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A B S T R A C T

Thermally-driven semi-crystalline polymer networks are capable to achieve both the one-way
shape-memory effect and two-way shape-memory effect under stress and stress-free conditions,
therefore representing an appealing class of polymers for applications requiring autonomous
reversible actuation and shape changes. In these materials, the shape-memory effects are
achieved by leveraging the synergistic interaction between one or more crystalline phases and
the surrounding amorphous ones that are present within the network itself. The present paper
introduces a general framework for the finite strain continuum phenomenological modeling
of the thermo-mechanical and shape-memory behavior of multi-phase semi-crystalline polymer
networks. Model formulation, including the definition of phase and control variables, kinematic
assumptions, and constitutive specifications, is introduced and thoroughly discussed. Theoretical
derivations are general and easily adaptable to all cross-linked systems which include two or
more crystalline domains or a single crystalline phase with a wide melting range and manifest
macroscopically the one-way shape-memory effect and the two-way shape-memory effect under
stress and stress-free conditions. Model capabilities are validated against experimental data
for copolymer networks with two different crystalline phases characterized by well-separated
melting and crystallization transitions. Results demonstrate the accuracy of the proposed model
in predicting all the phenomena involved and in furnishing a useful support for future material
and application design purposes.

. Introduction

Shape-memory polymers (SMPs) are smart materials characterized by the unique property of recovering their original (perma-
ent) shape from a temporarily deformed one under exposure to an external stimulus such as heat, light, or a magnetic field (Hager
t al., 2015). In view of their advantages, such as light weight, low cost, good processability, potential biocompatibility, high
hape deformability and recoverability, SMPs have found applications in several fields, e.g., intelligent medical devices, sensors
nd actuators, self-deployable structures in spacecraft (see Meng and Hu (2009) and references therein), and 4D fabrication when
ombined with additive manufacturing techniques (Jiang et al., 2022; Bonetti et al., 2024).
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The capability of recovering the permanent shape, provided via material processing, from a previously imposed temporary shape,
is termed shape-memory effect (SME). Particularly, the one-way SME represents a non-reversible feature in view of the necessity of
esorting to an external mechanical intervention to set again the temporary shape from the (recovered) permanent one (Scalet,

2020; Arricca et al., 2024). Rather, the two-way SME ensures reversibility between two distinguished temporary shapes upon
the application of an on-off stimulus, as a cooling-heating cycle for instance, therefore displaying the capability of a reversible
shape effect between two different configurations. Such an effect becomes highly appealing for applications requiring autonomous
reversible actuation and shape changes, e.g., artificial muscles (Fan and Li, 2017), reconfigurable structures (Risso et al., 2024), and
soft robots (Scalet, 2020), and it is therefore object of both scientific and commercial interests.

There exist various strategies that may be conceived to induce the thermally-driven two-way SME under stress and/or stress-free
conditions (Wang et al., 2019). Multi-phase semi-crystalline networks represent an attractive material, given their easy tailorability,
good shape-memory performances, and fast responses to triggering stimuli (Lendlein and Langer, 2002; Scalet et al., 2018).

The term ‘‘multi-phase semi-crystalline networks’’ includes all cross-linked systems with two or more crystalline domains or a
ingle crystalline phase with a wide melting range (i.e., systems composed by a broad continuous series of different crystalline
omains). Thanks to the presence of chemical cross-links and of at least one crystallizable phase, these networks are capable to
acroscopically manifest the one-way SME and two-way SME under stress and stress-free conditions. Particularly, these SMEs can

be achieved by leveraging the synergistic interaction between the crystalline and amorphous phases present within the network
tself. In fact, in these systems the traditional two-way SME is commonly obtained by means of cooling–heating cycles from above

the melting temperature(s) to below the crystallization temperature(s) under an external applied stress (Chung et al., 2008; Resnina
et al., 2015; Basak and Bandyopadhyay, 2022; Feng and Li, 2022). In such a case, reversible actuation is associated to an elongation
f the material across the crystallization temperature(s) during cooling (known as crystallization-induced elongation (CIE)) and to
 contraction across the melting temperature(s) during heating (known as melting-induced contraction (MIC)) (Chung et al., 2008;

Scalet et al., 2018). The melting transition(s) is thus employed to trigger shape recovery, while temporary shapes are fixed by
crystallization(s).

Additionally, a two-way SME under stress-free conditions can also be achieved in these systems and it arises from a generated
nternal stress. In fact, its achievement is allowed by the presence of two phases that work synergistically: a skeleton phase, which
rovides the necessary internal stress, and an actuation phase, which is responsible for the actuation by undergoing a reversible

shape change upon temperature-induced crystallization-melting cycles under the generated internal stress (Arricca et al., 2024). In
the specific case of semi-crystalline networks, the phase(s) melted during heating acts as actuation phase, while the unmelted (i.e.,
crystalline) phase(s) is the skeleton phase. The response strongly depends on the relative contents of these two phases.

Accordingly, various multi-phase semi-crystalline networks have been proposed, such as semi-crystalline homopolymer networks,
.e., having one crystalline and one amorphous phase (Behl et al., 2013; Turner et al., 2014; Zhou et al., 2014; Tippets et al., 2015;
Dolynchuk et al., 2017; Wang et al., 2017; Xu et al., 2019; Wang et al., 2020; Yuan et al., 2020; Hao et al., 2022; Huang et al., 2023;
Jiang et al., 2022; Wang et al., 2022; Xu et al., 2022; Ren and Feng, 2023; Wong et al., 2023), semi-crystalline copolymer networks,
i.e., having two crystalline and two amorphous phases (Garle et al., 2012; Saatchi et al., 2015; Wang et al., 2017; Fan et al., 2018;
Yan et al., 2018; Ilić-Stojanović et al., 2021; Inverardi et al., 2022; Li et al., 2022; Xiang et al., 2022; He et al., 2024; Xu et al.,
2024), and multi-phase semi-interpenetrating networks, i.e., having more than one crystalline and amorphous phases (Uto et al.,
2023). As an alternative to complex interpenetrating or block-copolymer networks, Kolesov et al. (2015) investigated covalently
cross-linked binary and ternary blends having, respectively, two and three crystalline phases with different thermal stability.

Although the synthesis of these material systems has been object of exhaustive studies, the modeling of all their SMEs to support
the design of applications, and the understanding of the complex phenomena behind, still needs to be investigated. To the best of
authors’ knowledge, no modeling approaches are available for the two-way shape-memory behavior of multi-phase semi-crystalline
networks. In fact, most of the models were proposed using a phase transition approach to describe the shape-memory behavior
of cross-linked networks with a single crystalline phase in a one-dimensional and three-dimensional framework (Westbrook et al.,
2010; Dolynchuk et al., 2014, 2015; Scalet et al., 2018; Prasad et al., 2021; Yan et al., 2020; Zeng et al., 2021, 2023; Arricca et al.,
2024; Gülaşik et al., 2024). Recently, Gu et al. (2024) proposed a thermodynamic model with internal state variables to describe
nly the two-way SME under an applied stress of semi-crystalline networks with two crystalline domains.

The present paper aims to propose a general finite strain continuum formulation for the phenomenological modeling of the SMEs
in multi-phase semi-crystalline networks under stress and stress-free conditions.

We adopt a phase-transition approach that has been applied to a wide variety of SMPs, also coupled with physically-based phase
evolution laws (Liu et al., 2006; Guo et al., 2016; Yang and Li, 2016; Arricca et al., 2024), thanks to its effectiveness. Accordingly,
he architecture of the SMP network is represented at the macroscopic scale by continuum variables to describe the amorphous

and crystalline phases and the inelastic contributions associated with the shape-memory deformation. Constitutive equations are
stated to establish the mechanical stress–strain response of the network, and evolution laws are derived on the basis of physical
evidences arising from previous works (Scalet et al., 2018; Arricca et al., 2024) and experimental observations (Inverardi et al.,
2022). Theoretical derivations are general and easily adaptable to all cross-linked systems which include two or more crystalline
domains or a single crystalline phase with a wide melting range and manifest macroscopically the one-way SME and two-way SME
nder stress and stress-free conditions. Model capabilities are validated against uniaxial experimental data performed by Inverardi

et al. (2022) on poly(ethylene glycol)/poly(𝜀-caprolactone) copolymer networks with two different crystalline phases characterized
by well-separated melting and crystallization transitions. Furthermore, we perform additional testing compared to Inverardi et al.
(2022) to have a comprehensive set of experimental data for the identification of model parameters. Results demonstrate the
2 
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Fig. 1. Schematic of the internal architecture evolution of a multi-phase semi-crystalline network, occurring via cooling-heating cycles. For the sake of generality,
the amorphous domains (random coiled lines) and the crystalline contents (solid shapes) are represented with 𝑛 different shades of gray and blue colors,
respectively, to distinguish between the 𝑛 polymers constituting the network. Orange circles depict the cross-links.

accuracy of the proposed model in predicting all the phenomena involved and in furnishing a useful support for future material and
application design purposes.

The manuscript is organized as follows. Section 2 introduces the material system and identifies the necessary continuum
variables to describe the phase contents. Section 3 introduces kinematic specifications in terms of multiplicative decomposition
of the deformation gradient and characterization of the mechanical deformation in the amorphous and crystalline contents. The
constitutive stress–strain response of the system is introduced in Section 4, with further useful insights and clarifications on the
selection of the energy functions. Section 5 presents the application of the theoretical formulation to a copolymer network, together
with the validation of the derived equations on experimental data. Concluding remarks in Section 6 complete the paper.

2. Material and continuum variables

This section presents the shape-memory material system under investigation and defines the continuum variables to describe the
phase contents.

2.1. Material system description

Consider a multi-phase semi-crystalline network made of 𝑛 semi-crystalline polymers, being 𝑛 ≥ 1 a positive integer. For the sake
of generality, in the following we do not specify the number 𝑛 of polymers. Each 𝚤-th polymer (𝚤 = 1,… , 𝑛) is generally described as
composed of one amorphous domain, and (potentially) one crystalline domain as a function of the temperature, as clarified hereafter.
We also refer to the amorphous and crystalline domains as phases. Chemical cross-links are established among the polymer chains
within the amorphous region and act as net-points responsible for determining the permanent shape of the entire network during
shape-memory tests. The fraction of crystalline and amorphous domains may change upon temperature variations as a consequence
of phase changes into the 𝚤-th polymer (i.e., crystallization and melting). Particularly, for each polymer, it is possible to define and
measure the characteristic temperatures of crystallization and melting, which well define the internal architecture of the material in
terms of phase contents. These temperatures are denoted with 𝑇c,𝚤 and 𝑇m,𝚤, respectively, with 𝑇m,𝚤 > 𝑇c,𝚤. Above 𝑇m,𝚤, the 𝚤-th polymer
consists of only the amorphous domain and has a rubber-like behavior (i.e., rubber elasticity); in proximity of 𝑇c,𝚤 the crystallites start
to form, and once crystallization is completed, the 𝚤-th polymer is composed of crystallites connected by the amorphous cross-linked
domain and has an elasto-plastic behavior. Upon subsequent heating, the formed crystallites start to melt up to the final restoration
of the fully amorphous domain. Thus, in a shape-memory thermal cycle, the crystalline domain may be used as thermal switch and
is responsible for both temporary shape fixation and permanent shape recovery.

The identification of all the melting and crystallization temperatures allows the definition of 𝑇m and 𝑇c for the whole network,
as follows

𝑇m = max
{

𝑇m,𝚤
}

, 𝑇c = min
{

𝑇c,𝚤
}

. (1)

Accordingly, amorphous and crystalline phases of the network vary by means of cooling-heating cycles. For values of temperature
above 𝑇m, the entire multi-phase semi-crystalline network is in its fully amorphous state, with 𝑛 amorphous domains. The cooling
process determines the sequential formation of the crystalline domains, which stiffen the material and reach their maximum contents
below 𝑇c. Therefore, for 𝑇 ≤ 𝑇c, the multi-phase semi-crystalline network is made of 𝑛 crystalline domains, and 𝑛 amorphous domains.
A schematic representation of the internal architecture evolution of the network, as the temperature varies, is depicted in Fig. 1.

It is clear the necessity to properly characterize the 𝑛 polymers, with associated amorphous and crystalline phase contents, to
describe the overall internal architecture evolution of the material system as a function of temperature variations.
3 
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2.2. Phase variable definitions

Starting from the description of the material system in previous subsection, we denote with  the total volume of the entire
network. It holds that

 = 𝐴 + 𝐶 , (2)

where the total volumes of the amorphous and crystalline phase contents, 𝐴 and 𝐶 , are given as

𝐴 =
𝑛
∑

𝚤=1
𝚤,𝐴 , 𝐶 =

𝑛
∑

𝚤=1
𝚤,𝐶 , (3)

with 𝚤,𝐴 and 𝚤,𝐶 volumes of the amorphous and crystalline domain of any 𝚤-th polymer composing the network, respectively.
Similarly, it is possible to define the volume of the 𝚤-th polymer as

𝚤 = 𝚤,𝐴 + 𝚤,𝐶 , (4)

which satisfies Eq. (2) according to the relation  =
∑

𝚤 𝚤.
Let 𝜒 be a scalar variable named total volume fraction. The amorphous and crystalline volume fractions of the entire network

re denoted as 𝜒𝐴 and 𝜒𝐶 henceforth, and they are given as

𝜒𝐴 =
𝐴


, 𝜒𝐶 =
𝐶


, (5a)

from which descends that

𝜒 = 𝜒𝐴 + 𝜒𝐶 = 1 , (5b)

according to Eq. (2). Similarly, each 𝚤-th polymer will have a total volume fraction 𝜒𝚤 = 𝚤 −1, as well as amorphous and crystalline
volume fractions will be given as

𝜒𝚤,𝐴 =
𝚤,𝐴


, 𝜒𝚤,𝐶 =
𝚤,𝐶


, (6a)

whence

𝜒𝚤 = 𝜒𝚤,𝐴 + 𝜒𝚤,𝐶 , (6b)

according to Eq. (4) and in respect of condition (5b). It therefore holds that

𝜒 =
𝑛
∑

𝚤=1
𝜒𝚤 = 1 , 𝜒𝐴 =

𝑛
∑

𝚤=1
𝜒𝚤,𝐴 , 𝜒𝐶 =

𝑛
∑

𝚤=1
𝜒𝚤,𝐶 . (7)

In compliance with the material system description provided in the previous subsection, it is reasonable to assume the following
upper and lower bounds to any 𝚤-th volume fraction (6a)

𝜒 min
𝚤,𝐴 < 𝜒𝚤,𝐴 ≤ 𝜒𝚤 , 0 ≤ 𝜒𝚤,𝐶 ≤ 𝜒 max

𝚤,𝐶 , (8)

where 𝜒𝚤,𝐴 = 𝜒𝚤 and 𝜒𝚤,𝐶 = 0 hold for 𝑇 ≥ 𝑇m,𝚤, whereas 𝑇 ≤ 𝑇c,𝚤 implies that 𝜒𝚤,𝐴 = 𝜒 min
𝚤,𝐴 = 𝜒𝚤 − 𝜒 max

𝚤,𝐶 > 0 and 𝜒𝚤,𝐶 = 𝜒 max
𝚤,𝐶 < 𝜒𝚤.

ummation over 𝚤 yields

𝜒 min
𝐴 < 𝜒𝐴 ≤ 1 , 0 ≤ 𝜒𝐶 ≤ 𝜒 max

𝐶 , (9)

which represent the upper and lower bounds of volume fractions (5a) that allow the overall characterization of the entire network,
and where 𝜒𝐴 = 1 and 𝜒𝐶 = 0 for 𝑇 ≥ 𝑇m, 𝜒𝐴 = 𝜒 min

𝐴 =
∑

𝚤 𝜒
min
𝚤,𝐴 > 0 and 𝜒𝐶 = 𝜒 max

𝐶 =
∑

𝚤 𝜒
max
𝚤,𝐶 < 1 for 𝑇 ≤ 𝑇c.

In view of upper bounds (8), volume fractions 𝜒𝚤,𝐶 can be conveniently selected to define the micro-structural phase evolution
of any 𝚤-th polymer, which in turn drive the description of the phase contents (9) of the entire network. Hence, selecting all 𝜒𝚤,𝐶 as
independent phase variables, the amorphous volume fractions of the 𝚤-th polymer and of the entire network re-write in the form

𝜒𝚤,𝐴 = 𝜒𝚤 − 𝜒𝚤,𝐶 , 𝜒𝐴 = 1 − 𝜒𝐶 , (10)

according to Eqs. (5b) and (6b).

2.3. Identification of the maximum crystallinity volume contents

Evaluation of the maximum crystalline volume contents, 𝜒 max
𝚤,𝐶 , in Eq. (8), yielding 𝜒 max

𝐶 , can be provided via prior identification of
he maximum crystalline weight contents, 𝜒𝑤,max

𝚤,𝐶 , which can be derived from experimental measurements performed by differential
scanning calorimetry (Boatti et al., 2016; Scalet et al., 2018; Inverardi et al., 2022; Arricca et al., 2024).

To do that, let the symbols 𝜚 and  denote the mass density and the mass of the entire network. For any given 𝚤-th polymer, it
olds that

𝜚𝚤,𝐴 =
𝚤,𝐴 , 𝜚𝚤,𝐶 =

𝚤,𝐶 , (11)

𝚤,𝐴 𝚤,𝐶

4 
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with 𝜚𝚤,𝐴 and 𝚤,𝐴, 𝜚𝚤,𝐶 and 𝚤,𝐶 mass densities and masses of the amorphous and crystalline domains of any 𝚤-th polymer,
respectively It follows that

 =
𝑛
∑

𝚤=1
𝜚𝚤,𝐴 𝚤,𝐴 + 𝜚𝚤,𝐶 𝚤,𝐶 , (12)

which provide a definition of the total mass of the network.
The generic 𝚤-th crystalline weight content is given as

𝜒𝑤𝚤,𝐶 =
𝚤,𝐶


, (13)

and its maximum value is obviously provided by the maximum value that the numerator can assume, i.e., max
𝚤,𝐶 = 𝜚𝚤,𝐶  max

𝚤,𝐶 for
≤ 𝑇c,𝚤. Accordingly, and taking advantage of Eqs. (6), (11) and (12), the following relation applies to define the maximum

crystalline weight content of any 𝚤-th polymer

𝜒𝑤,max
𝚤,𝐶 =

𝜚𝚤,𝐶 𝜒 max
𝚤,𝐶

𝜚𝚤,𝐴 (𝜒𝚤 − 𝜒 max
𝚤,𝐶 ) + 𝜚𝚤,𝐶 𝜒 max

𝚤,𝐶 +
∑

𝚥≠𝚤 𝜚𝚥,𝜅 𝜒𝚥,𝜅
, (14)

for 𝜅 = 𝐴, 𝐶 and 𝚥 = 1,… , 𝑛 − 1.
Note that, although Eq. (14) is true for any given 𝚤-th polymer, the term ∑

𝚥≠𝚤 𝜚𝚥,𝜅 𝜒𝚥,𝜅 is not univocally defined as long as a fixed
alue of 𝑇 is not selected. Therefore, in order to state a meaningful phase content characterization of the network, consider 𝑇 ≤ 𝑇c

such that the crystalline content of both the 𝚤-th polymer and all the remaining 𝑛− 1 polymers have reached their maximum extent.
Then, Eq. (14) re-writes in the form

𝜒𝑤,max
𝚤,𝐶 =

𝜚𝚤,𝐶 𝜒 max
𝚤,𝐶

𝜚𝚤,𝐴 𝜒𝚤 + 𝜒 max
𝚤,𝐶 (𝜚𝚤,𝐶 − 𝜚𝚤,𝐴) +

∑

𝚥≠𝚤 𝜚𝚥,𝐴 𝜒𝚥 +
∑

𝚥≠𝚤 𝜒
max
𝚥,𝐶 (𝜚𝚥,𝐶 − 𝜚𝚥,𝐴)

, (15)

whence the 𝚤-th maximum crystalline volume content writes as

𝜒max
𝚤,𝐶 = 𝜒𝑤,max

𝚤,𝐶

𝜚𝚤,𝐴 𝜒𝚤 +
∑

𝚥≠𝚤 𝜚𝚥,𝐶 𝜒𝚥 + 𝜒
max
𝚥,𝐶 (𝜚𝚥,𝐶 − 𝜚𝚥,𝐴)

𝜚𝚤,𝐶 − 𝜒𝑤,max
𝚤,𝐶 (𝜚𝚤,𝐶 − 𝜚𝚤,𝐴)

. (16)

Eq. (16) represents a system of 𝑛-equations in 𝑛-unknowns whose solution is

𝜒max
𝚤,𝐶 = 𝜒𝑤,max

𝚤,𝐶

𝜚𝚤,𝐴 𝜒𝚤 +
∑

𝚥≠𝚤 𝜚𝚥,𝐴 𝜒𝚥

𝜚𝚤,𝐶

[

1 −
𝜒𝑤,max
𝚤,𝐶 (𝜚𝚤,𝐶 − 𝜚𝚤,𝐴)

𝜚𝚤,𝐶
−
∑

𝚥≠𝚤

𝜒𝑤,max
𝚥,𝐶 (𝜚𝚥,𝐶 − 𝜚𝚥,𝐴)

𝜚𝚥,𝐶

]
. (17)

Lastly, the mass density of the entire network, 𝜚 =  −1, can be expressed by means of the standard rule of mixture, i.e.,

𝜚 = (1 − 𝜒𝐶 ) 𝜚𝐴 + 𝜒𝐶 𝜚𝐶 , (18)

with 𝜚𝐴 and 𝜚𝐶 mass densities of the total amorphous and crystalline contents of the network, respectively. Here, advantage has
been taken of relations  = 𝐴 +𝐶 = 𝜚𝐴 𝐴 + 𝜚𝐶 𝐶 , and of Eqs. (5a) and (10)2.

3. Kinematics

This section presents the kinematic assumptions of the shape-memory material system under investigation.
The displacement of a particle from its initial position, 𝑿 ∈ 0, to the current position at time 𝑡, 𝒙 ∈ 𝑡, with 0 and 𝑡

nitial (undeformed) and current (deformed) configuration, respectively, is defined by the deformation equation 𝒙 = 𝒙(𝑿, 𝑡). The
eformation gradient referred to the undeformed configuration is denoted by F and is defined as F = 𝜕𝒙(𝑿, 𝑡)∕𝜕𝑿 (Malvern, 1969),

yielding a two-point tensor field F ∶ 0 → 𝑡.

3.1. Multiplicative decomposition of the total deformation gradient

The kinematic theory of the multi-phase semi-crystalline network under investigation is here assumed to be based on the
following multiplicative decomposition of the deformation gradient

F = F 𝑚 F 𝑡ℎ , (19)

where tensors F 𝑚 and F 𝑡ℎ denote the mechanical and thermal deformation gradient, respectively. It holds that F 𝑡ℎ ∶ 0 → 𝑇 and
F 𝑚 ∶ 𝑇 → 𝑡, with 𝑇 (intermediate) thermal configuration (see Fig. 2) at a non-uniform temperature 𝑇 , which is obtained from
he current configuration, 𝑡, by isothermal de-stressing to zero stress (Lubarda, 2004).

Remark. It is perhaps worth to point out that configurations 0, 𝑇 , and 𝑡 correspond to the total volume of the network (at
different time, temperature, and stress), which we have simply denoted with  in Sections 2.2 and 2.3. The main aim of such
sections was the introduction of the crystalline volume fractions as phase variables to describe the phase evolution of network,
and their respective maximum contents. Volume fractions are obviously configurational invariants, so they do not require such
specification, and all equations introduced in Sections 2.2 and 2.3 can be arbitrarily defined in any configurations.
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Fig. 2. Depiction of the initial (undeformed, or material) configuration 0, spatial (deformed, or current) configuration 𝑡, and thermal (intermediate)
configuration 𝑇 .

3.2. Phase contributions to the mechanical deformation

Standard arguments in SMP modeling commonly assume the equality between either stresses (Liu et al., 2006; Baghani et al.,
2011, 2012; Scalet et al., 2018), or strains (Boatti et al., 2016; Yan et al., 2020; Arricca et al., 2024), between the two phases,
therefore amorphous and crystalline in the present case. We here proceed according to the latter statement, keeping the thermal
deformation gradient as total, therefore avoiding to provide kinematic specifications on the effects of thermal loads associated to the
two phases. Accordingly, it is required that the mechanical contribution to the deformation gradient respects the following equality

F 𝑚 = F 𝑚𝐴 = F 𝑚𝐶 . (20)

with F 𝑚𝐴 and F 𝑚𝐶 mechanical deformation gradients in the amorphous and crystalline phases, respectively. In view of the thermal-
sensitive behavior of the semi-crystalline SMP network, which varies from elastic-like for 𝑇 ≥ 𝑇m to elasto-plastic-like for 𝑇 ≤ 𝑇c,
tensors F 𝑚𝐴 and F 𝑚𝐶 are chosen to be given as

F 𝑚𝐴 = F 𝑒𝑙𝐴 , F 𝑚𝐶 = F 𝑒𝑙𝐶 F 𝑖𝑛. (21)

Here, F 𝑒𝑙𝐴 represents the elastic deformation gradient in the amorphous phase, whereas F 𝑒𝑙𝐶 and F 𝑖𝑛 stand for the elastic and
inelastic contributions to the deformation in the crystalline domain, and clarify the necessity to account for a mechanical deformation
gradient in Eq. (19). It holds that F 𝑒𝑙𝐴 ∶ 𝑇 → 𝑡, F 𝑒𝑙𝐶 ∶ ∗ → 𝑡, and F 𝑖𝑛 ∶ 𝑇 → ∗, where ∗ represents the inelastic configuration
related to the crystalline content (see Fig. 3), which is obtained from 𝑡 after removal of the elastic contribution to the stress.

Tensor F 𝑖𝑛 has to account for the deformations associated to the one-way and two-way SMEs taking place within the material.
Accordingly, it can be subjected to a further multiplicative decomposition, as follows

F 𝑖𝑛 = F 𝑖𝑛𝐶 F 𝑠𝑡,𝑓 , (22)

where F 𝑖𝑛𝐶 explicitly accounts for the elongations and contractions induced by the crystalline-phase evolution (known, respectively,
as CIE and MIC, as discussed in Section 1), while F 𝑠𝑡,𝑓 for deformations that can be temporary stored at low temperatures as a
consequence of high-temperature loading (Boatti et al., 2016; Arricca et al., 2024). Combination of Eqs. (21)2 and (22) would further
lead to account for an intermediate configuration between 𝑇 and ∗, § say, such that F 𝑠𝑡,𝑓 ∶ 𝑇 → § and F 𝑖𝑛𝐶 ∶ § → ∗.

Note that, the 𝑛 polymers composing the network will contribute to the inelastic deformation as

F 𝑖𝑛𝐶 =
𝑛
∏

𝚤=1
F 𝑖𝑛𝚤,𝐶 , F 𝑠𝑡,𝑓 =

𝑛
∏

𝚤=1
F 𝑠𝑡,𝑓𝚤 , (23)

whereas the elastic contributions, although we may assume to be able to state the relations F 𝑒𝑙𝐴 =
∏

𝚤 F 𝑒𝑙𝚤,𝐴 and F 𝑒𝑙𝐶 =
∏𝑛

𝚤 F
𝑒𝑙
𝚤,𝐶 ,

require to be kept total, as we will made clear in Section 4.1.

4. Constitutive equations

Denote with 𝜓 the specific Helmholtz free energy (per unit mass) of the entire network, and with 𝜓𝐴 and 𝜓𝐶 the specific energies
of the amorphous and crystalline phase contents. Within the model of the multiplicative decomposition (19), energy 𝜓 is commonly
6 



M. Arricca et al. Journal of the Mechanics and Physics of Solids 195 (2025) 105955 
Fig. 3. Initial, thermal, and spatial configurations, with specifications on the mechanical contribution to the deformation in the amorphous and crystalline
domains. Accounting for thermal loads, F 𝑚𝐴 = F 𝑒𝑙𝐴 leads to the configurational picture of standard thermo-elasticity for the amorphous content. Rather,
F 𝑚𝐶 = F 𝑒𝑙𝐶 F 𝑖𝑛 generates the intermediate inelastic configuration, ∗, yielding a thermo-elasto-plastic scenario for the crystalline phase.

split into two parts, encompassing a strain energy function, 𝜓𝑒𝑙 say, and a thermal contribution, 𝜓 𝑡ℎ, yielding 𝜓 = 𝜓𝑒𝑙 + 𝜓 𝑡ℎ. With
the aim of characterizing the constitutive stress–strain response of the system, we here focus on the only contribution 𝜓𝑒𝑙, therefore
avoiding the treatment of the thermal energy, which is commonly written as a function of temperature and heat capacity and does
not generate additional contributions to the stress in the material.

We can write the elastic contribution to the Helmholtz free energy according to the rule of mixture, viz.,

𝜓𝑒𝑙 = 𝜒𝑤𝐴 𝜓
𝑒𝑙
𝐴 + 𝜒𝑤𝐶 𝜓

𝑒𝑙
𝐶 = 1

𝜚
[

(1 − 𝜒𝐶 ) 𝜚𝐴 𝜓𝑒𝑙𝐴 + 𝜒𝐶 𝜚𝐶 𝜓𝑒𝑙𝐶
]

, (24)

with 𝜓𝑒𝑙𝐴 and 𝜓𝑒𝑙𝐶 specific strain energies of the amorphous and crystalline domains. Here, advantage has been taken of definitions
of amorphous and crystalline weight contents and of mass densities, 𝜒𝑤𝜅 = 𝜅 −1 and 𝜚𝜅 = 𝜅 −1

𝜅 , for 𝜅 = 𝐴, 𝐶, and of volume
fractions (5a). Note that Eq. (24) is configurational invariant, and for the sake of generality we have avoided specifications on the
configuration where mass densities lie.

For isotropic materials, and to satisfy the principle of objectivity of material properties (Noll, 1958), 𝜓𝑒𝑙𝐴 and 𝜓𝑒𝑙𝐶 will be functions
of the invariants of the Green–Lagrange strain or, equivalently, the right or left stretch tensors (Malvern, 1969; McMeeking and
Landis, 2005). We introduce the finite logarithmic strain-based extension of the standard linear elastic material (Hencky, 1933; de
Souza Neto et al., 2008), to provide the Eulerian description of the strain energy density (per unit current volume).

Consider the polar decomposition of the elastic deformation gradients of the amorphous and crystalline volume contents,

F 𝑒𝑙𝜅 = R𝑒𝑙𝜅 U
𝑒𝑙
𝜅 = V𝑒𝑙𝜅 R

𝑒𝑙
𝜅 , (25)

for 𝜅 = 𝐴, 𝐶. Tensor R𝑒𝑙𝐴 (R𝑒𝑙𝐶 ) represents a pure rotation between 𝑇 (∗) and 𝑡, whereas U𝑒𝑙𝐴 (U𝑒𝑙𝐶 ) and V𝑒𝑙𝐴 (V𝑒𝑙𝐶 ) denote the right and
left elastic stretch tensors in the amorphous (crystalline) domain. Stretch tensors are linked to the right and left elastic Cauchy–Green
strains according to the following relations

U𝑒𝑙𝜅 =
√

F 𝑒𝑙𝜅
T F 𝑒𝑙𝜅 , V𝑒𝑙𝜅 =

√

F 𝑒𝑙𝜅 F 𝑒𝑙𝜅
T. (26)

The logarithmic elastic strains, 𝜺𝑒𝑙𝐴 ∶ 𝑡 → 𝑡 and 𝜺𝑒𝑙𝐶 ∶ 𝑡 → 𝑡, can be defined as a function of the left elastic stretch tensors
(26)2 as

𝜺𝑒𝑙𝐴 = ln V𝑒𝑙𝐴 = ln
√

F 𝑒𝑙𝐴 F 𝑒𝑙𝐴
T , 𝜺𝑒𝑙𝐶 = ln V𝑒𝑙𝐶 = ln

√

F 𝑒𝑙𝐶 F 𝑒𝑙𝐶
T , (27)

where ln(∗) denotes the tensor logarithm of (∗). Tensors 𝜺𝑒𝑙𝐴 and 𝜺𝑒𝑙𝐶 are selected as strain internal variables of energy (24), which
can be written in terms of spatial energy density (per unit current volume) as

𝜚𝑡 𝜓
𝑒𝑙(𝑇 , 𝜺𝑒𝑙𝐴 , 𝜺𝑒𝑙𝐶 ) = (1 − 𝜒𝐶 ) 𝜚𝐴𝑡 𝜓𝑒𝑙𝐴 (𝑇 , 𝜺𝑒𝑙𝐴 ) + 𝜒𝐶 𝜚𝐶𝑡𝜓𝑒𝑙𝐶 (𝑇 , 𝜺𝑒𝑙𝐶 ). (28)

Taking advantage of the Hencky strain–energy relation, we provide the following definitions of the elastic energy densities of
the amorphous and crystalline content

𝜚𝐴𝑡 𝜓
𝑒𝑙
𝐴 (𝑇 , 𝜺𝑒𝑙𝐴 ) =

1
2
𝜺𝑒𝑙𝐴 ∶ C𝐴𝑡 (𝑇 ) 𝜺

𝑒𝑙
𝐴 , 𝜚𝐶𝑡 𝜓

𝑒𝑙
𝐶 (𝑇 , 𝜺𝑒𝑙𝐶 ) =

1
2
𝜺𝑒𝑙𝐶 ∶ C𝐶𝑡 𝜺

𝑒𝑙
𝐶 . (29)
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Here, C𝐴𝑡 and C𝐶𝑡 have the same format of the infinitesimal fourth-order elasticity tensor, and material parameters related
o the amorphous and crystalline domain content are taken as temperature-dependent and temperature-independent, respectively.
ombination of Eqs. (28) and (29) yields

𝜚𝑡 𝜓
𝑒𝑙(𝑇 , 𝜺𝑒𝑙𝐴 , 𝜺𝑒𝑙𝐶 ) =

1
2

[

(1 − 𝜒𝐶 ) 𝜺𝑒𝑙𝐴 ∶ C𝐴𝑡 (𝑇 ) 𝜺
𝑒𝑙
𝐴 + 𝜒𝐶 𝜺𝑒𝑙𝐶 ∶ C𝐶𝑡 𝜺

𝑒𝑙
𝐶

]

. (30)

Note that, the logarithm of the left stretch does not, in general, have a conjugate stress. However, in the case of isotropic elastic
aterials, its conjugate stress is the Cauchy stress multiplied by the third principal invariant of the left stretch (Hoger, 1987), which

orresponds to the Kirchhoff stress. Let 𝝈𝐴 ∶ 𝑡 → 𝑡 and 𝝈𝐶 ∶ 𝑡 → 𝑡, 3(V𝑒𝑙𝐴 ) and 3(V𝑒𝑙𝐶 ), be the Cauchy (true) stress tensors, and
he third principal invariants of elastic left stretch tensors, in the amorphous and crystalline domains, respectively. Therefore, the
tresses conjugate to logarithmic strains (27) write as

𝝈[𝑉 ]
𝐴 = 3(V𝑒𝑙𝐴 )𝝈𝐴 , 𝝈[𝑉 ]

𝐶 = 3(V𝑒𝑙𝐶 )𝝈𝐶 . (31)

Note that, although the Kirchhoff stress preserves the same mapping properties of the Cauchy stress, hence, 𝝈[𝑉 ]
𝐴 ∶ 𝑡 → 𝑡

and 𝝈[𝑉 ]
𝐶 ∶ 𝑡 → 𝑡, in view of the mapping properties of F 𝑒𝑙𝐴 and F 𝑒𝑙𝐶 , Eqs. (31)1 and (31)2 have the measure of force per unit

hermal and inelastic volume, respectively. However, accounting for the standard assumption of plastic incompressibility, also 𝝈[𝑉 ]
𝐶

esults measured per unit thermal volume, as the mass density of the crystalline domain is preserved from ∗ to 𝑇 . Accordingly,
he following constitutive stress–strain relations can be stated via derivation of Eqs. (29)

𝝈[𝑉 ]
𝐴 = 𝜚𝐴𝑇

𝜕 𝜓𝑒𝑙𝐴
𝜕𝜺𝑒𝑙𝐴

= C𝐴𝑇 (𝑇 ) 𝜺
𝑒𝑙
𝐴 , 𝝈[𝑉 ]

𝐶 = 𝜚𝐶𝑇
𝜕 𝜓𝑒𝑙𝐶
𝜕𝜺𝑒𝑙𝐶

= C𝐶𝑇 𝜺𝑒𝑙𝐶 , (32)

with 𝜚𝐴𝑇 = 3(V𝑒𝑙𝐴 ) 𝜚𝐴𝑡 and 𝜚𝐶𝑇 = 3(V𝑒𝑙𝐶 ) 𝜚𝐶𝑡 , and consequent re-definition of material moduli of the amorphous and crystalline
omains in force per unit thermal volume. The following definition of total (Kirchhoff) stress in the material can be eventually

stated

𝝈[𝑉 ] = (1 − 𝜒𝐶 )𝝈[𝑉 ]
𝐴 + 𝜒𝐶 𝝈[𝑉 ]

𝐶 . (33)

Remark. Note that the fourth-order elasticity tensors introduced in Eqs. (29) are not necessarily isotropic. For the sake of generality,
it is perhaps reasonable to assume the isotropy of tensor C𝐴𝑡 , whereas crystalline domains may present some directional dependences
f their material properties, yielding C𝐶𝑡 a non-isotropic tensor. In the following, the proposed model is validated for a case-study in
ection 5. In view of the experimental data available, for the sake of simplicity both C𝐴𝑡 and C𝐶𝑡 will be taken as isotropic tensors.

4.1. Insights on the free energy identification

It is noteworthy to remark the non-trivial, and non-unique, identification of the strain energy function of the network. According
o the selected Hencky model, the total energy of the system should be 𝜚𝑡 𝜓𝑒𝑙 = 1

2 𝜺
𝑒𝑙 ∶ C𝑡 𝜺𝑒𝑙. However, in view of kinematic

pecifications (20) and (21), a straightforward definition of the total strain energy is not allowed, as it would require the
identification of a total elastic strain tensor, 𝜺𝑒𝑙 = lnV𝑒𝑙, with V𝑒𝑙 =

√

F 𝑒𝑙 F 𝑒𝑙T, hence of F 𝑒𝑙, which cannot be univocally defined.
herefore, the strain energy of the network is stated as a result of the primary definition of the energies of the amorphous and
rystalline domains, as the selected strain internal variables suggest, and as performed prior to the introduction of Eq. (30). In turn,
he same applies to the total stress in the material (33), which we had to introduce after identification of stresses (32).

Note however, that kinematic specifications (21) allows us to state the different behavior of the two phases, which actually
explore different deformations and different stresses, whereas assumption (20) has the aim to provide a useful tool that facilitates
the analytical characterization of the stress–strain response of the material.

A further consideration can be made in terms of strain energy of any 𝚤-th polymer of the network for 𝑛 ≥ 2, and establishment
of consequent stress–strain constitutive relations. That is, the identification of individual F 𝑒𝑙𝚤 , which would allow us to define the
pecific strain energy 𝜓𝑒𝑙𝚤 , is prevented by the impossibility to clearly measure the individual elastic deformation that each polymer

experiences when embedded in a multi-phase network. However, if pursuing an alternative procedure we allowed the identification
of F 𝑒𝑙𝚤 , yielding V𝑒𝑙𝚤 and the definition of 𝜓𝑒𝑙𝚤 , the energy of the system would be simply given as ∑𝚤 𝜓

𝑒𝑙
𝚤 . Hence, it would result from a

trivial summation of all 𝑛 energies without the possibility to perform any averaging procedures, therefore to account for interactions
among polymers. Alternatively, if the definition of the individual strain energies of the amorphous and crystalline domains, 𝜓𝑒𝑙𝚤,𝐴
nd 𝜓𝑒𝑙𝚤,𝐶 , was allowed via identification of tensors F 𝑒𝑙𝚤,𝐴 and F 𝑒𝑙𝚤,𝐶 , the energy of the amorphous and crystalline domains would be
𝚤 𝜓

𝑒𝑙
𝚤,𝐴 and ∑

𝚤 𝜓
𝑒𝑙
𝚤,𝐶 . In this case the overall behavior of the network would result even less plausible, as provided by individual and

non-interacting contributions arising from each phase of each polymer. Furthermore, unrealistic statements of any material moduli
f each 𝚤-th polymer, or of any material moduli of each 𝚤-th amorphous and crystalline domain, would be necessary.

For the aforementioned reasons, we have required that the elastic deformation of the amorphous and crystalline domains must
be kept total, as specified in Section 3.2, allowing the selection of the strain internal variables (27) of energies (29) and definitions of
tresses (32). Such procedure probably represents the most reasonable approach to characterize the strain energy of the system, and
he stress–strain relations. In fact, partial mutual interactions among the components within the network are implicitly accounted
or in view of the weighted procedure performed by volume fractions (7)2 and (7)3 on the total energies of the amorphous and

crystalline domains.
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Fig. 4. Schematic of the internal architecture of the PCL-PEG network, below the crystallization temperature, used for model validation (left) and of DSC cooling
and second heating scans of a generic PCL-PEG weight ratio (right).

5. Case-study: application to copolymer networks

This section applies the general formulation presented in previous sections to the case of a two-phase semi-crystalline network
to validate the model.

Specifically, some poly(ethylene glycol) (PEG)/poly(𝜀-caprolactone) (PCL) semi-crystalline networks synthesized and experimen-
tally characterized under uniaxial conditions by Inverardi et al. (2022) are considered. They were prepared by photo-cross-linking
of methacrylated macromonomers with different molecular weights and weight ratios. Particularly, the systems obtained using PCL
diol (𝑀𝑛 ∼ 10kDa, PCL10) and PEG with average molecular weight of 𝑀𝑛 ∼ 3 kDa (PEG3) at different weight ratios of 1:2, 1:1, and
2:1 were used for validation.

It is noted that the choice of focusing on PCL-PEG-based systems does not restrain the generality of the proposed model and its
suitable application to any multi-phase semi-crystalline cross-linked networks exhibiting the one-way SME as well as the two-way
SME under stress or stress-free conditions.

5.1. Phase variables

Following the adopted nomenclature and notation, the network is a two-phase semi-crystalline network composed of 𝑛 = 2
polymers (i.e., PCL10 and PEG3), and thus of two amorphous domains, and two crystalline domains for values of temperature
below the network crystallization temperature, as schematically depicted in Fig. 4 (left). For the sake of notation simplicity, the two
polymers of the network are denoted with the labels PCL and PEG hereinafter. Therefore, symbol 𝚤 = PCL,PEG.

Accordingly, the crystalline volume fractions of the PCL and PEG polymers can be represented by introducing two independent
phase variables denoted with 𝜒PCL,𝐶 and 𝜒PEG,𝐶 , respectively. The adopted values for 𝜒PCL and 𝜒PEG are properly selected as a
function of the three different weight ratios that define the three different proportions in which the two polymers constitute the
network and are reported in Table 1.

The crystalline and amorphous domains have distinct crystallization and melting temperatures, as shown in a representative
differential scanning calorimetry (DSC) curve for a generic PCL-PEG weight ratio in Fig. 4 (right). The measured temperatures for
the three PCL-PEG-based systems under investigation are taken from Inverardi et al. (2022) and are listed in Table 1. Note however,
that some of the values of the crystalline weight contents are missing in Inverardi et al. (2022), as well as some of the crystallization
and melting temperatures adopted here. In the current work, further ad-hoc DSC tests have been performed in order to provide all
the necessary information.

According to Eq. (1) and experimental measurements, the following melting and crystallization temperatures of the entire
network are thus identified

𝑇m = 𝑇m,PCL , 𝑇c = 𝑇c,PEG. (34)

Therefore, the upper and lower bounds of the total amorphous and crystalline volume fractions (9) respect the conditions 𝜒𝐴 = 1
and 𝜒𝐶 = 0 for 𝑇 ≥ 𝑇m,PCL, 𝜒𝐴 = 𝜒 min

𝐴 and 𝜒𝐶 = 𝜒 max
𝐶 for 𝑇 ≤ 𝑇c,PEG, with

𝜒𝐴 = 𝜒PCL,𝐴 + 𝜒PEG,𝐴 , 𝜒𝐶 = 𝜒PCL,𝐶 + 𝜒PEG,𝐶 . (35)
9 
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Crystallization and melting temperatures as well as crystallinity weight contents measured through DSC tests by Inverardi et al.
(2022) and through ad-hoc DSC tests performed in this work for the PEG-PCL-based systems under investigation.

Parameter PCL-PEG 2:1 PCL-PEG 1:1 PCL-PEG 1:2 Units

𝜒PEG 1/3 1/2 2/3 –
𝜒PCL 2/3 1/2 1/3 –
𝑇c,PCL 18 18 21 ◦C
𝑇m,PCL 44 43 44 ◦C
𝑇c,PEG −1 −7 −5 ◦C
𝑇m,PEG 24 18 19 ◦C
𝜒𝑤,max
PCL,𝐶 0.18 0.14 0.17 –

𝜒𝑤,max
PEG,𝐶 0.12 0.30 0.23 –

The values of the maximum crystallinity weight contents, 𝜒𝑤,max
PCL,𝐶 and 𝜒𝑤,max

PEG,𝐶 , whose evaluation is carried out via DCS tests, are
eported in Table 1. For 𝑛 = 2, 𝚤, 𝚥 = PCL,PEG with 𝚤 ≠ 𝚥, and values of temperature below 𝑇c,PEG, Eq. (17) allows the evaluation of

the maximum crystallinity volume contents as

𝜒max
𝚤,𝐶 = 𝜒𝑤,max

𝚤,𝐶

𝜚𝚤,𝐴 𝜒𝚤 + 𝜚𝚥,𝐴 𝜒𝚥

𝜚𝚤,𝐶

[

1 −
𝜒𝑤,max
𝚤,𝐶 (𝜚𝚤,𝐶 − 𝜚𝚤,𝐴)

𝜚𝚤,𝐶
−
𝜒𝑤,max
𝚥,𝐶 (𝜚𝚥,𝐶 − 𝜚𝚥,𝐴)

𝜚𝚥,𝐶

]
. (36)

The relation to evaluate the crystallinity weight contents of PCL and PEG, which has an analogous form of Eq. (15), is given as

𝜒𝑤𝚤,𝐶 =
𝜚𝚤,𝐶 𝜒𝚤,𝐶

𝜚𝚤,𝐴 𝜒𝚤 + 𝜒𝚤,𝐶 (𝜚𝚤,𝐶 − 𝜚𝚤,𝐴) + 𝜚𝚥,𝐴 𝜒𝚥 + 𝜒𝚥,𝐶 (𝜚𝚥,𝐶 − 𝜚𝚥,𝐴)
. (37)

The PCL amorphous and crystalline mass densities are taken as 𝜚PCL,𝐴 = 1.081 g cm−3 and 𝜚PCL,𝐶 = 1.195 g cm−3 (Ketelaars et al.,
1997), whereas data used for PEG are 𝜚PEG,𝐴 = 1.064 g cm−3 and 𝜚PEG,𝐶 = 1.2 g cm−3 (Martuscelli et al., 1986).

5.2. Logarithmic stretch-based kinematics

Consider a tensile test where the specimen does not undergo any shear deformation, so that the total deformation gradient have
omponents F11 = 𝜆, F22 = F33 = 𝜆⟂, F𝑖𝑗 = 0 for 𝑖 ≠ 𝑗. Therefore, we restrict the analysis in the sequel to non-rotative systems, where
ll deformation gradients arising from multiplicative decompositions performed in Section 3 are diagonal two-point tensors. Term
11 represents the deformation along which the force is applied, where the stress has the only non-zero component. In the current

numerical example we evaluate only the (scalar) stress and the (scalar) strain along the direction of force application, for which
experimental data are available (Inverardi et al., 2022). For the sake of simplicity, subscripts11 are omitted to avoid redundant
notations.

Kinematic specifications introduced in Section 3 can be re-defined in terms of stretches after identification of lengths 𝓁0, 𝓁𝑇 , and
𝓁𝑡, oriented along the direction of force application, within configurations 0, 𝑇 and 𝑡, respectively. The axial stretch is given by
= 𝓁𝑡 𝓁

−1
0 . Upon mechanical unloading from 𝓁𝑡, the specimen will have length 𝓁𝑇 , therefore defining the thermal stretch associated

o the initial configuration as 𝜆𝑡ℎ = 𝓁𝑇 𝓁−1
0 . Since the unloading from 𝓁𝑡 to 𝓁𝑇 is a mechanical process, we are justified to introduce

he mechanical stretch as 𝜆𝑚 = 𝓁𝑡 𝓁
−1
𝑇 (de Souza Neto et al., 2008). Accordingly, any deformed state of the network is characterized

y the following multiplicative split of the axial stretch

𝜆 = 𝜆𝑚 𝜆𝑡ℎ , (38)

which corresponds to the multiplicative decomposition of the deformation gradient (19).
Within this setting, allowance for the strain-stretch relation is made for all deformations. Therefore, from Eq. (38) we get 𝜀 = ln 𝜆,

and the following additive decomposition of strains holds

𝜀 = 𝜀𝑚 + 𝜀𝑡ℎ , (39)

with 𝜀𝑚 = ln 𝜆𝑚 and 𝜀𝑡ℎ = ln 𝜆𝑡ℎ mechanical and thermal axial strain, respectively, and where the former yields

𝜀𝑚 = 𝜀𝑚𝐴 = 𝜀𝑚𝐶 , 𝜀𝑚𝐴 = 𝜀𝑒𝑙𝐴 , 𝜀𝑚𝐶 = 𝜀𝑒𝑙𝐶 + 𝜀𝑖𝑛 , (40)

after re-arrangement of kinematic specifications (20) and (21) in terms of stretches, and being 𝜀𝑒𝑙𝐴 = ln 𝜆𝑒𝑙𝐴 , 𝜀𝑒𝑙𝐶 = ln 𝜆𝑒𝑙𝐶 , and 𝜀𝑖𝑛 = ln 𝜆𝑖𝑛.
According to Fig. 3, elastic and inelastic stretches are defined as 𝜆𝑒𝑙𝐴 = 𝓁𝑡 𝓁

−1
𝑇 , 𝜆𝑒𝑙𝐶 = 𝓁𝑡 𝓁

−1
∗ , and 𝜆𝑖𝑛 = 𝓁∗ 𝓁

−1
𝑇 , with 𝓁∗ length oriented

long the direction of force application within ∗. The logarithmic stretch-based kinematics introduced in the current section has
the same format of the Voigt model, as depicted in Fig. 5.

Accounting for Eq. (22) further allows us to re-write the inelastic strain as

𝜀𝑖𝑛 = 𝜀𝑖𝑛𝐶 + 𝜀𝑠𝑡,𝑓 , (41)

where it holds that 𝜀𝑖𝑛𝐶 = ln 𝜆𝑖𝑛𝐶 and 𝜀𝑠𝑡,𝑓 = ln 𝜆𝑠𝑡,𝑓 , 𝜆𝑖𝑛𝐶 = 𝓁∗ 𝓁
−1
§

and 𝜆𝑠𝑡,𝑓
§

= 𝓁𝑡 𝓁
−1
𝑇 with the obvious meaning of stretches and lengths.

According to specifications provided in Section 4, and the selected strain internal variables of the total energy (28) via energy
functions (29), elastic strains associated with the amorphous and crystalline phase are kept total. Rather, following Eq. (23), the
10 
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Fig. 5. Schematic of the additive decomposition of the total strain for the PCL-PEG system under investigation.

inelastic response will be characterized by stating proper evolution laws to describe 𝜀𝑖𝑛PCL and 𝜀𝑖𝑛PEG separately. Therefore, use of
Eq. (40)2 has to be made to define the elastic deformation in the amorphous volume content, whereas the crystalline mechanical
strain in Eq. (40)3 needs to be taken as

𝜀𝑚𝐶 = 𝜀𝑒𝑙𝐶 + 𝜀𝑖𝑛PCL + 𝜀𝑖𝑛PEG , (42)

where the last two right-hand side terms are given as

𝜀𝑖𝑛PCL = 𝜀𝑖𝑛PCL,𝐶 + 𝜀𝑠𝑡,𝑓PCL , 𝜀𝑖𝑛PEG = 𝜀𝑖𝑛PEG,𝐶 + 𝜀𝑠𝑡,𝑓PEG , (43)

according to Eqs. (23).
As specified in Section 3.2 for deformation gradients, strain 𝜀𝑖𝑛PCL,𝐶 (𝜀𝑖𝑛PEG,𝐶 ) accounts for the cooling-induced elongations and the

melting-induced contractions associated with the PCL (PEG) crystallization evolution, whereas 𝜀𝑠𝑡,𝑓PCL (𝜀𝑠𝑡,𝑓PEG) describes the deformation
induced by high-temperature loading that is temporarily stored at low temperature during the cooling cycle, and released in full
after heating above 𝑇 ≥ 𝑇m,PCL (𝑇 ≥ 𝑇m,PEG) (Boatti et al., 2016).

Remark. It is noteworthy to remark, that switching from the multiplicative decomposition of deformation gradients to the additive
decomposition of logarithmic strain-based deformation tensors is not always allowed and some clarifications must be made. In fact,
starting from Eq. (38), its tensorial form definition writes as 𝜺 = 𝜺𝑚 + 𝜺𝑡ℎ, which arises by selecting 𝜺 = lnV, yielding 𝜺𝑚 = lnV𝑚
and 𝜺𝑡ℎ = lnV𝑡ℎ, with V, V𝑚 and V𝑡ℎ, total, mechanical and thermal left stretch tensor, respectively. Following the same path of
reasoning, analogous tensorial definitions can be stated for Eqs. (40)–(43). However, such procedure needs to be restricted to the
case of symmetric deformations, where therefore left and right stretch tensors are coincident, as each deformation gradient is the
same as its transpose (see Eqs. (25) and (26), for instance). In fact, without loss of generality, consider two generic tensors, Y and
Z. Then, lnYZ = lnY + lnZ = lnZY implies that YZ = ZY, therefore requiring that Y,X ∈ 𝑦𝑚.

Therefore, allowance for such procedure is made for our case of study.

5.3. Constitutive stress–strain response

In view of the selected Hencky strain–energy relations (29) and the consequent stress–strain responses (32), the stresses in the
amorphous and crystalline domains are given as

𝜎[𝑉 ]
𝐴 = 𝐸𝐴(𝑇 ) 𝜀𝑒𝑙𝐴 = 𝐸𝐴(𝑇 ) 𝜀𝑚 , 𝜎[𝑉 ]

𝐶 = 𝐸𝐶 𝜀
𝑒𝑙
𝐶 = 𝐸𝐶 (𝜀𝑚 − 𝜀𝑖𝑛) , (44)

where advantage has been taken of Eqs. (40) to replace the elastic axial strains. 𝐸𝐴(𝑇 ) and 𝐸𝐶 represent the temperature-dependent
and -independent elastic moduli of the amorphous and crystalline phases of the entire network, respectively. The former is taken
as linearly dependent on the temperature according to the relation 𝐸𝐴(𝑇 ) = 𝐸′

𝐴 𝑇 (Scalet et al., 2018; Arricca et al., 2024), being
𝐸′
𝐴 a positive elastic modulus.

According to Eqs. (44), the total stress in the material (33) writes as

𝜎[𝑉 ] = (1 − 𝜒𝐶 )𝐸𝐴𝑇 𝜀𝑚 + 𝜒𝐶 𝐸𝐶 (𝜀𝑚 − 𝜀𝑖𝑛) , (45)

with 𝜒𝐶 = 𝜒PCL,𝐶 + 𝜒PEG,𝐶 , according to Eq. (7)3, and

𝜀𝑖𝑛 = 𝜀𝑖𝑛PCL + 𝜀𝑖𝑛PEG = 𝜀𝑖𝑛PCL,𝐶 + 𝜀𝑠𝑡,𝑓PCL + 𝜀𝑖𝑛PEG,𝐶 + 𝜀𝑠𝑡,𝑓PEG , (46)

in view of Eqs. (43).
Introduction of the total elastic modulus of the PCL-PEG network, 𝐸, as (Scalet et al., 2018; Arricca et al., 2024)
𝐸 = (1 − 𝜒𝐶 )𝐸′
𝐴𝑇 + 𝜒𝐶 𝐸𝐶 , (47)
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allows the following re-definition of stress (45)

𝜎[𝑉 ] = 𝐸 𝜀𝑚 − 𝜒𝐶 𝐸𝐶
(

𝜀𝑖𝑛PCL + 𝜀𝑖𝑛PEG
)

= 𝐸 (𝜀 − 𝜀𝑡ℎ) − 𝜒𝐶 𝜎[𝑉 ]
𝑎𝑐 𝑡 , (48)

after replacement of the mechanical strain via Eq. (39). Term 𝜎[𝑉 ]
𝑎𝑐 𝑡 denotes the stress associated with the actuation process under

tress-free conditions, which is given as

𝜎[𝑉 ]
𝑎𝑐 𝑡 = 𝐸𝐶

(

𝜀𝑖𝑛PCL + 𝜀𝑖𝑛PEG
)

= 𝐸𝐶
(

𝜀𝑖𝑛PCL,𝐶 + 𝜀𝑠𝑡,𝑓PCL + 𝜀𝑖𝑛PEG,𝐶 + 𝜀𝑠𝑡,𝑓PEG

)

, (49)

in view Eqs. (43). Eq. (48) further allows us to describe the total strain in the network as

𝜀 = 𝜀𝑡ℎ + 1
𝐸
(𝜎[𝑉 ] + 𝜒𝐶 𝜎

[𝑉 ]
𝑎𝑐 𝑡 ) , (50)

where strain 𝜀𝑡ℎ is identified by means of the following definition of thermal stretch

𝜆𝑡ℎ = 1 + [

(1 − 𝜒𝐶 ) 𝛼𝐴 + 𝜒𝐶 𝛼𝐶
]

𝛥𝑇 − 𝜒𝐶 𝛥𝜀 𝑡ℎ𝐶 . (51)

Here, 𝛼𝐴 and 𝛼𝐶 denote the thermal expansion coefficients of the amorphous and crystalline domains of the entire network,
𝛥𝑇 = 𝑇 − 𝑇0, with 𝑇0 initial temperature, and 𝛥𝜀 𝑡ℎ𝐶 represents the strain increment parameter related to the elongations and
ontraction occurring during crystallization and melting, respectively (Scalet et al., 2018; Arricca et al., 2024). Eq. (51) has been

stated starting from the approximated expression 𝜆𝑡ℎ ≃ 1 +𝛼 𝛥𝑇 (Vujošević and Lubarda, 2002), and has been modified by modeling
the thermal expansion coefficient, 𝛼, via the rule of mixture, and augmented by means of the last right-hand side term to account
for CIE and MIC processes.

Given the constitutive relation of the total stress in the material (48), we eventually derive the total Piola (nominal) stress, P say.
Consider 𝐴0 and 𝓁0 as the cross-sectional area and the length of the undeformed specimen, which are deformed to 𝐴𝑡 and 𝓁𝑡 after
application of the uniaxial force 𝑓 . Assuming that the SMP network under investigation is a nearly incompressible system, Kirchhoff
tresses coincide with Cauchy stresses. Therefore, writing the Cauchy and Piola stresses as 𝜎 = 𝑓 𝐴−1

𝑡 and P = 𝑓 𝐴−1
0 , respectively,

and setting 𝐴0 𝓁0 ≃ 𝐴𝑡 𝓁𝑡, it holds that

P = 𝜎 𝜆−1 = 𝜎 𝜆−𝑚 𝜆−𝑡ℎ , (52)

in accordance with multiplicative split (38).

5.4. Evolution laws

The temperature-dependent evolution of the crystalline phase within a cooling and subsequent heating cycle is evaluated in
terms of volume content and given as

𝜒̇𝐶 = 𝜒̇PCL,𝐶 + 𝜒̇PEG,𝐶 . (53)

Set 𝜅 = PCL,PEG. We state that (Arricca et al., 2024)

𝜒̇𝜅 ,𝐶 = −

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜁 cool𝜅 exp
[

𝜁 cool𝜅 (𝑇 − 𝑇 ef f
c,𝜅 )

]

(

1 + exp
[

𝜁 cool𝜅 (𝑇 − 𝑇 ef f
c,𝜅 )

])2
𝜒0
𝜅 ,𝐶 𝑇̇ , 𝑇̇ ≤ 0 ,

𝜁heat𝜅 exp
[

𝜁heat𝜅 (𝑇 − 𝑇 ef f
m,𝜅 )

]

(

1 + exp
[

𝜁heat𝜅 (𝑇 − 𝑇 ef f
m,𝜅 )

])2
𝜒0
𝜅 ,𝐶 𝑇̇ , 𝑇̇ > 0 ,

(54)

which allows the description of the cyclic transformation of 𝜒PCL,𝐶 and 𝜒PEG,𝐶 within multiple cooling-heating steps. Parameters
𝜁 cool𝜅 and 𝜁heat𝜅 are positive material constants for the cooling and heating cycle, respectively. The volume fraction 𝜒0

𝜅 ,𝐶 is introduced
o ensure the cyclic description and the continuity of the laws. It is equal to the value of the 𝜅-crystalline volume fraction at reversal
oints – when a passage from heating to cooling (or vice-versa) takes place – and is chosen to be given as (Arricca et al., 2024)

𝜒0
𝜅 ,𝐶 =

⎧

⎪

⎨

⎪

⎩

𝜒𝑚𝑎𝑥𝜅 ,𝐶 − 𝜒heat
𝜅 ,𝐶 , 𝑇̇ ≤ 0 ,

𝜒cool
𝜅 ,𝐶 , 𝑇̇ > 0 ,

(55)

with 𝜒heat
𝜅 ,𝐶 and 𝜒cool

𝜅 ,𝐶 representing the volume fractions of crystalline phase available from previous heating and cooling cycle,
espectively. For initialization purposes we state that

𝜒𝜅 ,𝐶 (𝑡 = 0) =
𝜒max
𝜅 ,𝐶

1 + exp [𝜁 cool𝜅 (𝑇 − 𝑇c, 𝜅 )
] . (56)

Temperatures 𝑇 ef f
c,𝜅 and 𝑇 ef f

m,𝜅 are the effective crystallization and melting temperatures of PCL and PEG. Their introduction allows
us to account for different phenomena that can affect the crystallization process, i.e., the application of an external stress in two-way
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shape-memory tests, the stress associated with the actuation process and with the (un)melted phase during stress-free shape-memory
ests, and the kinetic delay induced by an increase of the cooling(heating) rate (Scalet et al., 2018; Inverardi et al., 2022). They are

defined empirically as (Arricca et al., 2024)

𝑇 ef f
c,𝜅 = 𝑇c,𝜅 + 𝜏c,𝜅 𝜈cool𝜅 + 𝜔𝜅 ,𝐶 |𝜎end| + 𝛿𝜅 ,𝐶 |𝜎end𝑎𝑐 𝑡 | + 𝜑𝜅 ,𝐶 (𝜒𝜅 − 𝜒heat

𝜅 ,𝐶 ) , (57a)

𝑇 ef f
m,𝜅 = 𝑇m,𝜅 + 𝜏m,𝜅 𝜈heat𝜅 . (57b)

Parameters 𝜏c,𝜅 < 0 and 𝜏m,𝜅 > 0 describe the linear shift in the transition temperatures (Scalet et al., 2018), which depend on the
cooling and heating rate, 𝜈cool𝜅 and 𝜈heat𝜅 , respectively. 𝜔𝜅 ,𝐶 > 0 accounts for the stress influence on the crystallization process, with
end value of the stress at the end of the isothermal loading, whereas 𝛿𝜅 ,𝐶 > 0 describes the shift of transformation temperature due
o stress (49), with 𝜎end𝑎𝑐 𝑡 stress generated at the end of the previous heating cycle. The introduction of 𝜑𝜅 ,𝐶 establishes the dependence

of 𝑇 ef f
c,𝜅 on the 𝜅-crystalline phase.
The equations to describe the evolutions of the inelastic strain (46) are split as

𝜀̇𝑖𝑛𝐶 = 𝜀̇𝑖𝑛PCL,𝐶 + 𝜀̇𝑖𝑛PEG,𝐶 , 𝜀̇𝑠𝑡,𝑓 = 𝜀̇𝑠𝑡,𝑓PCL + 𝜀̇𝑠𝑡,𝑓PEG. (58)

Here, 𝜀̇𝑖𝑛𝐶 denotes the inelastic strain evolution induced by the formation of PCL and PEG crystals, which generate strain ratios
̇ 𝑖𝑛PCL,𝐶 and 𝜀̇𝑖𝑛PEG,𝐶 . Rather, 𝜀̇𝑠𝑡,𝑓𝐶 describes the deformation ratio induced by the high-temperature loading, temporarily stored at
ow temperatures, in the individual PCL and PEG crystal domains, via 𝜀̇𝑠𝑡,𝑓PCL and 𝜀̇𝑠𝑡,𝑓PEG .

Strain 𝜀𝑖𝑛𝜅 ,𝐶 evolves in time according to the following law (Scalet et al., 2018)

𝜀̇𝑖𝑛𝜅 ,𝐶 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜒̇𝜅 ,𝐶
(

𝜎
𝛼𝜅

+ 𝛾𝜅 𝜎end𝑎𝑐 𝑡 + 𝜃𝜅
𝜎end𝑎𝑐 𝑡
|𝜎end𝑎𝑐 𝑡 |

)

, 𝑇̇ < 0 ,

𝜒̇𝜅 ,𝐶
𝜒𝜅 ,𝐶

𝜀𝑖𝑛𝜅 ,𝐶 , 𝑇̇ > 0 ,

0 , 𝑇̇ = 0 ,

(59)

where terms 𝜎 𝛼−1𝜅 and 𝛾𝜅 𝜎end𝑎𝑐 𝑡 account for the contribution of the applied stress and the stress generated at the end of the previous
heating cycle, respectively. Term

𝜃𝜅 = 𝜃𝜅 ,𝐶 𝜒heat
𝜅 ,𝐶 + 𝜃𝜅 ,𝐴(𝜒𝜅 − 𝜒heat

𝜅 ,𝐶 ) (60)

allows the consideration of the effect of the 𝜅 amorphous and crystalline phases by means of parameters 𝜃𝜅 ,𝐴 and 𝜃𝜅 ,𝐶 , respectively.
Strain 𝜀𝑠𝑡,𝑓𝜅 stores the deformation induced by the applied load, varying under isothermal loading, for 𝑇 > 𝑇m,𝜅 . It is expected

to decrease during heating under stress-free conditions, and kept constant during heating under an applied stress. Accordingly, the
following evolution laws are chosen (Arricca et al., 2024)

𝜀̇𝑠𝑡,𝑓𝜅 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛽𝜅 𝜀̇𝑒𝑙𝜅 ,𝐴 , 𝑇̇ = 0 and 𝑇 > 𝑇m,𝜅 ,

𝜒̇𝜅 ,𝐶
𝜒𝜅 ,𝐶

𝜀𝑠𝑡,𝑓𝜅 , 𝑇̇ > 0 and |𝜎| = 0 ,

0, otherwise ,

(61)

with 𝛽𝜅 material parameter and 𝜒̇𝜅 ,𝐶 provided by Eqs. (54).
The numerical treatment of model Eqs. (54), (59) and (61) is performed by employing a backward-Euler integration algorithm

and the solution of the involved nonlinear systems are obtained by means of the function fsolve implemented in the MATLAB
environment.

5.5. Model calibration

The proposed model presents the following material parameters (𝜅 = PCL,PEG): (i) two elastic moduli for the amorphous and
rystalline phases of the entire network, 𝐸′

𝐴𝑇 and 𝐸𝐶 ; (ii) the crystallization and melting temperatures, 𝑇c,𝜅 and 𝑇m,𝜅 (Table 1); (iii)
he crystalline phase evolution parameters represented by the mass densities of the amorphous and crystalline domains, 𝜚𝜅 ,𝐴 and
𝜅 ,𝐶 (Section 5.1), two maximum crystallinity weight contents, 𝜒𝑤,max

𝜅 ,𝐶 (Table 1), two maximum crystallinity volumetric fractions,
𝜒max
𝜅 ,𝐶 (evaluated via Eq. (36)), two parameters 𝜁 cool𝜅 , and two parameters 𝜁heat𝜅 ; (iv) the thermal expansion coefficients of the entire

network, 𝛼𝐴 and 𝛼𝐶 , and the thermal strain increment, 𝛥𝜀𝑡ℎ𝐶 ; (v) two heating rate parameters, 𝜏m,𝜅 , and two cooling rate parameters
𝜏c,𝜅 ; (vi) the evolution parameters 𝛼𝜅 , 𝛾𝜅 , 𝜃𝜅 ,𝐴 and 𝜃𝜅 ,𝐶 , and 𝛽𝜅 ; (vii) the temperature parameters 𝜔𝜅 ,𝐶 , 𝛿𝜅 ,𝐶 , and 𝜑𝜅 ,𝐶 .

The mechanical parameters related to the hyperelastic responses of the amorphous and crystalline phases, 𝐸′
𝐴 and 𝐸𝐶 , have been

derived from tensile tests above the melting and below the crystallization temperature, 𝑇 = 𝑇 and 𝑇 = 𝑇 , according to
m m,PCL c c,PEG
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Fig. 6. (a) Experimental curves reproduced from Inverardi et al. (2022) and evaluation of 𝐸′
𝐴 for the PCL-PEG weight ratio (b) 2:1, (c) 1:1 and (d) 1:2.

experimental evidences — see Eq. (34) and Table 1. Fig. 6 shows the identification process of 𝐸′
𝐴 for the different weight ratios,

1:2, 1:1, and 2:1. Evaluations are performed on the experimental curves (Inverardi et al., 2022) visible in Fig. 6(a), and individual
calibrations of 𝐸′

𝐴 for the three different weight ratios analyzed are shown in Figs. 6(b)–6(d). The calibration of 𝐸𝐶 is rather carried
out in such a way that the maximum total modulus (47) at 𝑇 = −20 ◦C coincides with experimental data (Inverardi et al., 2022).

The crystalline phase evolution parameters for the cooling and heating cycles, 𝜁 coolPCL and 𝜁 coolPEG, 𝜁heatPCL and 𝜁heatPEG, are calibrated by
means of model validation on the crystalline content-temperature curves shown in Fig. 7, and are listed in Table 3. Here, we have
evaluated 𝜒𝑤𝐶 = 𝜒𝑤PCL,𝐶 + 𝜒𝑤PEG,𝐶 making use of Eq. (37), evolution laws (54), and Eqs. (55) and (56) after identification of the
maximum PCL and PEG crystalline volume contents via Eq. (36).

The thermal expansion coefficients, 𝛼𝐴 and 𝛼𝐶 , and the thermal strain increment, 𝛥𝜀𝑡ℎ𝐶 , for the three weight ratios analyzed, are
calibrated via the model validation on the engineering strain–temperature curves for the two-way SME under a constant applied
stress shown in Fig. 8. The aforementioned mechanical and thermal parameters, which are related to the whole PCL-PEG network,
are listed in Table 2.

Table 3 shows all the remaining parameters calibrated in the model. Heating rate parameters 𝜏m,PCL and 𝜏m,PEG, cooling rate
parameters 𝜏c,PCL and 𝜏c,PEG, evolution parameters 𝛼PCL, 𝛼PEG, 𝛽PCL, 𝛽PEG, 𝜃PCL,𝐴, 𝜃PCL,𝐶 , 𝜃PEG,𝐴 and 𝜃PEG,𝐶 , and temperature
parameters 𝜔PCL,𝐶 and 𝜔PEG,𝐶 , are calibrated on the two-way curve illustrated in Fig. 8. Evolution parameters 𝛾PCL and 𝛾PEG, and
effective crystallization temperature parameters 𝛿PCL,𝐶 and 𝛿PEG,𝐶 , 𝜑PCL,𝐶 and 𝜑PEG,𝐶 , are calibrated balancing the numerical results
obtained for the engineering strain–temperature curves shown in Fig. 9, which demonstrate the reversibility of the two-way SME,
and results obtained for the stress-free two-way SME, illustrated in Fig. 10.

5.6. Two-way shape-memory tests

We here show the validation of the model illustrating the two-way shape-memory behavior of the thermal-responsive PCL-PEG
network under applied stress and stress-free conditions. Interested readers can find the detailed protocols adopted in experimental
tests in Inverardi et al. (2022).
14 
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Fig. 7. Crystalline weight content vs. temperature curves for the PCL-PEG weight ratio (a) 2:1, (b) 1:1 and (c) 1:2.

Table 2
Model parameters of the PCL-PEG network adopted in the numerical simulations.

Parameter PCL-PEG 2:1 PCL-PEG 1:1 PCL-PEG 1:2 Units

𝐸′
𝐴 0.017 0.016 0.019 MPa K−1

𝐸𝐶 618.3 879.7 1062.4 MPa
𝛼𝐴 0.53 ⋅ 10−4 1.3 ⋅ 10−4 2.1 ⋅ 10−4 ◦C−1

𝛼𝐶 6.5 ⋅ 10−4 4 ⋅ 10−4 3.35 ⋅ 10−4 ◦C−1

𝛥𝜀𝑡ℎ𝐶 5.5 ⋅ 10−3 5.8 ⋅ 10−4 6.5 ⋅ 10−3 –

5.6.1. Two-way shape-memory behavior under applied stress
For the two-way shape-memory behavior under an applied stress, the specimen is first kept at temperature 𝑇 = 65 ◦C(>𝑇m), and

the deformation is carried out by means of the application of a certain value of engineering (nominal) stress to provide a deformation
of 20%. By keeping the applied stress constant, a shape-memory cycle is then performed under the applied stress by first cooling
the specimen until 𝑇 = −20 ◦C(<𝑇c) at 2 ◦C min−1 and then performing a heating process until the initial temperature. The evolution
of the engineering strain, 𝜀̄ = 𝜆 − 1, as a function of the variation of temperature, is shown in Fig. 8 for the three weight ratio
combinations of PCL and PEG analyzed.

Prediction capabilities of the model for such cases are of undeniable acceptance. In particular, the model is able to well describe
the sequential elongations and contractions during cooling and heating, respectively. Upon cooling, a moderate elongation first
occurs before the crystallization takes place; then, the so-called CIEs begin when passing the crystallization temperature of PCL,
first, and of PEG, after. The inflection points of the curves defining the CIEs for the PCL and the PEG, well catched by the model,
are known as effective crystallization temperatures and are slightly higher than the crystallization temperature, 𝑇c,PCL and 𝑇c,PEG,
measured through DSC tests, due to the presence of the applied stress (Inverardi et al., 2022). Upon heating, thermal contraction
first occurs, followed by the so-called MICs when passing the melting temperature of PEG, first, and of PCL, after. At the end of the
heating step, a complete recovery of the strain is evident. The inflection points of the curves defining the MICs for PCL and PEG
are also well described by the model and are known as effective melting temperatures. They are slightly higher than the melting
temperature, 𝑇m,PCL and 𝑇m,PEG, measured through DSC tests, due to the effect of the heating rate (Inverardi et al., 2022).
15 
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Table 3
Identified model parameters of the PCL-PEG system under investigation.

Parameter PCL-PEG 2:1 PCL-PEG 1:1 PCL-PEG 1:2 Units

𝜁 coolPCL 0.8 0.75 0.9 ◦C−1

𝜁heatPCL 0.75 0.65 0.6 ◦C−1

𝜁 coolPEG 0.95 0.7 0.85 ◦C−1

𝜁heatPEG 0.5 0.5 0.5 ◦C−1

𝜏c,PCL −2.3 −1 −4.7 min
𝜏m,PCL 4.5 5.3 3.9 min
𝜏c,PEG −3.5 −0.5 −4 min
𝜏m,PEG 9.3 10.8 8.9 min
𝛼PCL 2 1.54 4.5 MPa
𝛽PCL 0.63 0.63 0.63 –
𝛾PCL 8 ⋅ 10−3 6.5 ⋅ 10−3 3.5 ⋅ 10−3 MPa−1

𝛼PEG 8 13.2 4.4 MPa
𝛽PEG 0.6 0.58 0.65 –
𝛾PEG 1.9 ⋅ 10−3 0.1 ⋅ 10−3 0.7 ⋅ 10−3 MPa−1

𝜃PCL,𝐶 1.1 0.25 0.55 –
𝜃PCL,𝐴 0.09 0.02 0.05 –
𝜃PEG,𝐶 1 0.24 0.3 –
𝜃PEG,𝐴 0.05 0.04 0.01 –
𝜔PCL,𝐶 6.5 4.9 5.5 ◦C MPa−1

𝛿PCL,𝐶 0.1 0.15 0.16 ◦C MPa−1

𝜑PCL,𝐶 6.5 5 5.5 ◦C MPa−1

𝜔PEG,𝐶 13.5 12.5 13.5 ◦C MPa−1

𝛿PEG,𝐶 0.06 0.07 0.07 ◦C MPa−1

𝜑PEG,𝐶 12.5 4.5 7.5 ◦C MPa−1

Fig. 8. Model validation on engineering strain vs. temperature curves for the PCL-PEG weight ratio (a) 2:1, (b) 1:1 and (c) 1:2 for the two-way SME under
applied stress.
Source: Experimental curves are taken from Inverardi et al. (2022).
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5.6.2. Two-way shape-memory behavior under stress-free conditions
For the two-way shape-memory behavior under stress-free conditions, Figs. 9 and 10 show the variation of the engineering strain,

̄ = 𝜆− 1, as the temperature varies, for the three weight ratio combinations of PCL and PEG analyzed. The specimen is kept above
the melting temperature, 𝑇 = 65 ◦C (>𝑇m), and the application of a certain engineering stress generates a deformation of about
20%. Shape-memory cycles are performed via the application on the deformed specimen of a cooling step up to 𝑇 = −20 ◦C(<𝑇c)
at a velocity of 2 ◦C min−1, while applied stress is kept constant. Here, stress is removed, and a first heating step up to a certain
temperature 𝑇𝑎𝑐 𝑡 is followed by subsequent cooling–heating cycles under stress-free conditions at a cooling and heating rates of
2 ◦C min−1. The deformation is eventually fully recovered during the last heating process until the initial temperature, where the
specimen restores its permanent shape.

Fig. 9 reports the comparison between numerical and experimental curves for tests applying 𝑇𝑎𝑐 𝑡 = 43 ◦C, while Fig. 10 verifies
model capabilities in the case of varying 𝑇𝑎𝑐 𝑡. On the one hand, 𝑇𝑎𝑐 𝑡 was assumed equal to 43 ◦C in Fig. 9 to exploit the (fully melted)
EG phase as actuation domain which cyclically crystallizes and melts under the subsequent stress-free thermal cycles, inducing the
hange in strain. The (fully unmelted) PCL phase provides the internal stress for the subsequent two-way actuation through its
keleton-like domain. On the other hand, in Fig. 10 the different values of 𝑇𝑎𝑐 𝑡 allow us to discuss model performances in correctly

describing the effect of partially melted PEG and PCL phases on the achievable actuation strains under subsequent stress-free thermal
cycles. In detail, for the highest 𝑇𝑎𝑐 𝑡 the two-way mechanism involves the fully melted PEG phase and the melted part of the PCL
phase to act as the actuation domain, whereas the unmelted PCL crystals provide the crystalline skeleton domain. The amount of
the actuation strain thus depends on 𝑇𝑎𝑐 𝑡, since it influences the contents of the melted/unmelted crystals.

The prediction capabilities of the model are reasonably acceptable, especially in view of the complexity of phenomena
characterizing the two-way SME under stress-free conditions, as the actuation strain magnitude and crystallization process onset
and termination (Arricca et al., 2024). Specifically, the model is able to describe the experimental amount of actuation strains
nder stress-free conditions for the different 𝑇𝑎𝑐 𝑡. Also, it is possible to note that the temperatures of the CIEs in the reversible

cycles without load are reasonably predicted for all the material systems. These inflection points are influenced by the generated
internal stress and unmelted crystals.

It is further worth to underline the complex system behavior and material response variability, as well as the difficulties in
the experimental setup and testing. In the latter regard, note the differences between numerical and experimental results for the
weight ratios of 1:1 and 2:1 in Figs. 9(b) and 9(c), and, although less relevant, for the weight ratios of 1:1 and 2:1 in Figs. 10(b)
and 10(c). Consider that model calibration of the strain–temperature behavior occurs by means of the previous case of the two-
way shape-memory behavior under applied stress, therefore the first cooling-heating steps in Figs. 9 and 10 are coincident with
esults reported in Fig. 8. The main reason for the imperfect match between the model and experimental results may be reasonably

attributed to the complex, articulated multi-step experimental setup and testing. Differences can be ascribed to a measurement error
or to the fact that applied deformations are actually obtained by the application of stresses, and the values of stress adopted to obtain
experimental results are not always the same. Another reason underlying such discrepancy may be attributed to the experimental
difficulty in keeping constant the cooling-heating rates, for such complex thermo-mechanical histories, involving several changes
between cooling and heating segments. Further slight discrepancy may derive from the numerical model, where parameters have
been fitted with a trial-and-error procedure, but they could be optimized with an optimization procedure, which nonetheless falls
beyond the scope of the current work.

6. Conclusions

This paper introduces a phenomenological framework, rooted in the finite strain theory of continuum mechanics and based on
 phase transition approach, to describe the thermally-driven one-way and two-way shape-memory behavior of generic multi-phase
emi-crystalline networks.

The description of the material system has allowed the selection of proper phase and control variables. Kinematic specifications
and the constitutive theory have been established following rigorous and consolidated approaches in finite strain mechanics and
lasto-plasticity. Thorough discussions on adopted procedures, restrictions arising from the Hencky and phase transition models,
nd proper insights on the free energy selection and stress definitions to characterize the stress–strain response of the material,

have been provided. At the current state of the art, the complexity of the shape-memory behavior of these systems is far for being
fully and univocally understood and modeled. We therefore believe that the present work, underlying the difficulties arising in SMP
modeling by means of proper investigations and elucidations, opens new perspective for future insights and model developments to
characterize the complex behavior of such innovative smart materials.

The present model is nonetheless accurate in the prediction of the behavior of these materials, as the validation of the
framework against experimental results demonstrates. Results are indeed in agreement with experimental evidences for semi-
crystalline networks exhibiting the one-way and the two-way SME under both stress and stress-free conditions, for strain ranges
of about 40%–45% and temperature ranges between −20 and 65 ◦C.

Most interestingly, the model is completely general and can be easily adapted to various semi-crystalline networks and related
polymers, by specifying the number of phases and by defining the free-energy functions and ad-hoc evolution laws based on
experimental evidences. Accordingly, it furnishes a reliable tool for design purposes of structures and components based on these
materials. Moreover, further developments may be focused on the extension of multi-phase material systems relying on the glass
transition temperatures as switching mechanisms for the shape-memory behavior.
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Fig. 9. Model validation on engineering strain vs. temperature curves for the PCL-PEG weight ratio (a) 2:1, (b) 1:1 and (c) 1:2., demonstrating the reversibility
of the stress-free two-way SME.
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Fig. 10. Model validation on engineering strain vs. temperature curves for the PCL-PEG weight ratio (a) 2:1, (b) 1:1 and (c) 1:2., demonstrating the effect of
the actuation temperature on the stress-free two-way SME.
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