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MODELING COMPARTMENTALIZATION WITHIN INTRACELLULAR

SIGNALING PATHWAY ∗, ∗∗, ∗∗∗, ∗∗∗∗

Claire Alamichel1, Juan Calvo2, Erwan Hingant3, Saoussen Latrach4, Nathan
Quiblier5 and Romain Yvinec6

Abstract. We present a novel approach to modeling receptor-activated signaling pathways that take
into account the compartmentalization of receptors and their effectors, both on the cell surface and
in dynamic intracellular vesicles called endosomes. The first building block of the model concerns
compartment dynamics. It takes into account creation of de novo endosomes, i.e. endocytosis, and
further recycling of endosomes to the cell surface or degradation, as well as fusion of endosomes via
coagulation dynamics. The second building block concerns biochemical reactions on the cell surface
and within intra-cellular compartments. Both building blocks are coupled by the transfer of molecules
that occurs at each event that modifies the compartments.

The model is formulated as a integro-partial differential equation, with transport and coagulation
operators, and source terms, coupled to an integro-differential equation. In this work, we prove sufficient
conditions to obtain exponential ergodicity for the size distribution of intracellular compartments. We
further design a finite volume scheme to simulate our model. Finally, we show two application cases
that show qualitative agreement with recently published data, proving that our model can help capture
the spatio-temporal complexity of receptor-activated signaling pathway.
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PID2022-137228OB-I00), by Junta de Andalućıa and ERDF (grant C-EXP-265-UGR23) and by Modeling Nature Research

Unit (project QUAL21-011)
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Résumé. Nous présentons une nouvelle approche de modélisation des voies de signalisation activées
par les récepteurs, qui prend en compte la compartimentation des récepteurs et de leurs effecteurs, à
la fois à la surface cellulaire et dans des vésicules intracellulaires dynamiques appelées endosomes. Le
premier élément constitutif du modèle concerne la dynamique des compartiments. Il prend en compte
la création d’endosomes de novo, c’est-à-dire l’endocytose, puis le recyclage des endosomes à la surface
cellulaire ou leur dégradation, ainsi que la fusion des endosomes via une dynamique de coagulation.
Le deuxième élément constitutif concerne les réactions biochimiques à la surface des cellules et dans
chaque compartiment intracellulair. Les deux parties du modèles sont couplées par le transfert de
molécules qui se produit à chaque événement modifiant les compartiments.

Le modèle est formulé comme une équation aux dérivées partielles avec terme intégrale, avec
des opérateurs de transport, de coagulation et des termes sources, couplée à une équation intégro-
différentielle. Dans ce travail, nous prouvons des conditions suffisantes pour obtenir une ergodicité
exponentielle pour la distribution en taille des compartiments intracellulaires. Nous concevons en outre
un schéma de volumes finis pour simuler notre modèle. Enfin, nous montrons deux cas d’application
qui montrent un accord qualitatif avec des données publiées récemment, prouvant que notre modèle
peut aider à capturer la complexité spatio-temporelle de l’activation des voies de signalisation.

1. Introduction

G Protein Coupled Receptors (GPCR) are a large class of transmembrane receptors: they are proteins located
at the cell surface (plasma membrane) that are specialized in receiving (binding to) extracellular molecules, called
ligand. The ligand-bound receptor will subsequently affect biochemical changes through the plasma membrane
towards intracellular molecules. GPCR thus play a key role in the signal transduction, which allows long range
cell communications mediated by ligand (e.g. hormones, cytokines, growth factors etc) and leads to major
changes in the metabolism and activity of a cell [1, 2]. In addition, GPCR form an important class of targeted
pharmaceutical agents in many different physiological contexts.

A receptor-activated signalling pathway, or biochemical cascade, is a chain of biochemical events activated
by a receptor upon ligand binding. A series of signal transducers, or effector molecules, are activated within
a reaction network (with typically many feedbacks and/or feedforward loops) and ultimately leads to a cell
response, e.g. changes in gene expression, cell growth, metabolism [3]. Recently, it has been shown that GPCR
are pleiotropic: they are able to selectively activate different signalling pathways. Distinct biochemical events
can indeed be modulated by the nature of the ligand (either native physiological ligand or pharmaceutical
agent) and the specific 3D conformational structured adopted by the ligand-bound receptor. This pleiotropy
sheds light into important cell regulation mechanisms that need to be taken into account to design efficient
therapeutic strategies [4].

GPCR do not permanently stay at the plasma membrane. Rather, an important desensitization mechanism
of signaling pathways is receptor endocytosis. Receptor endocytosis is the internalization inside the cell of a
vesicle surrounded by an area of cell membrane which contains receptor (and other) molecules. Endocytosis
is an active form of transport of molecules. The vesicles, called endosomes, and their molecular content, can
further be degraded by cell machinery through hydrolytic enzymes, or be partly recycled back to the plasma
membrane. These spatial movements induce, upon ligand binding, an heterogeneous population of receptors
spread out between plasma membrane and a dynamic population of endosomes with distinct micro-environment.
Within the context of receptor-activated signalling pathways, the processes of endocytosis, degradation and/or
recycling are commonly referred to receptor trafficking, and provide further cell regulation mechanisms of
signaling pathways [5]. Key evidence have indeed shown that the intra-cellular traffic of internalized receptors
has a major impact in cell response to a given stimuli [6, 7].

In this work, we will focus our applications on a specific class of receptors that share in common the activation
of the same effector molecule, the cyclic adenosine monophosphate (cAMP). For a number of GPCR among this
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class, including the Beta-2 Adrenergic Receptors (β2AR) [8], the parathyroid hormone receptor (PTHR) [9], the
luteinizing hormone receptor (LHR) [10], or the follicle-stimulating hormone receptor (FSHR) [11], after ligand
binding, the production of cAMP occurs first at the plasma membrane and later on from a highly dynamic
pool of endosomes following internalization of the receptor by endocytosis. This spatio-temporal dimension of
signaling has been found to have a significant impact on physiological functions, such as the control of serum
calcium by PTHR signaling [12], or the resumption of meiosis by LHCGR signaling [10].

Thus, to faithfully represent the complexity of signalling pathways, we need to take into account the dynamic
of the transient pool of specialised endosomes [5, 13, 14] following receptor stimulation, and its role on the
reaction networks involved in the signalling pathways. The current biological hypothesis is that the endosomal
compartments provide a dynamic and heterogeneous compartmentalised structure that allows specialised effector
molecules to be separated from the bulk cytoplasm (physically separated through a lipid bilayer) in order to
have a proper function of the cell response.

Classical ways to model the dynamic behaviour of signalling pathways use Chemical Reaction Networks
[15], either in a deterministic formalism using ordinary differential equations [16], or in a stochastic formalism
(typically when few molecules are present) using continuous-time Markov chains [17]. Both approaches typically
assume the law of mass action and an idealised homogeneous environment. When spatial dynamics is important
to take into account, one may use reaction-diffusion models to represent for instance spatial gradients [3], or
compartmental models, to physically represent segregation between static compartments [18]. Note that in
most applied literature, like in the field of epidemiology (e.g. SIR model), compartmental models refers to
finite-dimensional dynamical systems where one variable is associated to each compartment, and the model
described fluxes between compartments.

Up to our knowledge, relatively few works have addressed the issue of representing explicitly the segregation of
molecules in a dynamic environment. The peculiarity of receptor trafficking at play within signalling pathways
is that the endosomal compartments are created upon receptor activation, and their number, their size and
their molecular content evolved dynamically, within a similar time scale than that of the signalling pathways
activation. A first attempt of defining such models, within the context of signalling pathways, dates back to [19]
and uses a deterministic population dynamics formalism to follow a population of compartments, structured
by their size and molecular content, and which undergo coagulation-fragmentation like dynamics, representing
endocytosis, fusion, fission, recycling and degradation. Recently, a stochastic counterpart has been proposed
by [20–22]. To the best of our knowledge, a model that represents the chemical reactions that take place both
at plasma membrane and within a dynamic population of endosomal compartment has never been considered
and represents a novelty of our current work.

In this work, we define and study the long-time behavior and numerical schemes of minimal deterministic
models that can represent compartmentalised signalling pathways, taking inspiration from [19]. Furthermore,
we provide two simple examples of our model that show that this model is able to represent qualitatively main
experimental observations on cAMP signaling from [9,12].

In section 2, we describe two minimal models, structured with respectively one or two variables, that can
represent the size-distribution of the endosomal compartment population and their molecular content. In section
3, we study the long time behavior of the model structured with a single variable. In section 4, we present
a numerical scheme for the more general model, structured with two variables. In section 5, we present some
numerical simulations that provide qualitative comparisons with experimental observations.

2. Modelling compartmentalised signalling pathways

The first objective is to be able to define a model to simulate the endosomal compartment dynamics from
their size structure perspective only. We adopt a deterministic population dynamic approach, where individuals
are structured by a single positive variable (their size). From biological observations, the main processes that
shape the size distribution of the endosomal population include:

• Endocytosis: creation of a de-novo compartment from the cell membrane;
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• Removal of compartment: either recycling back to the cell membrane, or degradation through lysosomal
pathways;

• Fusion: binary coagulation of compartments.

Let g = g(t, r) be the population density of endosomal compartments at time t ∈ R+ and size (volume) r ∈ R+.
The evolution equation for g, that takes into account the three mechanisms above is given by, for all t > 0 and
r > 0:

∂g(t, r)

∂t
= Q(g, g)(t, r)︸ ︷︷ ︸

coagulation

+ α(r)︸︷︷︸
endocytosis

− γ(r)g(t, r)︸ ︷︷ ︸
removal

, (M1)

where

Q(g, g)(t, r) =
1

2

∫ r

0

κ(r − r′, r′)g(t, r − r′)g(t, r′)dr′ −
∫ ∞

0

κ(r, r′)g(t, r)g(t, r′)dr′ . (1)

In the sequel, we denote g(0, r) = g0(r) the initial condition of Eq. (M1). A similar equation may be
found in [19, 23]. The coagulation operator is quadratic: two compartments of respective size r, r′ fuse in one
compartment of size r + r′ at rate κ(r, r′). One obtains Eq. (1) by considering all compartments that reach
size r and all that leave size r. The kernel κ ≥ 0 is symmetric (κ(r, r′) = κ(r′, r)), such that the coagulation
operator Eq. (1) preserves mass (

∫
rQ(g, g)(r)dr = 0). In particular, we have (at least formally),

d

dt

∫ ∞

0

rg(t, r)dr =

∫ ∞

0

rα(r)dr −
∫ ∞

0

γ(r)rg(t, r)dr . (2)

Endocytosis is a zero-order process at rate α (source term), compartment removal is a first-order process and
occurs at a rate γ. In the sequel, model (M1) will be referred as our 1D model.

The second modelling step is to include molecular content into Eq. (M1). One may first think as an additional
one dimensional structure variable1. The first example we have in mind is the quantity of (active) receptor within
each compartment, which is of primary interest to represent receptor trafficking within cells (see application in
subsection 5.1). The second example we have in mind is the production of cAMP effector molecules, both at
the plasma membrane and within each endosomes (see application in subsection 5.2). Thanks to this second
structuring variable, besides compartment dynamics, we aim to represent:

• Biochemical reactions inside each compartment. Reaction rates are dependent on local abundances
of molecular species, as well as the size (and more generally other physical variable like pH) of the
compartment.

• Biochemical reactions that occur at the plasma membrane.
• Molecular conservation laws that may hold at each event that modifies the compartments, in particular
between membrane and compartments. Hence we will now distinguish between compartment degrada-
tion and compartment recycling.

Let f = f(t, r, a) be the population density of compartments at time t ∈ R+, size (volume) r ∈ R+ and molecular
content a ∈ R+. Let also M = M(t) ∈ R+ be the molecular quantity at the plasma membrane. The joint
evolution equation for f,M is , for all t > 0, r > 0 and a > 0,

∂f(t, r, a)

∂t
+

∂ (V (r, a)f(t, r, a))

∂a︸ ︷︷ ︸
reactions

= Q̃(f, f)(t, r, a)︸ ︷︷ ︸
coagulation

+ α(r, a,M(t))︸ ︷︷ ︸
endocytosis

− γ(r, a)f(t, r, a)︸ ︷︷ ︸
degradation

−λ(r, a)f(t, r, a)︸ ︷︷ ︸
recycling

, (M2a)

1In future work, this additional structure variable could be an arbitrary finite dimensional variable to represent other molecular

actors of signalling pathways that are either physically located at the plasma membrane, in the endosomal compartments or at the
vicinity of those.
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dM(t)

dt
= JM (M(t))︸ ︷︷ ︸

reactions

−
∫ ∞

0

∫ ∞

0

aα(r, a,M(t))dadr︸ ︷︷ ︸
endocytosis

+

∫ ∞

0

∫ ∞

0

aλ(r, a)f(t, r, a)dadr︸ ︷︷ ︸
recycling

, (M2b)

where

Q̃(f, f)(t, r, a) =
1

2

∫ r

0

∫ a

0

κ(r − r′, r′)f(t, r − r′, a− a′)f(t, r′, a′)da′dr′

−
∫ ∞

0

∫ ∞

0

κ(r, r′)f(t, r, a)f(t, r′, a′)da′dr′ . (3)

In the sequel, we denote f(0, r, a) = f0(r, a) and M(0) = M0 the initial conditions of Eqs. (M2a)-(M2b).

In Eq. (M2a), the extension of the coagulation and endocytosis processes to include the second structuring
variable a is clear. Note that we chose the coagulation kernel to be dependent on the size of the compartments
(not their molecular content), for the sake of simplicity. The removal terms are now splitted in two: the
degradation occurs at rate γ, and the recycling occur at rate λ. The transport term represents the biochemical
reactions that modify the molecular content within each compartment, and which occur at rate V (r, a). Also,
the endocytosis rate α is necessarily dependent on the molecular content of the plasma membrane M , to
avoid negative values for M , e.g. α(r, a, 0) = 0. In Eq. (M2b), JM represent biochemical reactions that
occur at the plasma membrane, and the two integral terms represent the molecules that are lost or gained
at the plasma membrane through respectively the endocytosis or recycling processes. The Eq. (M2b) on the
scalar variable M was not present in [19] and, to the best of our knowledge, it is a novelty of our model.
Still interpreting the molecular content as a quantity of receptors, it allows to represent conservation laws of
receptors between plasma membrane and endosomal compartments, giving a satisfactory representation of the
biological concept of receptor trafficking : receptors (together with other molecules) undergo directed movement
back-and-forth between plasma membrane and intra-cellular endosomal compartments. In particular, we have
(at least formally),

d

dt

(∫ ∞

0

∫ ∞

0

rf(t, r, a)drda

)
=

∫ ∞

0

∫ ∞

0

rα(r, a,M(t))drda−
∫ ∞

0

∫ ∞

0

γ(r, a)rf(t, r, a)drda

−
∫ ∞

0

∫ ∞

0

λ(r, a)rf(t, r, a)drda , (4)

and

d

dt

(∫ ∞

0

∫ ∞

0

af(t, r, a)drda+M(t)

)
= JM (M(t)) +

∫ ∞

0

∫ ∞

0

V (r, a)f(t, r, a)drda

−
∫ ∞

0

∫ ∞

0

γ(r, a)af(t, r)drda . (5)

The choice of the rate functions α, γ, λ and κ mainly governs the compartment size dynamics. In [19, 23], the
authors consider a one-dimensional model (M1) with constant coagulation kernel, constant first-order rate γ,
and exponentially decaying source rate α(r) = Ce−r/a0 . The choice of the rate functions V and JM will mainly
impact the molecular content at the plasma membrane and within compartments. Its choice may be guided by
the underlying chemical reactions that take place at the plasma membrane and within compartments. Linear
or polynomial functions may thus be suitable to represent mass action kinetic law.

In the sequel, the model given by Eqs. (M2a)-(M2b) will be referred as our 2D model.
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In the remaining, in Eq. (M1), Eqs. (M2a)-(M2b), all rate functions and initial conditions are nonnegative.
Further, we do not address in this paper the well-posedness of solutions of either Eq. (M1) or Eqs. (M2a)-(M2b)
and rather take for granted that a unique sufficiently smooth nonnegative solution is given.

3. Long time behavior of the 1D model (M1)

In this section we provide sufficient conditions so that Eq. (M1) exhibits a unique globally stable steady state.
The large-time behaviour of this equation -also known as coagulation equation with source and efflux [24], has
been studied first in [25] with drift, in [26, 27] without efflux, in [28] with a bounded coagulation kernel and
in [29] with a singular coagulation kernel. Here, we limit ourselves to give a self-contained proof of exponential
stability of the steady state in L1 with bounded coagulation kernel. We mainly use a contraction argument,
taking inspiration from [30].

Theorem 1. Let g0, α, κ, γ nonnegative. Assume α is integrable, κ and γ are bounded and morevover inf γ =
γ0 > 0. If

3∥κ∥L∞∥α∥L1 < γ2
0 , (6)

then there exists a unique nonnegative stationary solution in L1(R+) of Eq. (M1), denoted by g∞. Moreover,

∥g∞∥L1 ≤ ∥α∥L1

γ0
,

and for every solution g ∈ C(R+, L
1(R+)) we have

lim
t→+∞

∥g(t)− g∞∥L1 = 0 .

The convergence is at least exponential with rate
γ2
0−3∥κ∥L∞∥α∥L1

γ0
> 0.

We do not expect condition (6) to be optimal. See the discussion in Section 4.2. We assume here that well-
posedness of a unique nonegative solution g ∈ C(R+, L

1(R+)) of Eq. (M1) is given. We note that this implicitly
imposes conditions on the rate functions and the initial condition, which will at least need to be nonnegative
and integrable. See [31] for more details.

Proof. First we prove existence and uniqueness of a stationary solution g∞ thanks to a Banach fixed point
argument. Let us define

X =

{
g ∈ L1(R+) : g ≥ 0, ∥g∥L1 ≤ ∥α∥L1

γ0

}
.

Consider a constant K ≥ ∥γ∥L∞ + ∥κ∥L∞
∥α∥L1

γ0
. For g ∈ X we define

TKg =
1

K
(α− γg +Q(g, g) +Kg) .

The operator TK is well-defined since Q(g, g) is also well-defined for any integrable g provided that κ is bounded
[30, Lemma 3]. We aim to apply Banach’s fixed point theorem for TK on X -which is a closed subset of the
Banach space L1(R+); this will give a stationary solution of Eq. (M1). Let g ∈ X, we have that

TKg ≥ 1

K
(K − ∥γ∥L∞ − ∥κ∥L∞∥g∥L1) g . (7)

Indeed, g and α are positive and κ is bounded, thus

Q(g, g) ≥ −g(r)

∫ ∞

0

κ(r, r′)g(r′)dr′≥ −∥κ∥L∞∥g∥L1g(r) ,
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which leads to Eq. (7) thanks to the boundedness of γ. The fact that ∥g∥L1 ≤ ∥α∥L1

γ0
and the condition on K

entail the positivity of TKf . Then, because∫ ∞

0

Q(g, g) dr = −1

2

∫ ∞

0

∫ ∞

0

κ(r′, r)g(r′)g(r)dr′dr ≤ 0 ,

we deduce that

∥TKg∥L1 =

∫ ∞

0

1

K
(α(r)− γg(r) +Q(g, g)(r) +Kg(r)) dr ≤ ∥α∥L1

K
+

K − γ0
K

∥g∥ .

But K ≥ ∥γ∥L∞ ≥ γ0, thus, for g ∈ X,

K∥TKg∥L1 ≤ ∥α∥L1 + (K − γ0)
∥α∥L1

γ0
≤ K

∥α∥L1

γ0
,

and we conclude that TKg belongs to X. We now show that TK is a contraction on X. Let g and h in X. It is
straightforward to check that

∥TKg − TKh∥L1 ≤ (1− γ0
K

)∥g − h∥L1 +
1

K
∥Q(g, g)−Q(h, h)∥L1 .

By a simple computation (see e.g. [30, Lemma 3] or [28,31]),

∥Q(g, g)−Q(h, h)∥L1 ≤ 3

2
∥κ∥L∞(∥g∥L1 + ∥h∥L1)∥g − h∥L1 ≤ 3∥κ∥L∞

∥α∥L1

γ0
∥g − h∥L1 . (8)

Thus, we have

∥TKg − TKh∥L1 ≤
(
1 +

1

K
(3∥κ∥L∞

∥α∥L1

γ0
− γ0)

)
∥g − h∥L1 .

Then the hypothesis Eq. (6) allows us to conclude that there exists a unique fixed point to TK in X. Moreover,
this is the unique stationary solution which is positive and belongs to L1. Indeed, assume we have a positive
stationary solution g /∈ X i.e. in L1 satisfying γ0

∫
g > ∥α∥L1 . Then

0 =

∫ ∞

0

(α(r)− γ(r)g(r) +Q(g, g)(r)) dr ≤ ∥α∥L1 − γ0

∫ ∞

0

g(r) dr < 0 ,

which is a contradiction.
We now turn to the proof of asymptotic stability. Let g ∈ C(R+, L

1(R+)) be a nonnegative solution to
Eq. (M1) in the sense of distributions and let g∞ ∈ L1(R+) be the stationary solution. We first provide a bound
on g. We have

d

dt

∫ ∞

0

g(t, r)dr = ∥α∥L1 − γ0

∫ ∞

0

g(t, r)dr +

∫ ∞

0

Q(g, g)(t, r)dr ≤ ∥α∥L1 − γ0

∫ ∞

0

g(t, r)dr .

Thus,

∥g(t, ·)∥L1 ≤ ∥g(0, ·)∥L1e−γ0t +
∥α∥L1

γ0
.

It is a classical computation that

∂

∂t
|g − g∞| = −γ(r)|g − g∞|+ (Q(g, g)−Q(g∞, g∞)) sign(g − g∞).
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Thus, using Eq. (8),

d

dt
∥g(t, ·)− g∞∥L1 ≤

[
−γ0 +

3

2
∥κ∥L∞

(
∥g(0, ·)∥L1e−γ0t +

∥α∥L1

γ0
+ ∥g∞∥L1

)]
∥g(t, ·)− g∞∥L1

≤
(
3∥κ∥L∞

∥α∥L1

γ0
− γ0 +

3

2
∥κ∥L∞∥g(0, ·)∥L1e−γ0t

)
∥g(t, ·)− g∞∥L1 .

We conclude that

∥g(t, ·)− g∞∥L1 ≤ ∥g(0, ·)− g∞∥L1e
3∥κ∥L∞

2γ0
∥g(0,·)∥L1−

γ2
0−3∥κ∥L∞∥α∥L1

γ0
t
,

which ends the proof. □

4. Numerical scheme for 1D and 2D models

In this section, we detail our Finite Volume numerical scheme used to simulate our models, and numerically
illustrate their properties. In order to tackle the complexity of the model, we decided to construct a conservative
scheme that preserves moments of the solution. To that, we use of the finite volume scheme framework, after
reformulating the coagulation operator in a divergence form in the spirit of [32, 33]. The transport term is
treated by an up-wind scheme. Remaining terms are approximated in a standard way. Time is treated by a
first order Euler explicit approximation.

4.1. Finite volume scheme

We want to write a numerical scheme of the 2D model, Eqs. (M2a)-(M2b) using a finite volume method.
First we can remark that, for r > 0 and a > 0, we can rewrite our Eq. (M2a) in the following conservative

form [32]

∂tf (t, r, a) =
1

ra
∂r∂aC (f) (t, r, a)− ∂a (V (r, a) f (t, r, a))

+ α (r, a,M (t))− λ (r, a) f (t, r, a)− γ (r, a) f (t, r, a) ,
(9)

where

C (f) (t, r, a) =

∫ r

0

∫ a

0

r′a′Q̃ (f, f) (t, r′, a′)da′dr′.

From Eq. (9), we will first detail the truncation we use (step (i)) and the discretization (step (ii)). Then, we
detail the finite volume approximation of the coagulation and first-order transport operator in the right-hand
side of Eq. (9) (step (iii)). We finally sum-up the numerical scheme in the last step (step (iv)).
(i) Truncation. As in [32, 33], to study our equation, we will truncate the size variable to a maximal value
R > 0 and the quantity of reactants variable to a maximal value A > 0 and we will choose a truncation of the
functional C. We chose the following truncation, given by, for any r ≤ R and a ≤ A,

CRA
c (f) (t, r, a) =

1

2

∫ r

0

∫ a

0

r′a′
∫ r′

0

∫ a′

0

κ (r′ − r′′, r′′) f (t, r′ − r′′, a′ − a′′) f (t, r′′, a′′) da′′dr′′da′dr′

−
∫ r

0

∫ a

0

r′a′f (t, r′, a′)

∫ R−r′

0

∫ A−a′

0

κ (r′, r′′) f (t, r′′, a′′) da′′dr′′da′dr′.

(10)

The truncation in Eq. (10) ensures that no cluster of size larger than R and molecular content larger than
A arise. It can be obtained from Eq. (3) using the truncated kernel κ(r, r′)1r+r′<R1a+a′<A instead of κ(r, r′).
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The equation we will numerically approximate is a truncated version of Eq. (9) on the time interval [0, T ], where
T > 0. We then look at the equation, for any 0 < t < T , 0 < r ≤ R and 0 < a ≤ A,

∂tf
RA (t, r, a) =

1

ra
∂r∂aCRA

c

(
fRA

)
(t, r, a)− ∂a

(
V (r, a) fRA (t, r, a)

)
+ α (r, a,M (t))− λ (r, a) fRA (t, r, a)− γ (r, a) fRA (t, r, a) .

(11)

Heuristically, we expect fRA to be close to f as long as the mass of f outside [0, R/2]× [0, A/2] is small (so that
coagulation that leads to compartment of size larger than R and molecular content larger than A are unlikely).
We call Eq. (11) a conservative truncation of Eq. (9) because the choice of the truncation of the coagulation
operator does not lead to a loss of mass in the first moments. In particular, fRA satisfies, at least formally,
(compare to Eqs. (4)-(5)),

d

dt

(∫ ∞

0

∫ ∞

0

rfRA(t, r, a)drda

)
=

∫ ∞

0

∫ ∞

0

rα(r, a,M)drda−
∫ ∞

0

∫ ∞

0

γ(r, a)rfRA(t, r, a)drda

−
∫ ∞

0

∫ ∞

0

λ(r, a)rfRA(t, r, a)drda , (12)

and

d

dt

(∫ ∞

0

∫ ∞

0

afRA(t, r, a)drda+M(t)

)
= JM (M(t)) +

∫ ∞

0

∫ ∞

0

V (r, a)fRA(t, r, a)drda

−
∫ ∞

0

∫ ∞

0

γ(r, a)afRA(t, r)drda . (13)

We choose to use a conservative truncation for our scheme in order to construct a scheme that preserves the
conservation properties (12)-(13), as we will verify it in the case of pure coagulation.
(ii) Grids definition. Let Ir ∈ N. We discretize the size interval [0, R] into Ir intervals. We denote by(
ri− 1

2

)
i∈{1,...,Ir+1}

a regular mesh of [0, R] with size step ∆r and we set

ri =
ri− 1

2
+ ri+ 1

2

2
=

(
i− 1

2

)
∆r, i ∈ {1, . . . , Ir} .

Let Ia ∈ N. We discretize the size interval [0, A] into Ia intervals. We denote by
(
aj− 1

2

)
j∈{1,...,Ia+1}

a

regular mesh of [0, A] with step ∆a and we set

aj =
aj− 1

2
+ aj+ 1

2

2
=

(
j − 1

2

)
∆a, j ∈ {1, . . . , Ia} .

For all i ∈ {1, . . . , Ir} and j ∈ {1, . . . , Ia}, we set

Λij =
[
ri− 1

2
, ri+ 1

2

]
×
[
aj− 1

2
, aj+ 1

2

]
.

Let ∆t > 0 be the time step. We discretize [0, T ] by the set of points {tn = n∆t, n ∈ {0, . . . , N}}, where
N =

⌊
T
∆t

⌋
.
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(iii) Finite volume approximation. For all n ∈ {0, . . . , N}, i ∈ {1, . . . , Ir} and j ∈ {1, . . . , Ia}, we denote
fn
i,j an approximation of the function fRA at the point (tn, ri, aj). We will recursively calculate fn

i,j such that

fn
i,j ≈

1

∆r∆a

∫
Λij

fRA (tn, r, a) dadr.

Similarly, we denote by Mn an approximation of M (tn). First, we write the explicit forward Euler scheme in
time associated to the Eq. (11). For all n ∈ {0, . . . , N − 1}, we have

fRA
(
tn+1, r, a

)
− fRA (tn, r, a)

∆t
=

1

ra
∂r∂aCRA

c

(
fRA

)
(tn, r, a)− ∂a

(
V (r, a) fRA (tn, r, a)

)
+ α (r, a,Mn)− λ (r, a) fRA (tn, r, a)− γ (r, a) fRA (tn, r, a)+O(∆t).

(14)

For each i ∈ {1, . . . , Ir} and j ∈ {1, . . . , Ia}, we will integrate Eq. (14) over Λij . We first deal with the
coagulation operator. Approximating ra by the constant ri− 1

2
aj− 1

2
on Λij , and integrating, we obtain

∫
Λij

1

ra
∂r∂aCRA

c

(
fRA

)
(tn, r, a) dadr ≈ 1

ri− 1
2
aj− 1

2

(CRA
c

(
fRA

) (
tn, ri+ 1

2
, aj+ 1

2

)
−CRA

c

(
fRA

) (
tn, ri− 1

2
, aj+ 1

2

)
− CRA

c

(
fRA

) (
tn, ri+ 1

2
, aj− 1

2

)
+ CRA

c

(
fRA

) (
tn, ri− 1

2
, aj− 1

2

)
). (15)

Using a change of variable r′ − r′′ → r′ in Eq. (10), and decomposing the first two integrals in telescopic sums
we have,

CRA
c

(
fRA

)(
tn, ri+ 1

2
, aj+ 1

2

)
=

1

2

i∑
k=1

j∑
m=1

∫ r
k+1

2

r
k− 1

2

∫ a
m+1

2

a
m− 1

2

∫ r
i+1

2
−r′

0

∫ a
j+1

2
−a′

0

(
a′ + a′′) (r′ + r′′

)
κ
(
r′, r′′

)
fRA (

tn, r′, a′) fRA (
tn, r′′, a′′)da′′dr′′da′dr′

−
i∑

k=1

j∑
m=1

∫ r
k+1

2

r
k− 1

2

∫ a
m+1

2

a
m− 1

2

r′a′fRA (
tn, r′, a′) ∫ R−r′

0

∫ A−a′

0

κ
(
r′, r′′

)
fRA (

tn, r′′, a′′)da′′dr′′da′dr′.

Further, setting κk,k′ =
1

∆r2

∫ r
k+1

2

r
k− 1

2

∫ r
k′+1

2

r
k′− 1

2

κ (r, r′) dr′dr, and approximating again product terms ra by

their left value on Λij , we approximate CRA
c by:

CRA
c

(
fRA

) (
tn, ri+ 1

2
, aj+ 1

2

)
≈ 1

2
(∆r∆a)

2
i∑

k=1

j∑
m=1

i−k+1∑
k′=1

j−m+1∑
m′=1

(
am− 1

2
+ am′− 1

2

)(
rk− 1

2
+ rk′− 1

2

)
κk,k′fn

k,mfn
k′,m′

− (∆r∆a)
2

i∑
k=1

j∑
m=1

Ir−k+1∑
k′=1

Ia−m+1∑
m′=1

am− 1
2
rk− 1

2
κk,k′fn

k,mfn
k′,m′ ,

(16)

Plugging this latter approximation (16) into Eq. (15), we finally define the approximation of the coagulation
operator, as

Qn
i,j (f, f) = (∆r∆a)2

(
1

2

i∑
k=1

j∑
m=1

κk,i−k+1f
n
k,mfn

i−k+1,j−m+1 − fn
i,j

Ir−i+1∑
k=1

Ia−j+1∑
m=1

κi,kf
n
k,m

)
. (17)
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Note that the approximation Qn
i,j of Q̃

(
fRA, fRA

)
is conservative (in the sense that it preserves the first

moments in r and a), as we will show in the next section. Then, we use an upwind approximation for the
transport term, together with an integration of transport velocity over r using the midpoint rule:∫

Λij

∂a
(
V (r, a) fRA (t, r, a)

)
dadr

=

∫ r
i+1

2

r
i− 1

2

(
V
(
r, aj+ 1

2

)
fRA

(
t, r, aj+ 1

2

))
dr −

∫ r
i+1

2

r
i− 1

2

(
V
(
r, aj− 1

2

)
fRA

(
t, r, aj− 1

2

))
dr

≈ W
i,j+

1
2
fRA

(
t, ri, aj+ 1

2

)
∆r −W

i,j− 1
2
fRA

(
t, ri, aj− 1

2

)
∆r

≈ ∆r ·
[
Aup

(
W

i,j+
1
2
, fn

i,j , f
n
i,j+1

)
−Aup

(
W

i,j− 1
2
, fn

i,j−1, f
n
i,j

)]
, (18)

where Wi,j− 1
2
=

1

2

(
V
(
ri+ 1

2
, aj− 1

2

)
+ V

(
ri− 1

2
, aj− 1

2

))
, fn

i,0 = fn
i,Ir+1 = 0, and the operator Aup is

Aup (u, f+, f−) =

{
uf+ if u ≥ 0,
uf− if u < 0.

(iv) Finite volume scheme. Finally, the scheme of the model (M2a)-(M2b) is given by:

• Initialization for i ∈ {1, . . . , Ir} and j ∈ {1, . . . , Ia} we set

f0
i,j =

1

∆r∆a

∫
Λij

f (0, r, a) dadr.

• Time iteration: for all n ∈ {1, . . . , N}, i ∈ {1, . . . , Ir} and j ∈ {1, . . . , Ia}, using Eqs. (17)-(18), and
using an explicit forward Euler scheme in time for M , we set:

fn+1
i,j =fn

i,j +
∆t

∆r∆a
Qn

i,j (f, f)−
∆t

∆a

[
Aup

(
W

i,j+
1
2
, fn

i,j , f
n
i,j+1

)
−Aup

(
W

i,j− 1
2
, fn

i,j−1, f
n
i,j

)]
+

∆t

∆r∆a

[∫
Λij

α (r, a,Mn) dadr − fn
i,j

∫
Λij

λ (r, a) dadr − fn
i,j

∫
Λij

γ (r, a) dadr

]
.

Mn+1 =Mn +∆t JM (Mn)−∆t

∫ R

0

∫ A

0

a′α (r′, a′,Mn) da′dr′ +∆t

Ir∑
i=1

Ia∑
j=1

fn
i,j

∫
Λij

aλ (r, a) dadr.

(19)

The remaining integrals in Eq. (19) are calculated using an automatic adaptive numerical integration
method, detailed in [34] and implemented in the Julia package HCubature2.

Remark 1. With the same tools, we can write a scheme in dimension 1 for model (M1), noticing that if we
set h (t, r) = rg (t, r) we have

∂th (t, r) = −∂rJ (g) (t, r) + rα (r,M (t))− γ (r)h (t, r) ,

where J (g) is defined as follows

J (g) (t, r) =

∫ r

0

∫ ∞

r−r′
r′κ (r′, r′′) g (t, r′) g (t, r′′) dr′′dr′.

2https://github.com/JuliaMath/HCubature.jl
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A conservative truncation is then given by the following:

JR
c (g) (t, r) =

∫ r

0

∫ R−r′

r−r′
r′κ (r′, r′′) g (t, r′) g (t, r′′) dr′′ dr′.

4.2. Numerical tests

In this section, we will investigate the behavior of the numerical scheme given by Eq. (19) in some particular
cases. We aim to verify the conservation laws satisfied by the numerical scheme, the consistency and convergence
properties of the numerical scheme, as well as to illustrate the long-time behavior we proved in Theorem 1.
Conservation laws and consistency. First, we will evaluate the numerical scheme in the case of a pure
coagulation model (α = γ = λ = V = JM = 0). We consider the pure coagulation equation:

∂tf (t, r, a) = Q̃ (f (t) , f (t)) (r, a) , with t > 0, r > 0 and a > 0. (20)

The discrete equation associated to Eq. (20) is given by, as a special case of Eq. (19) when α = γ = λ = V =
JM = 0,

fn+1
i,j = fn

i,j +
∆t

∆r∆a
Qn

i,j (f, f) , n ∈ {1, . . . , N} , i ∈ {1, . . . , Ir} and j ∈ {1, . . . , Ia} , (21)

and where Qn
i,j is defined in Eq. (17). We remark that we keep the same properties on the moments dynamics

for the two Eqs. (20) and (21). For some test function φ, we define H (φ, t) the moment of f associated with
the function φ at time t > 0,

H (φ, t) :=

∫ ∞

0

∫ ∞

0

φ (r, a) f (t, r, a) dadr ,

and Hn (φ) its discrete analogue moment, associated with the function φ at time tn with n ∈ {1, . . . , N},

Hn (φ) := ∆r∆a

Ir∑
i=1

Ia∑
j=1

φ
(
ri− 1

2
, aj− 1

2

)
fn
i,j . (22)

Then

d

dt
H (φ, t) =

d

dt

[∫ ∞

0

∫ ∞

0

φ (r, a) f (t, r, a) dadr

]
=

∫ ∞

0

∫ ∞

0

φ (r, a) Q̃ (f (t) , f (t)) (r, a) dadr

=
1

2

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

[φ (r + r′, a+ a′)− φ (r, a)− φ (r′, a′)]κ (r, r′) f (t, r, a) f (t, r′, a′) da′dr′dadr ,

and similarly

Hn+1 (φ)−Hn (φ)

∆t
=

(∆r∆a)
2

2

Ir∑
i=1

Ia∑
j=1

Ir−i+1∑
k=1

Ia−j+1∑
m=1

[
φ
(
ri+k−1− 1

2
, aj+m−1− 1

2

)
−φ

(
ri− 1

2
, aj− 1

2

)
− φ

(
rk− 1

2
, am− 1

2

)]
κi,kf

n
i,jf

n
k,m.

Thus choosing φ (r, a) = r or φ (r, a) = a, we have that the first-order moments are constant in time both
at the discrete and continuous levels, consistently with Eqs. (4)-(5) and Eqs. (12)-(13) for the pure coagulation
case. We also have that the zeroth-order moments are non-increasing functions of time in both cases.
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For the pure coagulation model given by Eq. (20), choosing an affine kernel κ (r, r′) = K0 +K1 (r + r′) leads
to a closed moment equation in the form of an ODE system. Indeed, in such case, it is easy to see that we have
the following ODE system for the moments of order 0 and 1:

d

dt
H (1, t) = −1

2
K0 (H (1, t))

2 −K1H (1, t)H (r, t) ,

d

dt
H (r, t) = 0,

d

dt
H (a, t) = 0.

(23)

Eq. (23) is of the form of a Bernoulli differential equation, and its analytical solution can be computed. The
pure coagulation case with an affine kernel is thus an appropriate setting to compare analytical solutions with
moments associated to our numerical scheme (21) calculated by Eq. (22). For this purpose, we introduce the
following notation, for x > 0:

Nx(µ, σ) =
1√
2πσ

e−
1
2 (

x−µ
σ )

2

1x>0 . (24)

We approximate the pure coagulation Eq. (20) using the scheme Eq. (21) with the following numerical param-
eters:

T = 1 ,∆t = 10−4 , R = A = 10 ,∆r = ∆a = 0.25 . (25)

We study two cases. The first one is the case of a constant kernel with the following model parameters:

f0 (r, a) = 0.5 · [Nr (1.5, 0.15)×Na (0.5, 0.3) +Nr (0.5, 0.3)×Na (1.5, 0.15)] ,

κ (r, r′) = 0.5 .
(26)

The second one is the case of an affine kernel with the following model parameters:

f0 (r, a) = 0.5 · [Nr (1.5, 0.15)×Na (0.5, 0.3) +Nr (0.5, 0.3)×Na (1.5, 0.15)] ,

κ (r, r′) = 0.5 + 0.1 (r + r′) .
(27)

As expected, we recover from our numerical scheme (21) that the moment of order 0 is a nonincreasing
function and the moments of order 1 are constant (Figure 1). Moreover, we also observed that these numerical
results are very close to the analytical solutions directly computed from Eq. (23) (Figures 2 and 3). Relative
error of moments of order 0 are increasing through time, as expected from the fact that the size-truncation
of the numerical scheme (21) implies more and more error as compartments gets bigger in pure-coagulation
dynamics.
Convergence. We now investigate the convergence property of our numerical scheme given by Eq. (19) in a
more general setting. We want to illustrate the convergence of the numerical scheme as the size steps ∆r and
∆a decreases to 0. Regarding stability, we expect the numerical scheme to be conditionally stable for small
enough ∆t

∆r∆a as our scheme is a first-order finite volume scheme, but the proof of stability is out of the scope
of this paper. See for instance [32] for stability results on the coagulation part. We thus fix a small enough
time step ∆t and choose ∆r = ∆a = h with linearly decreasing h in a log2 scale, namely hm = h0

2m for integers

m from 0 to 11 and h0 = 1
2 . The finite volume size is then decreasing from h2

0 to
(

h0

211

)2
. We choose the finest

solution as reference solution and compare the solutions defined on the coarser grids to this reference solution
with the following different norms, defined for a function f and k, l ∈ N as follows:

∥f∥k,l =
∫ R

0

∫ A

0

rkal |f (r, a)|dadr.
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Figure 1. Time evolution of the moments of order 0 and 1 (see inserted legend) computed from our

pure coagulation numerical scheme (21), with the constant kernel and the model parameters (26) for

the left picture and with the constant kernel and the model parameters (27) for the right one. The

results are obtained with the numerical parameters (25). In both cases, the moment of order 0 is

a nonincreasing function and the moments of order 1 are constant. With the choice of our initial

condition, both moments of order 1 in r and a superimposed.

Figure 2. Relative error of the moments of order 0 (left panel) and 1 (right panel) between moments

computed from our pure coagulation numerical scheme (21) and from the analytical solution of the

ODE system Eq. (23), in the case of a constant kernel (26) with the same parameters as in the left

panel of Figure 1.

Those moment-based norms are natural within the context of coagulation equations, see e.g. Eqs. (12)-(13).
The fact that the grids are nested allows to compute the following errors, for m ∈ {0, ...10},

∥E(hm, tn)∥k,l = h2
11

R/h11∑
i=1

A/h11∑
j=1

rki− 1
2
alj− 1

2
| fn,hm

i,j − fn,h11

i,j | , (28)

where the value of fn,hm

i,j are extended from the coarser grid to the finer grid by taking its value constant over the

subdomains defined by the finer grid. We compute the errors defined in Eq. (28) up to second order moments
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Figure 3. Relative error of the moments of order 0 (left panel) and 1 (right panel) between moments

computed from our pure coagulation numerical scheme (21) and from the analytical solution of the

ODE system Eq. (23), in the case of an affine kernel (27) with the same parameters as in the right

panel of Figure 1.

(0 ≤ k + l ≤ 2) in two different cases as we detail now. For that aim, we introduce the notation, for x > 0,

Px(x̄, ϵ) =

(
x̄+ ϵ− x

x̄+ ϵ

) 1
3 (x

x̄

) 2
3

. (29)

(i) Case 1. We approximate the pure coagulation case Eq. (20) (Figure 4) with the numerical parameters

∆t = 0.0005 , R = A = 3 ,∆r = ∆a = hm , (30)

and the model parameters

f0 (r, a) = 0.5 · [Nr (1.5, 0.15)×Na (0.5, 0.3) +Nr (0.5, 0.3)×Na (1.5, 0.15)] ,

κ (r, r′) = 0.5 .
(31)

(ii) Case 2. We approximate the general case Eqs. (M2a)-(M2b) (Figure 5), with the model parameters

f0 (r, a) = 0.5 · [Nr (1.5, 0.15)×Na (0.5, 0.3) +Nr (0.5, 0.3)×Na (1.5, 0.15)] ,

M0 = 20 ,

κ (r, r′) = 0.5 ,

α (r, a,M) = 0.1 ·M · [Nr (0.6, 0.01)×Na (0.3, 0.05) +Nr (0.3, 0.05)×Na (0.6, 0.01)] ,

γ (r, a) = 20 (r − 5)
4
1r>5 + 10−5 ,

λ (r, a) = 10−2 · Pr(10, 0) ,

V (r, a) = 0 ,

JM (M) = 0 ,

(32)

and the same numerical parameters as in Eq. (30). In both cases, we observe that the error decreases linearly
(in log-log scale) when the size of the discretization step h does. For both cases, the order of the scheme appears
to be 1.
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Figure 4. Illustration of the convergence of the numerical scheme (21) in the case of the pure
coagulation (case 1, numerical and model parameters given by Eqs. (30)-(31)) . We plot the
error as a function of the grid size h, in log-log scale, using the six different norms ∥E(hm, tn)∥k,l
defined in Eq. (28) for 0 ≤ k + l ≤ 2 (see inserted legend).

Figure 5. Illustration of the convergence of the numerical scheme (19) in case 2 (numerical
and model parameters given by Eqs. (30)-(32)). See legend of Figure 4.

Long-time behavior. Finally, we we illustrate the long-time behavior of the numerical solutions and test the
optimality of the conditions from the long time behavior given in Theorem 1 for the one dimensional model
(M1), with the numerical parameters

∆t = 0.05 , R = 5 , Ir = 301 , (33)

and the model parameters

f0 (r, a) = 0.5 · Nr(0.2, 0.15) ,

κ (r, r′) = 1 ,

α (r,M) = M · Nr(0.6, 0.1) .

(34)
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We show in Figure 6 two cases. In the first one (left hand-side), we use γ (r) =
√
3.1 together with Eq. (34), for

which the condition Eq. (6) of Theorem 1 is satisfied. In the second one (right hand-side), we use γ (r) = 0.7
together with Eq. (34), for which the condition Eq. (6) is not satisfied. In both cases, the curves for t = 10 and
t = 50 are superimposed, and we observe that the solution seems to converge to a stationary state. Numerically,
while we verify the conclusion of Theorem 1 holds true, it seems that the condition Eq. (6) is too restrictive
since the scheme stays stable in a wider range of parameters such that the condition Eq. (6) is not satisfied.

Figure 6. Size-distribution of the population density g of endosomal compartement for model
(M1) at different times (see inserted legend) and parameters given by Eqs. (33)-(34). On the

left hand-side the condition Eq. (6) is satisfied (γ (r) =
√
3.1) whereas on the right hand-side

the condition Eq. (6) is not satisfied (γ (r) = 0.7). In both cases, the curves for t = 10 and
t = 50 are superimposed.

5. Applications

In this section we provide two applications of our 2D model given by Eqs. (M2a)-(M2b), that show good qual-
itative agreement with published experimental data on receptor-activated signaling pathways. Our simulations
also provide additional insight, which calls for new experiments.

5.1. Receptor trafficking

The 2D model given by Eqs. (M2a)-(M2b) is ideally suited to model receptor trafficking from plasma mem-
brane to endocytic comparments. As detailed in the introduction, the GPCR are typically located at the surface
of the cells, on the plasma membrane. Upon ligand binding, the GPCR activate several signalling pathways
as well as their own internalization through endocytosis. The vesicles still carry the internalised receptors on
their surface. Endosomes are then sorted thanks to complex processes which are not yet fully understood, but
that depends both on the nature of the receptor and the ligand. Internalized receptors can indeed commit
to several endosomal compartments of different kinds, and be recycled at the cell surface, which could impact
on the kinetic profile of the receptor and its signalling pathways. Consequently, endocytosis regulate receptor
cell surface density and signaling profile, and endosomal targeting of receptors may produce specificity in the
signaling pathways. In particular, it has been shown [9] that the LHR and the B2AR are two GPCR that
undergo divergent trafficking to distinct endosomal compartments. B2AR traffics mostly to early endosomes
(EEs) and LHR to pre-early endosomes (pre-EEs). In short, the authors in [9] demonstrate that LHR endosome
sizes increased over time quickly before reaching a plateau, producing a small endosome population (400-500
nm of diameter). The mean B2AR endosome sizes are bigger (1200-1400 nm of diameter). They also see that
B2AR was more internalized than LHR in percentage but both receptors are equally recycled. The objective of
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this section is to provide numerical simulations of our model (M2a)-(M2b) that can reproduce these two distinct
scenarios.

In order to compare qualitatively our model with the experimental results presented in [9], we choose the
following parametrization (we recall definitions in Eqs. (24)-(29)):

f0 (r, a) = 0 ,

M0 = 7.2× 10−4 ,

κ (r, r′) = K0 ,

α (r, a,M) = αNr(200, 10)×Na(r, 0.5)×M ,

γ (r, a) = 10−5 + 2× 101 ×
(
r − 1950

50

)4

1{r>1950} ,

λ (r, a) = 10−2 × Pr(2000, 0) ,

V (r, a) = 0 ,

JM (M) = 0 ,

(35)

which we interpret as follows. Endosomes fuse at a constant coagulation kernel κ, whose rate will depend on
the receptor. Endosomes are created with a size following a Gaussian law and with a quantity of reactant
proportional to their size, and the rate α > 0 will depend on the receptor. Small endosomes are degraded at
constant (low) rate, and degradation rates quickly increases for endosomes large enough. Endosomes recycling

increase with the surface of endosomes and decreases with their volume ( λ ∝ r
2
3 − r). We don’t consider

reactions, e.g. V and JM are taken as null functions.
For the numerical scheme, we take

T = 30,∆t = 10−1, Ir = Ia = 30, R = A = 2000. (36)

To explain the qualitative differences between LHR and B2AR trafficking observed in [9], we tested two
hypotheses here.

• (H1) In the first hypothesis (Figure 7), we modify only the internalization rate α > 0 between LHR and
B2AR, with a higher internalization rate for the B2AR, keeping all the remaining parameters the same.
This hypothesis is in line with [9]. LHR and B2AR affect only the endocytosis rate as follows (refer to
Eq. (35)):

Parameters K0 α
LHR 5× 10−1 8× 10−5

B2AR 5× 10−1 3× 10−4
(37)

• (H2) In the second hypothesis (Figure 8), both the internalization rate and the coagulation rate are
higher for the B2AR compared to the LHR (H2). LHR and B2AR affect the internalization and the
coagulation rate as follows:

Parameters K0 α
LHR 5× 10−3 8× 10−5

B2AR 5× 10−1 3× 10−4
(38)

In [9], mean and variance of the size of the endosomal populations are measured at different time after ligand
stimulation, as well as the internalization ratio, which corresponds to the fraction of internalised receptors
among the total number of receptors initially present at the plasma membrane. Consistently, we define in the

model the internalization ratio as
∥f∥0,1(t)

M0
. In both hypotheses the internalization ratio is well reproduced by
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the model, compared to [9]. The major discrepancy of the first hypothesis with the experiments is the variance
in size of the endosomal population, which seems too high compared to experimentation. Furthermore the
production of large endosomes with LHR seems too high and similar to the ones of B2AR (Figure 7). In the
second hypothesis, however, these two discrepancies are not present anymore (Figure 8). These results indicate
that the differences in endosome dynamics between LHR and B2AR signaling pathways seem not only due to
a difference in internalization rate, but probably also to the coagulation dynamics inside cells. Difference in
coagulation dynamics may be explained by differences in endosomes sorting and/or differences in molecular
composition of endosomes, which are believed to be of different nature between LHR and B2AR vesicles [9].

Figure 7. Time evolution of the endosomal size (left panel) and internalization ratio (right panel).

We numerically simulate the 2D model given by Eqs. (M2a)-(M2b) with parameters given by. (35)-(36)-

(37) (LHR and B2AR affect only the internalization rate). On the left panel, the dashed blue (resp.

dotted purple) line represents the mean endosomal size for B2AR (resp. LHR), that corresponds to

∥f∥1,0 (t)/ ∥f∥0,0 (t), and the shaded light area represents its standard deviation. On the right panel,

the dashed blue (resp. dotted purple) line represents the internalization ratio for B2AR (resp. LHR),

that corresponds to
∥f∥0,1(t)

M0
.

Figure 8. Time evolution of the endosomal size (left panel) and internalization ratio (right panel).

We numerically simulate the 2D model given by Eqs. (M2a)-(M2b) with parameters given by. (35)-

(36)-(38) (LHR and B2AR affect the internalization and the coagulation rate). See legend of Figure 7

for details.



20 ESAIM: PROCEEDINGS AND SURVEYS

5.2. Second effector signaling

The second application of our model we present here concerns the efficacy of second messenger molecules
production as a function of the localization of the active receptor. We focus on the production of cAMP
induced by the activation of the PTHR. Recent discoveries find that the PTHR may engage cAMP signaling
not only at the cell’s plasma membrane but also in early endosomes after receptor internalization through
endocytosis [7]. Furthermore, the full-length parathyroid hormone (LA-PTH) induces through the activation of
PTHR an augmentation of production of cAMP in the endosomes, whereas the ligand PTH 7D (PTHR peptide
ligand through amino acid epimerization at position 7 of PTH1−34) induces the production of cAMP at the
plasma membrane. In White’s paper [12], the authors show that even if the production place is different, the
total amount of cAMP stays the same after some time, a phenomenon that could be named location-biased,
and that can have implications for the cellular response. The objective of this section is to provide numerical
simulations of our model (M2a)-(M2b) that can reproduce these two distinct scenarios.

We could reproduce qualitatively these observations with our model following this parametrization:

f0 (r, a) = 0 ,

M0 = 0 ,

κ (r, r′) = 2× 10−1 ,

α (r, a,M) = Nr(200, 10)×Na(0, 0.1))×M ,

γ (r, a) = Pr(2000, 100)1{r≤1950} + 2× 102 ×
(
r − 1950

50

)4

1{r>1950} ,

λ (r, a) = 10−2 × Pr(2000, 100) ,

V (r, a) =
(
vs1{ϵ≤r≤r̄} + vl1{r̄<r}

)
×
(
1− a

pr

)
, ϵ = 10/3, r̄ = 500 ,

JM (M) = vM ×
(
M̄ −M

M̄

)
,

(39)

which we interpret as follows. Endosomes fuse via a constant coagulation kernel, and are created with a size
following a Gaussian law and with a quantity of reactant, independently of the size, taken as a positive fraction
of the quantity M present at the plasma membrane. Endosomes recycling and degradation increase with the
surface of endosomes and decrease with their volume (λ and γ ∝ r

2
3 − r). cAMP is produced at the plasma

membrane at constant rate and linearly degraded, where both the saturation M̄ , and the production rate vM
may depend on the ligand. cAMP is produced in endosomes at two different rates, vs, for the endosomes smaller
than r̄ and vl, for larger endosomes. Also the amount of saturation depends linearly on the size of the endosomes
(caracterized by a portion p of r). Here vs, vl and p may depend on the ligand.

For the numerical scheme, we take

∆t = 3−2, Ir = Ia = 30, R = 2000, A = 30 . (40)

We have two different hypotheses to explain the different qualitative behaviour of the two ligand LA-PTH
and PTH 7D described above:

• (H1) Suppose LA-PTH and PTH 7D differs in cAMP production kinetics only in terms of rate (Figure

9), with a higher rate for LA-PTH at the plasma membrane (vPTH7D
M < vLA−PTH

M ), and a higher rate

for PTH 7D in the endosomes (vLA−PTH
s < vPTH7D

s and vLA−PTH
l < vPTH7D

l ).

Parameters vs vl p vM M̄
LA-PTH 0.05 0.02 1/20 3.5 10
PTH 7D 5 2 1/20 0.035 10

(41)
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• (H2) Suppose LA-PTH and PTH 7D differs in cAMP production kinetics not only in terms of rate but

also in terms of saturation (Figure 10) with M̄LA−PTH > M̄PTH7D

and pPTH7D

> pLA−PTH .

Parameters vs vl p vM M̄
LA-PTH 0.5 0.2 1/200 3.5 10
PTH 7D 5 2 1/20 0.35 1

(42)

With both hypotheses, we observe a much more efficient cAMP production at the plasma membrane with
LA-PTH and a much more efficient cAMP production in the endosomes with PTH 7D (Figures 9 and 10).
Consistently with the observation in [12], both total responses have similar magnitude for the time period of
the numerical simulation.

However, from the numerical simulation presented in figures 9 and 10, the cAMP production has already
reached a ”stable” state at T = 20 for LA-PTH, while it keeps increaseasing for PTH 7D. Therefore, a longer
time measurement could discriminate between both ligands.

Also we could notice a fine kinetic difference between the responses induces by LA-PTH and PTH 7D with
the two hypotheses. Indeed, PTH 7D leads to a convex kinetic production of cAMP during the early dynamics,
which switches to a concave kinetic at later time. Whereas with LA-PTH the production stays concave all time
long. Of course this behaviour may be quite complicated to observe experimentally due to the accuracy of the
measures.

Figure 9. Time evolution of the cAMP production for the LA-PTH ligand (left panel) and the PTH-

7D ligand (right panel). We numerically simulate the 2D model given by Eqs. (M2a)-(M2b) with

parameters given by. (39)-(40)-(41) (cAMP kinetic parameters differ between PTH 7D and LA-PTH

only by the production rate). In both panels, the dotted blue line shows the endosomal quantity of

cAMP, given by ∥f∥0,1 (t), the dashed blue line shows the cAMP quantity at the plasma membrane,

given by M(t), and the dashed-dotted purple line shows the total cAMP quantity (∥f∥0,1 (t) +M(t)).
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