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Abstract—In this paper, we consider channels affected by
Wiener phase noise and derive a detection algorithm that exploits
oversampling at the receiver for tracking better the phase noise
variations.

The resulting algorithm is a multi-sample discrete-phase BCJR
that outperforms receivers using a single sample per symbol
and maximizes the achievable information rate over phase noise
channels. Finally, we assess the suitability of the multi-sample
discrete-phase BCJR for performing iterative detection and
decoding with standard codes.

I. INTRODUCTION

The majority of the communication systems suffer from
phase noise, a random fluctuation in the phase of the carrier
which impacts the quality of reception. One of the most
critical systems is orthogonal frequency division multiplexing
(OFDM). In this case, the phase noise is responsible for harm-
ing the orthogonality between sub-carriers and introducing
inter-carrier interference [1]. Another example are Internet-of-
Things applications [2], which are affected by high-frequency
instabilities due to the adoption of low-cost local oscillators.
On top of this, phase noise poses further challenges for low
bit-rate transmissions (e.g., deep space satellite telecommuni-
cations [3]). In this scenario, the phase variation of the local
oscillator can be several degrees over a symbol period.

In literature, the phase noise process is generally described
by the Wiener model due to its simplicity, thus allowing the
development of advanced synchronization algorithms while
still being representative of actual oscillators [4]. However,
the plurality of the studies (such as [5] and references therein)
relies on a symbol-level discrete-time channel model, which
can be a good approximation of the actual channel as long as
the phase variation over symbol time is less than 6 degrees [4].
On the other hand, when variations are faster, the discrete-time
model does not fit anymore, and receivers based on this model
would experience an intrinsic information loss [6]. To tackle
this issue, Ghozlan and Kramer ([7], [8]) proposed the use of
oversampling to obtain a sufficient statistic.

Based on this approach, in this paper, we derive a detection
technique in the Bahl-Cock-Jelinek-Raviv (BCJR, [9]) form,
that is optimal for the Wiener channel (in the limit of its
complexity).

The remainder of this paper is organized as follows: Sec-
tion II gives the mathematical details of the channel model,

while Section III provides the rationale for using oversampling
as the channel model for the algorithm. Then, Section IV
describes the multi-sample discrete-phase BCJR algorithm,
main focus of this paper. Finally, Section V provides the
numerical results and Section VI draws the conclusions.

II. CHANNEL MODEL

We consider the transmission of a linearly modulated signal
x(t) over an additive white Gaussian noise (AWGN) channel,
affected by phase noise. The received signal has complex base-
band expression

y(t) = x(t)ejθ(t) + w(t) , (1)

where w(t) is complex-valued white Gaussian noise with spec-
tral density N0 and θ(t) is the phase noise. The transmitted
signal x(t) reads

x(t) =
∑
k

ckp(t− kT ) ,

being p(t) the shaping pulse, T the symbol time, and {ck}
the sequence of information symbols belonging to an M−ary
complex-valued constellation. Without loss of generality, we
consider that p(t) has unitary energy, satisfies the Nyquist
criterion (no inter-symbol interference, ISI), and that the
constellation symbols have energy E

{
|ck|2

}
= Es.

In this paper, we focus on the Wiener process, a simple
mathematical model able to represent the phase noise in actual
oscillators [4]. Namely, for a time interval τ it holds that

θ(t+ τ)− θ(t) ∼ N (0, S2
∆τ) ,

where N (0, S2
∆τ) refers to the Gaussian distribution having

null average and standard deviation S2
∆τ , being S∆ (measured

in [deg/s]) the speed of variation.

III. ON THE USE OF AN AUXILIARY CHANNEL WITH
OVERSAMPLING

Several papers concerning phase synchronization and detec-
tion of signals affected by phase noise (like the recent ones [5],
[10]) approximate the channel model in (1) with the following
discrete-time equation

ỹk = cke
jθk + wk , (2)
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Figure 1. Receiver block diagram when a) using a matched filter and b) a
low-pass filter with oversampling.

where wk are independent identically distributed complex
Gaussian random variables with variance N0, and θk = θ(kT ),
so that

θk+1 − θk ∼ N (0, σ2
∆) ,

where σ2
∆ = S2

∆T is the phase noise variance over the refer-
ence symbol time. However, such discrete-time approximation
is obtained by assuming that {ỹk} are the samples at the output
of a matched filter (MF), as shown in Fig. 1a. In fact, if θ(t)
is “slow” w.r.t. the symbol time, it holds that the observable
at the MF output is such that yMF

k ≈ ỹk. On the other hand,
when the phase noise variance σ2

∆ is “large”, this assumption
holds no longer.

In this paper, we consider instead a channel model derived
by means of the oversampling method described in [11].
Namely, for a given oversampling factor η, we consider that
y(t) passes through an ideal low-pass filter with a bandwidth
equal to η/T , as shown in Fig. 1b. Its output is then sampled
with an interval of T/η, resulting in the sequence {yLPF

k }.
Considering that the phase variation between two adjacent
samples is σ2

∆/η, it decreases as η increases, and if the
oversampling factor is chosen large enough, it holds (with a
little abuse of notation) that

yLPF
k ≈ ỹk =

∑
i

cipk−iηe
jθk + wk , (3)

where pk = p(kT/η), θk = θ(kT/η), and wk has variance
N0η.

The design of receivers based on a mismatched channel
is an instance of mismatched decoding [12], [13]. More
specifically, being ỹ , c the vectors collecting the observable
and transmitted symbols, if the receiver is based on an
auxiliary channel [14] with probability density function (pdf)
q(ỹ|c) (different from the actual channel law), it will have an
achievable information rate (AIR) equal to

IAIR = lim
N→∞

1

N
[E {− log2 q(ỹ)}+ E {log2 q(ỹ|c)}] ,

where N is the number of transmitted symbols,
q(ỹ) =

∑
c q(ỹ|c)P (c), and the expectations are computed

w.r.t. the actual channel statistics. Trivially, the AIR is
upper-bounded as

IAIR ≤ I (c;y) ,

where I (c;y) is the information rate of the actual channel.
This holds for both the information rates IMF

AIR and ILPF
AIR ,

achievable when adopting the auxiliary channels as in (2)
and (3), respectively. However, when using oversampling with
η → ∞, ỹLPF

k tends to be a sufficient statistic for the channel
output, and thus ILPF

AIR → I (c;y). A detailed analysis of the
AIR when using an oversampled auxiliary channel was done
in [7], showing that ILPF

AIR outperforms IMF
AIR . In light of this,

we derive a detection algorithm based on oversampling in the
next section.

IV. A MULTI-SAMPLE DP-BCJR ALGORITHM

For the discrete-time auxiliary channel in (2), Colavolpe et
al. derived in [15] a discrete-phase BCJR (dp-BCJR) algo-
rithm. Here, we adopt a similar approach by defining a new
dp-BCJR algorithm working on the oversampled observable.

Unfortunately, its derivation for the channel model in (3),
in its most general form, is not trivial. It would require the
definition of a BCJR algorithm that can account for both
ISI and the phase noise model. However, when adopting
time-limited shaping pulses, the problem becomes tractable.
Without loss of generality, if we consider a squared shaping
pulse1, the channel equation can be simplified as

ỹk = c⌊k/η⌋e
jθk + wk , (4)

and we can derive a BCJR algorithm by means of factor graphs
(FGs) and the sum-product algorithm [16].

Namely, the pdf q(c,θ|ỹ) can be factorized as

q(c,θ|ỹ) ∝ q(ỹ|c,θ)P (c)p(θ) (5)

=

(
Nη−1∏
k=0

q(ỹk|c⌊k/η⌋, θk)P(c⌊k/η⌋)

)
p(θ) ,

where q(ỹk|c⌊k/η⌋, θk) is a Gaussian pdf with average
c⌊k/η⌋e

jθk and variance N0η. The term P(c⌊k/η⌋) is instead
an indicator function that takes values

P(c⌊k/η⌋) =

{
P (c⌊k/η⌋) if (k + 1) is multiple of η
1 otherwise

(6)

being P (c⌊k/η⌋) the probability of the information symbol
c⌊k/η⌋. In turn, the probability of the phase is factorized as

p(θ) = p(θ0)

Nη−1∏
k=1

p(θk|θk−1)

=
1

2π

Nη−1∏
k=1

p∆(θk − θk−1) , (7)

where p∆(θ) is a wrapped Gaussian pdf in [0, 2π) as

p∆(θ) ∝
∑
i

e
(θ−2πi)2

2σ2
∆ .

By plugging (7) into (5), the factorization can be visualized
in the FG of Figure 2.

1It is pointed out that the algorithm can easily take into account any shaping
pulse with duration ≤ T by including the coefficients pk = p(kT/η) into (4).



Figure 2. Factor graph representing the factorization in (5).
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Figure 3. In-depth view of the messages passing through a single variable
node.

If we define α(·), β(·), and pd(·) as the messages shown in
Figure 3, we can derive the forward recursion as

α(θk, c⌊k/η⌋) =
∑

c⌊(k−1)/η⌋

∫ 2π

0

α(θk−1, c⌊(k−1)/η⌋) (8)

pd(θk−1, c⌊(k−1)/η⌋)p∆(θk − θk−1) dθk−1

when k is multiple of η, and,

α(θk, c⌊k/η⌋) =

∫ 2π

0

α(θk−1, c⌊(k−1)/η⌋) (9)

pd(θk−1, c⌊(k−1)/η⌋)p∆(θk − θk−1) dθk−1

otherwise, where

pd(θk, c⌊k/η⌋) = q(ỹk|c⌊k/η⌋, θk)P(c⌊k/η⌋) .

Similarly, the backward recursion can be derived as

β(θk, c⌊k/η⌋) =
∑

c⌊(k+1)/η⌋

∫ 2π

0

β(θk+1, c⌊(k+1)/η⌋) (10)

pd(θk+1, c⌊(k+1)/η⌋)p∆(θk+1 − θk)dθk+1

when k + 1 is multiple of η, and

β(θk, c⌊k/η⌋) =

∫ 2π

0

β(θk+1, c⌊(k+1)/η⌋) (11)

pd(θk+1, c⌊(k+1)/η⌋)p∆(θk+1 − θk)dθk+1

otherwise. Finally, the maximum a posteriori probability on the
information symbols can be derived as q(ỹ|ck)P (ck), being
q(ỹ|ck) the extrinsic information computed as

q(ỹ|ck) =
∫ 2π

0

α(θ, ck)q(ỹk|ck, θ)β(θ, ck)dθ . (12)

For the sake of clarity, in (12), we defined θ = θkη−1, and
k = 0, ..., N − 1.

Clearly, the exact computation of (8)–(12) is impractical,
since it involves continuous pdfs. However, as done in [15],
the integral can be solved by considering a discrete phase
in L values between [0, 2π), thus obtaining a multi-sample
dp-BCJR algorithm. With this approach, it is easy to see
that the complexity scales as O

(
NML2η

)
. Although the

complexity is η times larger than the one of the classical
dp-BCJR, it can be still tractable with a standard workstation
for practical cases (like those shown in the numerical results).

The multi-sample dp-BCJR algorithm we derived can be
easily adopted for iterative detection and decoding: it is suffi-
cient to set the probabilities in (6) with the a priori information
on the symbols, and to use the extrinsic information in (12)
as input to the decoder.

V. NUMERICAL RESULTS

We present the performance of the multi-sample dp-BCJR
detection algorithm introduced in Section IV. We simulated the
algorithm over the channel (1), using a squared shaping pulse
p(t), for different modulation formats and high phase noise
levels (σ∆ > 10◦, for which oversampling has advantages).
For comparison, we adopted the classical dp-BCJR in [15] that
is optimal (to the extent of the maximum number of discrete
levels adopted) for the discrete-time auxiliary channel, hence
representative of the best performance that can be obtained by
a general algorithm based on (2).

By means of the Monte Carlo method shown in [14], we
first derived the AIR ILPF

AIR as a function of the signal-to-noise
ratio Es/N0, which is representative of the AIR of the multi-
sample dp-BCJR. Figure 4 shows the example of a quaternary
phase-shift keying (QPSK) and 16-PSK, over a phase noise
channel with σ∆ = 28◦ when using L = 32 and η = 4. In all
cases, we considered 1 pilot for every 20 symbols. The same
figure reports IMF

AIR for L = 32, representative of the AIR
of the classical dp-BCJR. Similar to what has been proven
in [7], the multi-sample dp-BCJR has a higher AIR as the
Es/N0 increases, i.e., when the phase noise becomes the main
limiting factor. The gain improves as the cardinality of the
constellation M grows, especially at high values of σ∆, such
as the one previously proposed. This holds particularly for M -
PSK modulation. On the other hand, when using constellations
more robust to the phase noise, like quadrature amplitude
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Figure 5. Achievable information rates for 16-QAM (M=16) constellation
with σ∆ = 28◦, and L = 32.

modulation (QAM), the benefit of the multi-sample dp-BCJR
tends to diminish. For instance, Figure 5 shows the case of a
16-QAM over a phase noise channel with σ∆ = 28◦, where
the gain of the multi-sample dp-BCJR (over the classical one)
is just ∼ 14% in the saturation region versus the ∼ 38%
that was achieved for 16-PSK. Thus, the use of the multi-
sample dp-BCJR should always be properly traded off between
complexity and target information rate.

The rates promised by the AIR can be usually achieved
by means of iterative detection and decoding. For checking
its feasibility with standard error correction codes (designed
for the AWGN channel) at high values of σ∆, we considered
the low-density parity-check (LDPC) codes (block length
4096 and 64800 bits) with row-by-column interleaving and
used the extrinsic information transfer (EXIT) charts [17].
Focusing on the QPSK scenario previously presented, Figure 6
shows the EXIT chart of the two dp-BCJR algorithms, for
Es/N0 = 10 dB. Based on the AIR, at Es/N0 = 10 dB it
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Figure 6. EXIT chart for Es/N0 = 10 dB, for the multi-sample and classical
dp-BCJR, QPSK modulation, L = 32, and for LDPC codes with rate 1/2 and
3/4.

should be feasible to adopt a code with a rate 3/4. However,
when checking the EXIT of the LDPC code, we see that the
curves intersect each other, for both the case of the multi-
sample and the classical dp-BCJR. The highest code rate
that allows the iterative process to start is 1/2. Thus, codes
performing well on the AWGN will have a large loss when
adopted on channels with strong phase noise, independently
of the algorithm adopted.

This behavior is confirmed by the frame error rate (FER):
we analyzed the FER for a QPSK modulation over a channel
with σ∆ = 28◦ when using the LDPC (1/2, 4096) for the
multi-sample and classical dp-BCJR. Figure 7 illustrates the
FER curves, obtained with 5 global iterations, each with 10
inner decoder iterations, and each simulated point counts 50
frame errors. For complexity reasons, we simulated FER only
down to 10−4. As predicted by the EXIT, the multi-sample dp-
BCJR FER curve starts the waterfall region at Es/N0 ∼10 dB,
about 3 dB lower than the dp-BCJR. On the other hand, both
cases show a poor slope in the waterfall region, a sign of the
presence of correlations among the samples. A steeper slope of
the curve can be achieved by adopting “longer” codes, as the
one in Figure 8, obtained with the same number of iterations
of Figure 7. In fact, the EXIT chart predictions become more
reliable as the block length tends to infinity. However, a re-
design of the error correction code is mandatory.

As additional proof, we examined the decoder and detector
(dp-BCJR and multi-sample dp-BCJR, respectively) trajecto-
ries, obtained by simulating fifteen random codewords. The
result, depicted in Figure 9 and 10 is in agreement with the
EXIT charts (depicted on top) and in line with the FER curves.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a multi-sample dp-BCJR, that
uses oversampling as an observable for better tracking the
phase noise variations. An instance of the algorithm was
derived for the case of shaping pulses that have a duration
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equal to the symbol time. We showed that the proposed multi-
sample dp-BCJR outperforms the classical dp-BCJR and, more
in general, algorithms using a single sample per symbol.

However, although the here-presented algorithm shows
promising results, we identified three major aspects that re-
quire additional research: complexity reduction, the general-
ization to other shaping pulses, and the design of forward error
correction codes.

For the first, we have shown that the multi-sample dp-BCJR
has a complexity that scales as O

(
NML2η

)
. That is ac-

ceptable for the here-analyzed scenarios but can become
impractical for large constellations (e.g., M > 64). For
making the problem tractable again, a possibility is the use
of canonical distributions as the Tikhonov pdf [15], that
can be propagated along the FG by means of a Kullback-
Leibler minimization [18], expectation propagation [19], or
other message-passing techniques. Another possibility could
be the optimization (from an AIR perspective) of p∆(θ) for a
fixed number of phase level L, similarly to what is done for ISI
channels when using the channel shortening technique [20].

Concerning instead the generalization to other shaping
pulses, as previously mentioned, the main challenge appears
to derive an FG that can take into account the ISI in the
observable in (3) and the phase noise model. At the time
of writing, a formulation of this problem (to the best of the
authors’ knowledge) still does not exist.

Finally, with reference to error correction codes, we have
shown in the previous section that when the phase noise is
too strong, standards codes (for the AWGN channel) do not
perform well with both the multi-sample and classical dp-
BCJR. It means that one shall design a code (specific for the
scenario) to achieve the rates predicted by the AIR. This can be
carried out, for instance, by means of the techniques presented
in [21] and [22].



DISCLAIMER

The view expressed herein can in no way be taken to reflect
the official opinion of the European Space Agency.

REFERENCES

[1] M. R. Khanzadi, D. Kuylenstierna, A. Panahi, T. Eriksson, and H. Zi-
rath, “Calculation of the performance of communication systems from
measured oscillator phase noise,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 61, no. 5, pp. 1553–1565, 2014.

[2] C. A. Hofmann, K.-U. Storek, and A. Knopp, “Impact of phase noise and
oscillator stability on ultra-narrow-band-IoT waveforms for satellite,” in
Proc. IEEE Intern. Conf. Commun., 2021, pp. 1–6.

[3] M. Baldi, M. Bertinelli, F. Chiaraluce, P. Closas, R. Garello, N. Maturo,
M. Navarro, J. M. Palomo, E. Paolini, S. Pfletschinger et al., “NEX-
CODE: Next generation uplink coding techniques,” in International
Workshop on Tracking, Telemetry and Command Systems for Space
Applications (TTC), Noordwijk, The Netherlands, 2016.

[4] A. Piemontese, G. Colavolpe, and T. Eriksson, “Phase noise in commu-
nication systems: from measures to models,” Available on Arxiv, Apr.
2021.

[5] A. Kreimer and D. Raphaeli, “Efficient low-complexity phase noise
resistant iterative joint phase estimation and decoding algorithm,” IEEE
Transactions on Communications, vol. 66, no. 9, pp. 4199–4210, 2018.
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