
19 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Analyzing the Reliability of Stream Sparse Matrix-Vector Multiplication Accelerators: A High-Level Approach / Pinto-
Salamanca, María L.; Rodriguez Condia, Josie Esteban; Hidalgo-López, José A.; Perez Holguin, Wilson Javier. -
ELETTRONICO. - (2024), pp. 1-4. (Intervento presentato al convegno 2024 IEEE 25th Latin American Test Symposium
(LATS) tenutosi a Maceio (BRA) nel 09-12 April 2024) [10.1109/lats62223.2024.10534624].

Original

Analyzing the Reliability of Stream Sparse Matrix-Vector Multiplication Accelerators: A High-Level
Approach

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/lats62223.2024.10534624

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2989177 since: 2024-05-31T12:31:58Z

IEEE

Analyzing the Reliability of Stream Sparse
Matrix-Vector Multiplication Accelerators: A

High-Level Approach
Marı́a L. Pinto-Salamanca∗‡, Josie E. Rodriguez Condia†, José A. Hidalgo-López‡, Wilson J. Pérez-Holguı́n∗

∗Universidad Pedagógica y Tecnológica de Colombia (UPTC) - GIRA Research Group
{ marialuisa.pinto, wilson.perez}@uptc.edu.co

†Politecnico di Torino - Department of Control and Computer Engineering (DAUIN)
josie.rodriguez@polito.it

‡ Universidad de Málaga - Departamento de Electrónica
{mlpintos, jahidalgo}@uma.es

Abstract—1 Today, advances in scientific and embedded com-
puting and the incredible proliferation of machine learning
algorithms take advantage of specialized hardware accelerators
to provide exceptional performance and good accuracy. In some
safety-critical applications like autonomous robotics, healthcare,
and automotive, crucial mathematical operations such as con-
volutions are often efficiently mapped in hardware as Matrix-
Vector(MxV) and Matrix-Matrix (MxM) multiplications. More-
over, sophisticated sparsity algorithms aim to improve perfor-
mance and power consumption. Unfortunately, technology scaling
trends may increase the proliferation of faults on hardware
during the in-field operation, so there is a rising interest in the
reliability assessment and analysis of sparsity-based accelerators.
This work evaluates the impact of soft errors (bit-flips) on sparse-
matrix dense-vector multiplication (SpMV) cores for safety-
critical tactile sensing applications by resorting to a High-Level
Synthesis (HLS) strategy. The experiments are performed on an
open-source streaming SpMV core using the Compressed Sparse
Row (CSR) format when processing characteristic medium-size
sparse matrices (100x100 and 494x494). Our results indicate that
data-path pipeline registers in the (SpMV) core are resilient to
transient faults (< 1.3% of observed corruption effects), while
large magnitude errors can be associated with the type of sparse
matrix describing the system (e.g., number of non-zero values)
and the type and features of the input vector sensor.

Index Terms—Sparse Matrix Cores, Stream architecture, Re-
liability Assessment, Transient faults, Tactile sensing.

I. INTRODUCTION

Electronic skin systems (e-Skin) integrate multimodal haptic
capabilities (i.e., sensor arrays and computer vision) that,
in combination with specialized devices, provide human-
computer interaction and drive the operation of specialized
tasks (such as exoskeletons, collaborative robots, surgical as-
sistance robots, and augmented reality) [1]. These systems are
characterized by high data density and high-resolution (orig-
inated by large amounts of tactile sensor arrays), enhanced

1This work has been partially supported by the Spanish Government under
Grant PID2021-1250910B-I00, and by the National Resilience and Recovery
Plan (PNRR) through the National Center for HPC, Big Data and Quantum
Computing.

data processing functions (integrating artificial intelligence
and machine learning), operational performance, power con-
sumption, and complex operating algorithms, mostly operating
under real-time constraints (e.g., <1 ms). Thus, tactile sensing
applications involve sophisticated and specialized hardware to
support its deployment on edge devices combined with robust
high-performance computing systems [2].

In robotics, most physical dynamics of tactile systems are
modeled using large matrices representing the main opera-
tional characteristics of the sensors, actuators, mechanics, and
devices involved in a complete system [3]. To address real-
time data processing, robotic systems use Tactile Controllers
to support the configuration and demanding data processing
of sensing functions. These controllers use specialized hard-
ware platforms (e.g., FPGAs, DSPs, or GPUs) to implement
effective data transmission architectures that focus on matrix
operations, such as General Matrix-Multiply (GEMM) algo-
rithms and efficient compression, which are massively applied
in various domains, including deep neural networks [4]. In this
regard, architectures of sparse matrix multiplication algorithms
can be extensively used (in up to 70% of all operations [5]) to
optimize and speed up the processing time while efficiently
using the hardware resources. The challenges they involve
explain the growing interest of the scientific community in
evaluating the reliability of the hardware underlying smart
tactile sensing to identify vulnerabilities and support design
improvements in this field.

In the literature, several works identified reliability threats
and challenges in implementing tactile and e-Skin systems.
In [6], the authors analyzed security issues in surgical robots
and showed that corruption in communications could crash
the system. Their results show that software vulnerabilities
are real and could stop critical operations. Unfortunately, the
analysis was limited to the operative system’s vulnerabilities in
robots, neglecting their underlying processing hardware. In [7],
the authors highlighted the need for reliable and robust robot
ecosystems focusing on the interaction among subsystems. On
the hardware side, some works [8], [9] focused on analyzing979-8-3503-6555-9/24/$31.00 ©2024 IEEE

and detecting fault effects on accelerators performing matrix
operations showed several vulnerabilities in the underlying
architecture. Unfortunately, to the best of our knowledge, most
works neglected analyzing the effects of failures in data flow
architectures on the operation of this class of systems.

In this work, for the first time, we analyze and evaluate
the vulnerability to transient faults in sparse matrix hardware
accelerators when implementing force estimation in safety-
critical tactile sensing applications. We employ a high-level
approach based on High-Level Synthesis (HLS) to balance
evaluation performance and error impact accuracy efficiently
[10]. In particular, we include one fault injection infrastructure
to accelerate hardware evaluation while providing appropriate
accuracy.

For the experiments, we use an open-source sparse matrix-
vector accelerator (SpMV) implementing a Modified Com-
pressed Sparse Row (MCSR) algorithm on a streaming
dataflow engine [11]. The evaluation focused on corrupting
the most significant bits of the core through transient faults
(bit-flips) when running four representative tests for industrial
robots. Our results show that pipeline registers are remarkably
resilient to transient faults, with less than 1.3% of the corrup-
tion effects observed. However, we note that large-magnitude
errors might arise in the application’s output due to the amount
of non-zero values on the characteristic sparse matrix and
the type of input vector (sensor) representing force estimation
effects.

II. SPARSE MATRIX MULTIPLICATION ON MODERN
ARCHITECTURES

Matrix-Vector (MxV) and Matrix-Matrix (MxM) multiplica-
tion are fundamental primitives to support the implementation
of optimized algorithms in several scientific domains. Efficient
matrix algebraic operations are developed considering mixed
density and sparse optimizations (mostly zeros) to reduce the
overall amount of operations (i.e., neglecting multiplications
with operands equal or near zero). In particular, sparse-matrix
dense-vector SpMV operations are defined as y = Ax, with
a sparse matrix(A) and a dense vector (x). Due to the sparse
nature of A, the multiplication can be efficiently compressed
using coding and data-compression strategies that only store
the non-zero values of A and their location indices in the
matrix. Those coding and data-compression strategies include
the Compressed Sparse Row (CSR) and Compressed Spare
Column (CSC), which only store the row-column and column-
row indices of non-zero values in A, respectively.

The sparse algorithms are efficiently adapted and deployed
on most hardware architectures, including streaming data flow
and cascade, sparse TCU-cores, GPUs, vector accelerators
(e.g., IPUs), and multi-threading processors. Custom streaming
data flow and cascade architectures in online systems are
crucial due to the minimal execution latency. These stream-
ing architectures comprise high-bandwidth memories, one or
more fast input memory buffers, one or several execution
kernels/processing elements ’PEs’ (e.g., Multiply and Add or

v

R

C

x

MULT

ADD ACC

ACCADD

MULT

COLUMN

CONTROLLER

M
U

X

y

SpMV Accelerator

Read Compute WritePipelined Stream Computing

ROW

CONTROLLER

Fig. 1. General scheme of the proposed SpMV Accelerator.

MAC cores) organized in parallel on in cascade (i.e., pipeline)
to process large amounts of data efficiently.

III. A HIGH-LEVEL APPROACH TO ASSESS THE
RELIABILITY OF SPARSE MATRIX-VECTOR CORES

Our approach exploits an HLS abstraction to include hard-
ware infrastructures and evaluate soft errors during the core
execution, as from the below three steps:

A. SpMV Characterization

This step characterizes the structures of a SpMV accelerator
by identifying its functional operations and determining their
pipeline registers in its execution path. The accelerator is
based on a Streaming Dataflow Engine [11] and described
in HLS that suppress its internal structural details, so we
resort to its RTL description (after synthesis) to characterize
its internal units (see Figure 1). The streaming core processes
and passes an input data stream (from a sensor array) to the
x. Moreover, one constant sparse matrix A (modeling the
system) is compressed using an MCSR format and stored
in three vectors: v, C, and R that contain the non-zero
values (Nnz), the positions of the columns for Nnz of A
(i.e., the x-components to be multiplied), and the number of
multiplications per each row in A (MPR), respectively. Vector
R also controls the number of readings of v and C.

B. Fault injection infrastructure

This step instruments the SpMV accelerator with a generic
hardware fault injector structure (saboteur) targeting the
pipeline registers of the kernel core in SpMV. We use an HLS
description to dynamically place the Saboteur that corrupts
the values before each register by mutating an input value to
build the fault effect (i.e., permanent or transient). Figure 2
illustrates the general scheme of the saboteur-based (SB) fault
injector. This structure can be dynamically included in the
SpMV accelerator to address any possible sub-structure (e.g.,
output registers in the multipliers). In particular. the proposed
SB allows the fine-grain control of a corrupting bit (k-th) inside
a targeted register. Moreover, for transient faults (bit-flips),

S Exponent Mantissa

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 … 0

Multiplier Output

Sabotaged

1 2 3 … Nnz

MULT

Multiplier output

M
U

X

ADD
Bit

identification

control
k-th bit: 31-16

ENId bit

SB: Saboteur block
Fault

Model

Bit

identifier

Bit flip

control

Fault

Selector

Multiplier

identification

control
j-th Mult: 1-Nnz

ON/OFF

Multiplier

identifier

Fig. 2. A general scheme of the proposed fault injection infrastructure.

one identification control module enables the corruption on a
specific operative cycle (j-th) of the SpMV accelerator.

C. Fault Evaluation and Error Classification

We evaluate the impact of transient faults through fault
injection campaigns on the streaming execution of the SpMV
core to typical industrial robot workloads. Each workload
is evaluated considering several x input vectors representing
online information from tactile sensor arrays to simulate non-
continuous contacts (xnc) and continuous contact (xc) in
which an incremental normal force is exerted. It is worth
noting that each fault injection only generates a transient fault.

The impact on the result of the workloads from faults in the
accelerator is classified as Silent Data Corruption (SDC) when
the output values are corrupted, and a mismatch concerning
the reference value is observed. Similarly, fault effects are
classified as Detected Unrecoverable Error (DUEs) when the
operation of the spare matrix core crashes, stops, or a Not-
a-Number (NaN) condition is triggered. Finally, a fault effect
is classified as Masked when the output values do not present
any corruption effects concerning the reference operation.

IV. EXPERIMENTAL RESULTS

Our experimental setup for the SpMV accelerator was
configured to use single-precision (32-bit) floating-point data
and input buffers of 100 or 494 elements, corresponding to
two matrix-vector configurations (100×100 or 494×494). We
include a fault injection infrastructure (saboteur) that only
evaluates the most significant part (16 bits) of the pipeline
registers on the multiplier outputs in the SpMV accelerator’s
MAC since fault effects on the less significant part mainly
produce error effects near zero.

We employ six input vectors representing the non-
continuous input force contact events (xnc) and continuous
(and rising force) contact (xc) sensors scenarios. In the first
scenario (x = xnc), five vectors comprise random values
ranging from 0.0 to 1.0, while in the second, one vector
(x = xc) swaps from 0.0 to the size of matrix A. More

TABLE I
CHARACTERISTICS OF THE SPARSE MATRIX BENCHMARKS.

Benchmark Size Nnz TN
A1 100 ×100 708 11,328
A2 100 ×100 2,419 38,704
A3 494 ×494 1,666 26,656
A4 494 ×494 6,744 107,904

0 50 100
xi-th row

0

50

100

y j-t
h
 c

ol
um

n

A1, Nnz = 708

0 50 100
xi-th row

0

50

100

y j-t
h
 c

ol
um

n

A2, Nnz = 2419

0 200 400
xi-th row

0

100

200

300

400

y j-t
h
 c

ol
um

n

A3, Nnz = 1666

0 200 400
xi-th row

0

100

200

300

400

y j-t
h
 c

ol
um

n

A4, Nnz = 6744

Fig. 3. Shape of the evaluated Sparse Matrix Benchmarks.

in detail, we use four typical industrial robots sparse matrix
(A) benchmarks (depicted in Figure 3) from the Sparse
Matrix Collection suite [12], see Table I. Since the sparse
compression mechanism eliminates all operations with zero
values, the number of non-zero (Nnz) elements is related
to the number of evaluated faults per benchmark (TN). We
applied 24 fault injection campaigns to evaluate the impact
of 184,592 transient faults (bit-flips) corrupting the pipeline
registers. Each evaluation considers one fault injected at a
random time. All experiments were performed on the VitisTM

HLS 2022 framework on a system with an Intel Dual-Core
i7-4600U CPU at 2.10GHz and 8GB of RAM.

To determine the overall cost in hardware resources of the
SB structure in the SpMV accelerator, we identify the number
of logical elements after synthesis in a Zynq UltraScale+
MPSoC ZCU102 (xczu9eg-ffvb1156-2-e) FPGA. Particularly,
the MULT, ADD, and ACC units are mapped using the DSP
slices on the FPGA device. Our analysis shows that the SB in-
frastructure increases the hardware overhead by approximately
20% and 32% of the FF and LUT used, respectively, while
the number of BRAM and DSP slices remains the same in
both cases. Likewise, we determine the structural impact of
transient faults in the SpMV accelerator by determining the
fault rate for each benchmark.

Figure 4 depicts the fault rate as SDCs, DUEs, and masked
effects, showing that transient faults in the data path of
the accelerator can hardly corrupt operations and produce
mismatches on the outputs (1.3% of SDCs), regardless of the
size of A and the x input scenario. Moreover, faults do not
caused NaN exceptions or hanging effects (i.e., DUEs) due

98

98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

99.8

100

M
as

ke
d

F
au

lt
ra

te
 [%

]

A1 A2 A3 A4
0

0.2

0.4

0.6

0.8

1

1.2

1.4
S

D
C

 F
au

lt
ra

te
 [%

]

SDC Masked

Fig. 4. Fault rate for the analyzed benchmarks.

to the operative ranges of the characteristic matrix (A) and
each tactile contact model (x) in the application. The masking
effects in our results (around 99.7% for all operative scenarios)
indicate that streaming sparse matrix-vector cores are resilient
to most transient faults arising in data-path registers, partic-
ularly in data-flow operations of force estimation for tactile
sensing.

Analyzing the sparse matrix benchmarks, we observe that
the A1 matrix is up to three times more vulnerable to cor-
ruption due to transient failures (around 1.3%) than other
sparse benchmarks analyzed (from around 0.4% to 0 .55%),
which may be due to a smaller variation in the number of
multiplications per row and a smaller Nnz/Asize ratio.

An analysis of the SDC errors suggests a relation between
the sparse matrix type and the generation of large magni-
tude impacts (∼ 3.4 × 1038) for both operational sensor
scenarios (non-continuous xnc and continuous xc). The results
of maximum relative error (see Figure 5) for each output
(y), on the evaluated sparse matrix when considering both
sensor scenarios (xnc and xc), and the number of corrupted
multiplications per each row in A (MPR), show that non-
continuous xnc sensing inputs are prone to produce large-
magnitude error effects on most output elements. In contrast,
xc continuous contact inputs slightly reduce the maximum
error effects, which is consistent for all analyzed matrices.

V. CONCLUSIONS AND FUTURE WORK

This work evaluated and characterized the vulnerability of
pipeline registers in streaming sparse matrix multiplication
cores to transient faults when performing tactile operations
in critical robotic applications. We take advantage of a high-
level synthesis approach to place saboteur-based fault injectors
devoted to speeding up the system evaluation.

The results show that the pipeline logs are highly resilient to
transient failures by up to 99.8%. In the same way, our results
suggest that large-magnitude errors in tactile applications arise
as a relation between the number of non-zero elements in
the sparse matrix and the input sensor type. Continuous force
sensors are more vulnerable to faults and prone to application
corruption than non-continuous sensors.

We plan to extend our analysis to other architectures and
propose hardening mechanisms by combining high-level syn-
thesis with fine-grain verification techniques.

0 10 20 30 40 50 60 70 80 90 100

i-th position of y(i)

100

1020

1040

M
ax

. R
el

at
iv

e
E

rr
or

0

20

40

60

M
P

R

A1

0 10 20 30 40 50 60 70 80 90 100

i-th position of y(i)

100

1050

M
ax

. R
el

at
iv

e
E

rr
or

0

50

100

M
P

R

A2

xrandom

x6

MULT/row

0 50 100 150 200 250 300 350 400 450 500

i-th position of y(i)

1020

1030

1040

M
ax

. R
el

at
iv

e
E

rr
or

0

5

10

15

M
P

R

A3

0 50 100 150 200 250 300 350 400 450 500

i-th position of y(i)

1020

1030

1040

M
ax

. R
el

at
iv

e
E

rr
or

0

20

40

60

80

M
P

R

A4

x
nc

 scenario x
c
 scenario MPR: MULT/row

Fig. 5. Maximum relative error and occurrences of corrupted operations per
evaluated benchmark.

REFERENCES

[1] R. Dahiya et al., “Large-area soft e-skin: The challenges beyond sensor
designs,” Proc. of the IEEE, vol. 107, no. 10, pp. 2016–2033, 2019.

[2] P. Roberts et al., “Soft tactile sensing skins for robotics,” Current
Robotics Reports, vol. 2, pp. 343–354, 2021.

[3] S. M. Neuman et al., “Roboshape: Using topology patterns to scalably
and flexibly deploy accelerators across robots,” in Proc. of the 50th
Annu. Int. Symp. on Computer Architecture (ISCA 23), 2023.

[4] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[5] M. L. Pinto-Salamanca et al., “An estimation of triaxial forces from
normal stress tactile sensor arrays,” Mechatronics, vol. 96, p. 103070,
2023.

[6] K. Chung et al., “Smart malware that uses leaked control data of robotic
applications: The case of Raven-II surgical robots,” in Int. Symp. on
Research in Attacks, Intrusions and Defenses (RAID), 2019, pp. 337–
351.

[7] M. Dohler, “The tactile internet iot, 5g and cloud on steroids,” in
5G Radio Technology Seminar. Exploring Technical Challenges in the
Emerging 5G Ecosystem, 2015, pp. 1–16.

[8] W. Lin et al., “Resource-aware online permanent fault detection mecha-
nism for streaming convolution engine in edge ai accelerators,” in IEEE
Int. Conf. On Artificial Intelligence Testing (AITest), 2023, pp. 132–137.

[9] P. M. Basso et al., “Impact of tensor cores and mixed precision on the
reliability of matrix multiplication in gpus,” IEEE Trans. Nucl. Sci.,
vol. 67, no. 7, pp. 1560–1565, 2020.

[10] A. Orailoglu and R. Karri, “A design methodology for the high-
level synthesis of fault-tolerant asics,” in Workshop on VLSI Signal
Processing, 1992, pp. 417–426.

[11] M. Hosseinabady and J. L. Nunez-Yanez, “A streaming dataflow engine
for sparse matrix-vector multiplication using high-level synthesis,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 39, no. 6, pp.
1272–1285, 2020.

[12] S. P. Kolodziej et al., “The suitesparse matrix collection website inter-
face,” J. Open Source Softw., vol. 4, no. 35, p. 1244, 2019.

	Introduction
	Sparse Matrix Multiplication on Modern Architectures
	A High-level Approach to Assess the Reliability of Sparse Matrix-Vector Cores
	SpMV Characterization
	Fault injection infrastructure
	Fault Evaluation and Error Classification

	Experimental Results
	Conclusions and Future Work
	References

