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Abstract

Most of the well-known food emulsions, such as mayonnaise, are made of a continu-
ous water phase, a dispersed phase with high oil content, and surfactants that stabilize
the oil drops. The Droplet Size Distribution (DSD) is the most important property of
the emulsion since the structure, stability, taste, and color of the final product depend
on the DSD. The DSD in turn depends on the emulsion composition, the type of
process, and the operating conditions in which the production process operates. The
production of emulsions is based on mixing the ingredients and applying enough
mechanical energy to the emulsion to reach the desired DSD. During the emulsifi-
cation process, the interfacial properties between dispersed and continuous phases
play an essential role in the formation and stabilization of the oil droplets. Many
food emulsions are stabilized by surface-active biopolymers that adsorb to droplet
surfaces and form protective coatings. Some of these functional molecules are inte-
gral components of more complex ingredients used in food products (e.g., egg yolk).
Although the egg yolk is recognized as one of the most widely employed emulsifiers
for both industrial and home-made food emulsion preparation, many issues need
to be addressed, especially the adsorption mechanism of egg yolk proteins at the
oil-water interface and their emulsifier behavior. Experimental research concerning
the emulsifying properties of egg yolk proteins has been hindered by the difficulties
in extracting individual components from the complex matrix. Hence, within the mul-
tiscale framework, different time- and space- scales were investigated to describe the
modeling approach from the molecular scale (oil-water interface) to the macro-scale
(production device). The oil-water interfacial system, where the emulsifier is one of
the most surface-active proteins from the egg yolk, so-called Apovitellenin I, was
investigated using different molecular modeling techniques. The protein adsorption
behavior at the interface and the interactions with other co-surfactants were described
with the help of an atomistic model and statistical analysis. Then, a coarse-grained
model based on the Dissipative Particle Dynamics (DPD) was employed to consider



vii

both the complex composition of the emulsion and the equilibration time required by
macro-molecules to re-arrange at interfaces. Therefore, by combining the molecular
methods with a thermodynamic model of protein adsorption, a complete description
of the interfacial system stabilized by protein surfactants was achieved. The approach
employed eventually showed how these techniques can be linked together to predict
equilibrium properties that are difficult to obtain experimentally for the system inves-
tigated. In addition, a scaling scheme for DPD simulations was applied to oil-water
interfacial systems to study different coarse-graining levels, highlighting the advan-
tages and limits of the proposed method for conserving the equilibrium properties of
such systems. Another modeling method was also investigated, namely the Lattice
Boltzmann Model (LBM). Although both DPD and LBM are successfully employed
in modeling mesoscopic systems, they are conceptually different. Therefore, the
two techniques were compared when dealing with immiscible fluids in presence of
surfactants, with the aim of finding a possible link between the molecular and the
continuum modeling approaches. Finally, at the macroscale level of description of
the production device, Computational Fluid Dynamics (CFD) simulations were em-
ployed to properly describe the non-Newtonian dynamics of the emulsion and clarify
the influence of the type of flow on the DSD, namely pure shear versus elongational.
To describe the evolution of the DSD, the Population Balance Modeling (PBM) was
employed, in which coalescence and breakage of oil droplets were taken into account
by appropriate kernels, which depend on local flow conditions.
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Chapter 1

Introduction

In the food field, emulsions are frequently used and one of the most known is
mayonnaise. Emulsions are formed starting from two or more immiscible fluids,
usually, water and oil. In the case of mayonnaise, small oil droplets have been
dispersed into a continuous water phase due to vigorous agitation [8]. Food emulsions
are typically thermodynamically unstable and they are included in the class of
macroemulsions, because they are characterized by a dimension of the oil droplets
among 0.2÷50 µm [9, 10]. Due to the instability, after the emulsion is formed,
the microdroplets of oil begin to approach each other until they come together by
coalescence to form a larger droplet. When a drop is large enough, it separates from
the aqueous phase and emerges at the surface. This occurs until a phase separation
is reached [11]. The speed of this process can be influenced by several physical-
chemical factors such as the type of the two fluids, droplet dimension, presence
of molecules that could prevent phase separation, or the method of mixing [8]. In
the case of more stable emulsions, called microemulsions, the size of the droplets,
among 10÷100 nm, is as small as to prevent coalescence [9].

Many food emulsions are stabilized by surface-active biopolymers that adsorb
on the droplet surface and form protective coatings [12]. Some of these functional
molecules are integral components of more complex food ingredients used in food
products (e.g., egg yolk, milk, and flour) [12, 13]. Although the egg yolk is rec-
ognized as one of the most widely employed emulsifiers for both industrial and
home-made food emulsion preparation [12], many issues need to be addressed, es-
pecially the adsorption mechanism of egg yolk proteins at the oil-water interface
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and their emulsifier behavior [1]. Indeed, the egg yolk is a complex system with
different structural levels consisting of non-soluble protein aggregates (granules) in
suspension in a clear yellow fluid (plasma) that contains low-density lipoproteins
(LDLs) and soluble proteins [1]. Experimental research concerning the emulsifying
properties of egg yolk proteins has been hindered by the difficulties in extracting
individual components from the complex matrix, therefore, they are less amenable
to a detailed study by being less readily available in the pure form [14–16].

The mayonnaise is composed of mixing egg yolk, oil, water, salt, vinegar, and
lemon juice [6, 7]. The two immiscible phases are oil and water, while vinegar
and lemon juice are added to give flavor to mayonnaise and reduce the pH, which
improves the stability of emulsions [17]. Egg yolk is the key ingredient as it contains
biomolecules that can act as surfactants at the water-oil interface: phospholipids
and surfactant proteins [8]. These molecules consist of a polar and apolar part
which can interact with the water and oil phase, respectively; so these molecules
position themselves at the interface and limit droplet coalescence that would lead
to phase separation [18]. Among proteins of the egg yolk, one of the most surface
active having the greatest emulsifying properties is the so-called Apovitellenin I
[19, 20]. This is a homo-dimer of 82 amino acids per chain (approx 9 kDa), linked
by a disulfide bond between the only two cysteines that are present in the structure
[19, 20]. There is little information concerning this protein because it is unstable
in water and it is difficult to isolate it [21]. In fact, its spatial conformation has not
been experimentally determined yet. In the egg yolk, Apovitellenin I is found in the
LDLs with other proteins, phospholipids, triglycerides, and cholesterol. When the
LDLs reach the water-oil interface, they break and release the surfactant molecules.
Therefore, proteins and phospholipids are free to diffuse at the interface, leading to a
decrease in the interfacial tension stabilizing the emulsion (Figure 1.1) [1, 22].

During the emulsification process, the interfacial properties between dispersed
and continuous phases of food emulsions play an essential role in the formation
and stabilization of the oil droplets [12, 13]. Therefore, it is important to have
a fundamental understanding of the factors that influence the type, concentration,
interactions, and arrangement of surface-active molecules at interfaces [12, 13].
Computer modeling techniques can greatly enhance the comprehension of the way
the molecules organize themselves in a liquid [23–26]. Molecular simulations can
provide valuable insight into the relationship between molecular properties and
structural organization that are relevant for a better understanding of the behavior
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Fig. 1.1 Schematic representation of the adsorption mechanism of LDL extracted from hen
egg yolk (image taken from Ref. [1]).

of food emulsions, including the miscibility/immiscibility of liquids, the formation
of surfactant micelles, the adsorption and displacement of emulsifiers at interfaces,
the transport of nonpolar molecules through aqueous phases, the conformation and
flexibility of biopolymers in solution, polymer interactions, and the formation of
gels [27–36].

In order to study the protein behavior at the interface, Molecular Dynamics
(MD) simulations have been largely employed. This technique is widely used
to study events that cannot be observed experimentally [37]. The first step in
a molecular simulation is to define the characteristics of the molecules involved
(e.g., size, shape, flexibility, and polarity) and the nature of the intermolecular pair
potentials that act between them, making a number of simplifying assumptions as a
compromise between the model reliability and a reasonable computational time [38].
A collection of these molecules is arbitrarily distributed within a box that represents
a certain region of space, and the change in the conformation and/or organization
of the molecules is then monitored as they are allowed to interact with each other.
Depending on the simulation technique used, one can obtain information about the
evolution of the structure with time and/or about the equilibrium structure of the
molecular ensemble. The most commonly used computer simulation techniques
in this context are the Monte Carlo approach and Molecular Dynamics. In these
models the involved molecules can be described with all their atomistic details or
some of them can be coarse-grained, as in Dissipative Particle Dynamics (DPD)
[31, 39–43]. Many molecular modeling studies of food structures were carried out
employing the aforementioned approaches [31]. The adsorption of flexible proteins
(β -casein [44] and a proteinlike heteropolymer [45]) at an oil-water interface was
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studied by means of Monte Carlo simulations. On the other hand, the majority of
MD studies on protein adsorption at fluid interfaces have been on globular proteins
using both all-atom and coarse-grained models, with few studies on unstructured
intrinsically disordered proteins [46–53]. Another molecular modeling technique
is the so-called Metadynamics (MetaD) which is based on the MD but has the
advantage of performing a probabilistic study to explore rare or transitional events
[54].

Few works have been carried out on protein models via a coarse-grained tech-
nique, although this approach allows the simulation of large systems over relatively
long-time scales with respect to full-atomistic studies [41, 42, 55]. Dissipative
Particle Dynamics (DPD) uses simplified soft potentials and coarse-grained repre-
sentations of modeled structures [40–42]. In contrast to MD, in DPD systems the
intended physical properties are determined by means of parameter calibration. One
of the most popular methods of calibration is based on mapping onto Flory–Huggins
theory [42]. Another approach is to couple DPD with MD simulations to calibrate
models by matching the structural data from the atomistic simulations [56–58].
Previous DPD studies investigated the adsorption of semi-flexible rod-like objects
[59], conformation changes [60] or the folding of small proteins [61]. However, all
computer molecular techniques have been successfully employed in the modeling of
interfacial systems and in the calculation of the surface tension when an amphiphilic
non-protein molecule acts as a surfactant [62–65]. Moreover, DPD is well-suited
for modeling multi-component systems such as emulsions, and it has been used in a
number of studies to look at the effect of adsorbed molecules on the stability of oil
or water droplets in emulsions [31, 66–68]. These have mainly been carried out on
hydrocarbon oil emulsions with synthetic copolymers as the adsorbing molecules,
but the methodology and the general results are relevant also for food emulsions.

The adsorption mechanism of proteins at fluid interfaces is significantly different
from that of common surfactants, such as non-ionic single-chained amphiphilic
molecules with a hydrophilic head and a hydrophobic tail [69–76]. In particular,
a common feature of all protein surfactants is the typical S-shaped trend of the
surface pressure at increasing protein surface concentration [71–73]. Among other
purposes, the thermodynamic model of protein adsorption was successfully employed
to evaluate the protein adsorption energy at fluid interfaces from experimental data
[69, 74].
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Among molecular techniques, Dissipative Particle Dynamics (DPD) is a well-
established method for simulating soft matter systems at the mesoscale level of
description [40–42]. DPD is a coarse-graining technique designed for modeling
various fluid systems. For example, this method has been used to simulate particulate
suspensions [77–79], microfluidic systems [80], polymer solutions [81, 82], and
interfacial systems [62–65, 83–85]. These last systems have been largely investigated
by means of DPD due to its remarkable applications to industrial cases, such as
for food engineering research [31, 66–68, 83]. Indeed, DPD has been successfully
employed to analyze both static (most notably phase diagrams and interfacial tension
calculations) [62, 82, 83, 86] and dynamic properties (such as transport processes)
[43], even with amphiphilic and protein molecules acting as surfactants [62–65, 83,
84].

Initially, DPD was developed to be a truly mesoscopic method, in which both
hydrodynamics and thermal fluctuations have a role. In fact, it was considered
capable to bridge the whole gap between the atomistic scale, which is accessible by
Molecular Dynamics (MD) simulations, and the macroscopic scale, investigated by
the continuum modeling approach [42]. Recent works have seen this ambition of
DPD being deeply discussed and developed [87]. It was shown that by using a top-
bottom approach, i.e., starting from continuum description going to the mesoscale, it
is possible to obtain a thermo-fluid dynamic consistent method, which includes both
hydrodynamics and thermal fluctuations at lower scales. This method is referred
to as Smoothed Dissipative Particle Dynamics (SDPD) [88, 89] since it combines
Smoothed Particle Hydrodynamics (SPH) and DPD in a way that respects the
fluctuation-dissipation theorem through the so-called GENERIC formalism [88, 89].
The main features of this method are the prescription of bead volume and transport
properties, which are now input parameters of the simulation, rather than undefined
or output values as in classical DPD. Moreover, a lot of effort has been put into
addressing many issues of classical DPD, like the resulting unrealistic Equation of
State with Many-Body Dissipative Particle Dynamics (MDPD) [90], the influence of
temperature with Energy-Conserving Dissipative Particle Dynamics (EDPD) [91],
and the lack of all possible friction forces between beads with Fluid Particle Method
[92]. Speaking instead of the bottom-up approach to mesoscale, the theoretical
framework to link the atomistic description and DPD has been recently established
through the Mori-Zwanzig projection theory (MZ-DPD), which works very well
for bonded atoms-molecules but not so well for unbonded interactions, which are
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very important in fluid systems to describe transport phenomena like diffusion
[87]. Mainly due to this reason, together with the complexity of the newer DPD
methods, classical DPD is still used nowadays by the scientific community, as it is a
simpler and computationally cheaper method compared to more rigorous ones, with
the caveat that all the parameters must be tuned every time a new system and the
corresponding properties of interest are investigated.

In classical DPD the governing equations are usually expressed in reduced units,
which means that the same equations represent a whole family of physical systems
[42]. In the works Refs. [93, 94], Füchslin et al. and Arienti et al. showed that
physical properties such as the mass density and the compressibility of a system
can be invariant with respect to a specific choice for model parameters, that one can
associate to the level of coarse-graining. In the work Ref. [95], it is applied a similar
reasoning also for the viscosity and the Schmidt number.

When applying the appropriate scaling procedure, it was established that a single
set of parameters expressed in reduced units represents systems at arbitrary length
scales [92–94], even for bonded interactions [96, 97]. Such scale independence
reported for bulk fluid interactions can hold because the energy associated with an
individual particle is made proportional to the number of molecules it represents [93].
On the other hand, surface-dependent interaction parameters may be expected to vary
with the level of coarse-graining. In fact, assuming a system that exhibits domain
formation, it is physically plausible that those interaction parameters effectively
shrink with an increase in the level of coarse-graining. However, if a DPD calculation
can be performed at a small scale, then calculations at larger scales will also be
feasible, at least with respect to the scaling of parameters [93].

At intermediate (mesoscopic) length scales, another approach can be used to
describe fluid properties, and it utilizes the Lattice-Boltzmann equation [98]. This
equation can be thought of as a reduced form of the Boltzmann equation, where the
motion of the particles is discretized so that they are confined to a lattice and are
only able to move in a limited number of possible directions, thus restricting the
number of degrees of freedom. Since the particles are represented as probability
distribution functions, the individual lattice points should not be thought of as being
populated by individual particles, but by distributions of particles. Therefore, the
Lattice-Boltzmann model (LBM) describes the fluid as being composed of particles
that move according to two terms, one of which describes the streaming (movement)
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of particles and the second takes account of the changes to the probability distribution
function that occur when particles collide. The LBM is in effect a way of solving the
Navier–Stokes equation in a simplified fashion. Since the LBM considers particles,
it is suitable for studying multi-component systems such as oil-water-surfactant ones
where interfacial effects are critical [31]. It is in this particular area of multiphase flow
and structural properties that LBM is likely to be of particular use in the modeling
of food systems. Indeed, LBM has been applied to emulsion systems that have
relevance to food. It was used to investigate the transition from a bijel (bicontinuous
interfacially jammed emulsion gel) to a Pickering stabilized emulsion, by varying
the particle concentration, contact angle, and the ratio of the oil and aqueous phases
[99].

The phase field model has been implemented in the LBM framework [100–
102]. This method can resolve the interface structure via an appropriate free en-
ergy functional, showing great potential to simulate the multiphase flow problems
[100, 103, 104]. In the phase field model, the free energy not only determines the
equilibrium properties but also strongly influences the dynamics of the multiphase
system. Moreover, this model has shown promising results for the computation of
binary mixture with surfactants [100–102, 105]. Although both DPD and LBM have
been successfully employed in modeling mesoscopic systems, they are conceptually
different. Therefore, a comparison between a generalized phase-field model in the
LBM framework and DPD can provide valuable insight for simulating realistic
oil-water-surfactant systems.

Mayonnaise, the food emulsion investigated in this work, is made of a continuous
aqueous phase and a dispersed phase with high content of oil. The stability of the
dispersion is provided by molecules present in the egg yolk that act as surfactants and
accumulate at the oil-water interface preventing the coalescence of the oil droplets
[6, 7, 12, 13, 106]. The droplet size distribution (DSD) is the most important property
of the emulsion since the structure, stability, taste, and color of the final product
depend on the DSD [6, 7, 12, 13, 106]. The DSD in turn depends on the emulsion
composition, the type of process, and the operating conditions under which the
production process operates [107]. In general, the production of emulsions is based
on mixing the ingredients and applying suitable mechanical energy to the emulsion
for promoting droplet formation and breakage, in order to reach the desired DSD.
A typical mixing process is composed of two steps: first, the ingredients (mainly
egg yolk, vinegar, oil, water, and salt) are mixed together in large stirred vessels at
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moderate rotational speed; then, this premixed emulsion is fluxed into a high-shear
device [6, 7]. Several high-shear devices are used in the process industry [108–110],
and for emulsions, a popular option is the cone mill mixer, where the oil droplets
undergo breakage until the final DSD is reached [6, 7, 106]. This last step is crucial
to fine-tune the DSD, in order to determine the properties of the final product.

A typical cone mill mixer is constituted of a solid conical frustum rotor inside a
slightly larger stator of the same shape, forming a small gap in which the emulsion
flows and experiences high shear stresses, due to the high rotational speed of the
rotor. The emulsion, before transiting through the high-shear region, flows into a
pre-mixing chamber, followed by a post-mixing chamber [6, 7].

Over time several attempts to model the DSD of mayonnaise have been made
[6, 7, 106, 111, 112], but there are still many issues that need to be completely
understood. For example, in the range of shear stresses developed inside the cone
mill, highly concentrated emulsions show non-Newtonian dynamics, depending
on both the oil content and the DSD, that need to be accounted for [6, 113]. In
addition, when processing very viscous liquids the cone mill operates in the laminar
regime; however, a simple Poiseuille-Couette flow field can undergo a transition to
the Taylor-Couette regime above a critical operating condition [114–118], where
counter-rotating toroidal vortices (also known as Taylor vortices) appear. Since
the transition to Taylor vortices depends strongly on the geometry of the system
[114] and the contribution of the axial flow component that has a stabilizing effect
on the formation of these instabilities [119], a detailed flow field analysis must be
carried out in order to predict the occurrence of these peculiar flow patterns. Previous
modeling efforts focused on the high-shear zone in the cone mill [6, 7, 106], while
the role of the pre- and post-mixing zones, before and after the high-shear region,
was not investigated in details. Moreover, the influence of the local type of flow on
drop breakage, namely pure-shear versus elongational, is not completely clear.

1.1 Aim and structure of the thesis

Within the multiscale framework, different time- and space- scales are here in-
vestigated to describe the modeling approach from the molecular scale (oil-water
interface) to the macro-scale (production device), as shown in Figure 1.2. As already
mentioned, several physical-chemical aspects are involved in the food emulsion
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Fig. 1.2 Schematic representation of the different scales investigated in this work.

production process. Each of them can be studied by means of a specific modeling
technique based on the scale investigated. Therefore, in this work, we aim to develop
a computational model to simulate the production process with a multiscale approach
in order to achieve a general and complete description of a food emulsion.

According to the multiscale nature of this work, each chapter of the thesis is
dedicated to a particular scale. Hence, the scope, methods, and aspects investigated
at each scale are summarized in the following.

Chapter 2 focuses on assessing the emulsifying properties of one of the most
surface-active egg yolk proteins, the so-called Apovitellenin I, and any poten-
tial cooperative or competitive behavior in presence of co-surfactants (phos-
pholipids). To do so, molecular simulations were carried out in a liquid-liquid
interfacial system, consisting of water and soybean oil, with varying concen-
trations of phospholipids and for different spatial configurations. To evaluate
the conformational stability of the protein at the water-oil interface, the Gibbs
free energy was computed from metadynamics simulations as a function of
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the distance from the interface and of the radius of gyration. Moreover, a
detailed analysis was also performed to determine which peptide residues were
responsible for the protein adsorption at the oil-water interface, as well as the
lowering of the surface tension.

Chapter 3 presents a molecular model of an oil/water interfacial system where the
emulsifier is the egg yolk protein Apovitellenin I. Dissipative Particle Dynam-
ics (DPD) was here adopted in order to simulate large systems over long time
scales when compared with full-atom molecular dynamics (MD). Instead of
a manual assignment of the DPD simulation parameters, a fully-automated
coarse-graining procedure was employed. The molecular interactions used
in the DPD system were determined by means of a parameter calibration
based on matching structural data from atomistic Molecular Dynamics (MD)
simulations. Despite the little availability of experimental data, the model was
designed to test the most relevant physical properties of the protein investi-
gated. Protein structural and dynamics properties obtained via MD and DPD
were compared highlighting the advantages and limits of each molecular tech-
nique. Promising results were achieved from DPD simulations of the oil/water
interface. The proposed model was able to properly describe the protein sur-
factant behavior in terms of interfacial tension decrease at increasing protein
surface concentration. Lastly, we combined the above-mentioned results into a
thermodynamic model to predict the interfacial tension behavior at increasing
protein bulk concentration, which cannot be measured experimentally.

Chapter 4 focuses on the applications of a scaling scheme to interfacial systems
as being one of the most successful uses of the classical DPD method. In
particular, equilibrium properties such as the interfacial tension were analyzed
at different levels of coarse-graining for planar oil-water interfaces with and
without surfactant. A scaling factor for the interfacial tension was found due
to the combined effect of the scaling scheme and the coarse-graining parame-
terization. Although the level of molecular description was largely decreased,
promising results showed that it is possible to conserve the interfacial tension
trend at increasing surfactant concentration, remarkably reducing modeling
complexity. The same approach was also employed to simulate a droplet con-
figuration. Both planar and droplet conformations were maintained, showing
that typical domain formations of multi-component systems can be performed



1.1 Aim and structure of the thesis 11

in DPD by means of the scaling procedure. Therefore, we explored the possi-
bility to describe oil-water and oil-water-surfactant systems in standard DPD
using a scaling scheme with the aim to highlight its advantages and limits.

Chapter 5 focuses on numerical simulations of two immiscible fluids in the pres-
ence of soluble surfactants via mesoscopic approaches, namely Lattice Boltz-
mann Model (LBM) and Dissipative Particle Dynamics (DPD). In this case,
the surfactant was modeled as a typical non-ionic single-chained amphiphilic
molecule with a hydrophilic head and a hydrophobic tail. Within the LBM
framework, both the thermodynamic and hydrodynamic description of a realis-
tic ternary system consisting of oil, water, and surfactants is represented by the
phase-field model. Based on a DPD study, LBM simulations were performed
to compare the two mesoscopic models in terms of reducing the interfacial
tension at increasing surfactant concentration. Hence, the equilibrium prop-
erties were analyzed to check if the LBM approach can describe the same
outcome of DPD simulations with the aim of finding a possible link between
the molecular and continuum modeling approaches.

Chapter 6 is dedicated to modeling the last step of the food emulsion production
process via computational fluid dynamics (CFD) and population balance mod-
eling (PBM), to properly describe both the non-Newtonian dynamics of the
emulsion and the evolution of the droplet size distribution (DSD). 2D and 3D
CFD simulations showed that attention should be paid to the grid resolution to
properly describe recognizable patterns observed in experiments. Moreover,
CFD and PBM simulations clarified the role of the pre- and post-mixing zones
in the high-shear mixer, as well as the effect of the type of flow, pure shear vs
elongational, on droplet breakage.

Finally, in chapter 7 the main conclusions of this thesis are drawn, together with the
final remarks.



Chapter 2

Atomistic model

2.1 Introduction

The main objective of this chapter is to study the interaction of Apovitellenin I at the
water-oil interface, in the presence and absence of phospholipids using Molecular
Dynamics and Metadynamics techniques. Therefore, with the help of an atomistic
model and a statistical analysis, the main novelty is to provide a better understanding
of the adsorption behavior at the oil-water interface of an egg yolk protein and
its interactions with other co-surfactants. Moreover, the adsorption energy of the
Apovitellenin I at the oil/water interface was here obtained from Metadynamics
simulations. This information will be then transferred to a thermodynamic model
of protein adsorption, in which the parameter calibration will be based on results
obtained by means of coarse-grained molecular simulations. Thus, a link between
the two scales can be achieved (see chapter 3 for more details).

This chapter is structured as follows: in section 2.2, the molecular description of
the investigated system is presented; the molecular techniques here used are briefly
introduced in section 2.3; simulation details are explained in section 2.4, together
with all the approximations and hypothesis; section 2.5 shows the results of this
chapter, and, finally, the main conclusions are drawn in section 2.6.
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2.2 Molecular description of the macroscopic system

The first step in the development of the molecular model for an egg yolk protein-
based emulsion is to identify the chemical species to be simulated and to define the
characteristics of the molecules involved at the interface. In this section, a general
description of the macroscopic system to be modeled is provided, together with the
adopted simplifications.

As already mentioned, an example of a food emulsion where the egg yolk is
widely used as an emulsifier is mayonnaise. This is a stable liquid-liquid emulsion
with a high content of the dispersed oil phase. Although the general composition
consists of oil, water, surfactants, and other additives, in the food industry there are
several types of mayonnaise according to the nature of each component [12]. In this
work, a regular mayonnaise with around 70% of fat content [12] is considered and
the experimental work Ref. [7] is used as a reference to identify the ingredients of the
mayonnaise, especially the molecules to play a primary role at the oil/water interface.
It is important to highlight that also in this work the dispersed phase consists of
soybean oil, while the chemical species that act as surfactants are derived from
the egg yolk. These two components characterize the specific type of mayonnaise
studied, therefore a further description of the vegetable oil and the egg yolk used
in the production of the food emulsion is presented in order to correctly select the
molecules to be modeled.

Regarding the dispersed phase, a fully refined soybean oil is employed in which
the triglyceride molecules are present with a concentration larger than 99%, and all of
the free fatty acids and other non-oil material has been removed by chemical means,
and physical or mechanical separation [3]. Triglycerides are tri-esters consisting
of glycerol bound to three fatty acid molecules. Based on the number of double
bonds and the chain length, the fatty acids occurring in triglycerides of soybean oil
are reported in Table 2.1. As can be seen, they are saturated, monounsaturated, and
polyunsaturated with 16 or 18 carbon atoms according to the internal distribution
[3]. For the sake of simplicity, here homo-triglycerides are taken into account where
the three fatty acids are identical (without an internal distribution). Therefore, the
triglyceride composition reported in Table 2.1 will be modeled as representative
of the oil phase, instead of hydrocarbons as it was done in previous works on
similar emulsions [66–68]. It should be noted that the protein adsorption to different
hydrophobic materials may cause differences in the conformation of the adsorbed
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Table 2.1 Experimental fatty acid distribution of soybean oil [3].

Fatty acid chain length : n.
double bonds

Experimental weight
fraction, %

Palmitic acid 16:0 10.75 ± 2.75
Stearic acid 18:0 3.7 ± 1.7
Oleic acid 18:1 23.5 ± 6.5
Linoleic acid 18:2 53.5 ± 5.5
Linolenic acid 18:3 7.75 ± 3.25

molecule; in this sense, this simplification may have an impact that is difficult to
quantify. That being said, it is known that modeling a simpler hydrocarbon–water
system instead of a triglyceride–water system might not necessarily lead to realistic
results [120], therefore a triglyceride–water system was modeled in this work.

The second fundamental component in mayonnaise production is the hen egg
yolk. It is unquestionably an efficient ingredient in many food products as it com-
bines nutritional, organoleptic and functional properties (emulsifying, coagulating,
and gelling properties). Consequentially, egg yolk is widely used as an ingredient
in many food emulsions [12, 121]. Hen egg yolk is an ideal example of natural
supramolecular assemblies of lipids and proteins with different organization levels.
It is mainly composed of two fractions – plasma and granules – which are natural
nano- and micro-assemblies [1]. These two fractions possess different compositions,
structures, and functionalities. Plasma contains a large number of lipids structured
as low-density lipoproteins (LDLs), whereas granules are mainly composed of pro-
teins aggregated in micrometric assemblies [1]. If plasma is responsible for the
important emulsifying properties of yolk, granules bring interesting emulsifying
properties when assemblies are in the form of micelles in presence of salts [122].
Assuming a pH equal to 3.8 for the mayonnaise [123], plasma proteins represent
about 2/3 of the oil/water interface in acidic conditions (at all ionic strengths) [1].
Although plasma exhibits better emulsifying activity than granules, the latter may
play a role in the mayonnaise stabilization providing a physical barrier to coalescence
by microparticles of egg yolk granules adsorbed at the emulsion droplet interface
[13, 124]. Indeed, in the work Ref. [125], it was concluded that the interfacial film in
mayonnaise is composed of coalesced low-density lipoproteins and microparticles of
granules. Previous works have shown that LDLs are likely to play primary roles in the
formation and stabilization of egg yolk-based emulsions [1, 122, 126–128]. Conse-
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quentially, LDLs are considered to contribute mainly to yolk emulsifying properties
[1]. LDLs are spherical nanoparticles (17–60 nm) with a lipid core of triglycerides
and cholesterol esters in a liquid state surrounded by a monofilm of phospholipids
and apoproteins [1, 19, 20, 121, 129–131]. The LDL adsorption mechanism at the
oil-water interface was investigated by several works [1, 19, 22, 132–134]. LDL
particles break down when they come into contact with the oil/water interface. Neu-
tral lipids, phospholipids, and apoproteins are then released from the LDL core
and can spread at the interface. Liberated triglycerides merge with the oil phase
whereas phospholipids and apoproteins compete to adsorb at the oil-water interface.
The liberated apoproteins are supposed to be totally insoluble and the adsorption
process is almost irreversible. Therefore, LDLs serve as vectors of surfactant con-
stituents (proteins and phospholipids) that could not be soluble in water until they
reach the interface. Moreover, apoproteins situated on the LDL surface initiate the
LDL disruption mechanism by their initial anchorage. This anchorage causes an
unfolding of the LDL particle, leading to the destabilization of the external layer of
the lipoprotein. The adsorption of apoproteins and phospholipids at the interface
leads to the formation of a film that stabilizes the emulsion [132]. Therefore, both
apoproteins and phospholipids are essential to understand the interfacial properties of
egg yolk LDLs. The protein identified as Apovitellenin I is considered to be the most
surface-active, among the apoproteins contained in LDL [19, 20]. Due to its structure
and composition, which combines amphipathic character and flexibility, Apovitel-
lenin I shows a great capacity to adsorb at the oil–water interface in emulsions [19].
In LDL, Apovitellenin I is mostly present as a homo-dimer, thus containing two
identical polypeptide chains of 82 amino acid residues which are linked by a single
disulfide bond at the cysteine residue [19, 20]. The sequence of the mature protein
is available in the UniProtKB database [135] under the accession number P02659
(www.uniprot.org/uniprot/P02659). However, the detailed 3D structure and other
physico-chemical information of Apovitellenin I are not available in the literature,
increasing the complexity of its modeling approach.

2.3 Theoretical Background

In this section, the theoretical basis of the two main techniques adopted will be
explained, giving more space for the discussion on MetaD since the theoretical

www.uniprot.org/uniprot/P02659
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concepts behind MD are well known. Regarding MetaD, more emphasis will be given
to the Well-Tempered Metadynamics (WTMetaD) which is the specific technique
adopted in this chapter.

2.3.1 Molecular Dynamics

Molecular Dynamics (MD) is a well-known computer simulation technique to mimic
the motion of atoms, particles or molecules from which physicochemical properties
(thermodynamic and structural) can be derived. Here only the main basic concepts are
presented and a further detailed description can be found in the literature [38, 136].

All classic MD simulation methods rely on so-called force fields [137–140] to
calculate interactions and evaluate the potential energy of the system as a function of
pointlike atomic coordinates. A force field consists of both the set of equations used
to calculate the potential energy and forces from particle coordinates, as well as a
collection of parameters used in the equations. All common force fields subdivide
potential functions into two classes. Bonded interactions cover covalent bond-
stretching, angle-bending, and torsion potentials when rotating around bonds, all
of which are normally fixed throughout a simulation. The remaining non-bonded
interactions consist of Lennard-Jones repulsion and dispersion as well as Coulomb
electrostatics. Given the potential and force (negative gradient of potential) for all
atoms, MD is performed by integrating Newton’s equation of motion. Therefore, this
technique is deterministic. Indeed, by calculating the forces on each atom in a system,
a prediction of the displacement of the atoms during a given time interval can be made
and a trajectory of the system followed over time. In MD simulations, displacement
of atoms is carried out over small time steps, typically 1 to 2 fs. Compared to the
average time between molecular collisions, the size of the time step is extremely
small because it is necessary to ensure that the magnitude of the force on the moving
particle does not change significantly when the particle moves. The main limitation
of this technique is that a huge number of computations have to be carried out to
model events on timescales relevant to pertinent physicochemical phenomena using
a sufficiently high number of molecules to accurately represent these phenomena.
Consequentially, powerful computers and relatively long computation times are
required to model even relatively simple molecular processes.
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Hence, MD is a computational technique to study the evolution in time of a
system made of point atomistic particles. There are basically two foundations on
which MD rests: the ergodic theorem and Newton’s equation for a system of fully
atomistic molecules [141]. The system is therefore treated at the atomistic level,
considering the interactions between each atom and the ones surrounding it. This
presents a limitation since quantum mechanics correctly describes the physical
behavior of a microscopic system and not classical mechanics. Until now, there
are few computational tools powerful enough to solve the Schrödinger equations
for a system containing a large number of molecules (order of thousands). In
any case, solving Newton’s equations turns out to be a good compromise between
the computational cost and the prediction of system properties. Therefore, the
main equation is Newton’s equation of motion (Eq. (2.1)), solved during the MD
simulation by means of Verlet’s algorithm, a time integration that guarantees good
numerical stability and time reversibility [142, 143].

FFF = m
d2xxx
dt2 =−∇E . (2.1)

The energetic term E is the sum of four different contributions, as shown in Eq. (2.2):
bonding (Eq. (2.3)), torsional (Eq. (2.5)), vibrational (Eq. (2.4)), and long-range
energy (Eq. (2.6)) [143], in turn, formed by Coulomb and van der Waals interactions
[144, 145]:
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where Kr and Kθ of Eqs. (2.3) and (2.4) are the elastic constants for bond and
angular vibration, respectively, and
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)
, referring to the same
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equations, are the spatial and angular displacements with respect to the equilibrium
condition, respectively. In Eq. (2.5), the terms V1, V2, and V3, correspond to the
Fourier coefficients of the series while φ represents the torsional angle and f1, f2,
and f3 represent the phase angles. Finally, the energy term for the non-bonding
interactions of Eq. (2.6) is given by the Coulomb contribution added to the Lennard-
Jones potential. It should be kept in mind that the Eq. (2.6) is also applied to atoms
that are part of the same molecule but that are separated by three or more bonds.
Also, fi j = 1 in Eq. (2.6), except in the case where there is an intramolecular bond
of type 1,4 where fi j = 0.5.

The parameters to calculate these four contributions are contained in the force
field and the choice of a specific force field with respect to another can profoundly
influence the result of an MD simulation [38]. Other important and necessary
approximations of MD are the Periodic Boundary Conditions (PBC) and the cut-off
distance. Both of them have an influence on box construction. Applying PBC
means that when a particle crosses a box face, with a certain velocity in modulus
and direction, it reappears from the opposite face with the same velocity properties
[146]. Instead, the cut-off is the maximum distance within which the interaction
between two particles is considered [147]. The cut-off distance is also important in
the Particle Mesh Ewald summation (PME) for the long-distance particle interaction
[148–150]. More information regarding Molecular Dynamics can be found in the
literature [37, 141, 143, 149, 151, 152].

2.3.2 Metadynamics

Unlike MD, MetaD is a technique used to force the system to explore states that
would normally be energetically disadvantaged and that would require extremely
long MD simulations. A Metadynamics simulation consists of a choice of one or
more variables, depending on the spatial coordinates and called collective variables
(CVs), which are forced to take on different values by the addition of a potential
[153]. A possible form for the potential V (sss) can be expressed as [153]:

V (sss) =−
(

1− 1
γ

)
F(sss) , (2.7)
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where F(sss) is the free energy surface obtained from a classical MD simulation and
sss is the collective variable. The parameter γ is a constant, greater than 1, called
bias factor. If γ tends to 1 the bias potential tends to 0 (V (sss) = 0), then, the MetaD
simulation becomes equivalent to a classical MD simulation; in the limit case in
which γ tends to +∞ it is obtained that V (sss) tends to −F(sss) and each state is
equally probable. At the end of the simulation, knowing the added potential for
each collective variable, it is possible to perform a reweighting procedure to move
the system from the biased to the unbiased ensemble. Therefore, it is possible to
estimate the value of properties that depend on the spatial coordinates (⟨O(rrr)⟩) of the
unbiased ensemble by weighting each configuration obtained in the biased ensemble
by the value of the bias acting on it [153–155]:

⟨O(rrr)⟩= ⟨O(rrr)eβV (sss(rrr))⟩V
⟨eβV (sss(rrr))⟩V

. (2.8)

In the previous equation, the term on the left without a subscript represents the value
of the properties ⟨O(rrr)⟩ in the unbiased ensemble. Instead, all the terms on the right
denoted by a subscript V are considered in the biased ensemble.

Well-Tempered Metadynamics

In a Well-Tempered Metadynamics simulation, it is performed the iterative builds
of the bias V (sss). This one, iteration after iteration, will asymptotically take the
form given by Eq. (2.7). This is made by the successive addition of small repulsive
functions (G(sss,sss′′′)) that are deposited periodically in the CVs space. These have the
form of a Gaussian centered in the CVs space at the current value sss′′′, as it is reported
in Eq. (2.9) [153, 156, 157].

G(sss,sss′′′) =We∥sss−sss′′′∥2
, (2.9)

where W is the height of the Gaussian and the term ∥sss− sss′′′∥ represent the distance
between sss and sss′′′ in the CVs space. In this way, it is possible to calculate the bias
potential as follows:

Vn(sss) =Vn−1(sss)+G(sss,sssn)e
− 1

γ−1 βVn−1(sssn) , (2.10)



20 Atomistic model

in which V0(sss) = 0, β is the inverse temperature multiplied by the Boltzmann con-
stant and the corrective term G(sss,sssn)e

− 1
γ−1 βVn−1(sssn) decreases because the argument

of the exponential goes to 0 like 1/n, where n is the number of iteration. Each
Gaussian is summed after a certain number of iterations NG from the previous one.
In this way, it is possible to explore some regions of the CVs space that normally are
improbable in a classical MD simulation. At the end of a MetaD simulation, it is
necessary to perform a reweighting procedure to obtain an energy function of one or
more CVs in the unbiased system by applying Eqs. (2.11) and (2.12) [154, 155]:

⟨O(rrr)⟩= ⟨O(rrr)e−β [V (sss(rrr,t))−c(t)]⟩V , (2.11)

with:

c(t) =
1
β

log
∫

e−βF(sss)dsss∫
e−β (F(sss)+V (sss,t))dsss

, (2.12)

where β is the inverse temperature multiplied by the Boltzmann constant, O(rrr) is
a generic property depending on the spatial coordinates, V (sss(rrr, t)) is the deposited
bias function of the collective variables, and F(sss) is the free energy surface obtained
from an unbiased simulation. Further information about MetaD and other similar
methods and variants can be found in the literature [54, 153, 156–159]. Once the
value of the potential energy for each state explored by the MetaD simulation was
obtained, it is possible to turn this information into a probability to find the system
in a certain state with respect to others. According to statistical mechanics, the
probability p(Ei) is a function of energy and reads as follows:

p(Ei) =
e−βEi

∑i e−βEi
=

e−βEi

Z
, (2.13)

where Z (Zustandssumme, "sum over states") represents the summation over all the
states i explored by the system [160].

2.4 Model details

2.4.1 Approximations and hypothesis

In this section, all necessary hypotheses and approximations are presented and
discussed, especially details of the chemical species involved in this work: protein,
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oil, water, and phospholipids. First, let us introduce some information about the
protein under investigation: Apovitellenin I. As already stated, Apovitellenin I
is a homo-dimer containing two identical polypeptide chains of 82 amino acid
residues linked by a single disulfide bond at the cysteine residue in position 75 [161].
For further analyses, two applications were used: AlphaFold [162, 163] and H++
(http://biophysics.cs.vt.edu/H++) [164–166]. AlphaFold predicts different spatial
structures for the protein, starting from its amino acid sequence. Each structure
is associated with an index of prediction, called lDDT (Local Distance Difference
Test), a superposition-free score that evaluates local distance differences of all atoms
in a model. It varies between 0 and 100, indicating the accuracy of the prediction
[167]. For this chapter, it was used the structure with the highest value of the index
of prediction as shown in Figure 2.1. Moreover, it can be noticed that the region
with the disulfide bond is correctly represented and predicted with the highest index
than that of the rest of the molecule. The second application was used to predict the
protonation state of each amino acid residue. By providing the primary structure and
the pH value (here considered equal to 3.8), H++ returns the pKa for each amino
acid in the protein. If the pH is less than the pKa then the functional group of the
residue will be protonated, else it is deprotonated otherwise. This leads to a total
charge for the protein equal to +14 e−.

For the oil phase, it was also necessary to assume some simplifications. In partic-
ular, the non-aqueous phase consists of soybean oil, and the fatty acid composition
was already reported in Table 2.1. For the sake of simplicity, it was assumed that
all the triglycerides contain only one type of fatty acid, namely without an internal
distribution. In this way, the composition reported in Table 2.1 is considered as the
weight fraction of triglycerides in the soybean oil. Hence, the number of molecules
that composes the oil phase in the simulation box reflects such composition. All the
information about structural conformation and topology for the triglycerides was
obtained by using LigParGen (http://zarbi.chem.yale.edu/ligpargen/) [168–170].

As regards water, the TIP3P model was used. This model is characterized by
a low computational cost, but it can not simulate the correct behavior of water at
temperatures near 0 °C [171, 172]. A 50/50 volume ratio was assumed for the oil
and water phases.

About the phospholipids, only POPC (1-palmitoyl-2-oleoyl-sn- glycero -3-
phosphocholine) is taken into account in this work since it is identified as the

http://biophysics.cs.vt.edu/H++
http://zarbi.chem.yale.edu/ligpargen/
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Fig. 2.1 Structure of the protein Apovitellenin I extracted from AlphaFold (a). Index of
prediction for each amino acid residue (b).
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Table 2.2 Details of systems investigated in this chapter together with box sizes.

Case Phospholipids Dimension [nm]

XXX YYY ZZZ

1 No phospholipids 12.15 24.30 12.15

2
Phospholipids in the water bulk, concentration
equal to that found in egg yolk

12.15 24.30 12.15

3
Phospholipids at the interface, concentration
equal to half of the saturation

11.70 23.40 11.70

4
Phospholipids at the interface, concentration
equal to saturation

11.70 23.40 11.70

most abundant in the egg yolk [4, 5, 173]. The structural information regarding
phospholipids can be obtained from the website Slipids (http://www.fos.su.se/~sasha/
SLipids/) [173, 174].

2.4.2 Details of simulations

All the simulations were performed using GROMACS 20.6 [175–177] patched with
Plumed 2.7.2 [178, 179]. All the systems were simulated using the Verlet list for the
neighbor atoms with a cutoff of 1.0 nm and the PME [149, 150] for the electrostatic
calculation. PBC were considered in all three directions. Since the protein has a
non-zero net-total charge, an appropriate number of Cl– ions was added to the system
to assure electroneutrality. The MD simulations were performed as follows: the
energy minimization of the system was first carried out, then, the equilibration step
was divided into two stages: 100 ps in NVT (Isothermal–Isovolumetric ensemble)
and 1 ns in NPT (Isothermal-Isobaric ensemble). The pressure was set equal to 1 bar
by means of the Parrinello-Rhaman barostat [180], while the temperature was kept
equal to 298 K through the Berendsen thermostat [181]. Finally, the MD production
step was carried out with a time step equal to ∆t = 2 fs for a total number of steps
NG = 5×107. The OPLS-AA force field [145] was here employed to calculate the
interactions between all the atoms in the system. Four cases were analyzed in this
chapter as reported in Table 2.2, together with the corresponding box dimensions.
To create the first system of Table 2.2, the oil phase was initially set up. Starting
from a box with dimensions X = Y = Z = 25.00 nm, the five types of triglyceride
molecules were randomly inserted in a number corresponding to the proportions of

http://www.fos.su.se/~sasha/SLipids/
http://www.fos.su.se/~sasha/SLipids/
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Table 2.3 Mass fraction of proteins and phospholipids in the egg yolk [4, 5].

Fraction of LDL in the dried egg yolk (χLDL) 0.66
Fraction of protein in LDL (χP) 0.10
Fraction of lipids in the dried egg yolk (χL) 0.63
Fraction of phospholipids in lipids (χPL) 0.33
Fraction of phosphatidylcholines in phospholipids (χPC) 0.76
Fraction of POPC in phosphatidylcholine (χPOPC) 0.154

Table 2.1. After the energy minimization and the equilibration steps, the box reached
the dimensions X = Y = Z = 12.15 nm. Then, it was extended in the Y -dimension
and a single protein molecule was placed in the center of the void phase. The
remaining space was then solvated with water, thus creating the interfaces between
oil and water. After that, fourteen molecules of water were replaced with an equal
number of Cl– ions. This system was used as the basis for the other three cases.
For the second case, a sufficient number of water molecules were replaced with
ten molecules of POPC. This choice was made by the calculation of the number
of POPC molecules per protein (NPOPC/NP), knowing the mass of each molecule
[19, 20] (mP is the protein mass and mPOPC is the POPC mass) and the mass fraction
in the egg yolk (Table 2.3 and Eq. (2.14)) [4, 5].

NPOPC

NP
=

χL ×χPL ×χPC ×χPOPC

χLDL ×χP
× mP

mPOPC
= 9.05 ≈ 10 . (2.14)

The value of NPOPC/NP was rounded up to compensate for possible approximation
errors. In fact, the exact concentration of the Apovitellenin I is not known [19–21], so
it was necessary to assume that all LDL proteins are molecules of Apovitellenin I. For
the remaining two systems (Cases 3 and 4 of Table 2.2), the starting box was again
the one used in Case 1 but with a smaller volume. This is due to the fact that, after the
substitution of part of water and oil molecules with some POPC molecules, a void
part remained in the box. Therefore, it was necessary to perform another equilibration
step in an NPT ensemble in which the box volume was reduced to fill the void space
with other molecules. The saturation concentration of POPC phospholipids at the
water-oil interface is 0.635 nm2/lipid [173]. Therefore, by knowing the superficial
area of the interface, it is possible to calculate the number of phospholipid molecules
to insert into the simulation box in order to have a concentration equal to half of the
saturation (Case 3) and equal to the saturation (Case 4). It is important to remind here
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that there are two interfaces in each system due to the periodic boundary conditions
in the three dimensions. Hence, the phospholipids were placed at each interface
removing an equal volume of water and oil in order to keep a 50/50 volume ratio
constant between the two phases. The phospholipids were already positioned in the
correct orientation, with the polar part near the water phase and the apolar part near
the oil phase. In summary, Figure 2.2 shows the snapshots of the four cases studied
here.

About MetaD, the collective variables chosen for all the simulations are the
protein radius of gyration, used as an index of the denaturation of the protein, and
the distance between the protein center of mass and the oil phase. To reduce the
computational cost, a further simplification was adopted: for computing the distance
of the protein center of mass from the oil-water interface, each molecule of the oil
phase was identified with a single atom of carbon. It was verified that the chosen
carbon atom type was only present in oil molecules, not in phospholipids or protein
molecules. In this way, the numerical density along the y-direction normal to the
interfaces was compared for all the atoms of the oil phase and for the carbon atom
chosen to represent the oil in order to guarantee the accuracy of this approximation,
as shown in Figure 2.3. Thus, the oil phase was identified by a single atom belonging
to each triglyceride molecule type, specifically the carbon of the carboxylic group of
the central fatty acid residue. As shown in Figure 2.3, the two curves are coincident
at the corresponding position of the two interfaces.

2.4.3 Model validation

In addition to the cases already described, another simulation study was conducted
to validate the approach used in this chapter. As mentioned before, there is no
experimental data in the literature concerning the isolated Apovitellenin I to compare
the results obtained from our simulations. Therefore, the same approach was tested
for a similar system whose details are available. In particular, the system described
in the work Ref. [69] was reproduced and modeled with the same simulation
parameters used for the case of Apovitellenin I. Therefore, for the sake of the
comparison, the system consists of β -casein adsorbing at the air-water interface.
The air phase is treated as a vacuum and the TIP3P model is used again for water
[182]. The structure of β -casein was obtained from UniProtKB (code P02666,
www.uniprot.org/uniprot/P02666). After checking the protonation state of the amino

www.uniprot.org/uniprot/P02666
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(a) (b)

(c) (d)

Fig. 2.2 Snapshots of the simulation boxes of the oil-water interfacial systems investigated
here. For sake of better visualization, part of the solvent molecules was not shown (oil
in yellow, water in blue, protein in red, and phospholipids in orange). (a) Case 1: no
phospholipids; (b) Case 2: phospholipids in the water bulk at a concentration calculated from
Eq. (2.14); (c) Case 3: phospholipids at the water-oil interface at a concentration equal to
half of the saturation; (d) Case 4: phospholipids at the water-oil interface at a concentration
equal to saturation.
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Fig. 2.3 Numerical density profiles of the single C atom (blue dashed line) and all atoms
belonging to the oil phase (green dash-dotted line) along the y-direction normal to the
interfaces.
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acid residues with H++ at a pH equal to 7.4, the protein was placed at the center of the
water bulk. The box construction was similar to the previous case of Apovitellenin I.
Next, charge neutralization, energy minimization, and equilibration (1 ns in NVT
ensemble) were conducted. The OPLS-AA force field was used again here. To
maintain the water-air interface, instead of NPT, it was necessary to perform the
simulation in the NVT ensemble by fixing the temperature equal to 23°C with the
Berendsen thermostat. Regarding the metadynamics setup, the same parameters of
the simulation of Apovitellenin I were used. Indeed, the two collective variables are
the protein radius of gyration and the distance of the protein center of mass from
the water-air interface. Since in this case the simulation was conducted in the NVT
ensemble, the energy obtained from metadynamics is the Helmholtz free energy.
One can switch to the Gibbs free energy ∆Gads by applying the following expression
[183]:

∆Gads = ∆FMetaD =

[
− 1

β

∫ yb

ya

e−βFy(y)dy
]
−
[
− 1

β

∫ yd

yc

e−βFy(y)dy
]
, (2.15)

where β is the inverse of the temperature multiplied by the Boltzmann constant,
Fy(y) is the Helmholtz free energy obtained from the metadynamics simulations
along the y direction, and (ya,yb) and (yc,yd) are the adsorption and bulk region,
respectively, which are arbitrarily chosen.

The convergence of the MetaD simulations for all the cases analyzed here is
shown in Figure 2.4, where the variation of one of the CVs, namely the distance of
the protein from the water-oil interface, is reported in the last 10% of the simulation
time. Notably, it can be seen that the variation is quite modest, so all the simulations
reached convergence. The meaning of the curves shown will be clarified in the next
section.

2.5 Results and discussion

From the metadynamics simulations, the surface free energy was obtained for the
four cases as varying the two collective variables: the protein radius of gyration and
the distance between the center of mass of the protein and the oil-water interface,
as shown in Figure 2.5. As can be seen, it is possible to have an overview of the
collective variable space explored by each system during the simulations. The energy
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Fig. 2.4 Convergence of MetaD simulations: (a) system with only protein (bidimensional bias:
distance from interface and radius of gyration); (b) system with protein and phospholipids
in the bulk; (c) system with protein and phospholipids at the interface with a concentration
equal to half of the saturation; (d) system with protein and phospholipids at the interface
with a concentration equal to the saturation; (e) system with only protein (monodimensional
bias: distance from the interface); and (f) β -casein simulation.
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Fig. 2.5 Free energy surface for the four cases studied: (a) Case 1: no phospholipids; (b) Case
2: phospholipids in the water bulk at a concentration calculated from Eq. (2.14); (c) Case 3:
phospholipids at the water-oil interface at a concentration equal to half of the saturation; (d)
Case 4: phospholipids at the water-oil interface at a concentration equal to saturation.

in the Figure is Gibbs free energy because all the simulations have been conducted
in the NPT ensemble. In order to have a clearer visualization, the probabilities
associated with the various states were calculated as varying the distance (Figure
2.6) and the protein radius of gyration (Figure 2.7), according to the formula given in
Eq. (2.13). As shown in Figure 2.6, it can be seen that the protein is fully adsorbed
only in Cases 1 and 2. In fact, the highest peaks represent the most probable states of
the system. It is important to underline here that the minimum distance is calculated
considering the protein center of mass and not the closest atom to the oil-water
interface. For this reason, the highest peak of probability is slightly shifted to values
of the distance a bit larger than 0. In Cases 3 and 4, the highest probability peak is
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Fig. 2.6 Probability (logarithmic) at the variation of the distance from the oil-water interface:
Case 1: no phospholipids (red continuous line); Case 2: phospholipids in the water bulk at a
concentration calculated from Eq. (2.14) (blue dashed line); Case 3: phospholipids at the
water-oil interface at a concentration equal to half of the saturation (green dash-dotted line);
Case 4: phospholipids at the water-oil interface at a concentration equal to saturation (orange
dotted line).



32 Atomistic model

1.5 2.0 2.5

Radius of gyration [nm]

10−30

10−20

10−10

100

P
ro

b
ab

ili
ty

Case 1

Case 2

Case 3

Case 4

10−30

10−20

10−10

100

10−28
10−26
10−24
10−22

10−18
10−16
10−14
10−12

10−8
10−6
10−4
10−2

1.5 2.0 2.5

Fig. 2.7 Probability (logarithmic) at the variation of the protein radius of gyration: Case
1: no phospholipids (red continuous line); Case 2: phospholipids in the water bulk at a
concentration calculated from Eq. (2.14) (blue dashed line); Case 3: phospholipids at the
water-oil interface at a concentration equal to half of the saturation (green dash-dotted line);
Case 4: phospholipids at the water-oil interface at a concentration equal to saturation (orange
dotted line).
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shifted to larger distances from the oil-water interface due to the steric hindrance
given by the presence of phospholipids at the interface. Therefore, the protein
positions itself near the oil-water interface without being able to completely adsorb.
In fact, as can be noticed, the distance from the interface in Case 4 is larger than
in Case 3. This is due to the fact that, in Case 4, there is a higher concentration of
phospholipids at the interface, which hinders the adsorption of the protein even more
than in Case 3. In addition, in Case 4 there is a higher probability to find the protein
in the water bulk compared to Case 3 as indicated by the second-highest peak. The
influence of the presence of free phospholipids in Case 2 is also compared to Case
1. By looking at Figure 2.6, the red continuous line (Case 1) and the blue dashed
line (Case 2) have approximately the same trend for distances smaller than 3 nm.
On the other hand, in Case 2 the presence of phospholipids makes the energy and
probability profiles smoother, thus the peak in the water bulk at a distance from the
interface of 5.5 nm is not present as in Case 1. This is shown in detail in Figure 2.8,
where the protein energy profiles of Cases 1 and 2 are represented as a function of
the distance from the interface. From these profiles, the protein Gibbs free energy
of adsorption ∆Gads at the oil-water interface can be estimated as the difference in
the values of the energy associated with the protein at a distance close and far from
the interface as reported in Figure 2.8. Therefore, the presence of free phospholipids
affects the absolute value of ∆Gads. In fact, for Case 1 ∆Gads = −108.18 kJ/mol,
while ∆Gads becomes equal to -122.71 kJ/mol for Case 2, meaning that the presence
of free phospholipids in water bulk makes the protein adsorption even more likely
to occur in Case 2 rather than in Case 1. However, these values of ∆Gads seem to
be reasonable for protein surfactants [184]. The presence of phospholipids in the
water bulk has also an effect on the protein radius of gyration as shown in Figure
2.7 (red continuous line and blue dashed line). Both cases have the same highest
probability peak at the value of the radius of gyration equal to 2.125 nm, but, when
the phospholipids are not present (Case 1) the protein can explore a wider range of
values for the radius of gyration. As regards the phospholipids at the interface (Cases
3 and 4), it can be seen that the protein which cannot fully adsorb at the interface
has a most probable value of the radius of gyration smaller than that of Cases 1 and
2. This is most likely related to the fact that the protein molecule becomes smaller
trying to penetrate the phospholipid layer. In Case 4 (Figure 2.7, orange dotted line)
with phospholipids at the interface with the concentration of saturation, the protein
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Fig. 2.8 Protein energy profiles and determination of the Gibbs free energy of adsorption at
the oil-water interface: (a) Case 1: no phospholipids; (b) Case 2: phospholipids in the water
bulk at a concentration calculated from Eq. (2.14).

can explore approximately the same region of the radius of gyration values as in Case
3 (Figure 2.7, green dash-dotted line) but with a higher probability of occurrence.

Moreover, for Case 1, it is conducted a more detailed analysis to investigate
which are the amino acid residues involved in the adsorption process. Figure 2.9
shows the probability to find each amino acid residue distant from the interface as
a function of its position in the chains. As can be seen, the portion of the protein
mostly involved in the adsorption is the second half of one of the two chains of
the protein. This region of the protein is strongly hydrophobic because it is mainly
formed of such types of amino acid residues, thus they tend to adsorb onto the apolar
oil interface. For the sake of better visualization, points with a probability higher
than 0.9 are highlighted by red dots. It is also important to mention that, apart from
the portion of the protein adsorbed (the red dots in Figure 2.9), the remaining part
of the amino acid residues is free to move in the region close to the interface. For
this reason, the other probability values are lower than 0.3. For a closer look at this
behavior, Figure 2.10 shows the division of the amino acid residues of Apovitellenin
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Fig. 2.9 Probability contour plot as a function of the distance from the oil-water interface
for each amino acid residue. The black line shows the division between the two chains of
Apovitellenin I; the red dots highlight the amino acid residues mostly involved in the protein
adsorption with a probability higher than 0.9.

I into four groups: apolar, polar, positively charged, and negatively charged (aromatic
amino acid residues were not considered). A large part of the amino acids are apolar
(42.68%), followed by polar (23.17%), positively charged (14.64%), and negatively
charged (10.96%). Aromatic amino acids account for only 8.53%. By looking at the
probability values as a function of the distance from the interface in Figure 2.10, the
amino acid residues that adsorb at the water-oil interface are almost all apolar; some
polar and positively charged amino acid residues adsorb because they are close to
the apolar region of the protein adsorbing at the interface.

In the last case studied here, the experiment with the β -casein from the work Ref.
[69] is reproduced by the MD and MetaD approach with the same setup adopted
for the Apovitellenin I simulations. The most important result here is the value of
the Gibbs free energy of adsorption ∆Gβ−Cas,MetaD =−52.11 kJ/mol, calculated by
applying Eq. (2.15) to the Helmholtz free energy profile of Figure 2.11. This value is
very similar to the one found in the literature which is ∆Gβ−Cas,Exp =−59.4 kJ/mol
[69, 74].
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Fig. 2.10 Probability contour plot of each type of amino acid residues versus the distance
from the interface: (a) non-polar, (b) polar, (c) negatively charged, (d) positively charged.
The black line shows the division between the two chains of Apovitellenin I; the red dots
highlight the amino acid residues mostly involved in the protein adsorption with a probability
higher than 0.9.
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Fig. 2.11 Helmoltz free energy as a function of the distance of the β -casein from the air-water
interface (black continuous line). The dashed lines represent the limits used in Eq. (2.15).

2.6 Conclusions

The adsorption of one of the proteins responsible for the stability of food emulsions
like mayonnaise was studied using a modeling approach with Molecular Dynamics
and Metadynamics. This protein, so-called Apovitellenin I, is not stable in aqueous
solvents and is difficult to separate from the other particles of the egg yolk. Therefore,
an attempt was made to study its behavior on a water-oil interface at different
phospholipids concentrations. First of all, the adsorbed configuration of the protein
has lower energy in comparison to the configuration in bulk, verifying that the protein
under investigation can actually act as a surfactant. Therefore, the difference between
the energy values in the two states is the energy of adsorption of the protein. It
was also shown how phospholipids can influence adsorption. At low concentrations
similar to those found in the egg yolk, phospholipids promote protein adsorption by
going further to reduce the stability of the protein in water. At higher concentrations,
when the water-oil interface is covered with phospholipids, it was pointed out how
they go on to sterically inhibit the adsorption of the protein at concentrations equal
to saturation and to half of the saturation. Phospholipids have an influence also
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on the protein radius of gyration. This was observed especially in the cases with
the phospholipids at the interface. In fact, since the protein cannot completely
adsorb, it tries to penetrate the phospholipid layer by reducing its radius of gyration.
Moreover, the amino acid residues responsible for protein adsorption were identified.
To validate the approach proposed, the value of the Gibbs free energy for the β -casein
predicted from metadynamics simulations was computed and it is very similar to the
one obtained experimentally.

Hence, the modeling approach here employed presents a deeper insight into
the adsorption behavior of an egg yolk protein at the oil-water interface and its
interaction with other co-surfactants. This method provides a notable advantage to
estimate properties that are difficult to obtain experimentally. This is particularly true
especially when research concerning the emulsifying properties of egg yolk proteins
has been hindered by the difficulties in extracting individual components from the
complex matrix. Therefore, these results are very promising and will be used in the
next section to predict a macroscopic property of the protein investigated by applying
a thermodynamic model of protein adsorption. In such a way, a link between two
different molecular modeling techniques can be made with the remarkable purpose
to transfer information to a larger scale.



Chapter 3

Coarse-grained molecular model

3.1 Introduction

The aim of this chapter is to model an oil/water interfacial system where the emulsifier
is one of the most surface-active proteins from the egg yolk LDL, in order to provide
new insights into the physics of the food emulsion production process. Despite
the little availability of experimental data, the model was designed to test the most
relevant physical properties of such a protein by means of the DPD approach in
which the parameter calibration is based on MD simulations. Instead of a manual
assignment, a fully automated coarse-graining procedure was employed for the
molecules involved in the ternary system, assuming a flexible, disordered structure
for the protein. Promising results were obtained in terms of both equilibrium and
dynamic properties of the egg-yolk protein. The adsorption mechanism of an LDL-
like particle is also qualitatively reproduced. Finally, the adsorption energy of the
egg yolk protein at the oil/water interface obtained from metadynamics simulations
(chapter 2) was then transferred to the thermodynamic model of protein adsorption,
in which the parameter calibration is based on the results obtained by means of
DPD simulations. Thus, it is possible to predict a macroscopic behavior of the
protein investigated, namely the surface pressure curve at increasing protein bulk
concentration. Therefore, by combining the results of the two molecular techniques
(DPD and metadynamics), it is shown how these methods can be eventually used to
predict equilibrium properties that are difficult to obtain experimentally.
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This chapter is structured as follows: the molecular techniques here used are
briefly introduced in section 3.2, together with the thermodynamic description of
protein adsorption; the model development and calibration are explained in section
3.3, together with all the simulation details; section 3.4 shows the relevant results of
systems investigated and, finally, in section 3.5 the main conclusions are reported.

3.2 Theoretical background

3.2.1 Dissipative Particle Dynamics

An extensive overview of the standard Dissipative Particle Dynamics (DPD) tech-
nique can be found elsewhere [40–42, 185]. Therefore, in this section only its main
concepts are presented, while further details on the MD method are presented in
section 2.3.1 and in the literature [38, 136].

DPD is a stochastic mesoscale particle model that has been devised to allow
the simulation of the dynamics of mesoscopic particles, such as colloidal particles
and/or groups of molecules that would require extremely long simulations and very
large systems to be studied with MD. Unlike classic Molecular Dynamics, each DPD
particle i, called bead, represents a molecular cluster (a molecule fragment or a group
of solvent molecules) rather than an individual atom. The DPD system consists of
N point particles of mass mi, position ri and velocity vi, whose time evolution is
determined by Newton’s second law of motion, usually integrated using the modified
velocity Verlet algorithm [42, 142]. The major difference between MD and DPD,
apart from the coarse-grained nature of the molecules, is the nature of the forces
between them. The force fi acting on each bead i contains three parts, each of which
is pairwise additive:

fi = ∑
j ̸=i

(FC
i j +FD

i j +FR
i j) , (3.1)

where FC
i j, FD

i j, and FR
i j represent the conservative, dissipative, and stochastic (random)

forces, respectively and the sum runs over all other particles within a certain cutoff
radius rc. The dissipative force FD

i j is a friction term that acts to push particles
apart if they are approaching each other and to pull them back together if they are
moving apart. It is represented as a pair potential between the particles that conserves
both angular and linear momentum. This frictional term leads to a gradual loss of
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kinetic energy in the system, which is compensated for by the stochastic force FR
i j to

ensure the conservation of energy. The dissipation-fluctuation theorem [41] leads
to a relation between the friction coefficient γ and the DPD-sigma parameter σ ,
namely the amplitudes of the dissipative and random force, respectively. These two
forces effectively act as a thermostat in DPD and their mathematical description is
investigated in detail elsewhere [40–42, 185] and will not be discussed further. Here
the conservative force FC

i j felt by bead i includes: 1) contributions from repulsive
interactions with surrounding beads; 2) contributions due to the springs connecting
bead i to other beads in the same molecule; and 3) contributions due to angle bending
interactions.

The repulsive force Fr
i j, which is modeled as a soft repulsion between beads i

and j, is defined as follows:

Fr
i j =

ai j(1− ri j/rc)r̂i j if ri j ≤ rc

0 if ri j > rc
, (3.2)

where ri j = |ri − r j| is the distance between beads i and j at positions ri and r j,
respectively, and r̂i j = (ri − r j)/ri j is the direction between the two beads. The
parameters ai j are the DPD interaction parameters defined for each bead pair, while rc

stands for the cutoff distance. For the system investigated in this work, their definition
will be given in section 3.3.2 and they will be here used as fitting parameters for the
calibration of the DPD model.

When dealing with chain molecules, two additional conservative terms are here
considered to maintain bonds between neighbor beads. The adjacent beads are
constrained with permanent lengths and angular bonds. In this study, the bonds were
modeled using harmonic spring quadratic potentials given as:

US
i j = kS(ri j − lH)2 , (3.3)

UA
i jk = kA(θi jk −θH)

2 , (3.4)

where lH and θH are the equilibrium lengths and angles for beads i, j, and k. The
stiffness of the length and angular bond constraints is defined by the values of kS and
kA.
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As it is customary in DPD, the quantities here reported have to be considered
reduced (dimensionless) and the scaling factors for the main properties (mass, length,
time, energy) will be explained in section 3.3.3. Finally, it is important to point out
that the coarse-graining of the molecular structures and the soft interactions allow
larger systems to be modeled over significantly longer times than with (atomistic
scale) molecular modeling [55, 185], thus allowing the dynamics of mesoscopic
systems to be followed over relevant time scales as well as length scales.

3.2.2 Thermodynamic model of protein adsorption

The theory of protein adsorption, which is described in detail in the work Ref.
[73], is based on the idea that multiple states of the protein molecule can exist
in the interfacial layer. The large area and the large number of conformations of
an adsorbed protein molecule can be modeled as a significant increase in the non-
ideality of the surface entropy. This is the reason why the most simple isotherm
models (e.g. Henry, Langmuir, Frumkin) cannot describe protein adsorption [73]. In
contrast, this thermodynamic model of protein adsorption assumes that the partial
molar area of the protein molecules can vary between a maximum (ωmax) at very low
surface coverage to a minimum (ωmin) value at high surface coverage. The molar
areas of two ‘neighboring’ conformations differ from each other by the value ω0

corresponding to the molar area of the solvent and, therefore, it is assumed to be
much smaller than the protein molar area in any state. Finally, the total number
of possible states of the protein molecule, n, is defined by the above-mentioned
parameters so that ω0 = ∆ω = (ωmax −ωmin)/(n−1). Then, the following equation
of state was derived:

−πω0

RT
= ln(1−ωΓ)+Γ(ω −ω0)+a(ωΓ)2 , (3.5)

where π = σ0 −σ is the surface pressure, σ0 and σ the interfacial tension of the
free interface and that covered by protein surfactants respectively, R is the ideal
gas constant, T the temperature, and a is a Frumkin-type intermolecular interaction
parameter. Γ = ∑

n
i=1 Γi is the total adsorption of protein in all n states, θ = ωΓ =

∑
n
i=1 ωiΓi is the total surface coverage, and ω is the average molecular area of

adsorbed proteins. The equation of the adsorption isotherm for each state ( j) of the



3.2 Theoretical background 43

protein is given by:

b jc =
ωΓ j

(1−ωΓ)
ω j
ω

exp
(
−2a

(
ω j

ω

)
ωΓ

)
, (3.6)

where c is the protein bulk concentration and b j is the adsorption equilibrium
constant for the protein in the j-state. Moreover, it can be assumed that all constants
b j have one and the same value for all states j from i = 1 to i = n, and therefore
the adsorption constant for the protein molecule is given by b = ∑ j b j = nb j. This
assumption allows defining each of the individual Γi in terms of the total adsorption,
thus providing the distribution function of adsorptions over various states of the
protein molecule:

Γ j = Γ
(1−ωΓ)

ω j−ωmin
ω exp(2aΓ(ω j −ωmin))

∑
n
i=1(1−ωΓ)

ωi−ωmin
ω exp(2aΓ(ωi −ωmin))

, (3.7)

while the average molecular area of adsorbed proteins ω can be expressed as follows:

ω =
∑

n
i=1 ωi(1−ωΓ)

ωi−ωmin
ω exp(2aΓ(ωi −ωmin))

∑
n
i=1 (1−ωΓ)

ωi−ωmin
ω exp(2aΓ(ωi −ωmin))

. (3.8)

The thermodynamic model presented above describes very satisfactorily the
adsorption behaviour at low protein concentrations where the simultaneous increase
of surface pressure and adsorption is observed [2, 73]. However, assuming the
existence of a critical protein concentration, denoted by c∗, π∗ and Γ∗, above which
the surface pressure remains almost constant while the adsorption often increases,
the model can be extended to account for higher concentrated solutions [73]. Thus,
for c > c∗ the equation of state and the adsorption isotherm become:

−πω0

RT
=

1
Ψ
[ln(1−ωΓ)+Γ(ω −ω0)+a(ωΓ)2] , (3.9)

and

b jc =
ωΓ j

(1−ωΓ)
ω j
ωΨ

exp
(
−2a

(
ω j

Ψω

)
ωΓ

)
, (3.10)

respectively, with:

Ψ =
Γ

Γ∗ exp
(

ε
π −π∗

RT
ω

)
, (3.11)
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where ε represents an adjustable parameter. Finally, the adsorption equilibrium
constant b can be expressed as [74]:

b =
1
ρ

exp
(
− ∆Gads

RT

)
, (3.12)

where ρ is the molar concentration of the solvent, assumed to be equal to 56 mol/l
for dilute aqueous solutions [186]. It is important to highlight here that the value of
∆Gads was here computed from metadynamics simulations (chapter 2), thus repre-
senting the link between the molecular modeling techniques and the macroscopic
thermodynamic theory.

3.3 Modeling details

A general description of the macroscopic system to be studied is already provided in
section 2.2, together with the adopted simplifications. For the sake of simplicity, here
the basic components of the system under investigation are three: the triglyceride with
three monounsaturated oleic acid residues which stands for the oil phase, the protein
Apovitellenin I coming from the egg yolk LDL, and, finally, water. The presence of
salts, small surfactant molecules (phospholipids), or other additives is here neglected
since only the emulsifying capacity of the considered egg yolk LDL protein is
investigated. Furthermore, the pH of the system is kept constant and equal to 3.8. In
order to consider both the complex composition of the emulsion and the equilibration
time required by macro-molecules to re-arrange at interfaces, the DPD approach
is employed in which the parameter calibration is based on MD simulations. The
next sections will present the setup of MD simulations, the DPD model development
in which both the coarse-graining procedure and the calibration of parameters are
explained, and definitions of the main physical properties investigated here. Finally,
the development of the thermodynamic model of protein adsorption is also reported.

3.3.1 MD simulations

The purpose of all-atom MD simulations is to use their results to calibrate the DPD
parameter set. Only MD simulations of one protein molecule in bulk phases (water
or oil) were performed rather than the entire ternary interfacial system due to the
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size of the latter which would require excessive computational time. An initial
guess of both protein and triglyceride structures was manually made from scratch
via a molecule editor. In particular, Figure 3.2a shows the all-atom protein model.
It can be clearly seen the disulfide bond links two identical polypeptide chains.
Furthermore, the N- and C- terminal amino acid residues and, if applicable, the
functional group of side chains were protonated or deprotonated by comparing their
corresponding pKa with the pH of the solution [187]. Thus, at pH 3.8 the net charge
of the protein homodimer results equal to 16 e and the protein molecular mass M
is 18675.6 Da. MD simulations were performed using the OPLS-AA force field
[188, 189], while water was described by the TIP3P water model [190]. A cutoff
of 7.5 Å was used for long-range interactions, and both electrostatic and van der
Waals interactions were handled using a smooth particle mesh Ewald summation
method (SPME) [191]. For the protein and the triglyceride, a first 20-ps simulation
in a vacuum with a time step of 1 fs was performed on the single molecule to relax
its initial structure. Before solvation with water or oil, the protein was centered in a
rectangular box with a minimum distance of any part of the molecule defined to be
at least 1 nm from box walls in order to satisfy the minimum image convention when
using periodic boundary conditions. According to the reproduced environment, the
box was filled with respectively 15994 water or 325 triglyceride molecules, plus 16
Cl− counterions to ensure the electroneutrality of the system. Thus, the resulting MD
box contains a total of 50694 or 56987 atoms in the case of protein in water or oil
bulk respectively. After a simple energy minimization to ensure that the system had
no steric clashes or inappropriate geometry, a 0.5-ns NPT (i.e., constant number of
particles, pressure, and temperature) equilibration simulation at ambient pressure (1
atm) and temperature (298 K) was performed. Pressure and temperature were fixed
using the Berendsen barostat and thermostat [192] and the Verlet algorithm was used
to integrate the equations of motion with an increased time step of 2 fs. To verify
that the system was at equilibrium, the fluctuations in the temperature, pressure,
density and potential energy were monitored. In particular, the average density
reached during the last 0.2 ns of equilibration simulation was equal to 1059.57 and
921.85 kg/m3 respectively for the protein in water and in the oil system, both with
fluctuations in the 0.1%. Finally, NVT (i.e., constant number of particles, volume,
and temperature) production simulations ranging from 2 to 6 ns were performed to
collect statistically averaged results by saving particle trajectories every 250 time
steps.



46 Coarse-grained molecular model

Fully atomistic model
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Fig. 3.1 Schematic diagram of the main stages followed in this work to develop the DPD
model. See section 3.3.2 for details of each step.

3.3.2 Coarse-graining procedure and parameter calibration

The main steps of the DPD model development are summarized in a schematic
diagram in Figure 3.1, in which each stage is explained in this section.

The first step toward a realistic DPD molecular model is to obtain the coarse-
grained (CG) representation of the molecules together with their full parameter
set of both inter- and intra-molecular interactions. For this scope, the Automated
Fragmentation and Parametrization (AFP) method is used and here a very brief
introduction to this approach is provided. For a fully detailed discussion on it, the
reader can refer to the work Ref. [193].

Starting from their fully atomistic representations, the molecules involved in
the investigated system are fragmented according to a scoring function, through
a simulated annealing function that cuts through bonds; the optimal bond fission
pattern is preserved and the fragments are stored. The scoring function is here
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Fig. 3.2 All-atom (a) and corresponding coarse-grained (b) model obtained via AFP of
Apovitellenin I. DPD beads are represented by colored fragments, highlighting the bond
fission pattern.

defined as:

S =

(
1− V

V0

)2

, (3.13)

where V is the volume of the fragment and V0 is the reference volume of a cluster of
three water molecules in its lowest energy conformation (i.e., the reference volume
used here is equal to 67.7 Å

3
as in the original AFP work [193]). In this approach,

molecule-unique fragmentation is used in order to preserve as much as possible of the
properties of the molecule. This means that the fragments are not database-unique,
as is customary in coarse-grained simulations, but completely specific to a given
molecule. By applying this fragmentation technique, the triglyceride molecule and
the homodimer Apovitellenin I are comprised of 20 and 500 beads respectively, while
each water bead corresponds to three atomistic water molecules. In particular, Figure
3.2 shows the all-atom (a) and the corresponding coarse-grained (b) representation
of the protein molecule.

In the AFP framework, the interaction DPD parameter ai j is split into two
contributions, one from the excluded volume and the second from the residual
interactions:

ai j = αEV viv j +αres
√

viv jβ∆Gres,i j , (3.14)

where vi = Vi/V0 is the scaled molecular volume of fragment i, β = 1/kbT , αEV

and αres represent two global adjustable parameters and ∆Gres,i j is the residual
Gibbs energy of mixing of a hypothetical equimolar mixture of fragments i and
j. The Gibbs energy of mixing was calculated through COSMO-RS calculations
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[194, 195], using the charge envelope of the fragments (the so-called sigma profiles).
The COSMO charge envelope is here computed via a modified version of AM1
[196–198], using atomic partial charges derived from the charge equilibration (QEq)
method [199]. By definition the residual Gibbs energy of mixing between identical
fragments is zero, i.e., ∆Gres,ii = 0, thus it follows trivially that aii is reduced only to
the excluded volume contribution and, in particular, for water bead self-interaction
aww = αEV . It is also important to point out here that the bead-size effect is taken into
account in the definition of DPD ai j parameter given in Eq. (3.14) by considering
the fragment volume scaled with respect to the reference volume, V0, of a cluster
of three water molecules. This allows us to consider a constant DPD base unit of
length, h, for all fragments irrespective of size or composition. As in the original
AFP work [193], here the value of h is assumed equal to 7.65 Å as the yardstick for
length in DPD approach. This value corresponds to five 3-mer water clusters per cell
of size h3, or, in terms of the DPD dimensionless unit system, this corresponds to a
density of 5 for water under ambient conditions. The soft-core repulsion potential
employed here is devoid of the short-range Lennard-Jones divergence. Also, the
typical long-range electrostatic Coulomb term is avoided completely by using the
close-contact electrostatic interaction of the COSMO model. Both interactions are
therefore replaced by a soft repulsive potential that is local, with a length scale
limited to the cutoff, rc. Hence, in the AFP approach, the fragment-specific chemical
information is condensed into only one parameter: the DPD a parameter. The
magnitude of the repulsion (not the spatial extension) is modified depending on the
volume of the underlying molecular fragment, and residual interactions.

In order to map the characteristics of the atomistic models into the DPD system,
MD simulations of protein in water and oil bulks were used to extract molecular
characteristics such as radial distribution functions as well as the distributions of
lengths and angles for molecules bonded with length and angular bonds. To make MD
and DPD models physically comparable, it is necessary to map atomistically detailed
trajectories into their corresponding coarse-grained representations considering a
length scale factor, h, to convert atomistic coordinates and MD box dimensions
into a CG model. When dealing with the triglyceride and the protein in which
their fragmentation information has been already well-defined through the AFP
approach, the mapped MD trajectories of such molecules are easily determined
by replacing the fully atomistic coordinates with the center-of-mass positions of
provided molecular fragments. However, in the case of atomistic water models,
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where the water particles move independently, their CG representation has to be
dynamically identified. Therefore, a clustering method is required to enable the
mapping of multiple water molecules into a single CG bead. Here, the water
molecules clustering algorithm proposed in the work Ref. [200] was employed,
which is based on a step-wise iterative nearest neighbor search algorithm. The
number of water molecules per bead in all clusters is kept constant and equal to
the degree of coarse-graining employed here, i.e., a 3 to 1 CG ratio, corresponding
to the number of clustering steps performed for each simulation time frame. This
represents the major advantage compared to other approaches where, instead, the
total number of beads in the system have to be provided [201], leading to some
issues converging with the desired number of equally sized clusters. Very briefly, as
the algorithm initialization, a grid of fixed-size cubes was superimposed onto the
MD simulation box and initial positions of bead centers were generated by randomly
choosing coordinates of water molecules from the first time frame. For each step of
the algorithm, an iterative search for the unique nearest water molecule was carried
out in the area adjacent to the unit cell in which the coarse-grained bead is located.
The unique nearest water molecule was defined by means of the Euclidean distance
from the center of mass of a CG bead. When all of the CG beads had the same
number of molecules assigned to them (equal to the CG ratio), the algorithm finished
and the positions of the beads were updated by calculating the center-of-mass of the
molecular clusters. Hence, for each MD simulation time frame, the water molecules
were divided into equally sized groups based on their proximity.

The mapped MD trajectories were used to extract radial distribution functions
(RDFs) of coarse-grained molecules. Thus, using the AFP method as a basis,
a further DPD parameter calibration was carried out by using the MD RDFs as
reference curves to be compared with those extracted from DPD simulations. Since
the RDF is solely determined by the conservative force [202], the repulsion force
coefficients were adjusted to match MD and DPD RDFs. As the specific fragment
pair interactions were defined in Eq. (3.14), the global adjustable parameters which
serve to define the mutual repulsive interaction between all the beads belonging to
a single type of molecule can be used to calibrate the DPD model. In particular,
αEV and the cutoff distance, rc, were used as fitting parameters, while for all the
fragment pairs the DPD-sigma parameter was set to the standard value of 3.0 [42]
and αres was kept equal to 6.1 as in the original AFP work [193]. Therefore, from
both MD and DPD simulations of protein in water and in oil bulk, only RDFs
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referring to all beads belonging to water, oil, and protein were extracted and the
results of the calibration are presented and discussed in section 3.4. Obviously, from
simulations of the binary systems only water-water, oil-oil, water-protein, and oil-
protein interactions can be exactly calibrated. However, the remaining interactions,
i.e., oil-water and protein-protein, must be determined to build the DPD model of
the ternary system. In particular, the oil-water αEV value was obtained by simply
fitting the experimental interfacial tension between purified soybean oil and water
[65], found to be equal to 31-32 mN/m and independent on the presence of salt [203].
For the protein-protein repulsive interaction, the same αEV value of water-protein
was arbitrarily chosen as a first guess. This value could be of paramount importance
since the self-protein interaction may affect the structural configuration of the protein
as well as the equilibrium and dynamics properties of the ternary system. The study
of protein-protein interactions needs therefore a deeper insight, which could be the
scope of future works.

The parameterization of intra-molecular interactions (bonds and angles) of CG
molecules was also based on MD simulations. The basic concept is to construct the
distribution function of each of these quantities from atomistic model simulations.
By using again the molecular fragment information obtained via AFP within the
atomistic MD trajectories, the distribution functions of bond lengths and bending
angles were calculated based on the center of the coarse-grained fragments. Then, a
robust and fast approach when dealing with hundreds of bond and angle interaction
types generated from the automated coarse-graining procedure employed in this
work (AFP) is to derive parameters from distributions directly [57, 204, 205], instead
of fitting each bond-stretching and bending angle potential obtained from Boltzmann
inversion with a harmonic approximation [206]. When assuming a harmonic bond
potential (Eq. (3.3)), the resulting distribution is a Gaussian that can be equated
with the distribution of the bonds. It follows that the equilibrium bond length, lH , is
simply the average of the distribution, and the bond constant, kS, can be expressed in
terms of the standard deviation of that distribution [57, 204, 205]. For angles, the
same would hold for harmonic potentials (Eq. (3.4)), except that the angle is bounded
between 0◦ and 180◦. This means that the distribution for a purely harmonic potential
will not be a Gaussian, but rather a Gaussian that is cut off at 180◦. However, a
reasonable procedure is to simply take the angle where the distribution is maximal
and treats that as if it was the average, equating it to the equilibrium angle, θH .
Taking the standard deviation to calculate the angle potential strength, kA, also is
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reasonable [57]. It is important to point out that this procedure is not able to capture
multiple maxima and/or minima in bond and angle distributions from atomistic
MD simulations [57]. Without further modification, bonded interaction parameters
directly derived from MD distributions can be used in DPD simulations by using a
shorter time step than that typically used in DPD works (i.e., ∆t = O(0.01) [42]).
In fact, the exact replication of the MD structures required the strength of bonds to
become too large for a relatively long time step, resulting in unstable simulations
[55]. Therefore, in order to preserve the distance and angular bond characteristics, a
dimensionless time step of ∆t = 0.001 was used to integrate the DPD equations of
motion [200].

3.3.3 DPD simulation parameters

To avoid using excessively large or small numbers and to simplify the calculations,
DPD systems were usually scaled by arbitrarily chosen base units. As was already
discussed in the previous subsection, the conversion factor h = 7.65 Å was here
employed as the base unit of length. The mass of one water bead consisting of three
water molecules equal to 8.974×10−26 kg, was used as the base mass unit. Both
MD and DPD simulations were performed at ambient temperature (298 K), giving
kbT = 4.11×10−21 J used as the base unit for energy, where kb is the Boltzmann
constant. The base time unit τ was estimated by evaluating the diffusion coefficient.
This is computed from both MD and DPD simulations by using the standard mean-
squared displacement (MSD) method through the well-known Einstein relation
[38]. By defining the scaling factor S = DW,Exp/DW,DPD = 7.63×10−9 m2/s, where
DW,Exp and DW,DPD are respectively the experimental water self-diffusion coefficient
at ambient conditions and the simulated one via DPD, the base unit used to convert
the reduced DPD time into real unit reads as follows:

τ =
h2

S
≈ 77 ps . (3.15)

Therefore, the real protein diffusion coefficient computed from DPD simulations
was simply determined by multiplying the simulated value for the scaling factor, S
[207]. Since no experimental measurement is available in the literature, the protein
diffusion D computed via MD and DPD were compared with three correlations
proposed for the prediction of protein diffusion coefficients in free solution, based
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on the molecular weight M (Eq. (3.16a) [208]), on the radius of gyration Rg (Eq.
(3.16b) [209]), and on both the molecular weight and the radius of gyration of the
protein (Eq. (3.16c) [210]), respectively:

D = 8.34×10−8
(

T
ηM1/3

)
, (3.16a)

D = 5.78×10−8
(

T
ηRg

)
, (3.16b)

D = 6.85×10−8

 T

η

√
M1/3Rg

 , (3.16c)

where η is the solvent viscosity, i.e., 0.894 and 50 cP at 25 ◦C for water [211] and
for soybean oil [212], respectively.

Several DPD simulation configurations were investigated in this work. In order
to match the coarse-grained characteristics from MD simulations, the binary systems
were reproduced using DPD. The MD box was scaled according to the length
conversion factor h and one CG protein molecule was located at its center. According
to the binary environment, the box was then filled with water beads or oil CG
molecules to obtain the overall DPD density ρ = 5. The DPD simulations were
performed with an equilibration period of 105 steps, then followed by a production
phase of 106 steps, saving particle trajectories every 250 steps. Once DPD parameters
have been calibrated as explained in the previous subsection, two DPD configurations
of the interfacial system were carried out in order to study the equilibrium properties
at increasing protein interface concentration ci and the protein adsorption at the
oil/water interface. Both initial configurations consisted of a central water phase
segregated by two oil phases, thus forming two planar interfaces in equidistant yz-
planes. The 50/50 oil-to-water bead ratio was kept constant for all DPD simulations
and both the number of water beads and oil CG molecules were adjusted to keep
the same overall DPD density of 5 when the protein molecules were also added in
the DPD box. The equilibrium simulations were conducted with increasing protein
interface concentration ci, which is simply calculated by multiplying the number of
the protein molecules at each interface for the protein molecular mass M, divided for
the constant interface yz-area expressed in real units. The protein molecules were
initially located at the oil–water interface to make sure that both interfaces contain
the same number at equilibrium in order to perform averages on both interfaces. For
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equilibrium DPD simulations, the box was an orthorhombic cell of reduced size
Lx ×Ly ×Lz, where Ly = Lz = 32 and Lx was properly adjusted up to 52 based on
the protein molecule number to allow both interfaces to be independent. Simulations
were run for 2.5×105 equilibration steps and for a production period of 106 steps,
saving time frame data for post-processing every 500 steps. Here the interfacial
tension, σDPD, was computed by integrating the difference between normal and
tangential stress across the interface separating the segregated components [213].
Thus, if the normal to the interface lies along the x-direction, the interfacial tension
is deduced from the local components of the pressure tensor:

σDPD =
1
2

∫
(p∗N − p∗T)dx =

1
2

∫ (
p∗xx −

1
2
(

p∗yy + p∗zz
))

dx , (3.17)

where p∗N and p∗T are the normal and tangential components of the pressure tensor
profile in reduced DPD units. The factor 1/2 before the integral sign is due to the
presence of two symmetric interfaces in the DPD simulation box when using periodic
boundary conditions. Since the oil droplets of a food emulsion have a diameter of the
order of microns [7], it is reasonable to neglect the curvature effect when modeling
the interfacial system at the nano-scale, thus allowing to use of the above formula,
valid for planar geometry only [213]. The conversion of σDPD to real units operates
as follows: σcalc =

kbT
h2 σDPD. The quantity σcalc can be directly compared with

experimentally measured interfacial tension. The free protein adsorption at the
oil/water interface was also studied by locating one protein molecule in the center
of an orthorhombic DPD box Lx ×Ly ×Lz, where Ly = Lz = 20 and Lx was ranged
from 40 to 56 in order to properly increase the mutual initial distance between the
protein center and the interface. In addition, the adsorption at the oil/water interface
was tested for an LDL-like particle configuration by initially creating a small droplet
of 15 oil CG molecules surrounded by one protein molecule. These latter DPD
simulations were performed with 2×105 equilibration steps and a production period
of up to 4×106 steps, saving simulation time frames every 500 steps to check if the
protein adsorption has taken place.

Apart from the water cluster algorithm, which was performed in the MATLAB
environment [200], all MD and DPD simulation setup, runs, and post-processing
analyzes were conducted within the CULGI software package [214], together with
all other tools and algorithms employed here.
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Table 3.1 Optimized parameters used in the thermodynamic model of protein adsorption
(from Eqs. (3.5) to (3.11)).

Parameter Optimized value

a 0.00625
ωmin [m2/mol] 1.9 ×106

ωmax [m2/mol] 4.9 ×107

n 565
ε 3.9×10−4

π∗ [mN/m] 22.5

3.3.4 Details of the thermodynamic model

As regards the thermodynamic model of protein adsorption, the equations of state
Eqs. (3.5) and (3.9) were solved together with the expression of the mean molar area
Eq. (3.8) to find the value of ω for each Γ value. Then, these values were included
in the isotherm of adsorption (Eqs. (3.6) and (3.10)) in order to obtain the surface
pressure profile as a function of the protein bulk concentration. To do this, further
parameter optimization was performed with Matlab to minimize the error between
the optimized curve of Eqs. (3.5) and (3.9) and the data from DPD simulations. The
optimized parameters used in the thermodynamic model have listed in Table 3.1.

3.4 Results and discussion

The results of the DPD model calibration explained in section 3.3.2 are shown in
Figure 3.3, where the distance is expressed in real units, and in Table 3.2. Using
the MD RDFs as references, the DPD RDFs were adjusted in order to best match
curve heights and shapes by calibrating both αEV and rc of molecule bead pairs.
These two terms define both the magnitude (via Eq. (3.14)) and the spatial extension
of the repulsive force (Eq. (3.2)). Typically, in standard DPD the cutoff value
also represents the base unit of length and, therefore, is often set equal to 1 in the
dimensionless unit [42]. In contrast, here the dimensionless value of rc resulting
from fitting the first peaks of RDF curves shown in Figure 3.3 was found to be equal
to 0.7. Hence, the cutoff, rc, and the length factor, h, were decoupled in order to
assure both the constant DPD number density of 5 and the repulsive force calibration.
The results of αEV fitting are summarized in Table 3.2. Although the oil-water αEV
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Fig. 3.3 Results of the DPD parameter calibration of water-water (a), water-protein (b), oil-oil
(c), and oil-protein (d) interactions based on matching RDFs of the mapped MD reference
model (dashed blue line) with corresponding RDFs extracted from DPD simulations (solid
red line).

turned out to be substantially smaller than all the others in Table 3.2, the overall
repulsion between water and oil beads was properly reproduced due to the two
contributions in Eq. (3.14) and a cutoff, rc, equal to 1 in this specific case, in which
a sophisticated calibration was not needed.

The molecular model is tested and the main findings are presented here, paying
particular attention to verifying the emulsifying behavior of Apovitellenin I at the
oil/water interface. First, preliminary structural and dynamic quantities of the protein
are estimated by performing both MD and DPD simulations of one protein molecule
in bulk phases. Then, the DPD simulation results of the ternary system are discussed
in terms of both equilibrium and dynamic aspects.

Table 3.3 reports End-to-End distance and radius of gyration mean values and
standard deviations of Apovitellenin I in water and oil bulks computed via MD
and DPD simulations. The MD values were averaged over the simulation time,
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Table 3.2 Values of the global parameter αEV used in Eq. (3.14) to define the mutual repulsion
between all the beads belonging to water, oil, and protein in the DPD model of this work.
The cutoff distance, rc, is equal to 0.7 unless otherwise specified.

αEV W Oil beads Protein beads

W 25a - -
Oil beads 8.5b 100 -
Protein beads 40 100 40c

aExactly corresponding to aww.
bValue obtained by fitting experimental interfacial
tension between soybean oil and water [203], with
a cutoff distance, rc, equal to 1.
cArbitrarily chosen equal to the water-protein value.

meanwhile, ten independent DPD simulations with the same initial configuration
were carried out from which the reported values are extrapolated by computing their
respective arithmetically averaged frequency distributions. It is important to recall
that Apovitellenin I is modeled here as a homodimer, so the two polypeptide chains
are labeled as 1 and 2 in Table 3.3 where the End-to-End distance is that between the
N-terminal and the C-terminal of each chain, while the protein radius of gyration
refers to the homodimer itself. By looking at mean values reported in Table 3.3, it can
be noticed that a good accordance between the two molecular techniques is achieved.
The largest differences are only related to the chain 1 End-to-End distance and the
radius of gyration of the protein in the water environment. The MD radius of gyration
data suggest that the protein is more compact in water than in the oil environment,
while an opposite trend is detected via DPD. Another considerable dissimilarity
regards the standard deviation values calculated with the two techniques. Both MD
and DPD were able to identify a smaller error of the respective quantity in oil than in
water bulk meaning a less flexible protein structure in the former environment than
in the latter. However, all the DPD standard deviations are significantly higher than
those obtained via MD. This might be due to two main reasons. First, combining
distributions from independent DPD simulations into a single arithmetically averaged
distribution involves that the variance of the averaged one is always at least as large
as the minimum of the variances of input distributions [215]. Secondly, the soft
potential applied in the DPD force field can provide less steric hindrance compared
to the Lennard-Jones potential used in MD. Moreover, the higher variation in DPD
than MD may be related to the lack of additional bond constraints for intra-protein
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Table 3.3 End-to-End distance and radius of gyration mean values and standard deviations of
Apovitellenin I in water and oil bulk phases computed via MD and DPD simulations.

MD DPDa

Apovitellenin I
in Water

End-to-End
distance [Å]

Chain 1 50.46±2.93 62.06±18.84
Chain 2 69.84±2.82 65.87±18.37

Radius of
gyration [Å]

24.98±0.50 35.67±5.26

Apovitellenin I
in Oil

End-to-End
distance [Å]

Chain 1 57.22±0.96 58.38±14.59
Chain 2 64.49±0.49 63.39±14.20

Radius of
gyration [Å]

27.04±0.13 29.39±2.84

aThe reported values are extrapolated from respective frequency distributions
arithmetically averaged over ten independent simulations.

molecular interaction [60, 216] in the present DPD framework, thus assuming a
completely flexible nature of Apovitellenin I without a specific secondary structure.
This latter explanation can be also given to the opposite trend of the mean value of
the protein radius of gyration reported by means of MD and DPD in the two bulk
phases.

Table 3.4 shows the comparison of diffusion coefficient values, D, of Apovitel-
lenin I in water and oil bulk calculated by means of three correlations found in the
literature (Eq. (3.16) [208–210]) and computed from MD and DPD simulations.
MD protein radius of gyration in the respective solution reported in Table 3.3 are
used in expressions based on a such property (Eqs. (3.16b) and (3.16c)). Table 3.4
also reports the diffusion errors in terms of ranges of variability. In particular, the
accuracy of correlation results was taken from the corresponding previous works
[208–210], meanwhile MD and DPD uncertainties were directly estimated from sim-
ulations. As can be seen, both correlation and simulation results show a difference
in the protein diffusion coefficient of at least one order of magnitude between the
water and oil solution. The larger diffusion coefficient in water than in oil is most
likely due to the larger oil viscosity than the water one which can be responsible for
the limited mobility of Apovitellenin I in the oil phase. By comparing the results for
the water environment, MD and DPD give a remarkable agreement between them
although all the correlations indicate a slightly higher value. On the other hand,
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Table 3.4 Comparison of diffusion coefficient values of Apovitellenin I in water and oil
bulk as predicted by three correlations (Eq. (3.16)) and as computed from MD and DPD
simulations.

D×10−12 [m2/s]
Apovitellenin I

in Water
Apovitellenin I

in Oil

Correlation results
Eq. (3.16a) [208] 82.3 – 127.2 1.47 – 2.27
Eq. (3.16b) [209] 65.7 – 89.0 1.10 – 1.45
Eq. (3.16c) [210] 80.6 – 97.0 1.40 – 1.65

MD 22.7 – 24.0 0.296 – 0.297
DPDa 20.9 – 26.1 1.97 – 2.92

aAveraged on ten independent simulations.

the accordance with simulation results is relatively lost when dealing with oil bulk,
but the DPD value is noticeably close to those predicted via empirical correlations.
It is also important to highlight here that the diffusion coefficient of proteins in
solution computed by molecular simulation techniques tends to be underestimated
when compared to the true value [217]. That being said, although it is really hard
to validate the data reported in Tables 3.3 and 3.4 without experimental evidence,
it is possible to affirm that molecular modeling techniques lead to very reasonable
results.

Let us move now on to the discussion of the ternary system made by oil, water,
and protein via DPD simulations. In order to study the equilibrium properties of such
a system, the starting configuration of the DPD box consists of two symmetrical inter-
faces due to the periodic boundary conditions applied in the three directions. Figure
3.4 shows the equilibrated DPD boxes representing the oil-water interface where
Apovitellenin I acts as the surfactant at increasing protein surface concentrations
and by highlighting the planar interfaces. Figure 3.5 reports profiles of the number
density of oil, water, and protein (i) and stress profiles (difference between normal
and tangential pressures, p∗N − p∗T) (ii) along the normalized x-direction normal to
the interfaces at increasing protein interface concentrations corresponding to those of
Figure 3.4 ((a), (b), and (c)). The dashed lines represent the interface position in the
initial DPD configuration. It points out the initial phase separation and the resulting
mutual interpenetration of each component at equilibrium. The profile plots show
the symmetry of the equilibrated ternary system and define the interfacial region that
contains the protein layer and the bulk region that lies between the interfaces. As
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it can be seen in Figures 3.5 (a.i), (b.i) and (c.i), the most interesting result is that
the protein molecules penetrate the water bulk to a much larger extent than the oil
bulk, especially at higher interface protein concentrations. As expected by looking
at Table 3.2, this is most likely due to the higher overall repulsion between protein
and oil than that between protein and water. By looking at Figures 3.5 (a.ii), (b.ii),
and (c.ii), the mechanical equilibrium of the system is reached in both oil and water
phases since the stress profiles fluctuate with small oscillations around zero in the
bulk regions. As a consequence, the local contribution to the interfacial tension is
located only at the interfaces, with an increase in the stress in the protein region.
Therefore, the accuracy of the interfacial tension calculation is achieved. In order
to avoid size effects along x-axis and allow both interfaces to be independent, the
bulk phases must be large enough to reach the mechanical equilibrium by increasing
the Lx dimension as the number of protein molecules increases keeping the interface
yz-area constant.

Figure 3.6 reports the trend of the protein layer thickness (a), the protein mean
radius of gyration, ⟨Rg,Protein⟩ (b), and, finally, the interfacial tension (c) as a func-
tion of the interface concentration of Apovitellenin I. Three independent DPD runs
were carried out and the averaged values are shown together with the corresponding
standard deviations. Error bars are generally smaller than symbols indicating high re-
producibility of the current DPD model. The most remarkable result is the interfacial
tension decrease as the protein interface concentration increases. This trend clearly
evidences the capability of Apovitellenin I to behave as a surfactant. As expected, the
minimum value of the interfacial tension is reached at the saturation of the interface,
which no longer allows direct interactions between oil and water. As shown in
Figure 3.6(c), the saturation is obtained at the protein interface concentration equal
to 3.0-3.5 mg/m2, where the interfacial tension ranges between 8 and 10 mN/m. The
maximum protein coverage (about 3.0 mg/m2) of the present system is in line with
that observed in an experimental work where the oil-in-water emulsion stabilized by
flexible proteins (caseins) was studied [218]. Moreover, in the work Ref. [132], it
is reported that the equilibrium interfacial tension for the oil-water interface with
adsorbed LDL film at pH 3 is 9.5 mN/m, which is markedly consistent with our
result. It is also important to highlight that when no protein molecules are added,
the interfacial tension between the water and oil phase modeled as homotriglyc-
erides is accurately reproduced in agreement with the experimental value [12, 203].
⟨Rg,Protein⟩ (Figure 3.6(b)) is computed from the mean value of the protein Rg distri-
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Fig. 3.4 Snapshots of equilibrated DPD boxes of the interface between oil (yellow) and
water (blue) where Apovitellenin I (red) acts as the surfactant at increasing protein interface
concentration, ci ((a), (b), and (c)).
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bution, further averaged over three DPD simulations. Therefore, ⟨Rg,Protein⟩ provides
information about the conformation and packing of protein molecules at the interface.
At low concentrations, the protein radius of gyration is higher than its corresponding
DPD value in both bulk situations (see Table 3.3). This can indicate that, when very
few protein molecules are absorbed in the oil-water interface, they assume a more
elongated conformation than that in water or oil solution. Meanwhile, at increasing
protein concentration, the mean radius of gyration of Apovitellenin I at the interface
decreases to a stable value and becomes comparable to that in free solution. Thus,
the packing mode of protein molecules at the interface can be considered similar
to that observed in bulk phases, when the protein interface concentration is high.
Regarding the thickness of the protein layer (Figure 3.6(a)), it is directly derived from
the width of the protein density profile along the x-direction normal to the interface
surface (see Figures 3.5(i) for reference). As expected, the protein layer thickness
increase from 2 to 13 nm as the protein interface concentration increases until the
saturation of the interface where the maximum and stable value for the thickness
is reached. In the work Ref. [218], it is reported that the adsorbed layer of casein
molecules at the maximum coverage of the oil-water interface was about 10 nm thick
so that the protein molecules protrude further into the solution, as also shown in this
work (Figures 3.4 and 3.5(i)). Moreover, previous works [124, 219] found that the
interfacial layer surrounding oil droplets in mayonnaise has an average thickness of
around 14 nm, which is comprised of surface-active proteins and lecithin-protein
granules from egg yolk. Those findings are reasonably in accordance with our results.
It is also straightforward to point out here that the emulsifier behavior of only one
LDL apoprotein is tested since it is identified as one of the most surface-active.
LDL phospholipids may also have an effect on the interfacial tension of LDL-based
emulsion by a further decrease of its saturation value.

In order to study the adsorption of Apovitellenin I at the oil-water interface,
DPD simulations of a box containing two equidistant interfaces and one free protein
molecule initially located in the center of the water phase were carried out. So, the
protein diffusion from the aqueous environment towards the oil-water interface is
investigated as represented in Figure 3.7, where an illustrative example shows the
three main steps of the protein adsorption mechanism. First, the protein moves to the
interface (a), then a portion of the molecule initiates the protein adsorption (b) and,
after a certain time, Apovitellenin I is totally adsorbed at the oil-water interface (c).
Apparently, there is no specific reason for the protein to be preferably adsorbed at
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Fig. 3.6 Protein layer thickness (a), protein mean radius of gyration, ⟨Rg,Protein⟩ (b), and
interfacial tension (c) as a function of the interface concentration of Apovitellenin I. Error
bars are estimated from three independent DPD simulations.
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the right rather than at the left interface as the two sides are symmetrical. Moreover,
protein desorption has not been observed meaning that the adsorption process is
most likely irreversible as also reported in previous experimental works [1, 19]. To
estimate the time required by a protein molecule to be fully absorbed as a function of
its distance from the oil-water interface, multiple DPD simulations were performed
by increasing the box size in the x-direction normal to the interfaces and the results
are summarized in Figure 3.8. Since the oil-to-water bead ratio is kept constant and
the protein molecule is placed in the center of the water phase at the beginning of
the simulation (see Figure 3.7 for reference), the abscissa of Figure 3.8 represents
the initial distance between the geometric center of the protein molecule and the
oil-water interface. The y-coordinate of Figure 3.8 expresses the time elapsed from
the start of the simulation to the moment in which the protein molecule is totally
absorbed in one of the interfaces and it is estimated by visual inspection of simulation
time frames. As also done in Figure 3.6, for each point three independent DPD
simulations were carried out from which the mean value and the standard deviation
were extracted. Although the error bars are relatively large, a linear trend passing
through the origin of the axes can be identified in the range of investigated distances.
The slope of 0.978 ns/Å can be considered as an estimation of the required time of
a liberated Apovitellenin I molecule to be totally adsorbed at a free interface as a
function of their mutual distance.

As already stated in section 2.2, LDL particles act as vectors of surfactant
constituents (e.g., Apovitellenin I) that could not be soluble in water until they reach
the interface. Therefore, a DPD simulation of an LDL-like particle with a lipid core
surrounded by one molecule of Apovitellenin I was performed, and the adsorption
mechanism at the oil-water interface was tested. Although it is clear that this
structure is far from being a realistic representation of an LDL particle, surprisingly
the adsorption process proposed in the works Refs. [1, 22] is qualitatively reproduced
as it can be seen in Figure 3.9 (Multimedia view). Indeed, first, the LDL-like particle
diffuses in the water bulk (a) until the protein situated on the particle surface comes
into contact with the interface causing the unfolding of the LDL-like particle (b).
Thus, the protein molecule initiates the LDL-like particle disruption by its anchorage
at the oil-water interface. Then, the neutral lipids are released from the particle core
and merge with the oil phase, while the protein molecule adsorbs at the interface
(c) (see also Figure 1.1 for the sake of comparison). Since the system dimensions
of Figure 3.9 (Multimedia view) are the same as those represented in Figure 3.7, a

https://doi.org/10.1063/5.0079883.1
https://doi.org/10.1063/5.0079883.1
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Fig. 3.7 Snapshots of the DPD simulation showing an illustrative example of the adsorption
process of Apovitellenin I (one free molecule in red) at the interface between oil (yellow)
and water (blue). The most significant steps of the adsorption mechanism are successively
represented in (a), (b), and (c).
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Fig. 3.8 Trend of the time required by one free molecule of Apovitellenin I to be fully
adsorbed at the oil-water interface as a function of the initial distance between the protein
geometric center and the oil-water interface. Error bars are estimated from three independent
DPD simulations.
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general comparison can be made between two configurations, namely the liberated
protein and the LDL-like particle. In particular, the adsorption time of the LDL-like
particle is significantly higher than that of the free protein. This can be intended as a
greater stability of Apovitellenin I when surrounding the LDL-like particle rather
than as a free molecule, also confirming that the liberated protein is supposed to be
almost insoluble in water. Finally, it is important to remark that the representation
of the LDL-like particle here presented must be considered qualitative, since both
LDL size and its specific composition, namely including also the lipid distribution
of the LDL core and all surfactant components situated on the LDL surface (e.g.,
phospholipids and other apoproteins), were not considered in the analysis.

3.4.1 Application of the thermodynamic model of protein adsorp-
tion

Once the optimized parameter set was obtained (Table 3.1), it is verified that the
equation of state of the thermodynamic model of protein adsorption (Eqs. (3.5) and
(3.9)) fits the data obtained from DPD simulations (Figure 3.6(c)) with an acceptable
error as shown in Figure 3.10. Surprisingly, a very good agreement is also noticed
between the values of Apovitellenin I with those experimentally obtained for the
β -casein at the air-water interface [2]. This shows that these two proteins have a very
similar behavior which is typical of flexible protein surfactants [73, 74]. Therefore,
this consideration justifies the choice of using the data of β -casein to validate the
approach employed here to link different computational methods, namely MetaD
and DPD, to obtain a macroscopic property (see also chapter 2 for more details).

To obtain a complete thermodynamic description of adsorption for the Apovitel-
lenin I, there is only the adsorption equilibrium constant b to determine by means of
Eq. (3.12). As reported, b only depends on the value of ∆Gads. Therefore, from the
metadynamics simulation of Case 1 shown in chapter 2, it was obtained the variation
of the Gibbs free energy between the protein in the bulk state and the protein in
the adsorbed state (Figure 2.8). Once the constant of adsorption was obtained, it is
inserted into the expression of the adsorption isotherm (Eqs. (3.6) and (3.10)) to find
the value of the protein bulk concentration for each value of π and Γ obtained from
the DPD simulations (Figure 3.6(c)), as reported in Figure 3.11. Although the bulk
concentration values appear to be relatively small compared to those of β -casein
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Fig. 3.9 Snapshots of the DPD simulation showing the adsorption process of an LDL-like
particle with a lipid core (bright yellow) surrounded by one molecule of Apovitellenin I
(red) at the interface between oil (yellow) and water (blue). The most significant steps of the
adsorption mechanism are successively represented in (a), (b), and (c) (Multimedia view).

https://doi.org/10.1063/5.0079883.1
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Fig. 3.11 Variation of the surface pressure versus the protein bulk concentration of Apovitel-
lenin I.

[2], there are no experimental data of Apovitellenin I to directly compare this result.
Nevertheless, this trend represents a prediction of a macroscopic property that is not
easy to experimentally estimate for the protein under investigation. Since this profile
only depends on the value of b and, in turn, on the Gibbs free energy of adsorption
∆Gads, the approach and results proposed are eventually validated in section 2.5 by
studying the β -casein adsorbing at the air-water interface whose value of ∆Gads is
available in the literature [69, 74]. So it is reasonable to consider the trend of Figure
3.11 a valid result.

3.5 Conclusions

Although egg yolk is widely used as an emulsifier in many food emulsion prepara-
tions, little experimental research on emulsifying properties of its individual com-
ponents has been carried out since their extraction and isolation from the egg yolk
complex matrix turned out to be difficult. Hence, this work focuses on the molecular
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model of an oil/water interface stabilized by one of the most surface-active proteins of
egg yolk LDLs, called Apovitellenin I. In order to take into account the system size,
composition, and the equilibration time needed by macro-molecules to re-arrange at
interfaces, the molecular modeling technique here proposed is the Dissipative Parti-
cle Dynamics approach. Once the chemical species were determined in section 2.2,
especially the biomolecule that should act as a surfactant at the oil/water interface, an
automated coarse-graining procedure was carried out on the molecules involved in
the ternary system. In DPD systems the intended physical properties are determined
by means of a parameter calibration, which was here based on coupling DPD with all-
atom Molecular Dynamics simulations of a single protein molecule in two different
solvents, water and oil. Thus, both inter- and intra-molecular interactions employed
in the DPD system are solely determined by matching the structural data from the
atomistic simulations. The model was designed to test the most relevant physical
properties of the protein studied, especially its emulsifier behavior. The results of
MD and DPD simulations are compared in terms of protein structural and dynamics
properties (radius of gyration, end-to-end distance, and diffusion coefficient), show-
ing a good agreement between the two molecular techniques. Then, the oil-water
interface system was simulated via the DPD technique. In particular, the present
molecular modeling approach was able to properly describe the protein surfactant
behavior by interfacial tension decrease at increasing protein surface concentration.
The protein density profile, layer thickness, and adsorption time at the oil-water
interface were also investigated, giving reasonable results in line with experimental
evidence of similar protein systems. In addition, the adsorption mechanism of an
LDL-like particle is qualitatively reproduced. A thermodynamic model of protein
adsorption was applied to evaluate the increase of the surface pressure at increas-
ing protein surface and bulk concentration. In particular, the equation of state for
the Apovitellenin I presents a very similar trend of another protein surfactant, the
β -casein. The Gibbs free energy of protein adsorption at the oil-water interface
extracted from metadynamics simulations was linked to the DPD simulations to
obtain a complete description of Apovitellenin I as a surfactant. Therefore, the mod-
eling method here presented shows how computer molecular simulations can greatly
help in the comprehension of food emulsion behavior. In general, this work reports
how molecular modeling techniques can be linked together not only to reproduce
qualitative behaviors but also to quantitatively predict properties that are difficult to
estimate experimentally.
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These results are encouraging and could be a starting point to explore the role
of other surfactant molecules from egg yolk with an analogous molecular modeling
method. In fact, in future works, the thermodynamic model can be applied by
considering not only the single protein but also the influence of phospholipids or
other competitive proteins for adsorption. Moreover, it can be also interesting to
explore the critical surface concentration of phospholipids at which the protein is
able to adsorb at the interface. This may represent an important application of the
method proposed since the greatest synergistic effect between phospholipids and
proteins in decreasing the surface tension can be studied and, as a consequence, a
better understanding of the stability of food emulsions can be achieved. Additionally,
starting from the thermodynamic model, a kinetic model can be developed to evaluate
the decrease of the surface tension over time and, eventually, these findings can be
used to improve the mixing time in food emulsion production processes. Moreover,
the main findings of this work together with non-equilibrium studies at the mesoscale
will pave the way for a better understanding of the breakage and coalescence events
of the oil droplets occurring in the food emulsion preparation.



Chapter 4

Scaling of the coarse-grained
molecular model

4.1 Introduction

In this chapter, applications of a scaling scheme to oil-water interfacial systems
are investigated by means of DPD, also including a coarse-graining procedure
for the surfactant molecule referring to chapter 3. Instead of transport processes
(viscosity), particular attention is paid to equilibrium properties such as the interfacial
tension, highlighting the advantages and limits of the proposed scaling scheme for
different levels of coarse-graining. Hence, the combined coarse-graining and scaling
procedure are tested for planar interfaces with and without surfactants and the main
findings are, eventually, compared with those of the previous chapter. Finally,
an example of simulating a droplet configuration is also illustrated and discussed.
Therefore, the main aim of this chapter is to study the effects of up-scaling the DPD
model to different coarse-graining levels by conserving the equilibrium properties of
interfacial systems.

This chapter is structured as follows: in section 4.2 a general background of the
scaling relations is illustrated; simulation details are provided in section 4.3, together
with all assumptions and simplifications of the modeling approach employed; then,
the main results are shown and discussed in section 4.4, and, finally, section 4.5
reports conclusions of this chapter.



74 Scaling of the coarse-grained molecular model

4.2 Theoretical background

An overview of the standard Dissipative Particle Dynamics (DPD) method is already
provided in section 3.2.1 and can be also found elsewhere in the literature [40–
42, 87, 185]. Therefore, here only the main concepts of the scaling procedure
employed in this chapter are presented.

Only the definition of the conservative force is recalled since it is involved in
studying the static properties of equilibrium systems [42, 87, 200, 220]. In this
chapter the conservative force FC

i j felt by bead i includes contributions from repulsive
interactions with surrounding beads and, possibly, contributions due to the springs
connecting bead i to other beads in the same molecule. The repulsive force Fr

i j,
which is modeled as a soft repulsion between beads i and j, is already defined in
Eq. (3.2). When dealing with a chain molecule, an additional conservative term is
considered to maintain bonds between neighbor beads. In this study, the bonds were
modeled using a harmonic spring quadratic potential given in Eq. (3.3).

4.2.1 Scaling Relations

In this section, the basic concepts of scaling DPD simulations are presented, together
with the nomenclature and notation originally used in the work Ref. [93].

As already stated, the operation of coalescing ν physical particles into one DPD
bead is denoted as “coarse-graining” [221]. Being N the total number of DPD
beads in a simulation, it holds that νN = Nphys, with Nphys is the number of physical
molecules represented in the simulation. In order to compare DPD simulations
with different coarse-graining levels ν and ν ′, the scaling ratio φ = N/N′ = ν ′/ν

is introduced. Therefore, functions of φ are identified to describe the scaling of
various quantities at different coarse-graining levels and these scaling expressions
refer to relations between the respective parameters of two systems with different
coarse-graining levels ν and ν ′. When φ > 1, this means that the same physical
space (L′ = L) is represented by a smaller particle density since each DPD bead in
the system denoted by ν ′ contains a larger number of physical particles. In contrast
with the results of work Ref. [221] where the bead density ρ is decreased to ρ ′

while keeping relevant properties (in particular the particles’ radius of interaction)
constant, here an alternative scaling process is employed. When changing the level
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of coarse-graining for the DPD particles, their number is accordingly scaled and
their size (radius of interaction) is adjusted in order to keep instead the relative
overlap of the interacting particles constant. Hence when a system with many DPD
beads is mapped onto one with fewer but larger and heavier particles, the interaction
parameters have to be changed in order to maintain the overall system properties.
The following scaling relations in three dimensions are therefore here employed
[93]:

ν
′ = φν , N′ = φ

−1N ,

m′
i = φmi , ρ

′ = φ
−1

ρ ,

a′i j = φ
2/3ai j , r′c,i j = φ

1/3rc,i j ,

σ
′
i j = φ

5/6
σi j , γ

′
i j = φ

2/3
γi j ,

ε
′ = φε , τ

′ = φ
1/3

τ ,

(4.1)

where ε = kbT and τ are energy and time scales, respectively, while kb stands for
the Boltzmann constant and T for the temperature. With these scaling relations,
the same physical system shares properties, such as mass density, temperature, and
compressibility [93, 95], but it is represented by different coarse-graining levels,
using different length and time scales. As it is customary in DPD modeling, energy,
mass, time, and length are expressed in reduced units while parameters in Eq. (4.1)
have to be considered as dimensional quantities [93]. Indeed, the mass of a single
DPD particle, force cutoff radius, and thermal energy are typically employed as basic
units in DPD. The length, mass, time, and energy of the system are, thus, not defined
explicitly but in terms of these DPD units [42]. It is also shown that the velocity
increments ∆v obtained from integrating the forces are unchanged when the scaling
is combined with the according reduction of units, which implies that the relative
particle motions are unaffected by scaling in the reduced unit systems (denoted by a
tilde) [93]. Then when going to the reduced units of the primed system, it gives that
for the reduced parameter ãi j:

ãi j
′ = a′i j

r′c,i j

ε ′
=

φ 2/3φ 1/3

φ
ai j

rc,i j

ε
= ãi j , (4.2)

since ai j scales like energy over length. Similarly, it follows for the reduced γ̃i j:

γ̃i j
′
= γ

′
i j

r′2c,i j

ε ′τ ′
=

φ 2/3φ 2/3

φφ 1/3 γi j
r2

c,i j

ετ
= γ̃i j , (4.3)
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since γi j scales like energy over length and velocity. Finally, from the fluctuation-
dissipation relation [42] it gives again that:

σ̃i j
′
= σ̃i j . (4.4)

These relations indicate that the two coarse-graining systems are stochastically
equivalent and, therefore, every system with the same values of the reduced variables
ãi j, γ̃i j, and σ̃i j have the same state space [93, 95]. This implies that, in reduced
units, a DPD calculation performed for a system with small extensions and over
a small time interval is numerically identical to one for a much larger system and
covering a longer time range. As a result, it can be shown that DPD is a scale-free
(truly mesoscopic) method when dealing with simple bulk fluids [93, 95]. The
independence of scale for these systems cannot necessarily be upheld for other types
of interactions, namely binary mixtures of liquids A and B where more conservative
interaction parameters are employed to describe the relative repulsion, such as aAA,
aAB, and aBB. Following the scaling relations in Eq. (4.1), the scale independence
holds for bulk interactions (aAA and aBB) because the energy associated with an
individual DPD particle scale linearly with φ , i.e., it is made proportional to the
number of molecules a DPD bead represents. On the other hand, aAB is a surface-
dependent interaction parameter that determines interfacial energy and therefore may
be expected to scale differently [93, 94]. However, in this work, the original scaling
relations in Eq. (4.1) are used for any pair interaction i, j and the relative effects will
be discussed in section 4.4, in particular as regards the interfacial tension.

When dealing with bonded interactions, the following scaling relations for the
parameters kS and lH of the harmonic spring quadratic potential (Eq. (3.3)) are
employed:

k′S = φ
1/3kS , l′H = φ

1/3lH , (4.5)

simply obtained by dimensional analysis of units, instead of a more sophisticated
method [97]. Indeed, the stiffness parameter kS scales like energy over squared
length, while lH scales like the length as being the equilibrium length of the bond
constraint.
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4.3 Simulation details

In this section, the details of DPD simulations performed are presented, together
with the appropriate approximations and simplifications adopted. Two case studies
are investigated here: first, the interfacial system of a binary mixture modeled via a
standard parameterization for the oil and water liquids; second, the ternary system
where a protein surfactant molecule is introduced and modeled accordingly to chapter
3. For the first case, the effects of applying the scaling relations in Eq. (4.1) even to
a standard interfacial system are studied and the resulting outcome is used for the
second case to scale up the ternary system by comparing the equilibrium proprieties
of the reference model with those of the up-scaled one. The last example of a droplet
configuration is also provided in order to illustrate the capability of the scaling
approach to maintain the domain conformation for multi-component systems.

The simple oil/water interfacial system was simulated in an orthorhombic box
of constant size 2L×L×L with L = 50 (in absolute units) with periodic boundary
conditions, representing the same physical space for different coarse-graining level
ratio φ where DPD beads have different radii. This can be seen in Figure 4.1 where
an example of the simulating boxes of the interfacial oil/water system for φ = 1
(a) and for φ = 100 (b) are reported, highlighting the decrease of the DPD particle
number density due to the scaling approach. The initial configuration consisted of a
central water phase segregated by two oil phases, thus forming two planar interfaces
in equidistant yz-planes. The 50/50 oil-to-water bead ratio was kept constant for all
DPD simulations for this case at increasing coarse-graining ratio φ . By denoting
the oil bead with O and the water bead with W, typical simulation parameters [42]
in absolute units for φ = 1 are rc,OO = rc,WW = rc,WO = 1, mO = mW = 1, ρ = 3,
γOO = γWW = γWO = 4.5, σOO = σWW = σWO = 3, aOO = aWW = 25, and aWO

ranging from 50 to 100. These parameters have then been scaled according to Eq.
(4.1) for other coarse-graining values of φ . Following the energy and time scaling in
Eq. (4.1), DPD simulations were run with a time step ∆t = 0.02τ for 104 equilibration
steps and for a production period of 5×104 steps. Pressure and interfacial tension
were then measured from simulations. In particular, the interfacial tension (IFT)
was computed by integrating the difference between normal and tangential stress
across the interface separating the segregated components [213], following the same
definition given in Eq. (3.17) here considered in physical units.
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Fig. 4.1 Snapshots of DPD boxes of the planar interfaces between oil (yellow) and water
(blue) for φ = 1 (a) and for φ = 100 (b).
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The second case, where the scaling approach was tested, focused on reproducing
a ternary system made by water, oil, and protein surfactant, which was investigated
in chapter 3, thus labeled here as the reference model for φ = 1. The general idea is
therefore to scale the DPD model up to the protein molecule level by maintaining the
appropriate differences between the three phases. In the reference model, the protein
surfactant was modeled as a chain molecule with bonded interactions. Here this level
of detail will be lost but favoring instead the mutual repulsion with the remaining
two phases (oil and water). First of all, the new coarse-graining level ν ′ (and φ ) was
decided in order to represent the protein molecule as a single DPD particle or as two
bonded beads. In line with the volume equivalence of DPD particles employed in
previous works [83, 193, 200], the coarse-graining level ratio φ = ν ′/ν was chosen
by referring to the protein molecule size, namely by comparing the bead volume
of the primed system with that of the reference model. As it has been shown, the
protein molecule assumed an almost stable mean radius of gyration of about 36.5
Å after a certain surface concentration at the oil/water interface (Figure 3.6(b)). As
a first guess when the protein molecule was modeled with a single DPD bead, this
value is then assumed as the radius of the sphere whose volume is compared with
that used in the reference model for defining the coarse-graining level ν , namely
the volume of a cluster of three water molecules [193]. This leads to preserving
bead-size effects when dealing with chain molecules [97, 193], instead of simply
comparing the number of beads representing the protein molecule in the reference
model. So the coarse-graining ratio φ was defined as the ratio of particle volumes:
3008 and 1504 for coarse-graining the protein as a single bead (P) and as two bonded
beads (H and T), respectively (Figure 4.2). Therefore, the scaling procedure was
applied to the ternary system with these values of φ , making the comparison with
the reference model. Water (W) and oil (O) beads are then represented by taking into
account the coarse-graining ratio φ respectively employed. While the water bead in
the primed system is made by coalescing ν ′ number of physical water molecules, oil
was also modeled as a chain molecule in the reference system, thus the ratio between
the protein and oil molecular volumes gives the number of oil molecules gathered to
represent the O bead in the primed system.

As it was done for the simple O/W interfacial system, all DPD simulations of
the ternary interfacial system were performed in an orthorhombic box of constant
size 2L×L×L with L = 128 (in absolute units) with periodic boundary conditions.
This box size was employed in order to simulate a number of total particles N′ large
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Fig. 4.2 Schematic representation of the coarse-grained protein molecule in the reference
DPD model (chapter 3) with φ = 1 (a) and in the up-scaled DPD model with φ = 3008 (b)
and φ = 1504 (c).
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enough to gather statistically relevant results. For the interfacial system, the 50/50
oil-to-water bead ratio was again kept constant, and both the number of water and oil
beads filling the simulation box was adjusted to keep the same overall number density
ρ ′ when the protein beads were also added in the DPD box. Indeed, simulations
were performed to study equilibrium proprieties of the interfacial system, such
as the interfacial tension, at increasing protein surfactant concentration, where its
surface number density was calculated as will explain in Appendix A. The initial
configuration again here consisted of a central water phase segregated by two oil
phases, thus forming two planar interfaces in equidistant yz-planes. The protein
molecule beads were initially located at the oil–water interface to make sure that
both interfaces contain the same number of surfactants in order to perform averages
on both interfaces. In line with chapter 3 for φ = 1, simulation parameters in
absolute units are ρ = 5 and γi j = 4.5, σi j = 3, for any bead pair i j, then scaled
according to Eq. (4.1) for corresponding coarse-graining values of φ (3008 or 1504).
m′

P = 2m′
H = 2m′

T is determined by the ratio between the molecular mass of the
protein and that of three water molecules, while m′

O by the ratio of the oil molecule
mass and that of three water molecules multiplied for the number of oil molecules
coalesced in the O particle based on the φ value used. As regards the repulsion ai j

parameters, they are listed in Table 4.1 and, apart from rc,WO = 1, rc,i j is equal to 0.7
according to chapter 3 for φ = 1. Also, these parameters have been scaled following
Eq. (4.1). It is straightforward to underline here that self-repulsion parameters of oil
and water (aWW and aOO) have been obtained by respective bulk simulations. Since
the pressure of bulk fluids is independent of the coarse-graining ratio φ by means of
Eq. (4.1) [93], aWW was exactly the same used in the reference model (chapter 3),
while aOO was determined by letting the oil bulk phase pressure in the primed system
being the same as for φ = 1 (results not shown). The inter-repulsion parameters were
obtained in order to give the best matching with the interfacial tension values as it will
be shown in section 4.4. In particular, three parameterization cases have been tested
for the P bead when the protein molecule was modeled as a single particle while a
clear distinction between the hydrophilic (H) and hydrophobic (T) part was made if
the protein was described by two beads. Therefore, when applying such a coarse-
graining procedure, the obtained repulsion parameters were still representative of
surfactant interactions, however, the level of molecular details was much smaller
than the case of φ = 1. Moreover, the harmonic potential parameters used for the
bond between H and T beads are kS = 400 and lH = 1, as a first guess, then scaled
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Table 4.1 Repulsion parameters ai j used in this chapter. Note that these parameters have
been then scaled according to Eq. (4.1) based on the value of φ employed.

ai j W O P H T

W 25 - - - -
O 16.5 50 - - -

P
case 1 60 90 30 - -
case 2 70 105 35 - -
case 3 80 120 40 - -

H 20 200 - 15 -
T 90 40 - 15 15

according to Eq. (4.5). Following again the time and energy scaling in Eq. (4.1),
these DPD simulations were performed with a time step ∆t = 0.001τ for 3× 104

equilibration steps and a production period of 105 steps. Density profiles, pressure,
and interfacial tension were then measured from simulations. Here the interfacial
tension was calculated again as reported in Eq. (3.17).

An illustrative test was also conducted by simulating an oil droplet in water bulk
in presence of protein surfactants at equilibrium in order to investigate the capabil-
ity of the parameterization employed and the scaling procedure for an additional
interfacial system setup. For both φ = 3008 and φ = 1504, the initial conditions and
the physical space simulated are the same. Being R = 65 the initial radius of the
sphere containing the oil phase, DPD simulations were performed in a cubic box
with L = 4R. As in the previous case, these box dimensions were used to simulate
a number of total particles N′ large enough to gather statistically relevant results.
The sphere was then filled with oil beads and the remaining space with 700 protein
molecules (single bead or two-bead molecule depending on the value of φ adopted)
and with a number of water particles in order to have an overall ρ = φρ ′ equal to
5. The same simulation parameters were employed and, in particular, only case 3
of Table 4.1 was studied for the P bead type parameterization. Simulations were
run for a total of 2.5×105 steps, out of which 5×104 steps are used to equilibrate
the system, saving time frame data for post-processing every 250 steps. Thus, the
time-averaged distributions of the radius of gyration of the oil droplet surrounded by
protein molecules were then measured for both φ cases.
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All DPD simulation setup, runs, and post-processing analyzes were conducted
within the CULGI software package [214], together with all other tools and algo-
rithms employed in this chapter.

4.4 Results and discussion

In this section, the main findings are presented and discussed. First, the analysis of
the simple DPD O/W interface is carried out, and, then, applications of the scaling
procedure to more complex systems are reported.

Figure 4.3 shows the pressure (a) and IFT′ (b) trends with varying the coarse-
graining ratio φ for the simple O/W interface, for three values of the aWO parameter.
A relatively small non-linear increment is detected as regards pressure values at
increasing φ . In the work Ref. [93], it is already reported that pressure in a DPD
simulation of a bulk fluid with periodic boundary conditions for different self-
repulsion parameters a and for various φ values is independent of the coarse-graining.
Therefore applying the scaling relations in Eq. (4.1) to a binary system leads to the
loss of pressure independence of the coarse-graining ratio. This can be related to
the use of the same scaling expression also for the surface term aWO [93]. On the
other hand, for each aWO value it is clearly evident that the interfacial tension (in
physical unit) IFT′ computed from DPD simulations (Eq. (3.17)) scales with φC,
where C = 1/3 ≤ 1 as suggested in the work Ref. [93], so that:

IFT′ = φ
1/3IFT . (4.6)

It is important to highlight here that this result is in line with the works Ref. [94, 222].
Such scaling relation for the interfacial tension can be expected by dimensional
analysis of units in Eq (4.1). In fact, following the notation of reduction of units
from the work Ref. [93], it is also possible to show that:

ĨFT′ = IFT′ r
′2
c
ε

= φ
1/3IFT

φ 2/3r2
c

φε
= ĨFT , (4.7)

since interfacial tension reduces as energy over squared length. Hence, scaling and
unit reduction precisely cancel each other. As a result, in the DPD framework, the
reduced interfacial tension ĨFT is scale-free, meaning that the calculation of this
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equilibrium property with a single set of parameter values represents interfaces
at arbitrary length scales. In order to study how the scaling relations affect the
interfacial tension calculation, the stress profiles of the simple O/W system along the
normalized x-direction normal to the interfaces at increasing coarse-graining ratios
φ are shown in Figure 4.4. The mechanical equilibrium of the system is reached in
both the oil and water phases since the stress profiles fluctuate with small oscillations
around zero in the bulk regions. As a consequence, the local contribution to the
interfacial tension is located only at the interfaces, with an increase in the stress in the
O/W interface region. Therefore, the accuracy of the interfacial tension calculation
is achieved. As it can be seen, both pick heights and interface region width increase
as the coarse-graining ratio φ increases, determining an increment in the IFT′ value
(see Eq. (3.17)). This can be referred to as a combined effect of scaling both rc,i j

and ai j parameters according to Eq. (4.1).

Let us move now on the discussion of the ternary system made by oil, water, and
surfactant (protein) when applying the scaling relations (Eq. (4.1)) to a reference
system (φ = 1) investigated in chapter 3, for two coarse-graining ratios φ . In order
to study the equilibrium properties of such a system, the starting configuration of
the DPD box consists of two symmetrical interfaces due to the periodic boundary
conditions applied in the three directions. Figure 4.5 shows the equilibrated DPD
boxes representing the oil-water planar interfaces covered by surfactant molecules for
φ = 3008 (case 3 in Table 4.1) (a) and φ = 1504 (b). Figure 4.6 reports the number
density profiles of oil, water, and surfactant beads along the normalized x-direction
for the coarse-graining ratios φ investigated here at two surfactant molecule number
density cp. By looking at Figures 4.5 and 4.6, the symmetry of the equilibrated
ternary system can be seen. Density profiles define the interfacial region that contains
the surfactant layer and the bulk region that lies between the interfaces, highlighting
the mutual interpenetration of each component at equilibrium. Therefore, the param-
eterization of the three species combined with the scaling procedure explained in
section 4.2.1 are able to maintain the structural properties of the interfacial system,
even at a high level of coarse-graining ratio φ . In Figure 4.6, it is straightforward to
note that number density values are expressed as φρ ′ to make profiles comparable
between φ equal to 3008 and 1504. Although the overall number density ρ is kept
constant, the local bulk density of oil and water beads fluctuates around a value
different from 5 due to the fact that self-repulsion parameters used in this work
for oil and water (aOO and aWW in Table 4.1, respectively) are not the same value
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Fig. 4.3 Pressure (a) and IFT′ (b) trends with varying the coarse-graining ratio φ for the
simple O/W interface. Empty symbols stand for the results of DPD simulations with the
repulsion parameter aWO equal to 50 (red squares), 75 (blue circles), and 100 (green triangles),
respectively. Black dashed lines represent the scaling relation for the interfacial tension:
IFT′ = φ 1/3IFT.
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Fig. 4.4 Stress profiles (difference between normal and tangential pressures, pN − pT) along
the normalized x-direction normal to the interfaces at increasing coarse-graining ratios φ for
the simple DPD O/W system with aWO = 50.
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[223]. A closer look at the surfactant density profiles reveals that an appreciable
number of surfactant beads are not adsorbed at interfaces since surfactant density
values are not zero at the oil and water bulk regions. This effect is more relevant at
higher cp and for the case of φ = 3008. In fact, at the same cp the surfactant density
peaks are higher for φ = 1504 than for φ = 3008, meaning that a higher number of
surfactants molecules are adsorbed at the interface in the former case than in the
latter. This effect justifies the quantification of the surfactant molecules actually
adsorbed at the interface at increasing surfactant concentration. This is obtained
from the surfactant density profiles by implementing an automatic procedure to
determine the protein surface density at equilibrium as explained in Appendix A.
However, Figure 4.6 also shows that, when using the up-scaled DPD model, a clear
distinction between hydrophilic and hydrophobic parts in the surfactant molecule as
done for φ = 1504 (see Figure 4.2 and Table 4.1) provides better results in terms of
preserving the reference conformation at equilibrium. In particular, for φ = 1504
the surfactant molecules penetrate the water bulk to a much larger extent than the oil
bulk, especially at higher cp values as already reported in section 3.4.

Figure 4.7 represents the most interesting result of this chapter. It reports the
interfacial tension as a function of the surfactant (protein) surface number density by
comparing the reference results for φ = 1 from section 3.4 [83] with those obtained
in this chapter with φ = 3008 (a) and φ = 1504 (b). Three independent DPD runs
were carried out and the averaged values are shown together with the corresponding
standard deviations. Error bars are generally smaller than symbols indicating high
reproducibility of the current DPD model. As it is shown that the interfacial tension
scales following the Eq. (4.6), it is expressed here as IFT′/φ 1/3 in order to make
its values comparable at different coarse-graining ratios φ . When no surfactant is
added to the simulation box, it is important to highlight that, besides the scaling
relation, the interfacial tension value between the oil and water phase is accurately
reproduced by using the same parameterization of water and oil beads for different φ

(Table 4.1). As it can be seen, a very good agreement is achieved for both φ values
investigated here at increasing protein surface number density. Apart from a simple
a parameters fine-tuning, then it is possible to preserve the interfacial tension trend
in an up-scaled DPD model with surfactant (protein) molecules. In both cases, the
interfacial tension decreases as the protein surface density increases until it reaches a
minimum value at the saturation of the interface. As it is shown, a further increase in
protein surface concentration has almost no effect on the interfacial tension, which is
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Fig. 4.5 Snapshots of equilibrated DPD boxes of the planar interfaces between oil (yellow)
and water (blue) covered by surfactant molecules (brown beads for φ = 3008 (case 3 in Table
4.1) (a), green and red beads for φ = 1504 (b)), at the surfactant molecule number density cp

equal to 3.05×10−4 [numbers per unit volume].
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Fig. 4.6 Number density profiles of oil (yellow lines), water (blue lines), and surfactant (red
lines) along the normalized x-direction normal to the interfaces with the coarse-graining
ratio φ equal to 3008 (case 3 in Table 4.1) ((a.i) and (b.i)) and 1504 ((a.ii) and (b.ii)) at two
surfactant molecule number densities cp ((a.i), (a.ii) and (b.i), (b.ii), respectively).
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a typical behavior of an interfacial system stabilized by protein surfactants [2, 73].
However, some differences are identified with respect to the reference system with
φ = 1. As regards φ = 3008, all three protein bead parameterization leads to larger
deviations from the reference data at lower protein concentrations while smaller ones
correspond to the protein parameterization of case 3 in Table 4.1 at higher protein
concentrations. On the other hand, concerning φ = 1504, an almost perfect match
with the reference case is obtained at lower protein concentrations. Nevertheless, the
interfacial tension reaches the minimum value at the saturation of the interface at a
lower protein concentration than that of φ = 1. The values of protein surface number
density are obtained as explained in Appendix A. As already illustrated in Figure
4.6, each symbol corresponds to the same initial protein volume number density cp

in Figure 4.7, thus the effect of the different numbers of molecules adsorbed at the
interface depending on the coarse-graining ratio φ is here even more evident. In fact,
when φ is equal to 3008 increasing oil, water and self-repulsion parameters of P
bead type (from case 1 to case 3 of Table 4.1) leads to a better absorbing capability
but a worse surfactant behavior in terms of the interfacial tension reduction. If
the protein molecule is modeled as two bonded beads by distinguishing between
the hydrophobic and the hydrophilic contribution as done for φ = 1504, the best
adsorbing activity is obtained. In Figure 4.8 the pressure trends for different φ values
are then reported at increasing protein volume number density. When the oil/water
interface is free of protein molecules, the pressure value increases non-linearly going
from the case of φ = 1 up to φ = 3008 as expected by looking at Figure 4.3(a). Then,
clear differences in the pressure trends are observed. Although pressure decreases
slight linearly for φ = 1 at increasing protein concentration, it increases non-linearly
for φ = 3008. This appears to be related to the protein coarse-grained model used
for φ = 3008. In fact, if φ = 1504 and the protein molecule is represented by at
least two bead types, the pressure trend is decreasing as well. Nevertheless, its slope
is relatively larger in absolute value than that of φ = 1. Therefore, it seems that
the pressure profile cannot be precisely reproduced at higher coarse-graining levels
when most molecular details are lost.

As the last result of this chapter, Figure 4.9 shows an illustrative example of
using the scaling procedure to simulate an oil droplet in water bulk in presence
of surfactants. As explained in section 4.3, the initial conditions and the physical
space simulated are the same for φ = 3008 and for φ = 1504. Hence similarities
and differences between the two coarse-graining ratio cases are investigated. In both
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Fig. 4.7 Interfacial tension as a function of the protein surface number density, comparing
between reference results for φ = 1 and for φ = 3008 (a) and φ = 1504 (b). Error bars are
estimated from three independent DPD simulations.
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Similar data are obtained with different parameterizations of P bead type, thus results for
φ = 3008 only referring to case 3 of Table 4.1 are reported. Error bars related to three
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shown.
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of them, it is important to highlight that the equilibrium configuration as a single
droplet is observed due to the parameterization and the scaling procedure employed.
This can demonstrate once again that the scaling relations in the DPD framework
are able to describe different structural conformations. However, by comparing the
φ = 3008 case with the φ = 1504 one it is again shown that the adsorbing capability
of protein molecules is better reproduced if they are modeled by two bonded beads
than a single bead. This can be seen by looking at the time-frequency distributions
of the radius of gyration value of the oil droplet covered by surfactant molecules and
at the corresponding snapshots of clipped simulation boxes in Figure 4.9. In fact,
the protein beads appear to be more dispersed in the simulation box for φ = 3008
than for φ = 1504, also represented by a bit smaller mean value of the droplet radius
of gyration, meaning fewer protein molecules adsorbed at the oil droplet interface
with respect to the case of φ = 1504. Moreover, the smaller standard deviation of
the frequency distribution and the better quality of the fitting through the Gaussian
distribution indicate more stability of the droplet modeled with φ = 1504 than with
φ = 3008. If the same length conversion factor is used from section 3.3.2, then the
corresponding mean values of the droplet radius of gyration are 43.7 and 45.4 nm
for φ = 3008 and for φ = 1504, respectively. However, it must be stated that these
numbers are based on speculative assumptions on spatial and time scales associated
with DPD units. However, this seems in line with respect to previous works on
simulating a single droplet via DPD [224–226].

4.5 Conclusions

In this chapter, we explored the possibility to use classical DPD to describe an oil-
water and an oil-water-surfactant system using the concept of level of coarse-graining,
with the aim to obtain a simplified model capable of reproducing properly the drop
of interfacial tension observed with more detailed mesoscale simulations. We found
that the classical DPD model is invariant with respect to the proper definition of
the level of coarse-graining, as argumented in the work Ref. [93]. When dealing
with interfacial systems which are one of the most successful applications of the
DPD method, they tend to exhibit a typical length scale due to the domain formation.
This means that the independence of the length scale cannot anymore be achieved.
However, in this chapter, we showed that, if an interfacial system can be simulated
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Fig. 4.9 Time-frequency distributions (blue histograms) of the radius of gyration value of an
oil droplet covered by surfactant molecules in water bulk for φ = 3008 (case 3 of Table 4.1)
(a.i) and for φ = 1504 (b.i) and the relative Gaussian fitting curves (red lines). Corresponding
snapshots of clipped simulation boxes are shown in (a.ii) and (b.ii), where oil and water are
represented by yellow and blue beads respectively while protein molecules by brown beads
for φ = 3008 and green and red beads for φ = 1504.
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with DPD on a small scale, the scaling of interactions does not prevent a simulation
on a larger scale unless specific issues are dealt with. Indeed, equilibrium proprieties
of planar interfaces with and without a protein surfactant for different ratios of the
level of coarse-graining were investigated by applying the scaling scheme. Although
the level of description is much smaller, it was shown that the equilibrium interfacial
tension trend can be conserved for different coarse-graining ratios besides a scaling
factor. This can be achieved by a simple representation of molecules involved,
meaning that very few interaction parameters need to be set, thus decreasing the
model complexity. The same approach for planar interfaces was also employed for a
droplet configuration, showing that in both cases it is possible to maintain the domain
conformation by applying an appropriate combined scaling procedure and coarse-
graining parameterization. On the other hand, the pressure of interfacial systems
appears to be not independent of the coarse-graining ratio, in contrast with the result
of bulk fluids. The surface concentration of surfactants also seems to be related to
the coarse-graining level and parameterization. Hence, possible applications of such
findings will focus on investigating droplet coalescence and breakage events, which
occur at a time- and space-scale larger than that of thermal fluctuations of single
particles.



Chapter 5

Meso-scale model

5.1 Introduction

This chapter focuses on numerical simulations of two immiscible fluids in the pres-
ence of soluble surfactants via mesoscopic approaches, namely Lattice Boltzmann
Model (LBM) and Dissipative Particle Dynamics (DPD). Although both techniques
have been successfully employed in modeling these systems, they are conceptually
different. Indeed, the former is a particle-based model solving Newton’s second
law of motion for a system consisting of N particles, while the latter models the
fluid consisting of fictive particles (particle populations). Such particles perform
consecutive propagation and collision processes over a discrete lattice, thus solving
the discrete-velocity Boltzmann equation, that approximates the Navier-Stokes equa-
tion in the nearly-incompressible limit. Both the thermodynamic and hydrodynamic
description of a realistic ternary system consisting of oil, water, and surfactants is
represented by the phase-field model within the LBM framework. Based on a DPD
study, the LBM was tested to compare the two mesoscopic models of immiscible
liquids in presence of surfactants in terms of equilibrium properties. In particular, the
reduction of the interfacial tension at increasing surfactant concentration was studied.
Hence, the equilibrium properties were analyzed to check if the LBM approach can
describe the same outcome of DPD simulations with the aim of finding a possible
link between the molecular and the continuum modeling approaches.

The rest of this chapter is organized as follows: section 5.2 represents the
governing equations of the phase field method and the LBM technique; the numerical
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analysis is explained in section 5.3, together with analytical simplifications and
details of the DPD simulations; then, section 5.4 presents the results obtained here
and, finally, conclusions are reported in section 5.5.

5.2 Theoretical background

5.2.1 Phase field method

The ternary system consists of a non-ionic surfactant and two immiscible liquids
(i.e., binary fluid-surfactant system) can be represented by introducing two order
parameters φ and ψ : the former represents the bulk phases with the diffuse interface
and the latter describes the soluble surfactant. φ is the difference between the local
concentrations (i.e., mass or volume fractions) of two immiscible liquids [227].
It varies from −1 to +1, where φ = +1 and φ = −1 indicate the dispersed and
continuous phases, respectively. ψ is the volume or mole fraction (i.e., concentration)
of the surfactant ranging from 0 to 1.

The hydrodynamics of the binary fluid-surfactant (BFS) system is governed by
four equations: the continuity equation for density, the momentum equation for
velocity, and two Cahn-Hilliard-type convection-diffusion equations describing the
transport of φ and ψ [101]:

∂tρ +∂α(ρuα) = 0 , (5.1a)

∂t(ρuα)+∂β (ρuαuβ ) =−∂β Pth
αβ

+∂β ν(ρ∂αuβ +ρ∂β uα) , (5.1b)

∂tφ +∂α(φuα) = Mφ ∂
2
ββ

µφ , (5.1c)

∂tψ +∂α(ψuα) = Mψ∂
2
ββ

µψ . (5.1d)

The equations are written in the Einstein notation, where α and β represent the
spatial coordinates x, y, and z; t stands for time; ρ and ν are the fluid density and
kinematic viscosity, respectively; uα is the fluid velocity; the mobilities Mφ and Mψ

corresponding to φ and ψ are assumed constant; the thermodynamic pressure tensor,
Pth

αβ
, is the driving force of the BFS system; the chemical potential of bulk phases,

µφ , and the chemical potential of the surfactant, µψ , govern the mass transport of φ

and ψ , respectively.
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The thermodynamics of the ternary system is defined by a choice of free energy
functional. The total free energy functional, Ftotal , suggested in the work Ref. [105]
is used in the present study as follows:

Ftotal = F(ρ,φ ,ψ) =
∫ [

Fφ +Fψ − C
2

ψ
2 −Eφψ +F0 +Fex +ρT lnρ

]
dV ,

(5.2)
where:

• Fφ is the Cahn-Hilliard free energy density functional used to represent a
binary mixture [228] defined as follows:

Fφ =
A
2

φ
2 +

B
4

φ
4 +

κint

2
(∂αφ)2 . (5.3)

The first two terms represent the double well potential function which has two
minima representing two bulk phases of the binary fluid mixture as ±φb =

±
√
−A/B. The last term accounts for the interfacial free energy density due

to the diffuse interface approximation. κint is a positive constant.

• Fψ is the ideal entropy of mixing two immiscible liquids and the surfactant
suggested in the work Ref. [102] from the sharp interface model [229]:

Fψ = kbT [ψln(ψ)+(1−ψ)ln(1−ψ)] . (5.4)

The term kbT represents the thermal energy, where kb is the Boltzmann con-
stant.

• The term −C
2 ψ2 describes the free energy density of lateral interaction between

two adjacent surfactants. This term prevents the surfactant from forming
clusters [227]. The parameter C describes the self-interaction strength between
surfactants.

• The term −Eφψ describes the free energy density due to the different solubility
of surfactant in bulk phases. The parameter E describes the difference in the
solubility strength of surfactant in two bulk phases.
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• F0 is the free energy density contribution from the adsorption of surfactant on
the liquid-liquid interface defined as follows:

F0 =−D
2

ψδ̂ (x) , (5.5)

where δ̂ (x) is a nascent delta function incorporating the diffuse representation
of the surface free energy density. The different representations of δ̂ (x) lead
to the different types of coupling between the surfactant and bulk phases
[102, 230]. The parameter D is related to the surface free energy density due
to surfactant molecules.

• The extra free energy density Fex due to the presence of the surfactant in bulk
phases is incorporated to numerically stabilize the diffuse interface model for
microemulsions [231]:

Fex =
W
2

ψφ
2 , (5.6)

where W is the parameter related to the excess free energy density. The term
F0 locally attracts surfactant to an existing interface, whereas the term Fex

globally counteracts the occurrence of free surfactant in bulk regions [230].

• The last term in Eq. (5.2) ensures the incompressibility of the fluid in the
Lattice Boltzmann model and compressibility errors can be reduced by increas-
ing the value of temperature T [232]. This term has no influence on phase
behavior.

From thermodynamic relations, the chemical potentials µφ and µψ can be derived
by taking the functional derivatives of the total free energy functional of the BFS
system with respect to φ and ψ as follows:

µφ =
δFtotal

δφ
= Aφ +Bφ

3 − (κint −Dψ)∂ 2
ααφ −Eψ +D(∂αφ)(∂αψ)+Wψφ ,

(5.7a)

µψ =
δFtotal

δψ
= kbT [ln(ψ)− ln(1−ψ)]−Cψ −Eφ − D

2
(∂αφ)2 +

W
2

φ
2 . (5.7b)

For these derivations, the square gradient of φ is considered as the approximation
of the Dirac delta function δ̂ (x) ≈ (∂αφ 2) [102] in Eq. (5.5). This particular



100 Meso-scale model

representation can be derived from the sharp interface models proposed in the works
Refs. [229, 233].

According to the work Ref. [234], the term Dψ∂ 2
ααφ +D(∂αφ)(∂αψ)+Wψφ

in Eq. (5.7a) makes the interfacial profile sharpen (i.e., thin interface) for the square
gradient approximation. Following this observation, the term is neglected hereafter
to ensure the physical interfacial behavior.

From the Gibbs-Duhem equality, the divergence of thermodynamic pressure
tensor Pth

αβ
can be represented in terms of the excess chemical potential gradients

which act as the thermodynamic force density (i.e., unit volume). The divergence of
the thermodynamic pressure tensor can be defined as [101]:

∂αPth
αβ

= [φ(∂α µφ )+ψ(∂α µψ)]δαβ . (5.8)

The thermodynamic pressure tensor can be decomposed into two parts as follows
[231]:

Pth
αβ

= pδαβ +Pchem
αβ

, (5.9)

where the thermodynamic pressure p is the isotropic part of the thermodynamic
pressure tensor and a scalar that can be derived using thermodynamic relations as:

p = φ µφ +ψµψ +ρ
δFtotal

δρ
−Ftotal . (5.10)

After inserting µφ , µψ , and Ftotal from Eqs. (5.7a), (5.7b), and (5.2) in Eq. (5.10),
the expression of p can be written as:

p=
A
2

φ
2+

3B
4

φ
4− κint

2
(∂αφ)2−κintφ∂

2
ααφ −kbT [ln(1−ψ)]−C

2
ψ

2−Eφψ+ρT .

(5.11)
The chemical pressure tensor Pchem

αβ
accounts for the contribution of non-isotropic

forces exerted by the interface [231]. To satisfy Eq. (5.8), Pchem
αβ

can be formulated
as follows:

Pchem
αβ

= (κint −Dψ)(∂αφ)(∂β φ) . (5.12)
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5.2.2 Lattice Boltzmann model

The set of governing equations (Eq. (5.1)) representing the BFS system is solved
numerically using a Lattice Boltzmann model (LBM) formulation. The diffuse
interface free energy LBM [235] is extended to accommodate for the presence of
surfactants following the work Ref. [105]. In the LBM framework, the macroscopic
properties such as mass density ρ and momentum density ρuα can be defined
based on the single particle distribution function (i.e., discrete-velocity distribution
function). In a similar way, the order parameters φ and ψ can also be obtained
by introducing two more particle distribution functions. Overall, three particle
distribution functions f (⃗r, t), g(⃗r, t), and h(⃗r, t) are used to solve the set of continuity
and Navier-Stokes equations, and the Cahn-Hilliard equations for φ and ψ . The
number of discrete velocity directions required to represent the continuous particle
velocity space depends on the consistent approximations of governing equations with
minimum computational resources. In this study, the D3Q19 velocity set is selected
for three populations f , g, and h considering the accuracy as well as efficiency of
the LBM scheme. The D3Q19 set indicates the discretization of velocity space into
nineteen velocity stencils (q ∈ 0, ...,18) spanning over three Cartesian coordinates x,
y, and z. The D3Q19 velocity set is described in Appendix B.

The discretized Boltzmann equation describes the evolution of particle distribu-
tion functions with respect to time, space, and velocity as follows:

fq(⃗r+ c⃗q∆t, t +∆t) = fq(⃗r, t)+Ω
f
q (⃗r, t) , (5.13a)

gq(⃗r+ c⃗q∆t, t +∆t) = gq(⃗r, t)+Ω
g
q(⃗r, t) , (5.13b)

hq(⃗r+ c⃗q∆t, t +∆t) = hq(⃗r, t)+Ω
h
q(⃗r, t) . (5.13c)

These equations can be interpreted as the advection equations: it represents that the
discrete particle populations travel from the initial lattice position r⃗ to the neighboring
lattice position r⃗+ c⃗q∆t with a velocity c⃗q = (cqx,cqy,cqz) during the time step ∆t.
This leads to the collision of particles which is incorporated by a collision operator
Ωq as a source term on the right side of the equations. The grid spacing ∆x and time
step ∆t are scaled in lattice units (lu) such that ∆x = 1 and ∆t = 1. The conversion
from lattice units to SI base units is achieved by the scaling of physical parameters,
the analysis of relevant dimensionless numbers, and the exploitation of the law of
similarity (see the work Ref. [103] for more details). The system of governing
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equations (Eq. (5.1)) can be obtained from the set of Eq. (5.13) by the Chapman-
Enskog expansion.

The collision operator Ωq accounts for the relaxation of the particle populations
towards the equilibrium distributions after collisions between them. The selec-
tion of collision operator affects the stability and accuracy of numerical results.
In the present study, the Bhatnagar-Gross-Crook (BGK) collision operator (i.e.,
single-relaxation-time (SRT) collision operator) [236] is considered for the particle
populations g and h. The collision operators Ω

g
q and Ωh

q in Eqs. (5.13b) and (5.13c)
can be written as follows:

Ω
g
q =−gq −geq

q

τg
∆t , (5.14a)

Ω
h
q =−hq −heq

q

τh
∆t , (5.14b)

where τg and τh are the relaxation times representing the time that the particle popu-
lations g and h take to reach their equilibrium distributions geq

q and heq
q , respectively.

The major drawback of the BGK collision operator is its inability to increase
the velocity or decrease the viscosity to incorporate larger Reynolds numbers (i.e.,
turbulent flow) as it decreases the stability and accuracy of the LBM scheme [98].
Also, increasing the grid size is not computationally efficient. Hence, the multiple-
time-relaxation (MRT) collision operator is used for the particle population f that
ensures the consistent numerical results at higher Reynolds numbers by relaxing
the collision of particles in the moment space instead of the population space with
individual collision rates for q ∈ 0, ...,18. The collision operator Ω

f
q in Eq. (5.13a)

can be represented as follows:

Ω
f
q =−M−1SM( fq − f eq

q )∆t , (5.15)

where f eq
q represents the equilibrium distribution of particle population f . The

transformation from the population space to moment space and implementation
of different relaxation rates are performed by the transformation matrix M and
relaxation matrix S, respectively. Then, the multiplication by M−1 refers to the
mapping from moment to population space after the relaxation. These matrices are
constructed for the D3Q19 velocity set from the guidelines suggested in the work
Ref. [237]. The MRT collision operator is incorporated into the LBM algorithm
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using the work Ref. [238]. The representation of transformation and relaxation
matrices are provided in Appendix C.

The local macroscopic variables such as density, momentum density, and the
order parameters at any given lattice site can be determined by the moments of
the particle distribution functions. The moments are defined as the summation or
weighted summation of particle populations over the discretized velocity space:

∑
q

fq = ρ , ∑
q

fqcqα = ρuα , (5.16a)

∑
q

gq = φ , ∑
q

gqcqα = φuα , (5.16b)

∑
q

hq = ψ , ∑
q

hqcqα = ψuα . (5.16c)

In LBM, the macroscopic properties such as the kinematic viscosity and the
mobility can be described in terms of the speed of sound and the relaxation time.
The kinematic viscosity ν of the BFS system can be defined as:

ν = c2
s

(
τ f −

1
2

)
∆t , (5.17)

where τ f is the relaxation time of particle population f . The mobilities Mφ and Mψ

can be described as follows:

Mφ = Γφ

(
τg −

1
2

)
∆t , (5.18a)

Mψ = Γψ

(
τh −

1
2

)
∆t , (5.18b)

where τg and τh are the relaxation times of particle populations g and h, respec-
tively. Their values should be τg = τh = 1/(3−

√
3) to get more accurate and stable

numerical results for the convection-diffusion scheme [239].

The moments of the equilibrium distribution functions f eq
q , geq

q , and heq
q represent

the set of equations as same as Eq. (5.16). In addition, the higher order moments of
these functions are related to the thermodynamic pressure tensor, the coefficient of
mobilities Γ, and the chemical potentials according to the LBM schemes suggested
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in the works Refs. [231, 235] as follows:

∑
q

f eq
q cqαcqβ = Pth

αβ
+ρuαuβ , (5.19a)

∑
q

geq
q cqαcqβ = Γφ µφ δαβ +φuαuβ , (5.19b)

∑
q

heq
q cqαcqβ = Γψ µψδαβ +ψuαuβ . (5.19c)

The mathematical formulation of equilibrium distribution functions f eq
q , geq

q , and heq
q

is described in Appendix B.

The value of temperature T in Eq. (5.2) is chosen to be 1/3 considering the
numerical accuracy and stability [105]. This represents the ideal gas type contribution
with the ideal gas pressure pid = ρT . In LBM, the speed of sound is represented as
c2

s = (1/3)∆x2/∆t2 = 1/3 as ∆x = ∆t = 1 in lattice units. Hence, the last term ρT lnρ

in Eq. (5.2) can be rewritten as ρc2
s lnρ for this case.

The relationship between the parameters D and W can be described by defining
a dimensionless number: Ex = D

Wξ 2 where ξ is the scale of the interface thickness.
Ex represents the bulk surfactant solubility parameter [230].

5.3 Numerical details

5.3.1 Analytical equations

For analytical derivations, E = 0 (i.e., the equal solubility in bulk phases) is consid-
ered. Moreover, both Langmuir and Frumkin adsorption isotherms for surfactants
are taken into account by setting C = 0 or C > 0, respectively [101, 105].

Here, the analysis is restricted to planar interfaces normal to the x-direction in
the simulation domain. At thermodynamic equilibrium, the chemical potential of
bulk phases µφ is uniform throughout the BFS system. Hence, the expression for
the order parameter φ can be derived by equating the chemical potential of φ at any
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location x to the chemical potential of φ at the interface:

µφ ,x = µφ ,0 , (5.20a)

Aφ +Bφ
3 −κint∂

2
ααφ = 0 , (5.20b)

Aφ +Bφ
3 = κint∂

2
ααφ . (5.20c)

Dividing both sides of the above equation by −Aφb and simplifying, it follows:

φ

φb
− Bφ 3

Aφb
=−κint

A
∂

2
αα

(
φ

φb

)
. (5.21)

Using the definition of bulk phase φ 2
b = −A

B and introducing the dimensionless
parameter φ̂ = φ

φb
, it follows as:

φ̂
3 − φ̂ =−κint

A
∂

2
αα φ̂ , (5.22a)

− A
κint

∫∫
(φ̂ 3 − φ̂)dxdx =

∫∫
(∂ 2

αα φ̂)dxdx . (5.22b)

Integrating the above equation gives the equilibrium profile of φ as follows:

φ(x) = φb tanh
(

x
ξ

)
, (5.23)

where x is a coordinate normal to the interface and the interface thickness ξ =
√

2κint
−A .

The interfacial tension of a clean interface (i.e., without surfactant loading) can be
defined as:

σ0 =
4κintφ

2
b

3ξ
. (5.24)
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Similarly, for ψ , comparing the chemical potential of ψ at any location x with
that in the bulk phase, it follows as:

µψ,x =µψ,b , (5.25a)

kbT [ln(ψ)− ln(1−ψ)]−Cψ−Eφ − D
2
(∂αφ)2 +

W
2

φ
2 =

= kbT [ln(ψb)−ln(1−ψb)]−Cψb −Eφb +
W
2

φ
2
b , (5.25b)

ψ(x) =
ψb

ψb +(1−ψb)ψc(x)
, (5.25c)

where ψc(x) is represented as:

ψc(x) = exp
{
− 1

kbT

[
C(ψ −ψb)+

D
2
(∂αφ)2 − W

2
(φ 2 −φ

2
b )−E(φ −φb)

]}
.

(5.26)
At the interface, ψc(0) can be defined as follows:

ψc(0) = exp
{
− 1

kbT

[
C(ψ0 −ψb)+

D
2ξ 2 φ

2
b +

W
2

φ
2
b +Eφb

]}
. (5.27)

Eqs. (5.23) and (5.25c) are used here as the initialization of φ and ψ profiles in
numerical simulations.

For interfaces loaded with surfactants, the interfacial tension is an important
thermodynamic measure. Here, it is derived from the grand potential Ω following
the definition given in the works Refs. [101, 240]. The total surface tension σ is
computed by the integral over a flat interface, with direction x perpendicular to the
interface:

σ =
∫

x
(Ω −Ωb)dx , (5.28)

with Ωb the grand potential in the bulk phase, where the surfactant is solubilized.

5.3.2 DPD study

In order to compare LBM results, a DPD study was here used as a reference. The
theoretical background about this technique has already been explained in section
3.2.1 and can be also found in the literature [40–42, 185]. Therefore, only details on
DPD simulations are here presented. For sake of the comparison, the work Ref. [226]
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is here reported since it deals with an oil-water interface in presence of non-ionic
surfactants which is the base of the phase-field model presented in section 5.2.1.
Indeed, in the DPD work the surfactant molecule is modeled as a typical non-ionic
single-chained amphiphilic molecule with a hydrophilic head and a hydrophobic
tail. The adsorption of this type of surfactant can be described with a Langmuir
or Frumkin isotherm and, therefore, it is substantially different from the one used
in previous chapters. In fact, the use of protein surfactant introduces a level of
complexity in the thermodynamic model (see section 3.2.2) which is not represented
in the current LBM scheme. This justifies the choice to use a DPD work found in
the literature to compare the two mesoscopic modeling techniques.

The densities of the water and oil phases are considered to be equal to each other
in the DPD work in agreement with the definition of the order parameter φ in the
LBM framework. By varying the amount of surfactant added to the system, the
interfacial tension corresponding to different surfactant densities at interface ds can
be calculated, where ds is defined as the average number of surfactant molecules
divided by twice the interface area. It is also assumed that the concentration of
surfactant added to the system is lower than the critical micelle concentration, so
one can assume that the total number of surfactant molecules must be adsorbed in
the interfacial region at the steady state. The calculation of the interfacial tension
was performed in a DPD simulation box of 20× 20× 40 with periodic boundary
conditions in three directions and the initial location of the water, oil, and surfactant
molecules constituted two planar interfaces perpendicular to the z-direction. The
relation between the interfacial tension Γ and the percent interface coverage reads as
follows:

Γ−Γ0 = d∞
s RT ln(1− c)− kc2

2
, (5.29)

where Γ0 is the interfacial tension of the free interface, d∞
s is the maximum surfactant

density at the interface, R is the ideal gas constant, c = ds/d∞
s is the percent interface

coverage of surfactant and k is a constant parameter. By fitting the results of the
interfacial tension DPD simulations with Eq. (5.29), the following relation was
obtained [226]:

Γ−3.568734 = 1.553019×
[

ln
(

1− ds

1.3

)]
−2.7×

(
ds

1.3

)2

. (5.30)
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Eq. (5.30) represents a target relation to fit with the results of LBM simulations of
the same system. An explicit definition of the quantity c in the LBM framework
is needed in order to correctly compare the results of both modeling techniques as
explained below.

In most of the LBM work of the BFS system [100, 102, 105], the interfacial
tension comes from the thermodynamic analysis. According to the work Ref. [241],
the variation in the surface tension can be expressed in terms of the surface excess
quantities. From the Gibbs adsorption equation at a constant temperature, it can be
represented in general as follows:

dσ =−Cxsdµ . (5.31)

Here, a subscript xs indicates the surface excess quantity, and Cxs is the excess
concentration. These excess quantities account for the local variation of the quantity
in the interfacial region. Following this, the equation of state for the diffuse interface
model can be represented as:

dσ =−ψxsdµψ , (5.32)

where ψxs is the total amount of surfactant over the interfacial region (i.e., diffuse
interface) and the integration of ψ over the diffuse interface can not be analytically
obtained [102, 105]. Due to this problem, it was concluded that the excess surfactant
concentration ψxs is made proportional to ψ0 (i.e., ψxs = αψ0) by a proportionality
coefficient α . This implies that the equation of state can be derived as follows:

dσ =−ψxsdµψ ,

=−αψ0dµψ0 ,

σ(ψ0)−σ0 = α

[
kBT ln(1−ψ0)+

C
2

ψ
2
0

]
. (5.33)

This states that the lowering of interfacial tension for diffuse models is proportional
to that of the sharp interface model. α must account for the quantity of surfactant
concentration in the interfacial region excluding ψ0, thus it depends only on Ex =

D
Wξ 2 after fixing ξ [105].

The definition of concentration of surfactant ψ is arbitrary as it can be defined
as the volume fraction of surfactant [102] or the mole fraction of surfactant [242]
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and it is a local property. Here, ψ is interpreted as the mole fraction of surfactants.
Therefore, ψ can be defined as:

ψ(x) =
nS(x)

nS(x)+nBL(x)
, (5.34)

where nS(x) and nBL(x) are the moles of surfactant and binary liquids on any location
x, respectively. Following this definition, ψ must be a local property and it can
locally vary from 0 to 1 since it accounts for the relative local presence of surfactants
and binary liquids.

Now, the interface coverage of surfactant c in Eq. (5.29) can be related to the
surfactant concentration at the interface ψ0. From the Avogadro number, one can
correlate the number of molecules to the number of moles present in the system.
Using this argument, the definition of c can be simplified as follows:

c =
ds

d∞
s
=

the number of surfactant molecules in the interfacial region
the maximum number of surfactant molecules in the interfacial region

,

=
the moles of surfactant in the interfacial region

the maximum moles of surfactant in the interfacial region
,

=
ψxs

ψ∞
xs

. (5.35)

As already stated, ψxs is the total amount or mole fraction of surfactant over the
interfacial region (i.e., interface thickness). The moles of surfactant in the interfacial
region are assumed to be proportional to ψxs. Due to the fact that we are interested in
the ratio of ψxs not in the absolute values, this unknown proportionality coefficient
is canceled out in taking the ratio of ψxs. Hence, one can correlate c and ψxs as
expressed above. Following the suggestion of the work Ref. [102], ψxs in the above
expression can be simplified once more as follows:

c =
ds

d∞
s
=

ψxs

ψ∞
xs
=

��αψ0

��αψ∞
0
=

ψ0

ψ∞
0

. (5.36)

Here, ψ∞
xs is the maximum amount of surfactant over the interfacial region. α

depends only on Ex after fixing ξ and it has no relation with ψ0 [105], so one can
assume that the value of α maintains the equality of the above expression. ψ∞

0 is
the maximum mole fraction of surfactant at the interface in the case of maximum
packing of the interfacial area. One can theoretically take ψ∞

0 = 1 as it is defined
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as a relative local property (Eq. (5.34)). Therefore, when the maximum packing
of the interfacial region occurs, it means that only surfactants are ideally present
at the interface without binary liquids. Following this explanation, c can be finally
represented as:

c =
ds

d∞
s
= ψ0 . (5.37)

Following this relation, it is then possible to directly compare the DPD results
[226] with LBM simulations. In fact, for different values of c = ds

d∞
s

, the percentage
reduction of the interfacial tension in presence of surfactants compared to the one of
the clean interface is different. For example, at c = ds

d∞
s
= 0.5

1.3 = 0.3846, the reduction
in the interfacial tension observed is around 30% [226].

5.4 Results and discussion

First, the phase field model’s capability for the prediction of the profile of surfactant
concentration at a planar oil-water interface was numerically tested. LBM simula-
tions are performed in a domain size of 128× 128× 128 in lattice units [lu] with
two planar interfaces equidistant in x direction, where the dispersed phase is initially
positioned at 32 ≤ x ≤ 96. The interface locations are fixed at x01 = 32 and x02 = 96.
The periodic boundary conditions are imposed at all the boundaries. The values of φ

and ψ were initialized using the analytical expressions (Eqs. (5.23) and (5.25c), re-
spectively). For this case, we consider −A = B (i.e., φb = 1), C = 0, D = κint , E = 0,
ψb = 0.01, ψc = 0.017, Ex = 0.17, σ0 = 0.02, Mφ = 0.2, Mψ = 0.02, τ f = 0.53,
and ξ/∆x = 2. The parameters A, B, κ , kbT , and W are obtained from the values
of ξ/∆x, σ0, ψc, and Ex. As shown in Figure 5.1, the numerical results are in good
agreement with the analytical solutions.

Then, the comparison between LBM and DPD simulations [226] was performed
by computing the reduction in the interfacial tension value for different values of
Ex, ψb, and C. As it can be seen in Figure 5.2, a very good agreement was achieved
between the DPD and LBM simulations. The goodness of curve fitting was evaluated
by computing the Root Mean Squared Error (RMSE). Langmuir and Frumkin’s
isotherms were tested and the best results were obtained for Ex = 0.18, C = 0 and
Ex = 0.17, C = 0.1kbT , respectively. Moreover, Figure 5.3 shows the range of
the bulk concentration ψb investigated, together with the corresponding values of
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Fig. 5.1 Equilibrium φ (top) and ψ (bottom) profiles for ψb = 0.01. Simulation results
(symbols) follow analytical expressions (blue lines).
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Fig. 5.2 Comparison of interfacial tension trend at increasing surfactant concentration
between DPD and LBM simulations.

the surfactant loading ψ0. As it can be seen and already pointed out in previous
works [100, 101], the model can correctly reproduce both the Langmuir and Frumkin
isotherms since simulations results follow the analytical prediction given by:

ψ0 =
ψb

ψb +ψc exp
(
− C

kbT ψ0

) , (5.38)

with:

ψc = exp
[
− 1

2kbT

(
D
ξ 2 +W

)
φ

2
b +

E
kbT

φb

]
. (5.39)

In fact, Eq. (5.38) represents the equilibrium adsorption isotherm obtained by
reducing Eq. (5.25c) in the case of a dilute solution where the bulk surfactant
concentration is much smaller than unity, i.e., ψb ≪ 1 (Figure 5.3) [100, 101].
Therefore, the model can recover the Frumkin adsorption isotherm (see Eq. (5.38)),
which reduces to the well-known Langmuir adsorption isotherm if C = 0.
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Fig. 5.3 Simulation results (symbols) following the Langmuir and Frumkin isotherms (solid
and dashed line, respectively).
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5.5 Conclusions

In this chapter, the phase field model in the Lattice Boltzmann scheme was applied
to simulate immiscible binary fluid flows in the presence of soluble surfactant. It
was modeled as a typical non-ionic single-chained amphiphilic molecule with a
hydrophilic head and a hydrophobic tail. From equilibrium numerical simulations,
this method can lead to the commonly-used surfactant adsorption isotherms, i.e.,
the Langmuir and Frumkin isotherms. Based on a DPD study, the LBM was tested
to compare the two mesoscopic models in terms of reducing the interfacial tension
at increasing surfactant concentration. Although both DPD and LBM have been
successfully employed in modeling such systems, they are conceptually different.
However, the comparison of the two methods showed that a link can be found in order
to bridge the gap between the molecular and the continuum modeling approaches.

These promising results will pave the way for further investigation of the dynamic
properties of binary fluids in presence of surfactants. Indeed, future works will deal
with numerical simulations of an oil droplet covered by surfactants in shear flow.
Therefore, the droplet deformation and break up for different operating conditions
will be studied by means of the LBM framework and, eventually, compared with
DPD results.



Chapter 6

Macro-scale model

6.1 Introduction

Here, we aim to model the last step of the mayonnaise production process in a
cone mill by means of 2D and 3D computational fluid dynamics (CFD) simulations
and population balance modeling (PBM) in order to: (1) properly describe the
non-Newtonian dynamics of the emulsion, (2) investigate the role of the pre- and
post-mixing zones, and (3) clarify the importance of the local type of flow. In
particular, although mayonnaise consists of two distinct phases, high internal phase
emulsions can be considered as a shear-thinning pseudo-single phase system with
an apparent density and viscosity [6, 7]. The apparent emulsion viscosity, as a
function of oil content, was evaluated through the fitting of experimental data, by
using a power law model with a plateau at the high shear rate end [6]. In order
to describe the evolution of the DSD, the Population Balance Equation (PBE) is
employed, in which the coalescence and breakage of the oil droplets are taken into
account by appropriate kernels, which in turn depend on the local flow conditions,
which range from rotation to pure-shear and finally to elongation, depending on the
relative contribution of rotation and strain. Previous PBM works were not capable of
providing accurate predictions due to their restrictive assumptions, since coalescence
was neglected [111, 112]. In fact, although cone mills are designed to promote
drop breakage, colliding droplets may coalesce under certain conditions [106, 243].
The Quadrature Method of Moments (QMOM) [244–249] is used in order to solve
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the PBE, whereas CFD simulations are performed with the open source CFD code
OpenFOAM (version 6.0) [250, 251].

This chapter is organized as follows: section 6.2 summarizes the main equations
used to describe the flow field and the DSD evolution, section 6.3 reports the details
about the simulation test cases and their implementation into OpenFOAM, section
6.4 focuses on the most important results obtained, and, finally, section 6.5 presents
the main conclusions of this chapter.

6.2 Theoretical background

The emulsification within the rotor-stator system investigated in this chapter is a
steady-state process. Therefore, the well-known momentum balance equation for
an incompressible, non-Newtonian, and stationary flow is solved in order to obtain
the flow field [252]. In this geometry, the centrifugal force that acts on the rotating
fluid is not perpendicular to the rotor and stator surfaces. The flow field between two
coaxial conical cylinders can present instabilities, known as Taylor vortices [114].
These vortices are superimposed to the main Couette flow with an axial throughput
[119]. For such a particular system, very different flow patterns can develop inside
the cone mill with varying operating conditions [118]; however, as it will be shown
in section 6.4, the conditions investigated here only result in the appearance of
laminar Taylor vortices. Therefore, the implementation of a turbulence model is not
necessary.

In order to evaluate this particular flow pattern, the Reynolds number is calculated
as follows:

Re =
ωRmaxd

ν̄emul
, (6.1)

where ω is the angular velocity of the rotor and d is the distance (gap) between the
rotor and the stator. In general, the Reynolds number for the investigated system
is not constant, since the rotor radius increases from the top to the bottom of the
cone mill, and the viscosity changes locally as a function of the local shear rate
γ̇ . Therefore, the maximum rotor radius Rmax and the volume-averaged kinematic
apparent viscosity of the emulsion ν̄emul are used in Eq. (6.1). This corresponds to
the definition used in the previous simulation works with whose results we compared
our work [116–118]. For specific operating conditions, it is a good approximation



6.2 Theoretical background 117

to only consider the volume average of the emulsion viscosity ν̄emul since the local
shear rate inside the gap section of the cone mill mostly depends on the tangential
velocity gradient. As it will be shown in section 6.4, the tangential component of
velocity shows a linear profile (and a constant gradient) along the gap width for a
specific rotor radius. On the other hand, along the height of the cone mill, there is
just little variation of the tangential velocity gradient, since the difference between
the maximum and the minimum rotor radius is small (see Figure 6.2).

6.2.1 Non-Newtonian rheology model

In order to properly describe the non-Newtonian dynamics of the emulsion, the
fluid is considered as a shear-thinning pseudo-single phase system, with an apparent
emulsion viscosity ηemul evaluated through a power law model with a plateau at high
shear rates fitted with experiments and reasonably accurate in the range of the local
shear rate γ̇ developed inside the cone mill mixer (103 −105 s−1) [6, 7]:

ηemul

ηc
= ηr = ηr,∞ +Kγ̇

m . (6.2)

In Eq. (6.2), ηr is the dimensionless relative viscosity, expressed as the ratio of
apparent emulsion viscosity ηemul to continuous water phase viscosity ηc. The
continuous phase consists of egg yolk, salt, and vinegar dissolved in water (section
2.2), and its viscosity was measured to be Newtonian over the range of shear rates
investigated and equal to 10 mPa · s [6, 7]. In Eq. (6.2), ηr,∞ is the relative plateau
viscosity for high shear rates. The parameters ηr,∞, K, and m result from experimental
data fitting and they only depend on the oil concentration [6]. The kinematic apparent
emulsion viscosity is νemul = ηemul/ρemul , where ρemul is the apparent emulsion
density, calculated as ρemul = ρoilφv/φw. Here, φv and φw are respectively the oil
volume and the oil weight fractions, as reported in the reference experimental work
[6, 7]. It is important to point out here that, in the works Refs. [6, 7], it is provided a
relationship for the apparent emulsion viscosity as a function of the mean oil droplet
diameter in order to link the evolution of the DSD with the macroscopic rheological
properties. However, here the approach described in Eq. (6.2) is employed to
describe the non-Newtonian dynamics of the emulsion for sake of the computational
simplicity (see section 6.3).
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6.2.2 CFD and PBM description

As mentioned, the flow field of the liquid-liquid emulsion in the cone mill is described
by solving the steady-state continuity and momentum balance equations for an
incompressible pseudo-single phase non-Newtonian flow, as detailed in previous
works [253, 254]. By solving these equations the emulsion velocity in the cone
mill, U, described as a pseudo-single phase fluid is calculated. Numerous interesting
flow features can be extracted via this variable. For example, the local shear rate is
calculated as follows:

γ̇ = 2
√

IIE , (6.3)

where IIE is the second invariant of the symmetric rate-of-strain tensor E, which is
in turn defined as:

E =
1
2

[
∇U+(∇U)T

]
. (6.4)

Another interesting flow feature is the so-called Manas-Zloczower mixing index
[255], defined as follows:

α =

√
IIE√

IIE +
√

IIΩΩΩ

, (6.5)

where IIΩΩΩ is the second invariant of the skew-symmetric rate-of-rotation tensor ΩΩΩ,
which in turn is defined as:

ΩΩΩ =
1
2

[
∇U− (∇U)T

]
. (6.6)

The mixing index α has a 0−1 range, with 0 indicating a rotational motion, and 0.5
and 1 indicating pure shear and pure elongational flows, respectively [255]. As it
will see later, both γ̇ and α play an important role during droplet breakup.

The evolution of the droplet size distribution (DSD) is properly described by the
PBE, accounting for the birth and death of droplets due to coalescence and breakage
events. Assuming the emulsification process at the steady-state and omitting explicit
indications of space and time dependencies, the PBE can be written as follows [256]:

∇ · (U n(L)) =
L2

2

∫ L

0

C
((

L3 −L′3
)1/3

,L′
)

(
L3 −L′3)2/3 n

((
L3 −L′3

)1/3
)

n
(
L′)dL′

−n(L)
∫

∞

0
C
(
L,L′)n

(
L′)dL′+

∫
∞

L
g
(
L′)

β
(
L|L′)n

(
L′)dL′−g(L)n(L) , (6.7)
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where n(L) is the DSD [247], L is the droplet diameter as well as the internal
coordinate of the PBE. The right-hand side of Eq. (6.7) is the source term due to
the coalescence and breakage of the oil droplets, which are described by means of
phenomenological models called kernels [257]. The coalescence kernel, C(L,L′),
and the breakage kernel, g(L), quantify the rate with which droplets coalesce and
break. The daughter-size distribution function, β (L|L′), defines instead the size
distribution of the droplets formed by the breakup of a droplet of size L′.

Thanks to the assumption of considering the emulsion as a shear-thinning pseudo-
single phase, U in Eq. (6.7) is the fluid velocity obtained by solving the flow field
equation (as explained above). Therefore, U represents the first coupling variable
used in this work, and from the flow field, it is possible to calculate the local shear
rate γ̇ [252]. As previously mentioned, in this work QMOM [245, 246] is employed
to solve the PBM (Eq. (6.7)). The general idea behind this method is to solve
transport equations for the moments of the DSD. By approximating the unknown
DSD, n(L), as a summation of Dirac functions and using a quadrature approximation
of order N, QMOM leads to the following expression for the moment of order k
[246]:

Mk =
∫ +∞

0
n(L)LkdL ≈

N

∑
α=1

wαLk
α with k ∈ 0, ...,2N −1 , (6.8)

where wα and Lα are the N quadrature weights and N quadrature abscissas, in
turn, calculated from the first 2N lower-order moments through so-called moment
inversion algorithms, such as the Product-Difference (PD) [247] algorithm employed
here. The reader can refer to the literature for further details [244–247, 257, 258].
Moreover, it is important to remark that the moments represent integral properties of
the DSD. For example, in the case investigated here, M0 represents the number of
oil droplets per unit volume, while M3, if multiplied by a shape volume coefficient
equal to π/6 due to the spherical shape of the droplets, is equal to the oil volume
fraction. Most importantly, the mean Sauter diameter used here for evaluating the
evolution of the DSD is simply defined as follows: d32 = M3/M2.

Three important functions appear in Eq. (6.7) which determine the evolution
and the final shape of the DSD: the coalescence kernel C(L,L′), the breakage kernel
g(L), and the daughter-size distribution function β (L|L′). The coalescence kernel
C(L,L′), quantifying the rate of coalescence of droplets of diameter L and L′, and
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the breakage kernel g(L), quantifying the rate of breakage of droplets of size L, take
respectively the following forms [106]:

C(L,L′) =K1
π

6

(
γ̇

1−φv

)
(L+L′)3 exp

(
−K2λCa

3
2

(
8πσR2

eq

AH

) 1
3
)
,

g(L) =K3γ̇ exp
(
−K4

Cacr

Ca

)
,

(6.9)

where φv is the oil volume fraction, AH is the Hamaker constant, λ is the ratio
between the oil viscosity ηoil and the apparent emulsion viscosity ηemul , and K1,
K2, K3, and K4 are free adjustable model parameters to be fitted with experimental
data. Req is the equivalent radius of colliding drops of diameter L and L′, defined
as: Req = 2/(2/L+2/L′). The interfacial tension σ in Eq. (6.9) is dynamic for an
oil-in-water emulsion as it varies according to local flow conditions and surfactant
concentrations [1], as it was shown in chapters 3 and 4. In fact, this information
could be used as a link with a scale lower than that investigated here. For sake of
the computational simplicity, a reasonable assumption is to consider the interfacial
tension constant and equal to 10 mN/m since it was shown that this value is reached
at the saturation of the oil/water interface (see chapter 3). In Eq. (6.9), Ca is the
capillary number, defined as:

Ca =
ηemul γ̇L

2σ
, (6.10)

where ηemul is the apparent emulsion viscosity and γ̇ is the local shear rate.

The high shear rates developed inside the mixer tend to stretch the oil droplets and
droplet breakage is assumed to follow the capillary instability mechanism [6, 7, 106].
This means that, when the ratio of the viscous stress acting on the drops to the
interfacial tension force, i.e., Ca, exceeds a critical value, i.e., the critical capillary
number Cacr, a mother droplet breaks into two or more daughter droplets, depending
on the form of the daughter-size distribution function β (L|L′). The critical capillary
number Cacr determines the stability of the droplet and depends on the ratio between
the viscosity of the disperse and continuous phases, λ , and on the type of flow
inside a specific geometry [259–261]. Its expression can be usually derived from
experiments and here two empirical correlations are used. The first one refers to the
case of pure shear flow (i.e., mixing index, α , equal to 0.5) [262] as the result of
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single droplet breakup experiments between two concentric cylinders:

log10 Cacr =−0.506−0.0994log10 λ +0.124(log10 λ )2− 0.115
log10 λ −0.611

. (6.11)

It is worth mentioning that this expression is valid for λ < 4, as for λ > 4 the critical
capillary number tends to infinity, implying that for λ > 4 pure shear flow is not
effective in breaking the droplets. The second one refers to the case of flows with an
elongational component (i.e. 0.5 < α ≤ 1.0) [261] and reads as follows:

Cacr =
0.14λ−1/6

α1/2 , (6.12)

Figure 6.1 reports the dependency of the critical capillary number versus the viscosity
ratio for two values of the mixing index, namely pure shear flow, α = 0.5 (Eq.
(6.11)), and pure elongational flow for α = 1.0 (Eq. (6.12)). As it can be seen, for
every reported value of the viscosity ratio λ , the critical capillary number for pure
elongational flow is smaller than for pure shear flow, indicating that flows with an
elongational component are more effective in breaking droplets. This is particularly
true for highly viscous disperse phases, where λ > 4. In these cases, in fact, the
critical capillary number for pure shear flows is practically infinitely large, implying
that pure shear flow cannot break the droplets, no matter how intense is the shear rate.
When λ > 4 only an elongational component can reduce the drop size [260, 261].

As far as the viscosity ratio, λ = ηoil/ηc, is concerned, this is usually evaluated
as the ratio between the dispersed and continuous phase viscosity. It is however
very common, in the case of high content of the oil phase in emulsions, to use the
apparent emulsion viscosity ηemul instead of the continuous phase viscosity ηc, as in
high disperse phase emulsions, droplets perceive a surrounding continuous phase
with the emulsion viscosity [106, 263]. This is also consistent with simulating the
flow field in the device by using the pseudo-single phase approach [6, 7, 106].

The coalescence kernel C(L,L′) in Eq. (6.9) is incorporated in the model since
colliding drops may coalesce despite the cone mill being designed to promote droplet
breakage [106, 243]. The coalescence rate is determined by the product of the
frequency of droplet collisions and the probability that a collision event will produce
coalescence. The collision frequency depends on the local flow field [264], and the
coalescence probability depends on the capillary number Ca and the viscosity ratio λ

[265]. Further details about the expressions of kernels used here can be found in the
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Fig. 6.1 Dependency of the critical capillary number versus the viscosity ratio for pure shear
flow (black line α = 0.5) (Eq. (6.11)) and pure elongational flow (red line α = 1.0) (Eq.
(6.12)).

literature [6, 7, 106]. As can be seen from Eqs. (6.9) to (6.12), the coalescence and
the breakage kernels are calculated as functions of the local shear rate γ̇ and of the
local apparent emulsion viscosity ηemul , both resulting from solving the flow field.

Regarding the daughter-size distribution β (L|L′), it states the size distribution of
daughter droplets originating from a mother droplet after a breakage event. Here a
beta function is employed [266]:

β (L|L′) = 180
(

L2

L′3

)(
L3

L′3

)2(
1− L3

L′3

)2

, (6.13)

where L and L′ are the sizes of the daughter and mother droplets. Eq. (6.13) assumes
that two droplets are formed from a mother and that symmetric breakage is the
most likely event. It is important to remind here that the choice of the daughter-size
distribution function has a large impact on the final DSD [6, 7, 106], but much less
on the mean Sauter diameter [267], used to evaluate the evolution of the DSD in this
work. Therefore, the form of the daughter-size distribution function is of secondary
importance here.
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Finally, the coupling between CFD and PBM is realized here by using two
approaches. Some of the simulations are run with the classical on-the-fly coupling,
where the governing equations are solved simultaneously [267]; whereas another part
of the simulations is run with the off-line coupling, where, first, the CFD equations
for the flow field are solved and the relevant information for the flow field is extracted
(i.e., the shear rate and the mixing index). Finally, a volume-averaged PBM is solved
for the evolution of the DSD [268, 269].

6.3 Numerical details

As already mentioned, we simulated the last step of the mayonnaise production
process, i.e., the cone mill mixer, by using CFD and PBM as described in section 6.2.
The information about the experiments is taken from the works Refs. [6, 7]. More
in detail, three types of mayonnaise were prepared with different concentrations
of soybean oil (0.65, 0.70, 0.75 kg/kg), whose density ρoil and viscosity ηoil are
respectively equal to 917 kg/m3 and 50 mPa · s [106]. Before pumping it into the
cone mill, the mayonnaise is characterized by a coarse DSD, whose shape only
depends on the initial oil content. After the continuous mixing process into the
cone mill, the desired product structure is obtained, i.e., the final DSD is reached.
Upstream and downstream DSD measurements are available in the literature for
model validation [6, 7].

Each one of these three types of mayonnaise was processed under the three
different operating conditions reported in Table 6.1. The last column reports the
corresponding Reynolds numbers for the intermediate soybean oil concentration
(0.70 kg/kg). As it can be seen, only for Experiment no. 1 the Reynolds number
exceeds the critical Reynolds number (also corresponding to the highest Taylor
number), highlighting for this operating condition the presence of Taylor vortices
[116, 117] (see section 6.4.1).

A sketch of the cone mill mixer is reported in Figure 6.2, together with its 2D
and 3D representations. It consists of a solid conical frustum rotor, which rotates
clockwise inside a slightly larger stator of the same shape. This configuration
forms a small gap in which the emulsion flows from the top to the bottom of the
cone mill. The chambers before and after the small gap ensure a homogeneous
composition of the emulsion but their role in determining the final DSD is not fully
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Table 6.1 Design of experimental test cases from the works Refs. [6, 7] and corresponding
Reynolds numbers at oil concentration equal to 0.70 kg/kg (70 wt%).

Exp. no. Rotor speed
[rpm] Gap [mm]

Inlet mass
flow rate

[kg/h]
Re

1 6039 0.624 31 140.0 > Rec [118]
2 6784 0.208 15 61.2
3 3170 0.624 64 64.6

Fig. 6.2 Sketch of the cone mill mixer (right) and corresponding 3D (left) and 2D (center)
representations.

clear [6, 7]. This is the reason why different geometries for the simulations are
considered, including 2D and 3D representations of the gap region, with and without
the pre- and post-mixing chambers. Finally, it is worth mentioning that the pilot
scale apparatus (manufactured by IKA) employed in experimental measurements
has a more complex geometry, but the representation reported in Figure 6.2 is a
reasonable compromise between computational costs and accuracy [6].

All the simulations were performed with the open-source CFD software Open-
FOAM (version 6.0). In order to evaluate the flow field, the SRFSimpleFoam solver
is employed, which is a steady-state solver for incompressible flows in a single
rotating frame. This solver adopts the SIMPLE algorithm for the solution of velocity
and pressure coupling. The viscosity model of the emulsion described in section
6.2.1 is implemented as an add-on library.
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Table 6.2 Grid independence study on a 2D geometry without pre- and post-mixing chambers
for Experiment no. 1 and for a dispersed phase concentration of 0.65 kg/kg (65 wt%).

Grid 1 Grid 2 Grid 3 Grid 4 Grid 5 Grid 6

Number of cells
along the radial
direction

10 15 20 25 30 35

Number of cells
along the axial
direction

150 220 285 360 430 500

Total number of
cells

1500 3300 5700 9000 12900 17500

Number of Taylor
vortices

3 16 19 21 21 21

Volume-averaged
shear rate [1/s]

28991 29733 30339 30540 30605 30758

In order to properly describe the flow field in the cone mill, a grid independence
study was conducted. The six different grids described in Table 6.2 were tested.
These six grids refer to the 2D geometry limited to the gap, without pre- and post-
mixing chambers. Table 6.2 reports the grid resolution along the axial and radial
directions, the total number of cells, the resulting number of Taylor vortices observed,
and the volume-averaged shear rate. Only the fine resolution of Grids 4, 5, and 6
makes it possible to properly describe the flow field in terms of both the number of
Taylor vortices and the volume-averaged shear rate. Similar information is reported
in Figure 6.3, where a contour plot of the shear rate is reported for Experiment no. 1
for Grid 1 and Grid 4 at the oil concentration equal to 0.65 kg/kg (65 wt%). As can
be seen, the vortex structure emerges and is correctly described only at the latter grid
resolution. All subsequent results refer to a grid resolution of at least 25×360 cells
in the gap.

The PBM is solved by means of the QMOM with a three node quadrature,
meaning that the first six moments of the DSD are transported. Although in general
the evolution of the DSD has an effect on the emulsion viscosity [113], the rheology
model here implemented depends only on the dispersed phase volume fraction and
not on the oil droplet size. Therefore, the hydrodynamics of the emulsion does
not depend on the DSD (see section 6.2.1). As a consequence, in all simulations,
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Fig. 6.3 Contour plots of the shear rate reported for Experiment no. 1 for Grid 1 (left) and
Grid 4 (right) at the oil concentration equal to 0.65 kg/kg (65 wt%).
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Table 6.3 Numerical schemes and boundary conditions used in CFD-PBM simulations.

Variable Scheme
Boundary condition

Rotor
wall

Stator
wall Inlet Outlet

Pressure
Second-order
central scheme

Zero
gradient

Zero
gradient

Zero
gradient

Fixed
value

Fluid
velocity

Bounded
second-order
upwind

Rotor
speed

No-slip
Constant
profile

Zero
gradient

Moments
Bounded
first-order
upwind

Zero
gradient

Zero
gradient

Fixed
value

Zero
gradient

at first, only the governing equations of SRFSimpleFoam are solved in order to
obtain steady-state flow field information. Then, the variables linking CFD and PBM
together, i.e., viscosity and velocity fields (see section 6.2.2), are transferred to the
PBM model. As mentioned, in this work two approaches are used. For a limited
number of cases, the viscosity and velocity field are transferred to the modified
scalarTransportFoam in order to solve the PBM within the CFD code but assuming
the flow field was frozen. Further details about this implementation can be found in
previous works [250, 251, 258, 270]. Here, the six moments are considered as scalars
and their transport equations are incorporated in the scalarTransportFoam module of
OpenFOAM that provides a solver for steady or transient transport equation for a
single passive scalar, obtaining a modified solver for the solution of the six equations
simultaneously. The coalescence and breakage kernels described in section 6.2.2 are
used to evaluate the droplet coalescence and breakage rates. Alternatively, the shear
rate, γ̇ , and the mixing index, α , within the cone mill are extracted and the PBM is
solved in a simplified form as described in a previous work [269].

An overview of the numerical schemes and the boundary conditions used here
can be found in Table 6.3. Regarding inlet boundary conditions, the zero gradient
condition is set for the pressure, whereas for the velocity an inlet constant profile is
imposed, whose value is calculated from the inlet mass flow rate corresponding to
experiments reported in Table 6.1. The values of inlet moments (and consequentially
the inlet d32 value) are calculated from the experimentally measured inlet DSD.
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Fig. 6.4 Axial velocity across the gap (normalized distance from the rotating wall) at the gap
inlet, center, and outlet, as predicted by 2D and 3D simulations for Experiment no. 1 (Table
6.1) and for a dispersed phase concentration of 0.70 kg/kg (70 wt%).

6.4 Results and discussion

In this section, the most significant results of the simulations performed will be
presented. First, the flow field of the emulsion inside the mixer is shown, then, the
results of the PBM simulations are also discussed and compared with experimental
data.

6.4.1 Flow field results

It is interesting to compare the CFD results obtained with the 2D and 3D geometries
with the pre- and post-mixing chambers. Figure 6.4 reports this comparison in terms
of the axial velocity across the gap for three different axial positions (inlet, center,
and outlet) for one operating condition, namely Experiment no. 1 of Table 6.1.
As can be seen, no significant difference is observed between the 2D and the 3D
predictions, probably due to the intrinsic axial symmetry of the cone mill. For this
reason from now on only 2D results will be presented and discussed. The streaklines
for one operating condition are also reported in Figure 6.5. As can be seen, two large
recirculation zones are identified in the pre- and post-mixing chambers.

As expected, the CFD simulations show a high velocity gradient due to the high
rotational speed, in particular, the highest velocity corresponds to the tip velocity
of the rotor, as it can be seen in Figure 6.6, which shows the contour plot of the
velocity magnitude in a magnified longitudinal section of the cone mill gap with
the oil concentration equal to 0.70 kg/kg (70 wt%) and at operating conditions
corresponding to Experiment no. 1 (Table 6.1). Since the rotational speed of the
rotor is considerably higher than the inlet fluid velocity, the tangential component of
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Fig. 6.5 Streaklines for Experiment no. 1 (Table 6.1) and for a dispersed phase concentration
of 0.65 kg/kg (65 wt%).
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Fig. 6.6 Contour plot of the velocity magnitude in a magnified longitudinal section of the
cone mill gap with the oil concentration equal to 0.70 kg/kg (70 wt%) and at operating
conditions corresponding to Experiment no. 1 (Table 6.1).

velocity is larger than the axial and radial one and the contour plot of the tangential
velocity is very similar to the one reported in Figure 6.6. Moreover, the contour
plot shows that the tangential velocity has a linear profile along the gap, with the
maximum value at the rotor wall and the minimum one at the stator wall, like in a
Couette flow.

Although the main velocity component is the tangential one, it is more interesting
to observe the trend of the axial component of the emulsion velocity (z-component).
Figure 6.7 reports the axial velocity profiles versus the normalized distance from
the rotor wall at half height of the cone mill gap, with the oil concentration equal
to 0.70 kg/kg (70 wt%), and for different operating conditions (see Table 6.1). In
Experiments no. 2 and 3 the axial velocity presents a parabolic profile, in which the
maximum value depends on the inlet flow rate. It is worth reminding here that the
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fluid flow enters where the cone mill has the smaller radius (top) and exits where it has
the larger one (bottom) (see Figure 6.2), explaining the reason for the negative values
of velocity. Experiment no. 1 presents a different shape of the axial velocity. Close
to the rotor wall, the axial velocity points downward, while its direction is opposite
close to the stator wall. Therefore, the presence of such backflow suggests that a
large vortex appears for this operating condition, extending over the entire height of
the cone mill. This situation has already been observed in previous works, performed
with null axial flow [116, 117]. For a better understanding of the fluid flow, Reynolds
numbers defined in Eq. (6.1) are calculated for the same conditions of Figure 6.7,
and the results are summarized in Table 6.1. For Experiment no. 1 Re is higher than
Rec (equal to 132 [118]), at which value the flow starts to become unstable and the
first large Taylor vortex appears. Although it has been shown experimentally that
the axial flow has a stabilizing effect on the formation of instabilities, increasing the
value of Rec [119], Reynolds number (and, correspondingly, Taylor number) shown
in Table 6.1 for Experiment no. 1 is high enough to justify the axial velocity trend
shown in Figure 6.7 and to imply the presence of a large vortex filling the entire
height of the cone mill.

At last, it is interesting to discuss the predictions for the shear rate, the mixing
index, and the corresponding capillary number. Figure 6.8 reports the contour
plots for the ratio between the capillary number and the critical capillary number,
calculated by using the emulsion viscosity and the viscosity of the continuous phase
(Eqs. (6.11) and (6.12)), as well as the mixing index for Experiment no. 1 at the oil
concentration equal to 0.65 kg/kg (65 wt%) and no. 3 at the oil concentration equal
to 0.70 kg/kg (70 wt%). Closer observation of Figure 6.8 highlights that most of the
breakage occurs in the gap, where the capillary number is larger than its critical value
due to pure shear flow, namely α ≈ 0.5. Larger values of the mixing index, namely
α ≈ 1, are observed in the pre- and post-mixing chambers, where, however, the shear
rate is not large enough to ensure a value of the capillary number greater than its
critical value. This is also confirmed by the results reported in Figure 6.9, where the
volume distribution of shear rate and mixing index across the cone mill are reported
for the three investigated operating conditions (Table 6.1) at the oil concentration
equal to 0.70 kg/kg (70 wt%). As can be seen, the highest shear rates (γ̇ ≥ 103 1/s)
are observed in regions characterized by a mixing index approximately equal to
0.5. We can therefore conclude that, although the elongational flow, generally more
effective in breaking droplets, is observed in the pre- and post-mixing chambers,
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Fig. 6.7 Axial velocity profiles versus the normalized distance from the rotor wall at half
height of the cone mill gap with the oil concentration equal to 0.70 kg/kg (70 wt%) and for
different operating conditions (see Table 6.1).
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most of the droplet breakup occurs within the cone mill gap due to the pure shear
flow.

6.4.2 PBM results

As already mentioned, the high rotational speed of the cone mill mixer develops
a high-shear rate inside a narrow gap in order to obtain the final product with the
desired features. Figure 6.10 reports the trend of the number of the oil droplets per
unit volume, corresponding to the moment of order zero of the DSD, and the oil
volume fraction, proportional to the moment of order three of the DSD, along the
normalized distance from the middle point of the inlet to the middle point of the outlet
of the cone mill mixer gap for different oil concentrations. Since the oil concentration
does not change due to droplet coalescence and breakage, the third-order moment,
which is proportional to the oil volume fraction, remains constant along the gap and
is equal to the corresponding values of different types of mayonnaise, as reported in
a previous work [7]. On the other hand, the number of oil droplets per unit volume
(the moment of order zero) increases, meaning that droplets break moving through
the mixer since the total oil amount is constant. In addition, it is important to note
that the number of oil droplets is larger for higher oil concentrations.

The evolution of the DSD is reported in terms of the mean Sauter diameter d32,
calculated as the ratio between the third and second-order moments. Thanks to the
link between PBM and CFD, as described in section 6.2.2, it is possible to highlight
the influence of the flow field and, in particular, the high shear rates and the axial
velocity on the trend of d32. Figure 6.11 reports the contour plot of d32 along a
longitudinal section of the cone mill gap with oil concentration equal to 0.70 kg/kg
(70 wt%) for Experiments no. 1 and 3. As it can be seen, d32 decreases along the flow
direction, since droplets undergo breakage induced by the high shear rates inside
the mixer. These trends exactly reproduce what it is expected from experimental
observations [6, 7]. The insets in Figure 6.11 are magnified sections of the cone
mill gap that show in detail how the flow field and, in particular, the axial velocity
influence d32 trends. For Experiment no. 3, the d32 presents a parabolic profile along
the gap width, with the higher value at the center of the gap and the lower at the
walls, similarly to the respective axial component of velocity (see Figure 6.7). For
Experiment no. 1, the situation is different from Experiment no. 3. In this case, it
is represented very clearly how the flow field can influence the local DSD. As it is
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Fig. 6.8 Contour plots for the ratio between the capillary number and the critical capillary
number, calculated by using the emulsion viscosity (left) and the continuous phase viscosity
(center) (Eqs. (6.11) and (6.12)), and the mixing index, α (right), for Experiment no. 1 at the
oil concentration equal to 0.65 kg/kg (65 wt%)(top) and no. 3 at the oil concentration equal
to 0.70 kg/kg (70 wt%)(bottom).
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Fig. 6.9 Volume distribution of mixing index and shear rate for operating conditions corre-
sponding to Experiment no. 1 (top), no. 2 (middle) and no. 3 (bottom) at the oil concentration
equal to 0.70 kg/kg (70 wt%) (see Table 6.1).
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Fig. 6.10 Trend of the number of oil droplets per unit volume (M0, top) and oil volume
fraction (π/6 M3, bottom) along the normalized distance from the middle point of the inlet
to the middle point of the outlet of the cone mill mixer gap, for oil concentrations equal to
0.65 kg/kg (blue line), 0.70 kg/kg (green line), and 0.75 kg/kg (red line) in the Experiment
n.3 (see Table 6.1).
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Table 6.4 Comparison between PBM predictions and experimental measurements for the
mean Sauter diameter for Experiments no. 1 and 3 at the oil concentration equal to 0.70
kg/kg (70 wt%) for different values of the coalescence kernel constants, K1 and K2, and the
breakage kernel constants, K3 and K4.

Exp.
no. KKK111 KKK222 KKK333 KKK444

dddMMMooodddeeelll
333222 dddEEExxxppp

333222
[µµµm] [µµµm]

1
1×10−6 1.077×102 2.154×10−4 1.744×10−3 6.9

6.62.154×10−4 1.498×10−6 4.642×10−2 2.684 3.6
1×101 1.077×102 2.154×10−4 2.684 23.7

3
1×10−6 1.077×102 2.154×10−4 1.744×10−3 29.1

7.72.154×10−4 1.498×10−6 4.642×10−2 2.684 6.7
1×101 1.077×102 2.154×10−4 2.684 32.0

reported in section 6.4.1 and Figure 6.7, the presence of Taylor instability inside the
mixer leads to a particular shape of the velocity profile. Therefore, the link between
CFD and PBM is able to show that the oil droplets are bigger close to the rotor
and smaller close to the stator. The average outlet values of d32 shown in Figure
6.11 are equal to 7.1 µm for case no. 3 and 5.4 µm for case no. 1, whereas the
experimental ones are respectively 7.7 µm and 6.6 µm [7], with a relative error
under 20%. These outcomes are obtained by suitably adjusting the free parameters
that appear in coalescence and breakage kernels, through a trial and error procedure
and more details on this are given below. It is important to point out that the results
reported here have illustrative purposes, to show the capabilities of the CFD-PBM
approach. Achieving a unique and generic set of free parameters that matches all the
experimental data, using optimization and uncertainty quantification techniques, will
be the scope of future works.

As just mentioned, the predictions of the PBM are highly affected by the values
of the model parameters appearing in the coalescence kernel, K1 and K2, and the
breakage kernel, K3 and K4. Due to the semi-empirical nature of these kernels and the
many approximations adopted in their derivation, their values cannot be predicted by
the theory but have to be fitted with experiments. An example of the influence of the
model parameters on the final predictions can be found in Table 6.4. As expected by
increasing K1, coalescence becomes more important and the mean Sauter diameter
increases, and conversely, by increasing K3 or K4 breakup becomes more important
and the mean Sauter diameter decreases.
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Fig. 6.11 Contour plots of the mean Sauter diameter d32 of oil droplets along a longitudinal
section of the cone mill gap with oil concentration equal to 0.70 kg/kg (70 wt%) for the
Experiments no. 3 (top) and no. 1 (bottom) (see Table 6.1). Insets are magnified gap sections.
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Table 6.5 Final comparison between the mean Sauter diameter predicted by the PBM and
measured experimentally for Experiments no. 1, 2, and 3 and for the three dispersed phase
concentrations investigated here.

Exp.
no.

Mayonnaise 1
(0.65 kg/kg)

Mayonnaise 2
(0.70 kg/kg)

Mayonnaise 3
(0.75 kg/kg)

exp. data model pred. exp. data model pred. exp. data model pred.
[µm] [µm] [µm] [µm] [µm] [µm]

1 7.206 9.530 6.587 5.180 4.647 3.180
2 8.787 9.250 5.844 4.780 4.815 2.950
3 12.364 11.99 7.713 6.130 6.063 3.830

In order to optimize the model parameters K1, K2, K3, and K4, the PBM, solved
in the simplified form described in a previous work [269], was coupled with the
covariance matrix adaptation evolution strategy (CMA-ES) algorithm [271]. The
algorithm minimizes the normalized distance between the predicted mean Sauter
diameter and the corresponding experimental values, resulting in the final predictions
reported in Table 6.5. The optimization was performed with the PBM implemented
in its simplified form, rather than with the full CFD-PBM due to the computational
costs associated with the full CFD-PBM which are prohibitive for these applications.
As it can be seen from Table 6.5, the comparison is satisfactory as the PBM is capable
of capturing the most important trends for the investigated operating conditions.

6.5 Conclusions

In this chapter, a modeling approach for food emulsion production in a high-shear
mixer was presented. A flow field analysis performed with CFD shows that rec-
ognizable patterns for the investigated geometry are in agreement with previous
experimental works. In particular, the tangential component of the emulsion velocity
shows a Couette flow, whereas the axial velocity trends depend on Reynolds number:
for Re < Rec, a Poiseuille flow develops inside the gap of the mixer, but above Rec

the first instability appears and backflow occurs. Thanks to the coupling between
CFD and PBM, demonstrated with two approaches, it is possible to obtain a better
understanding of the flow influence on the evolution of the droplet size distribution.
In particular, the role of the type of flow, elongational versus pure shear, and the
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role of the pre- and post-mixing chambers in the cone mill were elucidated. This
model accounts for both the coalescence and the breakage of the oil droplets, which
depend, in turn, on the local flow conditions. From the evaluation of the mean
oil droplet diameter, the simulations are able to show that the breaking of the oil
droplets promoted by the high shear rates prevails over the coalescence phenomenon,
reproducing correctly the experimental data. As a powerful and convenient method
for such kind of applications, QMOM is employed for the solution of the population
balance equation, taking into account the actual hydrodynamics of the emulsion in
order to provide a more accurate prediction of the droplet size distribution.

The results presented here will also serve as the basis for future extension of
this work in several directions. First, an optimization procedure will be employed
in order to identify an accurate and generic set of kernel constants reproducing the
available experimental data. Then, these simulations can be included in a more
general multi-scale framework in which the effect of the DSD on the emulsion
viscosity can be taken into account via detailed front-tracking simulations. Moreover,
the interfacial tension can be directly made dependent on the definition of the local
surfactant concentration, thus better including the results on smaller scales from the
previous chapters.



Chapter 7

Conclusions and final remarks

This work focused on the multiscale modeling approach for simulating food emulsion
production at different space and time scales, namely from the molecular to the
equipment level. The main physical phenomena involved in the process are droplet
breakage and coalescence, which, in turn, depend on several aspects playing a role
at different levels of description. At the molecular scale, the type of surfactant, its
adsorption mechanism, and the thermodynamic behavior are essential information
to define the interfacial force acting on the oil droplet surface. On the other hand,
the type of flow experienced by oil droplets inside the production device, the non-
Newtonian viscosity of the emulsion, and the different operating conditions can be
studied at the macroscale level of description. Therefore, based on the properties to
be investigated, many modeling techniques were here employed to provide useful
insight into the physics of the food emulsion. As done in typical multiscale studies,
information was transferred from a smaller to a larger scale, thus proposing possible
links between different modeling methods. Since each chapter of the thesis was
dedicated to a specific technique according to the topic investigated, an overview of
the main conclusions obtained is here restated and final remarks are drawn.

In chapter 2, the adsorption of one of the proteins responsible for the stability
of food emulsions, the so-called Apovitellenin I, was studied using fully atomistic
Molecular Dynamics and Metadynamics simulations. First, it was verified that
this protein can actually act as a surfactant at the oil-water interface by analyzing
its adsorption behavior. Then, the influence of co-surfactants (phospholipids) on
protein adsorption was also investigated showing competitive and/or cooperative
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interactions based on their spatial configuration. The methodology employed here
showed an important advantage to estimating properties that are difficult to obtain
experimentally, especially the Gibbs free energy of adsorption which is then used in
the coarse-grained model.

In chapter 3, the oil-water interface system stabilized by protein surfactants
was simulated via a coarse-grained model, i.e., the Dissipative Particle Dynamics
technique coupled with Molecular Dynamics simulations. In particular, this method
was able to properly describe the protein surfactant behavior by representing the
interfacial tension decrease at increasing protein surface concentration. Reasonable
results were obtained in line with experimental evidence of similar protein systems.
The present approach was linked to Metadynamics results through a thermodynamic
model of protein adsorption to obtain a complete description of Apovitellenin I as a
surfactant. Indeed, this procedure can predict a macroscopic property of liquid-liquid
interfacial systems, namely the increase of the surface pressure at increasing protein
bulk concentration.

In chapter 4, a scaling scheme for classical Dissipative Particle Dynamics simula-
tions was applied to ternary interfacial systems in order to obtain a simplified model
that can properly reproduce the decrease of interfacial tension determined with more
detailed mesoscale simulations. By applying an appropriate scaling procedure and
parameterization, it is possible to conserve the equilibrium interfacial tension trend
and maintain the domain conformation even for a simple coarse-grained represen-
tation of the molecules involved in the ternary system. Therefore, if an interfacial
system can be simulated with classical Dissipative Particle Dynamics on a smaller
scale, the scaling of interactions does not prevent a simulation on a larger scale under
certain conditions.

In chapter 5, the phase field model was applied for the numerical simulations
of immiscible binary fluids in the presence of soluble surfactant within the Lattice
Boltzmann model. When dealing with amphiphilic molecules, this approach can
describe the typical surfactant adsorption isotherms. By comparing the present
method with a Dissipative Particle Dynamics work, it was shown that it is possible
to find a link between the two mesoscopic techniques and, in turn, between the
particle-based and continuum modeling approaches.

In chapter 6, Computational Fluid Dynamics simulations were coupled with Pop-
ulation Balance Model for describing the last step of the food emulsion production
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process taking place in a high-shear mixer. The model took into account both the
coalescence and breakage of oil droplets, depending on local flow conditions. As the
most important property of the food emulsion, the droplet size distribution was cor-
rectly reproduced by a comparison with experimental data. A better understanding
of the flow influence was achieved showing that the oil droplet breakup promoted by
the high shear rates prevails over coalescence events.

Finally, the modeling methods here presented showed how computer simulations
can greatly help in the comprehension of food emulsion behavior. Although some
issues still need to be addressed for a complete description of the topic studied,
however, the multiscale approach can be considered a suitable tool for the investiga-
tion of such problems where several physical phenomena are involved at different
scales. In general, this work reported how various modeling techniques can be linked
together not only to reproduce qualitative behaviors but also to quantitatively predict
properties that are difficult to estimate experimentally. This represents a remarkable
advantage, especially when dealing with very complex systems as in food science
where experimental research can be hindered by difficulties in isolating individual
components and their relative contributions to the properties of interest.
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Appendix A

Calculation of the protein surface
number density

The method used in chapter 4 to automatically determine the protein surface number
density is here explained as it has been seen that a certain number of surfactants
are not adsorbed at the interface. This is similar to the procedure already employed
to identify the bulk concentration of solutes in interfacial systems found in the
literature [223]. Figure A.1 shows an illustrative example of the method here
used. From simulations of the ternary system with two symmetrical interfaces the
time-averaged number density profiles of protein molecules along the normalized
x-direction normal to the interface expressed as φρ ′ are extracted (a) (see Figures
4.5 and 4.6 for reference). The gradient of the number density is then computed
with respect to x/Lx (b). The regions where the gradient fluctuates around zero
define the bulk phases. The interface region can be identified by looking for spikes
(positive and negative) in the gradient that are an order of magnitude greater than
the fluctuations seen in the bulk regions. These spikes define the interface region
to be included in number density calculations. Hence the standard deviation Se

of the gradient (distance between horizontal grey dashed lines) is used to identify
the distinction between bulk and interface regions. The first and last intersections
between the gradient curve and horizontal lines in Figure A.1(b) define the interval
limits (x̂1,a and x̂1,b) of the interface region labeled as 1 where protein molecules can
be considered adsorbed at the interface. The same is done for the interface labeled
as 2 (not shown). From the area (in red) subtended by the number density profile,
the equilibrated surface density of protein molecules at interface ci is then obtained
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as follows:

ci =
Lx

2nφL2

(∫ x̂1,b

x̂1,a

φρ
′(x/Lx)L2d(x/Lx)+

∫ x̂2,b

x̂2,a

φρ
′(x/Lx)L2d(x/Lx)

)
, (A.1)

where n corresponds to the number of beads representing the protein molecule, thus
equal to 1 or 2 for φ = 3008 or φ = 1504, respectively (see Figure 4.2). Hence, ci

values are used as abscissas in Figure 4.7.
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Fig. A.1 Illustrative example on how the protein surface number density is determined in
this work from the number density profile of surfactants along the normalized x-direction
normal to the interface (a) by means of evaluating its gradient curve (b). The portion of the
simulation box relative to the interface labeled as 1 is only shown. Further details on the
meaning of the symbol notation can be found in the text.
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The D3Q19 set parameters

The D3Q19 set is used in the present study in chapter 5. The lattice velocity
directions are split into two groups. The directions c⃗1−6 point in the nearest neighbour
directions:  cx1−6

cy1−6

cz1−6

=

 1 −1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1

 , (B.1)

and c⃗7−18 point into 12 square diagonal directions: cx7−18

cy7−18

cz7−18

=

 1 −1 1 −1 0 0 0 0 1 −1 1 −1
1 1 −1 −1 1 −1 1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1 1 1 −1 −1

 .

(B.2)
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The equilibrium distributions of particle populations f eq
q , geq

q , and heq
q for direc-

tions q ∈ 1, ...,18 are calculated as follows [272]:

f eq
q = wq

(
p0 −κintφ(∂

2
xxφ +∂

2
yyφ +∂

2
zzφ)+ cqαρuα +

3
2

[
cqαcqβ − 1

3
δαβ

]
ρuαuβ

)
+(κint −Dψ)

(
wxx

q ∂xφ∂xφ +wyy
q ∂yφ∂yφ +wzz

q ∂zφ∂zφ +wxy
q ∂xφ∂yφ

+wxz
q ∂xφ∂zφ +wyz

q ∂yφ∂zφ

)
,

(B.3a)

geq
q = wq

(
Γφ µφ + cqαφuα +

3
2

[
cqαcqβ − 1

3
δαβ

]
φuαuβ

)
, (B.3b)

heq
q = wq

(
Γψ µψ + cqαψuα +

3
2

[
cqαcqβ − 1

3
δαβ

]
ψuαuβ

)
. (B.3c)

The populations for q = 0 are calculated as:

f eq
0 =ρ −

18

∑
q=1

f eq
q , (B.4a)

geq
0 =φ −

18

∑
q=1

geq
q , (B.4b)

heq
0 =ψ −

18

∑
q=1

heq
q , (B.4c)

and the bulk pressure is given by:

p0 = c2
s ρ +

A
2

φ
2 +

3B
4

φ
4 − kbT [ln(1−ψ)− C

2
ψ

2 −Eφψ . (B.5)
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The weights read [273]:

w1−6 =
1
6
, w7−18 =

1
12

,

wxx
1−2 = wyy

3−4 = wzz
5−6 =

5
12

, wxx
3−6 = wyy

1−2,5−6 = wzz
1−4 =−1

3
,

wxx
7−10 = wxx

15−18 = wyy
7−14 = wzz

11−18 =− 1
24

,

wxx
11−14 = wyy

15−18 = wzz
7−10 =

1
12

, (B.6)

wxy
1−6 = wyz

1−6 = wzx
1−6 = 0 , wxy

7,10 = wyz
11,14 = wzx

15,18 =
1
4
,

wxy
8,9 = wyz

12,13 = wzx
16,17 =−1

4
, wxy

11−18 = wyz
7−10 = wzx

7−14 = 0 .

The stencils for the calculation of gradients and Laplacian in the pressure tensor
and chemical potential are given by [273]:

∂x =
1
12


 0 0 0

−1 0 1
0 0 0

 ,

 −1 0 1
−2 0 2
−1 0 1

 ,

 0 0 0
−1 0 1
0 0 0


 , (B.7a)

∇
2 =

1
6


 0 1 0

1 2 1
0 1 0

 ,

 1 2 1
2 −24 2
1 2 1

 ,

 0 1 0
1 2 1
0 1 0


 , (B.7b)

where left, middle, and right matrices show slices of the stencil when czq = 1, 0, and
−1, respectively.
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MRT matrices

The transformation matrix M derived based on the work Ref. [237] reads:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 −1 0 0 0 1 −1 −1 1 1 −1 −1 1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 1 0 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 −1 1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 2 −4 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1


. (C.1)

The relaxation matrix S is diagonal in the moment space:

S = diag(0,se,sε ,0,sq,0,sq,sν ,sπ ,sν ,sπ ,sν ,sν ,sν ,sm,sm,sm) , (C.2)

where the relaxation rates other than sν are chosen as follows: se = 1.19, sε = sπ =

1.4, sq = 1.2 and sm = 1.98. These values were obtained using linear analysis to
achieve optimized stability of the model [274].
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