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ABSTRACT

Railway concrete bridges are prone to fatigue collapse, being subjected to multiple cyclic loads during their
lifetime. This paper proposes a probabilistic procedure for assessing the fatigue life of concrete railway bridges.
The procedure includes the uncertainties related to the concrete fatigue model and the concrete strength by
highlighting the relevant uncertainty of existing fatigue models. Therefore, it proposes an enhancement of
the fatigue model proposed by the Fib Code 2010 to reduce the modelling error possibly. The model has
been calibrated on an extensive data set of normal-strength concrete samples following a Bayesian approach.
Parallelly, the parameters have been reduced using a Bayesian step-wise deletion process. The paper uses the
proposed probabilistic model to estimate the fragility curves in general cases by considering appropriate ranges
for the train velocity, stress ratios and the number of cycles per year. In the second step, the paper applies the
procedure to the fragility estimate of a typical prestressed-concrete railway bridge. The bridge response has
been estimated using a finite-difference (FD) model. The FD model, simulating train-track-bridge interaction,
has been calibrated on the measured displacement response. The analyses have been referred to different

scenarios when suitable ranges of train velocities and cycles per year are considered.

1. Introduction

Fatigue represents a potential failure mechanism for structures un-
der repetitive loadings, such as traffic loads [1]. Steel structures are
particularly prone to fatigue. However, also concrete structures can
suffer from fatigue cracking [2]. Nonetheless, compared to steel, fatigue
phenomena in concrete are less predictable. Current design codes,
such as the Eurocodes (EN1992-1-1, EN1992-2, EN1991-2), include
extended rules for fatigue analysis and design of concrete bridges.

Fatigue significantly affects the life cycle of concrete. Multiple
experimental investigations proved that the fatigue life of concrete
decreases dramatically with an increase in the maximum tensile stress
level [3]. Currently, there are two main approaches for predicting the
fatigue life of concrete structures, a mechanics-based and an empirical
method. Both methods suffer from several flaws, which compromise
the successful application of these methods to concrete structures. The
mechanics-based approach is based on fracture mechanics. It aims to
analyse crack initiation and propagation. The most widely used fatigue
crack growth model was proposed by Paris, which relates the crack
growth rate and stress-intensity factor range [4]. In steel structures,
Miner’s rule is applied for fatigue evaluation considering the linear
damage accumulation [5]. In concrete structures, ASHTO, AREMA,
BBK 04, BS 5400, Eurocode 2, fib Model Code 2010, and SIA D 1033
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specifications recommend that fatigue damage in concrete structures
should be estimated using the Palmgren-Miner rule [6].

However, the prediction of crack propagation in concrete is a com-
plex phenomenon, influenced by multiple factors, including concrete
strength, reinforcing steel strength, and bonding behaviour [7]. Exper-
imental fatigue tests on concrete samples highlight a wide scatter of
cycles to failure under the same conditions. The discrepancy between
cycles to failure of concrete specimens with identical load conditions
under fatigue can be huge, spanning from 100 to 100000 cycles [8].
The high scattering of experimental data compromises the successful
application of mechanics-based models. Besides, the scholar does not
possess adequate knowledge of structural defects, which can trigger
crack propagation. Therefore, mechanics-based approaches cannot be
considered feasible methods in engineering practice.

Fatigue phenomena in concrete generally demand an empirical
approach. The complexity for treating and interpreting experimental
results and the significant time-cost of fatigue tests fed elementary
approaches based on S-N curves [9] see Eurocode 2 [10] and Model
Code 2010 [11]. These design methods indicate the expected number
of cycles to failure for specific maximum stresses. However, the S-N
curve approach has several flaws.
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» S-N curves are successfully applied to steel structures. However,
the huge dispersion of fatigue results for concrete does not allow
a straightforward deterministic approach. There are several S-N
curves for concrete calibrated on experimental data. Still, fatigue
models from literature or code are highly conservative. They
are useful for identifying the conditions where fatigue failure is
unlikely to occur. Nonetheless, these models cannot be considered
predictive due to the large modelling error.

S-N curves are calibrated on experimental samples loaded under a
specific stress level (S). However, traffic loads on bridge structures
lead to a wide range of stress levels during service life. Therefore,
S-N curves cannot directly predict bridge fatigue life.

The macroscopic or phenomenological approach does not directly
consider the physical mechanism of fatigue damage [12].

Under bending fatigue loads, the stress distribution in the cross-
section is not uniform. Hence, fatigue damage’s progress differs at
different cross-section depths [13]. This phenomenon leads to a stress-
redistribution over the cross-section, which causes a variable stress
ratio during the fatigue life. As a result, the stress levels of concrete and
steel change over fatigue cycles. These phenomena, observed by several
scholars [14,15], are essential and must be considered when assessing
the fatigue life of concrete structures. Nonetheless, the difficulty in
tracking the time evolution of the stress ratio further supports a macro-
scopic approach. S-N curves for eccentric compression are calculated
with the initial stress ratio, although it varies as the cycles accumulate
and affects the failure. Therefore, the authors will follow an empirical
approach where the stress ratio is assumed to be constant and equal
to the initial one. At the same time, a probabilistic model for the S-N
curves will be used to predict the cycles to failure. The S-N curves are
obtained from experimental tests and possess information about stress
redistribution caused by eccentric loading.

There is no well-acknowledged procedure for estimating the fatigue
life of concrete structures. Many researchers agree on the need for a
probabilistic approach to fatigue. In some studies, fatigue uncertainty is
related to the randomness of the material properties [16-18]. Multiple
probability density functions have been considered, such as the log-
normal or Birnbaum-Saunders [19-21]. Recent papers highlight that
fatigue results follow a Weibull distribution, with two or three pa-
rameters [8,22,23]. Castillo and Ferndndez-Canteli [24] proved that
Weibull and Gumbel are the only distributions applicable to fatigue
based on the weakest-link hypothesis, compatibility conditions and
asymptotic properties. Different fatigue models have been developed
based on one of these distributions by giving a physical meaning to
the distribution parameters or relating them to some other empir-
ical parameters fitted through experimental tests [8]. The concrete
fatigue behaviour is highly different in tension and compression. This
investigation focuses on fatigue performance under compression since
fully prestressed concrete girders are selected as reference structures.
Accordingly, the probabilistic fatigue model is based on compressive
fatigue tests.

To the authors’ knowledge, there is no research on the effect of
fatigue model uncertainty on the fatigue life prediction of concrete
railway bridges under repetitive loading. This paper introduces the
concept of fatigue life and proposes a probability-based method for
estimating the fragility curves due to fatigue. The reliability analysis
includes all uncertainties related to concrete strength, fatigue model,
expected load conditions, and predictive model of the bridge response.
After a theoretical introduction, the procedure supports a discussion
based on extensive parametric analyses. Then, the proposed method is
applied to an ordinary railway concrete bridge. Estimating the fragility
curves has required the development of predictive models of fatigue
and bridge response.

Fatigue models of technical provisions are deterministic and not
suitable for reliability analyses. Furthermore, probabilistic fatigue mod-
els from the literature are characterized by a significant modelling
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error, undermining the usefulness of reliability analyses. Consequently,
there is a need for a more accurate probabilistic model of concrete
fatigue, allowing its use within current technical standards. Following
the general procedure in [25], the present paper proposes a prob-
abilistic model derived from the Fib Model Code 2010 to predict
the number of fatigue cycles to failure. The model is formulated by
adding suitable correction terms to the predictive equation from the
Fib Model Code formulation. The correction terms include explanatory
functions calibrated and selected through a Bayesian approach using
the experimental data collected by [26]. The accuracy of the proposed
models is compared with that of a linear model and the one proposed by
the Fib Code 2010. The stress level is estimated from a finite difference
model of the bridge response, which models the Train-Track-Bridge
Interaction (TTBI).

It must be remarked that the fatigue performance of concrete and
steel reinforcements determines the fatigue life of a concrete bridge.
In some tests on RC beams subjected to fatigue loads, failure stems
from fatigue fracture of steel reinforcements. An RC beam should be
considered a serial system since failure might occur if either concrete or
steel reaches the fatigue cracking. However, this paper will focus on the
sole concrete contribution to fatigue to prove the significant uncertainty
related to its estimation. Isolating the concrete contribution to fatigue
will allow assigning the related uncertainty in the fatigue life estimate
to the sole concrete.

Several papers on TTBI, like [27], with experimental validation,
prove that elementary approaches based on beam models for the track
and the bridge with viscoelastic coupling can accurately seize the
experimental displacement response with a minor error, compared to
more advanced models of the TTBI [28]. The growth of the model
complexity leads to increased model parameters being calibrated. The
growth in complexity can add significant uncertainty to the math-
ematical model and dramatically increase the computational effort.
Besides, sophisticated models can only be created with great effort and
do not allow parametric studies or stochastic simulations due to the
high computational cost. To develop and validate a general procedure
for estimating the fatigue life of concrete railway bridges, the paper
presents an elementary finite difference model of the TTBI, which can
be easily used for parametric analyses and Monte Carlo simulations.
The governing equations of the track and the bridge, modelled as
Euler-Bernoulli beams, are coupled by a distributed layer of springs
representing the ballast. The two equations are solved under a moving
load excitation using a Runge-Kutta family and the finite-difference
method for the temporal and spatial discretization, respectively. The
authors validated the mathematical model of the TBBI against the
displacement response of rail bridges with a ballasted sub-structure.

In conclusion, the novel contributions of this article can be summa-
rized as follows:

Probabilistic improvement of the fatigue model in the Fib Code
2010 for estimating the fatigue life of concrete railway bridges.
The probabilistic correction is obtained by adding suitable ex-
planatory functions to the deterministic predictive equation. The
model aims to reduce the modelling error for the reliability
analysis.

Development of a finite difference model to evaluate the struc-
tural response of a non-classically damped Euler-Bernoulli beam
under a moving load excitation. The model has been validated
with the experimental displacement response of a ballasted bridge
under train loads. The model parameters have been optimized
using a genetic optimization algorithm.

Assessing the effects of stress levels, fatigue model uncertainty,
traffic intensity, and train velocity on the fatigue life of concrete
railway structures.

Application of the proposed method to a short-span ordinary
concrete bridge.
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The paper has the following organization. After the introduction
section, the paper presents the probabilistic framework for estimating
the fragility curves and the fatigue life. The third section describes
the TTBI model used to estimate stress levels, while the fourth section
presents and discusses the proposed probabilistic fatigue model. The
fifth section presents parametric analyses, where multiple fragility
curves are estimated by varying the stress levels, the train velocity, the
expected train traffic, and the fatigue model’s standard deviation. In the
sixth section, the proposed procedure for the fragility curve assessment
is applied to a full-scale railway bridge. This section discusses the prac-
tical implications of estimating the fatigue life following the proposed
method.

2. Fragility curves and fatigue life estimation

The output of fatigue tests is the number of cycles to failure. Fatigue
tests do not provide the strength reduction of concrete samples due
to cyclic loads. Therefore, the limit state function for fatigue failure
mechanisms cannot be written in terms of static or kinematic variables.
Fatigue failure may occur if the load cycles exceed the predicted
number of cycles to failure. Accordingly, the limit state function can
be written as the difference between the predicted number of cycles
to failure, representing the capacity, and the expected number of load
cycles, expressing the demand.

The limit state function can be formulated as

g(r.p.8.n,0)=C(r,8,0)-D(r.p.8,n,0) (@]

where C (r,$, ®) is the number of cycles to failure obtained from the
probabilistic fatigue model, D (r,p.$,n,, ®) is the cumulated expected
number of cycles at a given year obtained from the probabilistic de-
mand model. In detail, r collects the material properties of the bridge
(e.g., concrete resistance), p collects all information regarding the load
excitation (train length, train weight, train velocity, number of trains
per years, e.g.), § indicates the reference stress ratio used to homogenize
the number of load cycles of the capacity and demand models, 7, is the
number of years. The stress ratio is the ratio between the maximum or
minimum stress and the material resistance.

Theoretically, It would be possible to calibrate two probabilistic
models, one for the capacity and one for the demand. The probabilis-
tic capacity model has been calibrated on experimental compressive
fatigue tests. Conversely, the demand model is assumed deterministic
since the authors do not possess experimental data associated with mul-
tiple train transits from permanent structural monitoring. Therefore,
the lack of an adequate number of experimental data for the bridge
response does not allow the calibration of a probabilistic demand
model.

The limit state function can be used to compute the fragility of a
given structure. Fragility functions define the conditional probability
of meeting or exceeding a prescribed limit state for a given value
of the demand measure. If the demand is expressed in terms of the
number of cyclic loads per year, the increasing number of years can
be considered as a suitable intensity measure for fragility estimation.
The events associated with a limit state function less or equal to zero
define the failure related to the considered phenomenon. Rigorously,
following Eq. (1) the fragility of a given structure can be written as

F(r,p.8.n,,0©) =P [{g(r,p.8,n,,0) <0} |n] (2

Empirical fragilities are estimated using direct Monte Carlo simula-
tions [29]. The failure probability is obtained by dividing the number
of simulations associated with exceeding the number of cycles to failure
and the total number of simulations. The expected fatigue life in years
(71,) can be obtained from the fragility curves:

Find i, : A(r,p.8.n,) = 3
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Table 1
Target p-values for elements (lifetime), ISO 2394:1998 [30].

Relative costs of Consequences of failure

safety measures Small Some Moderate Great
Low 0 1.5 2.3 3.1
Moderate 1.3 2.3 3.1 3.8
High 2.3 31 3.8 4.3

where j is the reference reliability threshold provided by the code.
Table 1 provides target g-values for structural elements (lifetime) ac-
cording to ISO 2394:1998 [30].

Compared to steel, fatigue in concrete has minor consequences of
failure: the steel reinforcement prevents the dramatic consequences of
brittle failure due to the crack opening. Therefore, fatigue failure in
concrete structures has no direct consequences on global collapse. The
cracks can trigger corrosion phenomena and further cracking due to
the increment in the stress level. However, fatigue cracks in concrete
structures with shear and bending reinforcement have no direct con-
sequences on global collapse. Parallelly, the costs of safety measures
would be high. As discussed in the following sections, it is possible
to prevent fatigue cracks by reducing the stress values inside the
structure. This can only be achieved by replacing the structure or
adopting invasive structural interventions. Therefore, the reliability
target corresponding to high relative costs for safety measures and
minor consequences of failure is 2.3; see Table 1.

This paper uses § = 2.3 to estimate the fatigue life of railway-
reinforced concrete bridges. The fatigue life cannot be considered the
expected duration of a structure before it collapses. The occurrence of
fatigue cracking does not lead to failure in structures with adequate
steel reinforcement. Therefore, the fatigue life can be considered a time
limit beyond which it is appropriate to verify the integrity of concrete
through extensive tests and, in the case of cracks, adopt adequate safety
measures to limit the consequences of the fatigue cracks (corrosion,
e.g).

2.1. Capacity model

The limit state function compares the expected number of cycles to
failure and the expected number of cyclic loads. Following [25], the
number of cycles to failure, i.e. the capacity, can be written as:

T[Cx.80)=T[Cr8)+rx.506) +0s, (@)

where T'(+) is a variance stabilizing transformation, C(r,§, ®) is the total
number of cycles to failure, while ® = {6,0} are unknown model
parameters. On the right side of Eq. (4), C (r,8) is the capacity accord-
ing to a deterministic fatigue model; generally a physics-based model
dependent on the specific engineering problem [29,31-34], y (r,8, 0) is
a correction term based on pieces of evidence from the experimental
data. The product c¢ is the model error, with model standard deviation
o and normally distributed random variable . The model is based on
three assumptions: additivity (i.e., the additivity of c¢); homoskedas-
ticity (i.e., the independence of ¢ from r and §); normality (i.e., the
normality of €). Through a suitable choice of T'(-), such assumptions can
be approximately satisfied in the transformed space within the range of
the data used to calibrate the model. Following the traditional approach
of the fatigue model, the logarithm to base ten is chosen as variance
stabilizing transformation.

2.2. Demand model

The demand model gives the expected number of cycles cumulated
at a given year n,. By assuming a probabilistic model of the number of
load cycles per year, the demand model can be written as follows:

D(r,p,§,n,©)=n,[D,(,p,8§ 0)] (5)

> My
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The expected number of load cycles per year (Dy (r,p,$, ®)) cannot
be directly obtained from the database collecting the details of the
train traffic of the past years. The traffic load includes many train
loads, typologies and velocities. Therefore, the load cycles caused by
the traffic load vary in amplitude and stress level. However, according
to existing fatigue models, the number of cycles to failure always refers
to a given stress level, generally expressed as the ratio between the
maximum stress and material resistance.

As highlighted in the description of Eq. (1), the number of cycles for
capacity and demand are homogenized to a given stress level, defined
by vector §, collecting the maximum and minimum stress ratios. The
expected number of homogenized cycles per year can be estimated as
follows:

"y

~ li
Dy(r,p.5,0)= )

i=1 2ny,

H (r,s;,8,0) 6)
where i indicates the ith train, n, the total number of trains per year, /;
the length of the ith train, n,; the number of vehicles of the ith train,
while #; (r,$,s;, ®) is an homogenization factor. The homogenization
factor can be expressed in terms of the capacity model. The number
of load cycles can be homogenized to their effect on fatigue, given the
stress level associated with the cycle. The H; (r,si,§, 9) factor can be
written as:

C(r,s,0)

H; (r,s;,8,0) = m
.S,

7
where s; is the stress ratio associated with the ith train, while §; is
the reference stress ratio. The proposed homogenization approach does
not explicitly consider the load sequence’s effect since it adopts a
linear scaling based on the stress level. This approach follows current
design codes, which estimate the fatigue life under variable amplitudes
using the Palmgren-Miner (P-M) [35] rule and assumes a linear scal-
ing between lifetimes measured for uniform cyclic loading scenarios.
Nonetheless, the load sequence effect observed in compression by
Holmen [36] and Petkovic et al. [37] showed that the well-known P-
M rule might lead to inaccurate fatigue life estimations, as recently
confirmed by [38]. Therefore, future research efforts will include the
load sequence effect for predicting the fatigue life of concrete structures
under generally variable fatigue loading scenarios.

2.3. Discussion

The proposed probabilistic framework for estimating the fatigue life
of concrete railway bridges might merit the discussion of the following
aspects:

+ Considered sources of uncertainty;
» Homogenization approach;
» Number of cyclic loads estimation.

The paper only considers the uncertainty of the fatigue model and
material resistance, which affect the capacity and the demand through
the homogenization factor. The scholar could also treat the expected
train traffic per year as a vector of random variables. It could be
possible to estimate the variation of the railway traffic between years
by modifying Eq. (5). The demand at a given year could be obtained by
multiplying the expected demand per year by a time-dependent factor
that amplifies or reduces the trainload during the lifetime. However,
train traffic does not exhibit a significant variation across the years.
This fact will be confirmed in the following sections by showing the
traffic variation of a sample bridge in the period 2017-2021.

The managing bodies of the Italian railway network distinguish
three traffic categories:

* n, 4 < 40-Low traffic
* 40 < n, ; < 100-Moderate traffic
* n,, > 100-High traffic
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where n, ; is the expected number of trains per day. The results shown
in the following sections prove that the effect of the traffic load per
day can be negligible if the fatigue model has significant uncertainty.
Therefore, modelling the train traffic as a vector of random variables
could be considered unnecessary for this research. The paper will show
that the fatigue model is the weak link of the entire framework. There-
fore, refining the load estimate has no significant effect on improving
the accuracy of the prediction.

The entire framework is based on a homogenization approach.
This aspect represents an element of originality. It derives from the
existing fatigue model’s limitation, which does not predict the number
of cycles to failure if the stress level changes during the loading phase.
Experimental fatigue tests impose a constant stress level during the
cycles. Experimental fatigue tests with a variable load protocol would
add additional scatter to the results, which are already difficult to
interpret. Therefore, the capacity model can only give the number of
cycles to failure for a given stress level. Parallelly, the train traffic
causes load cycles variable in amplitude. Therefore, if a reference stress
level is assumed for the capacity estimation, expressed by the vector
3, each load cycle caused by the train must be set equivalent to the
reference stress level. Specifically, each load cycle causes specific stress
values in the bridge cross-section. The fatigue model can be used to
set an equivalence between the number of load cycles and stress levels
based on the number of cycles to failure corresponding to the stress
due to the ith train transit (s;) and the reference one (8), assumed in
the analyses.

The computing of the number of load cycles is based on the geomet-
ric details of the train; see Equation (6). Fig. 1 shows a schematization
of the train model. Experimental investigations, see [27], proved that a
load cycle is generally associated with the transit of two train axes cor-
responding to two vehicles. As shown in the next section, this evidence
supports modelling two train axes with an equivalent concentrated
force. The succession of almost equally spaced concentrated forces gen-
erates a cyclic excitation to the bridge with frequency f4ominant> [39]

Ryi
S dominant = l_ ®
where n,; and /; are defined after Eq. (6). As remarked by several
scholars [40], the dynamic amplification factor in railway bridges is
close to unit and generally below 2. The dynamic amplification depends
on the adimensional velocity of the train, defined as:

— J dominant

fi
where f4ominan: 1S defined in Eq. (8), and f; is the first natural fre-
quency of the bridge. Interestingly, in low and medium-span bridges,
the dynamic effect of the loads does not cause an increment in the
number of load cycles due to the interaction between the excitation
frequency (fgominant) and the modal parameters of the bridge. After
the last train vehicle left the bridge, the bridge did not significantly
manifest oscillation, as confirmed by the experimental tests used to
validate the proposed bridge model. Therefore, the number of load
cycles can be estimated from the train characteristics, while the stress
level (s), caused by the train, is from the mechanical model of the
bridge.

©)

a

3. Bridge modelling

The stress level vector of the ith train collects the maximum and
minimum stress ratios reached during the load cycles:

S; = {Sc,max.i7 Sc,min,[} (10)
[ N
Sc,max,i = ‘J;ax an
c
O, mins L
Sc,min,i = LJ;m 12)
c
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Fig. 1. Schematization of the train loads.

where f, is the concrete resistance, o, ., and o, ;, are the maximum
and minimum stresses during the load cycles corresponding to the ith

train transit. The concrete resistance is considered a random variable:

.f'(,‘=‘}(‘ci'll-'—6(‘6 (13)

where f,, is the mean concrete strength referred to as the concrete
resistance class of the bridge. At the same time, the product c.e ex-
presses the resistance scatter, with standard deviation ¢, and normally
distributed random variable ¢. For the sake of simplicity, a constant
value for o, is adopted. Specifically, based on the extensive investiga-
tion by Shimizu et al. [41], the adopted coefficient of variation for f,,
is equal to 0.20.

The maximum and minimum stresses should be obtained from a
TTBI model as follows:

O max,i — M(p;)

where M is the TTBI model, and p;, following the notation in Eq. (1),
collects the information of the ith train. The bridge model (M) is
obtained from the separate modelling of the bridge and the track.
Therefore, this section is divided into four subsections dedicated to
the track and bridge modelling and to the temporal and spatial dis-
cretization of the governing equations. Appendix A details the TTBI
model.

(14)

4. Probabilistic fatigue model

This section proposes a novel probabilistic fatigue model of concrete
derived from the Fib Model 2010 by adding suitable correction terms.
Recent models for concrete fatigue are generally validated against
high-strength concrete data [42-49]. However, most of the reinforced
concrete railway bridges are made of normal strength concrete. There-
fore, following [42], the probabilistic fatigue model is developed using
a database of 219 tests of normal-strength concrete samples. The test
results are taken from the scientific literature [36,50-53].

The paper considers reference structures for estimating the fatigue
life of a fully prestressed concrete girder. Therefore, these structures
experience cyclic eccentric compressive loads during their service life.
Therefore, theoretically, the probabilistic fatigue model should be cal-
ibrated on eccentric compressive tests. However, the lack of exper-
imental tests on eccentric compression forced the authors to collect
a database including pure compression tests. Nonetheless, the major
difference in the concrete fatigue behaviour depends on the stress
sign between tension and compression rather than the occurrence of
eccentric compression. No tension is supposed to occur in the structure
due to the full prestress condition.

Fig. 2 shows the histogram plots of the test data in terms of the
number of cycles to failure (C), concrete strength (f,,), and maximum
(S, max) and minimum (S, ,,;,) stress levels. The number of cycles to
failure reaches 107 in some concrete specimens, while most fail at
nearly 10*. The concrete strength is between 20 and 70 MPa, although
the largest percentage of samples has a 44 MPa compression strength.
The maximum stress level is quite significant for all specimens. There
are no data for S, ,,, < 0.5. This fact represents the main limitation
of existing databases of fatigue tests. Most structures experience a
maximum stress level lower than 0.5, not excessively exploiting the
material potential. Therefore, the proposed fatigue model, like the
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literature ones, will be extrapolated to estimate the number of failure
cycles when moderate stress levels occur. Moreover, testing concrete
specimens with a stress level lower than 0.5 would require extremely
time-consuming experimental tests.

4.1. Model formulation and calibration

The model for concrete fatigue follows the structure in Eq. (4):

log [C (r,8, @)] = log [C’ (r,§)] +y(r,8,0)+oce, (15)

The correction term y (r,0) is selected as a linear combination of n
dimensionless explanatory functions h;(r) and reads:

7(r,8,0) =0T -h(,8§). (16)

The considered set of explanatory functions h(r) = {h, (r),....h, (r)} is
obtained by combining the three variables affecting € (r): S, max> Se.mins
collected in §, and f,, in r. r collects the material properties of the
bridge (e.g., concrete resistance).

The number of variables involved in the capacity model is limited by
those reported in the experimental fatigue tests. The variables are three:
the maximum and minimum stress ratios and the concrete compressive
strength. Hence, the authors, rather than checking by hand which
combinations between the three parameters correspond to a significant
regressor, adopted an automatic approach by taking all combinations
between them and then a posteriori selecting the relevant ones with a
step-wise procedure. The explanatory functions should be dimension-
less to determine a general, size-independent model. However, using
dimensionless explanatory functions is a recommendation to achieve
a general model, although in some circumstances selecting dimension
variables does not impair the rigour of the procedure. In this situation,
next to the dimensionless stress ratios, the compressive strength was
also included to observe possible phenomena related to its influence on
the fatigue capacity. It is known that compressive strength can affect
the fatigue performance of concrete.

The three variables are multiplied and raised to the ith, jth and
zth power, respectively. The explanatory functions are generated by
taking all possible combinations between i, j, and z, where {i, j,z} € N
and 0 < {i,j,z} < npay with ng,, the maximum model order. All
combinations {i, j, z} are collected in a set .S. The generic combination
from the set .S is a subset of three (k = 3) distinct elements of S.
Therefore, the cardinality of .S is equal to the binomial coefficient.

3hmax
| card(S) = < 3 >

=5 Sj z

c.max’ ¢,min” ck

h(r) a7

ijz

Given a maximum model order (n,,) equal to three, i.e. the max-
imum exponent between i, j and z, the number of regressors from
Eq. (16) is equal to 84.

The parameters collected into © are calibrated using the Bayesian
approach [54]. This method combines the prior knowledge on the
parameters, which is contained in the prior distribution of ®, f/(®),
with the information provided by the data, which is contained in the
likelihood function, £(®). The posterior distribution of the parameters
f"(®) is defined as follows:

f"(@©@)=kL(®©) f (©), 18)
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Fig. 2. Histogram plot of the experimental data of fatigue tests used for the model calibration, following [42].

and it is obtained by dividing the product £(®)f’(©) by the evidence
k, which is the following normalizing constant:
K= [/ £(©®) f(©®)de|, a9
Qe

where Qg is the parameters space. The posterior distributions /()
obtained after the calibration can be used to find a point estimate
for the model by ignoring the epistemic uncertainties in the model
parameters. An alternative approach is used in the present study, which
also accounts for the epistemic uncertainties in the model parameters.
This alternative approach assumes ® as random variables and find a
predictive estimate of C(r,$, ®) in agreement with [25] as follows:

C(r,8) =/ Cr,§0) " (©)de. (20)
Qe

Since an analytical solution for Eq. (20) is often missing, it is opportune

to find a numerical approximation of the distribution of € (r,8) by

sampling from f”(®) and finding the corresponding realizations of

C(r,$§; ®).

Non-informative priors are chosen in the form of Gaussian distri-
bution with zero means and large variance for all the parameters. To
facilitate the use of the model and its possible implementation into
technical standards, it should be parsimonious (i.e., with a correction
term constructed using a limited number of explanatory functions
n) and as accurate as possible (i.e., with a small value of standard
deviation ¢). However, a reduction of n usually entails a higher value
of o. Therefore, the model has been reduced by following a step-
wise deletion of the parameters. The step-wise deletion process allows
finding a trade-off between parsimony and accuracy [55]. The stepwise
deletion process used in this paper starts with a model that includes
all the candidate explanatory functions and at each step, removes the
explanatory function with the highest coefficient of variation (COV)
of the corresponding 6,, as proposed in [25]. Once an explanatory
function is removed, the model is re-calibrated and the deletion process
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is repeated. The deletion process ends when either ¢ grows beyond an
undesirable threshold or the increment of ¢ is too large compared to
the reduction of the model complexity. Fig. 3 shows a workflow of the
procedure from the initial to the reduced model formulation

4.2. Deterministic fatigue model

The deterministic capacity equation is taken from the fib Model
Code 2010 [1]:

log [C (r,8)] = {

where N, and N, are the numbers of cycles to failure. The two S-N

log Ny,
log N,

if log N <8

(21)
if logN| > 8

relations for Ny and N, if 0 < S, ,;, < 0.8 read:
8
log Ny = T (Semax — 1) (22)
81In(10) Sc max Sc min
log N, = — (Y =S, min) | _ 2
og Ny 8+ Y -1 ( c,mm) 0g< Y_Sc,min ( 3)
where,
_ 0.45+ 1.8S, min (24)
1+ 0.85S, min — 0'3Sc2min
o,
Sc,max = fC,max (25)
ck fat
o
Semin = fc'mm (26)
ck,fat

and f, s, is the concrete fatigue strength. These expressions can be
considered valid for concrete stored in a constant environment of
approximately 20 °C, 65% RH. The curves have been verified with
experiments up to 107 load cycles to failure. For log N > 8 the curves
asymptotically approach the minimum stress level of the respective
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Fig. 4. Comparison between the experimental data and the S-N curves from the FIB
Model Code 2010.

curve. In the fib Model Code 2010 [1], the fatigue reference com-
pressive strength f, r,, is obtained from the characteristic compressive
strength f,, as follows:

— _ fck
fck,fat - 0'85acc(t) [fck (1 25fck0 >] (27)
with a.(7) is given by Eq. (28) and f,;q = 10 MPa.
05
a,.(f) = exp {s [1 - (%) ] } (28)

The expression for f,.(f) describes the strength evolution with time,
where s depends on the strength class of the cement, see [1].

Fig. 4 plots the experimental data used for calibration and the S-
N curves from Egs. (22)-(23). The plots prove that the Fib Model
is highly conservative, being almost the lower envelope of the test
data. Therefore, it cannot be used for fitting purposes, as discussed
in the next sections. Even if the Fib Model is unbiased, the fitting is
still unsatisfactory, making it unsuitable for predictions. Additionally,
the model is deterministic and does not allow estimating the failure
probability due to fatigue.
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4.3. Proposed model and discussion

The proposed probabilistic fatigue model, derived from the step-
wise deletion can be written as:

log [C (x,0)] = log [C (x)] + Oh + o (29)

where 6 and h are defined in Table C.9. The 6; are identified by
the subscripts corresponding to the combinations of the i, j and z
coefficients of Eq. (16). The posterior statistics of @ is reported in
Table C.9. Fig. 5 plots the steps of the model deletion process. The left y-
axis in the logarithmic scale shows the coefficient of variations of the 6,
considered at the ith step. The right y-axis plots the standard deviation
of the model error ¢. The initial number of coefficients, obtained from
Eq. (16), is equal to 64. The high number of regressors can be associated
with overfitting issues. Therefore, to test the absence of overfitting, the
dataset in Fig. 2 has been divided into two subsets, for calibration and
validation purposes, respectively. The calibration set includes 80% of
the data, while the test set has the remaining 20%.

The model calibration with all terms leads to a ¢ equal to 0.76 until
the 23rd step. At this step, the model error has a significant increment
until stabilizing at 0.78. The further reduction of the model error leads
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Table 2

Comparison between predictive models, where ¢ is the standard deviation.
Models I R? adj-R?
First-order model 1.230 0.409 0.401
Fib model 1.580 0.023 0.018
Proposed model 0.781 0.818 0.788

to a standard deviation close to 0.9-1, observed in the linear model.
Therefore, the authors chose the 34th step for model truncation for two
reasons. Further steps lead to a significant increment of the model error,
which would become close to the one in the first-order model, thus
impairing the advantages of the more advanced formulation. Secondar-
ily, the 34th step is not associated with overfitting, as proved by the
good agreement between the fitting of the calibration set and the data
set. Therefore, the selected model possesses 20 explanatory functions,
itemized in Table C.9. The discussion of the model performance is
carried out by comparing it with the predictions of a first-order one,
shown in Eq. (30), and a modification of the deterministic model in
Eq. (31) to eliminate the bias in the estimates.

log [C (r,8,0)] = 6409 + O100h100 + Oo10h010 + Oo01 g1 + o€ (30)

log [C (r.8,0)] = log [C (r.8,0)] + b + o0& (31)

Table 2 compares the performances of the first-order model in Eq. (30),
the unbiased Fib Model in Eq. (31) and the proposed one. The standard
deviation of the model error reduces from the Fib Model to the first-
order and the proposed one, being nearly 1.5, 1.2 and 0.8, respectively.
As highlighted by [56], concrete fatigue evidence a highly scattered
response. Therefore, it is not possible to further reduce the modelling
error due to the significant fraction of o related to the dataset, which
is irreducible.

The ranking between the three models in terms of R?> and adj-R? is
more evident. The first-order model has an R? close to 0.4. On the other
hand, the R? of the Fib-model is extremely low, nearly about 0.023.
Conversely, the proposed model has a satisfactory R?, approximately
equal to 0.8. Fig. 6 compares the performances of the three models by
plotting the logarithms of the number of cycles to failure estimated
from the model and those taken from the dataset. Fig. 6 also plots
the bisector of the first quadrant. The higher is the distance from the
1:1 line, the worse the model performance. The first-order and the
proposed model appear quite close to the 1:1 line. Conversely, the dots
of the fib model do not align along the bisector. Instead, they are likely
to arrange along a line with a lower slope than the bisector. This fact
proves the estimated low value for the R? in Table 2. Additionally, it
suggests that the elementary correction of the Fib model in Eq. (31) is
not enough to achieve a suitable fitting. Therefore, a more sophisticated
model should be used for predictions like the one proposed in this

paper.
5. Parametric fragility curves

This section shows a selection of fragility curves related to fatigue
failure. The parameters varied in these analyses are:

see Fig. 7 and Table 3;

* The number of expected trains per day (n,,), see Figs. 7-9 and
Tables 3-5;

» The standard deviation of the fatigue model (o), see Fig. 8 and
Table 4;

» The train velocity (c), see Fig. 9 and Table 5.

+ The maximum stress level (S, ),

The stress levels are assumed in the calculations, and they are not
obtained from a specific structure by solving the TTBI equations. There-
fore, the fragility curves are general and can refer to any structure
theoretically. Three values for the expected number of trains per day
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Fig. 6. Predicted versus the measured number of cycles to failure for the Fib model,
the first-order and the proposed ones.

have been assumed: 40, 100 and 150. These values derive from the
classification of the Italian railway network, based on small (n, < 40),
moderate (40 < n, < 100) or high traffic (n, > 100).

The effect of the train velocity is specific to the structure. Therefore,
the authors used the amplification factor for the stress level obtained
from the case study discussed in the following sections to estimate
velocity effects. Two standard deviations for the fatigue model are
considered, one equal to 0.78 from the proposed model, while another
equal to 1.5 arising from the Fib Model. Fig. 7 plots the estimated
failure probabilities as a function of the number of years, chosen as
intensity measure. The four plots refer to a maximum stress level equal
to 0.1, 0.15, 0.2 and 0.25. Each figure shows three fragility curves
associated with the considered traffic demand levels, 40, 100 and 150
trains per day. The parameters assumed constant in the calculations
are the concrete compression strength f,, = 45, the minimum stress
level (S, i, = 0.01), the train velocity (¢ = 100 km/h) and the standard
deviation of the fatigue model (¢ = 0.78). These values are also reported
in the title of each figure to facilitate the reader.

Fig. 7 shows the mean of the fragility curves. The direct inspection
of Fig. 7 proves the followings:

» The fragility curves do not reach values close to 1 also for
significant intensity measures. This fact depends on the high
uncertainty of the fatigue model. Parallelly, the curves collecting
the reliability indexes prove that the reliability index can be very
low for minimal intensity measures.

The train traffic reduces structural reliability. However, the effect
of the stress level is enormously more significant than that of the
train traffic, in the considered ranges of variation.

There is a sharp reduction of the structural reliability between
maximum stress levels between 0.1 and 0.25. If the stress level is
lower than 0.1, fatigue cracking is unlikely to occur. Conversely,
a 10% increment of the stress level causes a boost in the failure
probability due to fatigue. Consequently, the fatigue model and
the fragility curves are highly sensitive to stress levels.

Table 3 lists the estimated fatigue lives for the curves in Fig. 7.
The fatigue life reduces dramatically for S, ,,, between 0.1 and 0.25.
Higher values of fatigue life are associated with higher uncertainty in
the estimate, expressed in terms of standard deviation. The accurate
estimate of the stress level inside a structure is crucial for predicting the
fatigue life, and, accordingly scheduling the inspections for assessing
the integrity of concrete (sonic tests, e.g.). Fig. 8 shows the same cal-
culations plotted in Fig. 7 by adopting a higher standard deviation for
the fatigue model (¢ = 1.5). The uncertainty of the fatigue model does
not provide an adequate estimate of the fragility curves. The failure
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Fig. 7. Fragility curves (left y-axis) and reliability indexes (right y-axis) for railway concrete bridges with variable stress level and train traffic by assuming f,, =45,
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