈𝑟(𝑥, 𝑡)

}

+
[

𝐸𝑐𝐼𝑐 0
0 𝐸𝑠𝐼𝑟

]{

𝑤𝑏,𝑥𝑥𝑥𝑥(𝑥, 𝑡)
𝑤̈𝑟,𝑥𝑥𝑥𝑥(𝑥, 𝑡)

}

+
[

−𝑘𝑓 𝑘𝑓
𝑘𝑓 −𝑘𝑓

]{

𝑤𝑏(𝑥, 𝑡)
𝑤𝑟(𝑥, 𝑡)

}

+
[

−𝑐𝑓 𝑐𝑓
𝑐𝑓 −𝑐𝑓

]{

𝑤̇𝑏(𝑥, 𝑡)
𝑤̇𝑟(𝑥, 𝑡)

}

+
{

0
𝑓𝑟

}

(A.11)

Fig. 1 illustrates the mathematical model of the TTBI. The spatial
discretization is obtained using the finite difference method, by approx-
imating the fourth derivative with the approximate fourth derivative
84

matrix. The beam is divided into 𝑛 elements with a 𝛥𝑥 length. The two
coupled partial derivative equations in Eq. (A.11) can be discretized
into the following:
[

(𝜌𝑐𝐴𝑐 + 𝜌𝑏𝐴𝑏)𝛥𝑥𝑰 𝟎
𝟎 𝜌𝑠𝐴𝑟𝛥𝑥𝑰

]{

𝒘̈𝑏(𝑡)
𝒘̈𝑟(𝑡)

}

+
[

𝐸𝑐𝐼𝑐𝑫4 − 𝑘𝑓𝛥𝑥𝑰 𝑘𝑓𝛥𝑥𝑰
𝑘𝑓𝛥𝑥𝑰 𝐸𝑠𝐼𝑟𝑫4 − 𝑘𝑓𝛥𝑥𝑰

]{

𝒘𝑏(𝑡)
𝒘𝑟(𝑡)

}

+
[

−𝑐𝑓𝛥𝑥𝑰 𝑐𝑓𝛥𝑥𝑰
𝑐𝑓𝛥𝑥𝑰 −𝑐𝑓𝛥𝑥𝑰

]{

𝒘̇𝑏(𝑡)
𝒘̇𝑟(𝑡)

}

+
{

0
𝒇 𝑟

}

= 0

(A.12)

where 𝑰{𝑛×𝑛}, 𝟎{𝑛×𝑛} are the identity and null matrices, 𝑫{𝑛×𝑛}
4 is the

approximate fourth matrix derivative defined in Eq. (A.13), 𝒘𝑏(𝑡){𝑛×1}

and 𝒘𝑟(𝑡){𝑛×1} collect the vertical deflection of the bridge and track
models discretized in 𝑁 segments, 𝒇 {𝑛×1}

𝑟 discretizes the moving force
vector described in Eq. (A.1).

Matrix 𝑫{𝑛×𝑛}
4 must satisfy the boundary conditions. The 𝑫{𝑛×𝑛}

4
matrix is four-banded matrix. The authors imposed the boundary condi-
tions of a simply supported beam by replacing the coefficients in bold:

𝑫{𝑛×𝑛}
4 = 1

𝛥𝑥4

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝟒 −4 1 0 0 0 0 0 ⋮ 0
−𝟕∕𝟐 6 −4 1 0 0 0 0 ⋮ 0
1 −4 6 −4 1 0 0 0 ⋮ 0
0 1 −4 6 −4 1 0 0 ⋮ 0

⋱ ⋱ ⋱ ⋱ ⋱
0 ⋮ 0 0 1 −4 6 −4 1 0
0 ⋮ 0 0 0 1 −4 6 −4 1
0 ⋮ 0 0 0 0 1 −4 −4 −𝟕∕𝟐
0 ⋮ 0 0 0 0 0 1 −4 𝟐

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(A.13)

The bold coefficients yield a null bending moment and displacement in
both the extremes of the beam.

Eq. (A.12) can be re-written using the conventional notation for
multi-degrees of freedom dynamic systems:

𝑴𝒙̈(𝑡) + 𝑪𝒙̇(𝑡) +𝑲𝒙(𝑡) = 𝒇 (𝑡) (A.14)

where 𝑴{2𝑛×2𝑛}, 𝑪{2𝑛×2𝑛} and 𝑲{2𝑛×2𝑛} are the mass, damping and
stiffness matrices, while 𝒇 (𝑡) is the forcing term. The displacement
vector has the following definition: 𝒙{2𝑛×1} = {𝒘𝑏(𝑡){𝑛×1},𝒘𝑟(𝑡){𝑛×1}}.

A.4. Temporal discretization

The temporal discretization requires the formulation of Eq. (A.14)
into the state space. The continuous-time state space model of Eq.
(A.14) can be written in the classical form:

𝒙̇(𝑡) = 𝑨(𝑡)𝒙(𝑡) + 𝑩𝒖(𝑡) (A.15)

where 𝒙(𝑡), 𝑨(𝑡) and 𝑩 and 𝒖(𝑡) are defined after [59] using the mass
𝑴{2𝑛×2𝑛}, damping 𝑪{2𝑛×2𝑛} and stiffness 𝑲{2𝑛×2𝑛} matrices, and the
forcing term 𝒇 (𝑡){2𝑛×1}.

Eq. (A.15) is then transformed in the following discrete form:

𝒙̇𝑘 = 𝑨𝑘𝒙𝑘 + 𝑩𝒖𝑘 (A.16)

where 𝑘 indicates the time step. Eq. (A.16) is solved using the Dormand–
Prince method based on an explicit Runge–Kutta temporal discretiza-
tion [60].

Appendix B. Database of fatigue tests

See Table B.8.

Appendix C. Posterior statistics of 𝜣

See Table C.9.
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Table B.8
Database of normal strength concrete fatigue tests taken from [36,50–53], where 𝑓𝑐 is the concrete average strength in MPa, and 𝐶exp is the experimental number of cycles to
fatigue.

Ref 𝑓𝑐 𝑆𝑐min 𝑆𝑐max 𝐶exp Ref 𝑓𝑐 𝑆𝑐min 𝑆𝑐max 𝐶exp Ref 𝑓𝑐 𝑆𝑐min 𝑆𝑐max 𝐶exp

[50]
31.578 0.100 0.900 20

[53]

44.100 0.205 0.745 2 086 412

[36]

34.440 0.080 0.800 955
31.578 0.100 0.800 140 44.100 0.205 0.745 2 399 938 34.440 0.070 0.700 6026
31.578 0.100 0.700 900 44.100 0.205 0.745 2 613 966 34.440 0.060 0.600 49 545

[51]

54.300 0.180 0.900 3 44.100 0.205 0.745 2 722 074 34.440 0.320 0.800 2432
54.300 0.192 0.960 4 44.100 0.205 0.745 3 431 626 34.440 0.280 0.700 32 137
54.300 0.192 0.960 100 44.100 0.205 0.745 5 030 371 34.440 0.560 0.800 18 365
54.300 0.168 0.840 1050 44.100 0.205 0.745 6 753 051 34.440 0.080 0.800 298
54.300 0.168 0.840 2000 44.100 0.205 0.745 6 864 359 34.440 0.070 0.700 1683
54.300 0.160 0.800 3000 44.100 0.205 0.745 6 983 932 34.440 0.060 0.600 11 535
54.300 0.160 0.800 6300 44.100 0.205 0.745 7 099 046 34.440 0.320 0.800 757
54.300 0.140 0.700 8200 44.100 0.205 0.745 8 641 716 34.440 0.280 0.700 6166
54.300 0.149 0.746 32 000 44.100 0.205 0.745 8 855 233 34.440 0.560 0.800 2254
54.300 0.149 0.746 40 000 44.100 0.205 0.745 8 949 525 34.440 0.080 0.800 89
54.300 0.139 0.693 650 000 44.100 0.205 0.745 9 038 576 34.440 0.070 0.700 441

[52]

41.000 0.095 0.633 1 200 000 44.100 0.205 0.745 14 437 766 34.440 0.060 0.600 2667
41.000 0.100 0.667 1 050 000 44.100 0.205 0.745 15 794 286 34.440 0.320 0.800 140
41.000 0.105 0.700 750 000 44.100 0.205 0.745 2 5043 787 34.440 0.280 0.700 1462
41.000 0.113 0.750 320 000 44.100 0.205 0.845 36 34.440 0.080 0.800 298
41.000 0.271 0.713 4 000 000 44.100 0.205 0.845 40 34.440 0.070 0.700 1683
41.000 0.285 0.750 1 400 000 44.100 0.205 0.845 46 34.440 0.060 0.600 11 535
41.000 0.285 0.750 1 000 000 44.100 0.205 0.845 69 34.440 0.320 0.800 757
41.000 0.304 0.800 800 000 44.100 0.205 0.845 79 34.440 0.280 0.700 6166
41.000 0.323 0.850 220 000 44.100 0.205 0.845 85 34.440 0.560 0.800 2254
41.000 0.492 0.820 1 400 000 44.100 0.205 0.845 90 34.440 0.080 0.800 89
41.000 0.520 0.867 6 00 000 44.100 0.205 0.845 100 34.440 0.070 0.700 441
41.000 0.540 0.900 46 000 44.100 0.205 0.845 110 34.440 0.060 0.600 2667
41.000 0.540 0.900 320 000 44.100 0.205 0.845 170 34.440 0.320 0.800 140
41.000 0.668 0.867 2 000 000 44.100 0.205 0.845 250 34.440 0.280 0.700 1462
41.000 0.672 0.873 4 100 000 44.100 0.205 0.845 290 36.408 0.070 0.700 5260
41.000 0.683 0.887 2 200 000 44.100 0.205 0.845 310 36.408 0.060 0.600 44 157
41.000 0.693 0.900 1 500 000 44.100 0.205 0.845 410 36.408 0.320 0.800 4498
41.000 0.708 0.920 3 100 000 44.100 0.205 0.845 500 36.408 0.280 0.700 76 384
41.000 0.708 0.920 230 000 44.100 0.205 0.845 540 36.408 0.560 0.800 70 795
41.000 0.732 0.950 200 000 44.100 0.205 0.845 640 36.408 0.060 0.600 6699
41.000 0.774 0.880 2 100 000 44.100 0.205 0.845 960 24.026 0.070 0.700 6546
41.000 0.792 0.900 2 000 000 44.100 0.205 0.845 980 24.026 0.060 0.600 95 499
41.000 0.792 0.900 3 200 000 44.100 0.205 0.845 1160 24.026 0.320 0.800 5395
41.000 0.810 0.920 160 000 44.100 0.205 0.845 1420 24.026 0.280 0.700 539 511
41.000 0.836 0.950 70 000 44.100 0.205 0.845 1440 24.026 0.560 0.800 67 453

[53]

44.100 0.205 0.745 643 132 44.100 0.205 0.845 1600 24.026 0.060 0.600 7345
44.100 0.205 0.845 1065 44.100 0.205 0.845 2071 30.996 0.070 0.700 85 704
44.100 0.050 0.805 483 44.100 0.205 0.845 3269 30.996 0.080 0.800 6501
44.100 0.050 0.685 51 464 44.100 0.205 0.845 3851 30.996 0.090 0.900 1067
44.100 0.050 0.585 2 746 629 44.100 0.205 0.845 4181 30.996 0.360 0.900 4898
44.100 0.200 0.880 93 44.100 0.205 0.845 5332 30.996 0.630 0.900 81 283
44.100 0.200 0.840 1293 44.100 0.205 0.845 8813 30.996 0.080 0.800 925
44.100 0.200 0.780 66 573 44.100 0.205 0.845 9283 33.784 0.070 0.700 7112
44.100 0.200 0.740 921 298 44.100 0.205 0.845 30 896 33.784 0.060 0.600 58 749
44.100 0.200 0.680 47 435 120 44.100 0.205 0.845 34 522 33.784 0.320 0.800 3793
44.100 0.350 0.890 1257 44.100 0.205 0.845 46 784 33.784 0.280 0.700 80 353
44.100 0.350 0.850 120 420 44.100 0.205 0.845 296 961 33.784 0.560 0.800 95 940
44.100 0.400 0.910 105 44.100 0.205 0.845 438 430 33.784 0.060 0.600 3565
44.100 0.400 0.875 52 650 44.100 0.050 0.805 483 44.362 0.070 0.700 4140
44.100 0.400 0.835 63 841 047 44.100 0.050 0.685 51 464 44.362 0.060 0.600 48 084
44.100 0.205 0.745 330 44.100 0.050 0.585 2 746 629 44.362 0.320 0.800 3828
44.100 0.205 0.745 1960 44.100 0.200 0.880 93 44.362 0.280 0.700 78 163
44.100 0.205 0.745 11 439 44.100 0.200 0.840 1293 44.362 0.560 0.800 85 310
44.100 0.205 0.745 11 874 44.100 0.200 0.780 66 573 44.362 0.060 0.600 3428
44.100 0.205 0.745 12 874 44.100 0.200 0.740 921 298 35.000 0.070 0.700 8147
44.100 0.205 0.745 23 747 44.100 0.200 0.680 47 435 120 35.000 0.060 0.600 44 259
44.100 0.205 0.745 39 902 44.100 0.350 0.890 1257 35.000 0.280 0.700 67 764
44.100 0.205 0.745 44 463 44.100 0.350 0.850 120 420 35.000 0.070 0.700 1524
44.100 0.205 0.745 70 226 44.100 0.400 0.910 105 35.000 0.060 0.600 21 878
44.100 0.205 0.745 79 891 44.100 0.400 0.875 52 650 35.000 0.280 0.700 6209
44.100 0.205 0.745 115 213 44.100 0.400 0.835 63 841 047 35.000 0.070 0.700 5358
44.100 0.205 0.745 117 166

[36]

36.900 0.000 0.900 129 35.000 0.060 0.600 527
44.100 0.205 0.745 146 791 36.900 0.000 0.800 465 35.000 0.280 0.700 4385
44.100 0.205 0.745 287 607 36.900 0.000 0.700 1959
44.100 0.205 0.745 534 687 36.900 0.000 0.600 16 904
44.100 0.205 0.745 924 911 36.900 0.000 0.500 167 109
44.100 0.205 0.745 1 025 416 36.900 0.360 0.900 245
44.100 0.205 0.745 1 178 148 36.900 0.320 0.800 2032

(continued on next page)
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Table B.8 (continued).
Ref 𝑓𝑐 𝑆𝑐min 𝑆𝑐max 𝐶exp Ref 𝑓𝑐 𝑆𝑐min 𝑆𝑐max 𝐶exp Ref 𝑓𝑐 𝑆𝑐min 𝑆𝑐max 𝐶exp

44.100 0.205 0.745 1 474 009 36.900 0.280 0.700 31 696
44.100 0.205 0.745 1 562 788 36.900 0.720 0.900 465
44.100 0.205 0.745 1 630 797 36.900 0.640 0.800 25 293
44.100 0.205 0.745 1 953 890 36.900 0.600 0.750 981 748
Table C.9
Posterior statistics of 𝜣 for the proposed model.

teta Estimate SE Correlation coefficient

𝜃000 𝜃100 t200 𝜃300 𝜃010 t210 𝜃310 𝜃020 t320 𝜃030 𝜃130 t230 𝜃330 𝜃001 𝜃101 𝜃201 𝜃301 𝜃011 𝜃211 𝜃311 𝜃021 𝜃331 𝜃002 𝜃302 𝜃012 𝜃332 𝜃003 𝜃203 𝜃303 𝜃013

𝜃000 573.79 280.10 1.00
𝜃100 −33.38 15.43 −0.47 1.00
𝜃200 0.79 0.52 0.05 −0.81 1.00
𝜃300 −0.01 0.01 0.00 0.48 −0.85 1.00
𝜃010 −823.74 943.88 −0.65 −0.30 0.44 −0.13 1.00
𝜃210 0.21 0.54 0.54 0.02 −0.58 0.79 −0.36 1.00
𝜃310 0.02 0.02 0.01 0.13 0.20 −0.68 −0.33 −0.64 1.00
𝜃020 1281.91 1307.94 0.52 0.34 −0.34 −0.07 −0.96 0.11 0.55 1.00
𝜃320 −0.03 0.02 −0.35 −0.19 0.16 0.29 0.64 0.10 −0.83 −0.76 1.00
𝜃030 −895.20 711.98 −0.59 0.25 −0.20 0.44 0.51 0.14 −0.64 −0.58 0.71 1.00
𝜃130 20.02 43.15 0.27 −0.73 0.58 −0.35 0.37 −0.11 −0.02 −0.38 0.11 −0.49 1.00
𝜃230 −0.67 1.06 −0.38 0.76 −0.50 0.19 −0.29 −0.12 0.24 0.37 −0.22 0.40 −0.95 1.00
𝜃330 0.02 0.01 0.65 −0.42 0.16 −0.25 −0.37 0.20 0.35 0.37 −0.61 −0.82 0.57 −0.59 1.00
𝜃001 −949.23 1418.15 0.02 0.15 −0.12 −0.01 −0.18 0.01 0.19 0.21 −0.26 −0.50 0.37 −0.40 0.56 1.00
𝜃101 247.17 107.19 0.25 −0.30 0.23 −0.12 −0.10 0.14 −0.12 0.06 0.05 0.34 −0.41 0.33 −0.22 −0.78 1.00
𝜃201 −6.97 3.86 −0.12 0.44 −0.51 0.32 −0.09 0.04 0.21 0.11 −0.30 −0.37 0.21 −0.08 0.22 0.52 −0.84 1.00
𝜃301 0.05 0.05 −0.03 −0.44 0.59 −0.36 0.24 −0.16 −0.30 −0.25 0.51 0.41 −0.06 −0.07 −0.29 −0.35 0.61 −0.93 1.00
𝜃011 −5448.08 2472.46 −0.47 −0.06 0.25 −0.05 0.62 −0.38 −0.28 −0.63 0.67 0.44 0.14 −0.04 −0.66 −0.40 −0.13 0.02 0.18 1.00
𝜃211 0.95 2.83 −0.14 −0.37 0.60 −0.41 0.27 −0.26 −0.21 −0.26 0.47 0.25 0.13 −0.26 −0.12 0.06 0.23 −0.71 0.89 0.13 1.00
𝜃311 0.02 0.06 0.22 0.33 −0.57 0.34 −0.36 0.29 0.32 0.36 −0.64 −0.36 −0.12 0.23 0.32 0.05 −0.19 0.67 −0.89 −0.37 −0.96 1.00
𝜃021 3480.24 2163.98 0.44 0.19 −0.45 0.21 −0.61 0.43 0.33 0.62 −0.76 −0.49 −0.15 0.11 0.64 0.34 −0.01 0.30 −0.54 −0.91 −0.53 0.72 1.00
𝜃331 −0.02 0.01 −0.30 −0.10 0.28 −0.03 0.40 −0.22 −0.45 −0.46 0.80 0.51 0.00 −0.03 −0.70 −0.32 0.06 −0.33 0.56 0.79 0.51 −0.72 −0.91 1.00
𝜃002 −507.91 784.83 0.13 0.05 −0.10 −0.01 −0.23 0.15 0.17 0.26 −0.37 −0.28 0.05 −0.12 0.50 0.45 −0.18 0.12 −0.14 −0.59 0.03 0.15 0.54 −0.57 1.00
𝜃302 0.01 0.01 0.10 −0.20 0.17 −0.04 0.07 0.01 −0.18 −0.13 0.27 0.10 0.07 −0.07 −0.22 −0.18 0.17 −0.20 0.22 0.26 0.09 −0.20 −0.29 0.41 −0.79 1.00
𝜃012 −281.14 993.96 −0.24 0.08 0.02 0.08 0.25 −0.17 −0.21 −0.28 0.45 0.41 −0.17 0.24 −0.68 −0.51 0.14 −0.08 0.14 0.70 −0.04 −0.18 −0.64 0.71 −0.90 0.53 1.00
𝜃332 0.01 0.01 0.12 −0.08 0.02 −0.15 −0.10 0.02 0.34 0.18 −0.52 −0.41 0.21 −0.20 0.65 0.35 −0.14 0.18 −0.27 −0.53 −0.12 0.33 0.57 −0.80 0.71 −0.57 −0.85 1.00
𝜃003 1636.35 789.06 0.09 −0.15 0.16 −0.21 −0.04 −0.07 0.21 0.10 −0.27 −0.23 0.15 −0.18 0.43 0.13 0.11 −0.14 0.07 −0.38 0.19 −0.02 0.27 −0.45 0.19 −0.18 −0.40 0.62 1.00
𝜃203 −1.09 1.11 0.12 −0.02 −0.11 0.12 −0.02 0.14 0.00 −0.02 −0.09 −0.11 0.09 −0.02 0.03 0.00 −0.16 0.30 −0.34 0.12 −0.44 0.38 0.10 −0.10 −0.18 0.36 0.04 −0.02 −0.55 1.00
𝜃303 0.01 0.02 −0.16 0.09 0.05 −0.06 0.02 −0.12 −0.02 0.02 0.11 0.15 −0.14 0.07 −0.09 −0.02 0.13 −0.25 0.29 −0.08 0.39 −0.34 −0.11 0.13 0.24 −0.48 −0.01 −0.03 0.41 −0.98 1.00
𝜃013 −421.32 526.93 −0.10 0.04 0.03 0.07 0.07 −0.01 −0.29 −0.13 0.45 0.32 −0.15 0.11 −0.49 −0.13 0.06 −0.18 0.31 0.35 0.23 −0.39 −0.44 0.70 −0.33 0.40 0.51 −0.86 −0.75 0.04 0.03 1.00
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