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ABSTRACT

In this study, a computational fluid dynamics simulation was used to study single bubble flow in liquid metal. Until now, bubble trajectory
and shape [Mougin, G. and Magnaudet, J., “Path instability of a rising bubble,” Phys. Rev. Lett. 88, 014502 (2002)] stability problems in
liquid metal have only been insufficiently analyzed in the literature. Because of the difficulty of such an experimental validation, no universal
correlations on terminal velocity, shape aspect ratio, and drag force coefficient have been produced to date. The existing bubble shape
parameter and terminal velocity correlations with dimensionless numbers are still debatable, mostly because experimental validation is very
challenging. The objective of this study was to develop new correlations between bubble stability and bubble deformation in liquid metals.
An in-house code, PSI-BOIL, has been used for the simulations. A single bubble rising in a quiescent liquid has been simulated for three dif-
ferent sets of materials (nitrogenþmercury, argonþGaInSn, and argonþsteel). The obtained results suggest that shape instability phenomena
take place in the bubble dynamics in liquid metals for E€otv€os numbers>1.7. Small bubbles (Eo< 1.7) maintain a stable ellipsoidal shape,
while the shape and velocity of larger bubbles (Eo> 1.7) tend to oscillate with bubbles rising via non-rectilinear trajectories. The inviscid
approximation works well for bubbles in liquid metals. It has been confirmed that the dynamics and the shape of small bubbles (Eo< 1.7) in
liquid metals are only controlled by the Weber number.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0102756

NOMENCLATURE

D Bubble diameter (m)
F Force (N)
g Gravitational acceleration (m/s2)
p Pressure (Pa)
t Time (s)
u Velocity (m/s)
uT Terminal rising velocity (m/s)
X Bubble aspect ratio: bubble height divided by bubble width

(–)
c Surface tension coefficient (N/m)
l Dynamic viscosity (Pa s)
q Density (kg/m3)
v Curvature (m�1)

Dimensionless numbers

Eo E€otv€os number, Eo ¼ ql�qgð Þgd2
c

Mo Morton number, Mo ¼ gl4
l ql�qgð Þ
qlc3

Re Reynolds number, Re ¼ qluTD
ll

We Weber number, We ¼ qluTD
c

Subscript

a Archimede
g Gas
i Inertia
l Liquid
st Surface tension
v Viscous

INTRODUCTION

Bubble motion in liquid metals plays a determining role in many
engineering processes. Gas bubbles are commonly inserted into a liq-
uid metal to enhance the mixing process that takes place in the liquid
phase (Liu and Li, 2017) and to improve the heat transfer of the liquid
(Lorenzin and Ab�anades, 2016). In fact, liquid metal is an excellent
type of energy carrier, and it is largely used in many types of nuclear

Phys. Fluids 34, 104101 (2022); doi: 10.1063/5.0102756 34, 104101-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0102756
https://doi.org/10.1063/5.0102756
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0102756
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0102756&domain=pdf&date_stamp=2022-10-03
https://orcid.org/0000-0003-1843-7692
mailto:oniram98@gmail.com
https://doi.org/10.1063/5.0102756
https://scitation.org/journal/phf


reactors, such as fast reactors, spallation source devices, and fusion
reactors.

Moreover, a bubbly flow in liquid metal is also used in industrial
processes, such as in metal stirring and purification, continuous cast-
ing, and liquid metal chemical reactions, with the purpose of increas-
ing efficiency. A great deal of scientific research has been carried out in
this field. In continuum casting (Liu and Li, 2017), for example, bub-
bles are injected into a liquid metal to avoid clogging of the flow and
to make the process as continuous as possible. Timmel et al. (2010)
presented a new experimental facility (LIMMCAST) focused on the
study of gas bubble rising in metals. Yang et al. (2020) produced an
advanced breakup/coalescence model to precisely predict bubbles flow
in liquid metals. Baake et al. (2017) demonstrates the effectiveness of
neutron radiography for the experimental investigation of these
phenomena.

Because of its innumerable industrial applications, bubble motion
in liquid metal has been a central topic for the scientific community
over the past 70 years (Haas et al. 2021). Nevertheless, important ques-
tions, concerning the stability and velocity of bubbles in this range, still
remain unclear and the bubble rising problem remains an open issue
in multi-phase fluid mechanics. In particular, no correlations between
bubble shape and velocity have been revealed to be accurate in a liquid
metal.

Bubble rising in a quiescent liquid is a well-known problem in
multiphase-fluid mechanics.

Moreover, correlations between fluid-dynamics dimensionless
numbers have been produced in the literature for a wide range of
E€otv€os and Reynolds numbers, but a universal correlation has not yet
been found. Nevertheless, many correlations, which are valid over
their own ranges, were derived or produced in the past.

Levich (Kang and Leal, 1988) analytically derived a drag coeffi-
cient that is valid for a inviscid flow [viscosity tends to zero (l! 0)]
for spherical bubbles [aspect ratio tends to unity (X ! 1)] in which
the viscous component of the drag force is negligible (high Re).

Hadamard (1911) derived a drag coefficient for a creeping flow
(Re < 1;X ! 1), assuming that the pressure component by the wake
is negligible. Mei and Klausner (Tomiyama et al., 1998) extended
Hadamard’s correlation for spherical bubbles to an arbitrary Reynolds
number.

Mendelson (1967) studied the bubble rising problem in inviscid
liquid and approximated the bubble velocity to that of the propagation
wave velocity of the gas–liquid interface. The phase velocity, uphase, is
assumed to be the sum of the velocity resulting from the surface ten-
sion and the gravitational term.

The aforementioned author computed the bubble rising velocity
by determining the principal wavelength, k ¼ pd.

Tomiyama et al. (1998) generalized the drag correlation for
a wider range (10�2 < Eo < 103; 10�14 < Mo < 107; 10�3 < Re
< 105) and provided the most general correlation possible. First, he
unified Levich and Hadamard’s correlation for a wide range of
Reynolds numbers. He then calculated the drag coefficient, using
Mendelson’s theory, to provide a drag coefficient that is only depen-
dent on the initial conditions. Since a bubble no longer tends to be
spherical for higher Eo, but is instead ellipsoidal, the terminal velocity
is lower than in a spherical case. The maximum of the two drag coeffi-
cients is chosen by considering this effect. Yan et al. (2018) produced a
more precise empirical solution for the bubble drag coefficient for the

same range of correlations as Tomiyamana. Zhou et al. (2020) pro-
duced a novel correlation for the drag coefficient of a bubble rising in
liquid, which predicts 93.5% of the available existing data.

The main issue in finding a universal correlation is the large scale
of change of the dimensionless numbers (Re, Eo,Mo), that is, of several
orders of magnitude. Viscous, inertia, and tension forces have different
degrees of importance in each region in the Grace diagram (Acrivos,
1979), and the bubble behavior changes to a great extent. Thanks to
experiments and computational fluid dynamics (CFD) simulations, a
map has been created, which predicts the terminal Reynolds number,
once the initial conditions are known. Generally, the bubble terminal
Reynolds number increases as the E€otv€os number increases and
decreases as the Morton number decreases.

The deformation of the bubble shape has also been a widely stud-
ied topic over the last few decades because of its numerous industrial
(Liu and Li, 2017) and research applications. Experiments and CFD
simulations have led to the formation of maps that describe different
types of bubble shape in different dimensionless number regimes
(Krull et al., 2016). The shape of a bubble is controlled by two dimen-
sionless numbers, as is its velocity. The most common numbers used
in the literature are the Reynolds number and the E€otv€os number. A
bubble with Re< 1 tends to keep a spherical shape for all Eo. Such a
bubble gradually changes from spherical to ellipsoidal and finally to a
spherical cap shape for higher Reynolds numbers (Re> 1), thereby
increasing the E€otv€os number. Furthermore, the bubble shape is
highly sensitive to the initial flow condition (Tomiyama et al., 2002).
A non-zero velocity field or a residual initial compression of a bubble
can easily lead to a different kind of bubble rising behavior (different
trajectory and different shape). Many correlations, based on experi-
mental and CFD data, are present in the literature, each with its own
range of validity.

Besagni and Deen (2020) compared the most famous shape cor-
relations present in the literature and provided his own new correla-
tion, which is the most accurate generalization to date, based on the
many experimental data he had available.

Moore (1959) analytically predicted the bubble shape in liquid
metal through a linear theory, which, however, loses precision for large
bubbles. Sugihara (Besagni and Deen, 2020) extended Moore’s correla-
tion to a wider range of Weber numbers. The effectiveness of the latter
two correlations is based on assuming that the flow in liquid metals
behaves like an inviscid flow. Therefore, the dynamics is controlled
entirely by the Weber number. Legendre et al. (2012) extended
Moore’s correlation to more viscous fluids (1< logMo< 11), focusing
the study on the bubble-liquid interfacial area.

Aoyama et al. (2016) experimentally studied bubble deformation
for specific Morton numbers (logMo¼�6.6, �5.5, �4.9, �3.9) and
produced a correlation for shape deformation for a wide range of
Morton numbers. Zhou et al. (2020) also studied the bubble deforma-
tion problem and produced the most general correlation for the bubble
aspect ratio, which agrees with 90% of the existing experimental and
numerical data.

Gaudlitz and Adams (2009) investigated bubble path and find a
connection between the trajectory and wake structure.

Zhang and Ni (2014) discovered vertical uniform magnetic field
can straighten the bubble trajectory and found a close relationship
between fluctuations in rising velocity and shape variations. He
(Zhang et al., 2016) also investigated bubble velocity and shape under
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the horizontal magnetic field. In this case, the magnetic field tends to
decompress bubble shape, straighten the trajectory, and exponentially
reduce the terminal velocity.

Both Zhou and Du�sek (2017) and Cano-Lozano et al. (2013) pro-
posed a marginal stability curve of a deformable bubble ascending
freely in a viscous Newtonian liquid.

Schwarz and Fr€ohlich (2014) investigated bubble rising under the
magnetic field and, in accordance with Zhang studies, produced a cor-
relation between the horizontal magnetic field and terminal velocity
for a wide bubble range.

Zhang et al. (2021) recently demonstrated the mechanism to con-
trol the trajectory of an air bubble under the application of a magnetic
field

Will et al. (2021) experimentally investigated the effect of geo-
metrical anisotropy for buoyant spheroidal particles rising in a still
fluid and discovered bubble shape and trajectory are highly dependent
on initial bubble compression.

As the E€otv€os number increases, a bubble starts to experience
instability phenomena that influence the trajectory, the velocity, and
the shape of the bubble itself. The stability of a bubble is influenced by
the ratio of the surface tension forces (�D2) to the inertia forces
(�D3). The bubble starts to experience 3D dependent forces, and it
loses its axial symmetry, and this renders the bubble rise a more com-
plex phenomenon. Certain large bubbles in low Morton number
regions (Mo< 10�4) experience instabilities and the bubble changes
shape from ellipsoidal to a wobbling disk. The reason why these insta-
bilities occur has not yet been ascertained completely. Many authors,
such as Mougin and Magnaudet (2002), asserted that the main cause
of the onset of these instability phenomena are wake vortexes that
appear under the bubble. Those vortexes increase the energy dissipa-
tion and the flow field on the bottom of the bubble, which loses its axi-
symmetry, and this, in turn, leads to the onset of instabilities.

As can be seen in Fig. 1, a liquid metal is a region for which no
universal correlation has yet been found. The main obstacle is the
opacity of the metal that makes an optical inspection of the bubble
almost impossible. In the past, such techniques as the electrical triple
probe (Mori et al., 1977) were adopted to determine the bubble rising
velocity. Nevertheless, due to inaccuracies of the instrumentation, it
was not possible to precisely predict the bubble velocity, and only over-
all estimates could be obtained. Modern techniques, such as UDV
(Ultrasound Doppler Velocimetry), Neutron radiography (Wang
et al., 2017), and x-ray radiography, seem to be the best tools to experi-
mentally investigate this environment.

Keplinger et al. (2017) validated x-ray radiography as an inspec-
tion technique for comparing his data with results in water and used it
to experimentally study bubble breakup (Keplinger et al., 2019) and
coalescence (Keplinger et al., 2018) in liquid metals.

Strumpf (2017) and Zhang et al. (2005) adopted UDV to investi-
gate bubble velocity and trajectory under the magnetic field, while
Richter et al. (2018) experimentally studied path and shape instabilities
by mean of x-ray radiography.

Birjukovs et al. (2020; 2021) demonstrated a new image process-
ing methodology for resolving gas bubbles traveling through liquid
metal from dynamic neutron radiography and adopted it for studying
high Reynold bubble rising. Until now, all the conducted experiments
have been insufficient to produce a robust correlation for the bubble
rising velocity, u1, and aspect ratio, X, in liquid metals. These modern

techniques show a much higher accuracy in detecting the bubble
velocity and shape than the older ones, but they result to be expensive,
and their use is somewhat limited.

Objectives of the present study

Bubble stability problems in liquid metal have been insufficiently
analyzed in the literature. Because of the difficulty involved in con-
ducting experimental validations, no universal correlations have been
produced as yet.

Similarly, deformations of the bubble shape and their terminal
velocities in liquid metal are not fully developed topics in fluid dynam-
ics, mostly because of the difficulty in their validation.

As far as the bubble shape in liquid metals is concerned,
Moore (1959) proposed the most famous correlation but, because
of the important assumptions in this correlation, it loses the appli-
cability for large bubbles and a more general theory is, therefore,
required.

In this study, a computational fluid dynamics (CFD) simulation
was used to study single bubble flow in liquid metal. More precisely, a
new analytic theory on the velocity and deformation of bubble rising
has been produced and compared with the CFD results of the PSI-
BOIL code. PSI-BOIL is an in-house code developed by the Paul
Scherrer Institute (PSI). It is a CFD code specialized in high precision
simulation of biphasic heat transfer problems based on the finite dis-
cretization technique.

The CFD velocities of bubbles in liquid metals are compared
with those obtained by means of the existing correlations in the litera-
ture studies. A semi-analytical model for bubble shape deformation is
also derived for liquid metal and is compared with the CFD results.
Finally, a new stability criterion is proposed for bubbles in liquid
metal.

FIG. 1. Region of bubbles in typical liquid metals in the Grace diagram (Jin et al.,
2016). Bubble shape: scouw—spherical cap with open unsteady wake; sccsw—
spherical cap with closed steady wake; swu—skirt with wavy unsteady skirt; sss—
skirt with smooth steady skirt.
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GOVERNING EQUATIONS

The studied problem refers to a single bubble rising in a quiescent
liquid metal. The governing equations for the incompressible flow are
defined as

r � u ¼ 0; (1)

@ quð Þ
@t
þr � qu� uð Þ ¼ �rpþr � l ruþ ruð ÞT

� �� �
þ qg þ cvn; (2)

where u (m/s) is the fluid velocity vector, p (Pa) is the pressure, t (s) is
the time, q (kg/m3) is the density, l (Pa s) is the dynamics viscosity, g
(m/s2) is the gravitational acceleration, c (N/m) is the surface tension
coefficient between the gas and the liquid, v (N/m) is the local curva-
ture of the interface, and n is the normal vector of the interface.

The energy conservation equation was not solved since the ther-
mal energy exchange was considered negligible. Thus, the temperature
field was assumed to be constant, and the material proprieties of the
gas and the liquid were kept constant.

A linear interpolation between liquid and gas was considered,
using the volume fractionH, to compute the material proprieties,

l ¼ Hl1 þ 1�Hð Þl2; (3)

q ¼ Hq1 þ 1�Hð Þq2; (4)

r ¼ Hr1 þ 1�Hð Þr2: (5)

The governing equation for the transport of the volume fraction was
written as in Eq. (6), and it was solved with the volume of fluid (VOF)
method,

@H
@t
þr � uHð Þ ¼ 0: (6)

The continuity and momentum conservation equations were solved
using the fractional step method. An adaptive time step was used,
where the time step was defined as Dt¼min DtCFL;Dtc

� �
, where

DtCFL ¼ CCFL
D

umaxj j
; (7)

Dtc ¼ 5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 � qGAS � D3

2pc

s
; (8)

where CCFL is the Courant–Friedrichs–Lewy (CFL) number, and it
was set to 0.25 in this study. u, v, and w are the velocity components in
the x-, y-, and z-directions, respectively, andD is the grid spacing.

Conditions of simulations

A 3D rectangular computational domain, with 6D � 6D � 24D
dimensions (both the lateral directions and the height), was used and
was discretized with a uniform cube mesh (dx¼D/16). The liquid was
quiescent at the beginning. The height of 24D was sufficient for all the
bubbles to reach terminal velocity. The width of 6D made the flow
independent of the influence of the surrounding walls.

Simulations were conducted with different bubble sizes
(0.1< Eo< 2). Three cases of systems with different material combi-
nations were considered: argon–GaInSn, nitrogen–mercury, and argo-
n–iron. These three sets of materials have been used because they are

common in metallurgical processes and above all because they have
been used in previous experiments and simulations (Moore, 1959), so
that the results of PSI-Boil can be compared and validated The mate-
rial properties are listed in Table I.

In the beginning of the simulation, the velocity field was zero.
The pressure field followed Stevino’s law and increased linearly with
the depth. A spherical bubble was placed in the center in the x- and
y-directions and at a 2D distance from the bottom, as shown in Fig. 2.

ANALYSIS OF BUBBLE DYNAMICS IN LIQUID METAL
Analytical description

Governing parameters

A single bubble rising in liquid metal is characterized by a high
Reynolds number, that is, Eq. (9) and considerably low Morton num-
bers, Eq. (10). The Reynolds number, which was of the order of one
thousand, due to the high liquid metal density compared to water, sug-
gests that inertia forces (Fi) were predominant over the viscous forces
(Fv) Re� 1ð Þ. The Morton number was particularly low ’ 10�13ð Þ,
which means that the Archimedes (Fa), Eq. (12), and surface tension
(Fst) forces were dominant over the viscous forces. The two driving
factors that characterize bubble rising in liquid metal are the inertia
and surface tension forces, while the viscous term, although present,
does not play any substantial role,

TABLE I. Material proprieties for three systems with different combinations of gas
and liquid phases.

l (Pa s) q (kg/m3) c (N/m)

Argon 1.176 � 10�5 1.654 0.5330
GaInSn 2.20 � 10�3 6.36 � 103

Nitrogen 1.77 � 10�5 1.17 0.4535
Mercury 1.50 � 10�3 1.35 � 104

Argon 1.176 � 10�5 1.654 1.200
Iron 6.30 � 10�3 7.00 � 103

FIG. 2. Computational domain and the initial bubble.
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Re ¼ Fi
Fv
¼ 104; (9)

Mo ¼ Fv
Fst � Fa

¼ 10�13: (10)

The system was characterized by only two dimensionless parameters,
Eq. (11), in which viscosity was absent, since it no longer had any driv-
ing power. The E€otv€os number and the Weber number

We ¼ q�v2�D
c

� �
were used in this analysis,

F P1;P2;P3ð Þ ¼ 0! F We;Eoð Þ ¼ 0!We ¼ F Eoð Þ: (11)

Under this approximation, a two-variable function fully characterized
the problem. Furthermore, since Eo was not velocity dependent, the
bubble rising velocity could be explicitly expressed as a function of the
material and geometry proprieties.

Negligible shear stress field

In a Newtonian fluid, the stress tension is proportional to the
velocity gradient s ¼ l � ru. In a solid sphere, since internal flow
does not occur, the liquid velocity on the sphere surface is zero and

s ffi l � u1L , with L equal to the characteristic decreasing length.
The viscous effect becomes less dominant in bubbles rising in liq-

uid metal. The surface shear stress field on the bubble surface is signifi-
cantly reduced by two phenomena:

• First, inner gas recirculation takes place, and the bubble surface
velocity is no longer zero. Since there is a huge difference in the
gas–liquid density, the outermost layer of the gas is carried by
the external liquid, which has higher inertia. Therefore, the veloc-
ity gradient and the shear stress are significantly reduced to
s ffi l � u1�usurfL . This effect is relevant for large bubbles for which
there is enough space inside to create convective gas movement.

• Second, the purity of the surrounding liquid increases the slip-
ping effect along the surface of the bubble, thereby further
decreasing the local velocity gradient. Both contributions signifi-
cantly reduce the tension stress field across the bubble interface.

Bubble force balance

Under equilibrium, the buoyancy force, which is velocity inde-
pendent, Eq. (12), is balanced by the drag force, Eq. (13), which gener-
ally increases as the velocity increases. The buoyancy force is the sum
of the gravitational force and the surface integral of the static pressure,
h, acting on the bubble. The drag force is computed by integrating the
pressure ptot � pstaticð Þ with the shear stress field.

In this analysis, the considered system was the whole bubble,
which is the sum of the interface and the inner gas. Since the surface
tension is a mutual force that acts between the surface and the inner
gas, it was not necessary to consider it since it is an internal force of
the system

Fbuoyancy ¼ �mg þ�pstatic � ~dA ¼ �qgVg þ qlVg

¼ Dq � V � g ¼ Dq � pD
3

6
� g;

(12)

Fdrag ¼ � ptot � pstaticð Þ � ~dA þ�s== � ~dA: (13)

The velocity and pressure distribution over the entire bubble surface
needs to be known to compute the drag. The pressure and the tension
terms are generally equally important, and both need to be computed.
The pressure field across the bubble is computed by resolving the
Navier–Stokes equations Eq. (14) along a streamline from a distant
point to the surface, Eq. (15). The pressure on the bubble surface is the
sum of a gravitational, a kinetic, and a viscous term. The gravitation
term is not treated since it is already considered in the buoyancy force.
The ptot � pstatic field at the bubble interface is the sum of a kinetic and
a viscous pressure, Eq. (15),

q
@u
@t
þ u � ru

� �
¼ �rpþ lr2uþ qg � dz; (14)

ptot � pstatic ¼
q
2
� u2 sð Þ � u21
	 


þ l
ðs
1
r2u � dr: (15)

The kinetic pressure in the upper part of the bubble is much larger

than the viscous pressure, 1
2qu

2
1 � l

Ð s
1r2u � dr

� �
, because of the

high density of liquid metals and because of the small stress tensor
field, s ¼ ru.

In Fig. 3,~r represents the streamline of the flow and~s the posi-
tion on the bubble surface,

Dpv ¼ l
ðs
1
r � s � dr ¼ l

ðs
1

@

@s
ss � dr ¼ l

ðs
1

ss rð Þ � dr: (16)

• sð1Þ is zero and increases as it approaches point A, in which s
reaches its maximum value.

• The tension stress field sðAÞ is negligible, since the velocity
changes almost linearly on the side of the bubble due to an effi-
cient internal flow (Analysis of bubble dynamics in liquid metal)

• Therefore,
Ð1
s ssðrÞ � dr is also negligible and the viscous over-

pressure is zero.
• Viscous pressure Eq. (16) is negligible for each point in the upper
part of the bubble.

FIG. 3. Flow streamline.
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The fluid before the bubble detachment point can be considered
inviscid, as there are no energy dissipations, and all the liquid momen-
tum is transferred into pressure, Eq. (17). When the liquid is
approaching the bubble surface, the velocity is decreased, and the
kinetic energy is changed into pressure energy. The stagnation point of
the bubble (top point) has the highest pressure, and when approaching
the sides of the bubble, the pressure decreases monotonously.
Therefore, the inviscid model was used to model the pressure on the
bubble surface. No boundary layer exist, and only the tangential com-
ponent of velocity u== was present on the bubble surface,

D ptot � pstaticð Þ þ
1
2
qDu2 ¼ 0: (17)

How the pressure changes from the stagnation point to the bubble
sides depends on the bubble aspect ratio (X), which, in turn, depends
on the pressure acting on the surface. Nevertheless, it can be estab-
lished that the surface pressure field is proportional to the pressure of
the stagnation point, which is, according to Bernoulli, equal to 1

2 qlu
2
1.

Therefore, kinetic overpressure Eq. (18) depends on bubble velocity
u1 and on the local velocity tangential to the surface uðsÞ,

pkinetic sð Þ ¼ 1
2
q u21 � u2 sð Þ
	 


: (18)

The inviscid approximation is no longer feasible after the detachment
point (Fig. 4). The fluid on the bottom of the bubble is no longer irro-
tational, and dissipation phenomena take place. The pressure on the
bottom of the bubble is significantly reduced, because all the liquid
momentum is dissipated by the viscosity friction and does not contrib-
ute to hydrodynamic pressure. From the Lagrangian point of view, the
fluid particles that are approaching the bubble surface decelerate and
their kinetic energy decreases. In an ideal case, the pressure increases
to conserve kinetic energy but, due to viscous forces, most of the
energy is dissipated and the liquid pressure is drastically reduced, com-
pared the non-viscous case. How much energy is transferred into pres-
sure and how much is lost depends on the velocity field. In this
analysis, a total dissipation model is used for simplicity. Therefore, all
the kinetic energy of the liquid is dissipated, while the pressure field
after the detachment point can be approximated to zero Eq. (19) and
has no impact on the drag force (Fig. 5),

ptot sð Þ � pstatic sð Þ ¼ 1
2
q u21 � u2 sð Þ
	 


þ l
ðs
1
r2u � ds ’ 0: (19)

The shear stress component was neglected to compute the drag force,
since it was much lower than the pressure component. Moreover, the
pressure field was only integrated in the “inviscid region,” since any
pressure on the bottom was assumed to be zero due to dissipation, Eq.
(20). Moreover, ptot � pstatic in the inviscid region is the kinetic
pressure.

Clearly, the viscous pressure was physically the main cause of the
drag force but, due to the full dissipation model used at the bottom of
the bubble, the liquid viscosity coefficient did not influence the bubble
dynamics and the drag force only depended on the kinetic pressure
upstream of the detachment point.

The point of detachment of the liquid from the liquid surface
depends on the bubble shape and on the kinetic energy density of the
liquid qu2ð Þ. Since the bubble was assumed to be ellipsoidal, it can be
assumed, without any loss of generality, that the detachment point
depended only on the bubble aspect ratio and on the Weber number
of the bubble,

FDRAG ¼ � ptot � pstaticð Þ � ~dA þ�s== � ~dA ’ �pkinetic � ~dA

¼ � 1
2
q u21 � u2 sð Þ
	 


� ~dA: (20)

The final balance equation is

Dq � pD
3

6
� g ¼ � q

2
� u21 � u2 sð Þ
	 


� ~dA: (21)

The liquid velocity on the bubble surface only has the u== component
tangential to the surface, while the normal component, un, is zero to
conserve the flow rate r � u ¼ 0ð Þ We assume the local velocity on
the surface of the bubble is proportional to the rising bubble velocity.
u�ð~sÞ is a unknown function that represents the dependency of the
velocity on the local position,

u sð Þ ¼ u� sð Þ � u1; (22)

Dq � pD
3

6
� g ¼ � q � u21

2
� 1� u�2 sð Þ
	 


� ~dA; (23)

Dq � pD
3

6
� g ¼ q � u21

2
� 1� u�2 sð Þ � pD2; (24)

Eo ¼ 3 �We � 1� u�2 sð Þ; (25)

1� u�2 sð Þ ¼ g X Weð Þð Þ ¼ g Weð Þ; (26)

Eo ¼ 3 �We � g Weð Þ; (27)

F We;Eoð Þ ¼ 0: (28)
FIG. 4. Top and bottom of the bubble modeled, respectively, with inviscid and vis-
cous model.

FIG. 5. Pressure field (ptot – pstatic) on the bubble surface.
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As can be seen in Eq. (27), the whole system is characterized by only
two dimensionless numbers, which are connected.

Moreover, 1� u�2ðsÞ is the surface average of the 1� u�2ðsÞ
function in the inviscid region before the detachment point. Such a
function can only be known exactly by resolving the flow and the pres-
sure field around the bubble. Nevertheless, by assuming the bubble is
axi-symmetric ellipsoidal shaped, 1� u�2ðsÞ is a function of only the
aspect ratio of the ellipsoid X ¼ a

c

	 

. In the next section, it is demon-

strated that the aspect ratio is only a function of the Weber parameter.
This means that the bubble rising problem can be expressed with a
single equation that contains only two dimensionless numbers F(We,
Eo). Therefore, the whole problem is influenced by only one dimen-
sionless number.

Terminal rising velocity

Comparison against Tomiyama’s correlation

The computed Reynolds number, based on the terminal rising
velocity, is compared with Tomiyama’s correlation Eq. (29) in Fig. 6 as
a function of the E€otv€os number. The range simulated here corre-
sponds to Mendelson’s formula in Tomiyama’s correlation, in which
the velocity is only controlled by the E€otv€os number. It can be
observed that, on first approximation, Tomiyama’s correlation and,
therefore, Mendelson’s equation, are able to clearly predict the bubble
behavior and give the right order of magnitude of the terminal
Reynolds number,

CD ¼ max min
16
Re

1þ 0:15Re0:687ð Þ; 48
Re

� �
;
8
3
� Eo
Eoþ 4

� �
: (29)

There is a rapid change in the velocity profile in Tomiyama’s correla-
tion (Fig. 7) when passing from the E€otv€os dependent region

CD ¼ 8
3 � Eo

Eoþ4

� �
to the Reynolds dependent region CD ¼ 48

Re

	 

. As we

consider smaller bubbles, the Reynolds number acquires more impor-
tance, while Eo loses importance in determining the drag coefficient.
The change from the Eo to Re region is gradual in the simulations, and
the velocity slope changes smoothly from negative to positive. The
Tomiyama curve has been validated in low-intermediate Reynolds
regimes and never in the liquid metal. This could be the reason for sig-
nificant deviations of CFD results from the Tomiyama correlation.

Unfortunately, due to a CFD parasitic current issue, it was impos-
sible to simulate bubbles with Eo< 0.05. The parasitic current is a
computational phenomenon that occurs when there is a low resolution
of the surface of the bubble which compromises the accuracy of the
shape of the bubble and the resolution of the surface tension force.
Once a grid size is set, the simulations are no longer reliable under a
certain bubble size.

Therefore, the CD¼ 48/Re dependency region cannot be demon-
strated by means of simulations.

Instabilities of bubble

A certain number of larges bubbles tend to show instable behav-
ior at some points during their rising (Fig. 8). The trajectory in no lon-
ger rectilinear, and the instant velocity is kept the same; therefore, the
average rising vertical velocity decreases.

Wake flow no longer tends to be axisymmetric and non-uniform
velocity oscillations are a direct consequence of bubble shape oscilla-
tions initiated by wake flow asymmetrization.

The line in the Grace diagram that separates the stable and unsta-
ble bubble regions has a negative slope. This means that, for high
Morton numbers, instabilities will occur for larger E€otv€os number,
while instabilities occur earlier for low Morton material instabilities.
The Morton number can be considered a good parameter to quantify
the stability of a set of materials. According to the definition, the
Morton number can be assumed as a ratio between the viscous force
over the inertia to the surface tension forces. It is well known that vis-
cous forces tend to keep the system stable,

Mo ¼ g � l4
c � Dq

q2
c � c3

¼ Fv
Fst � Fi

: (30)

The line tends to be steeper in low Morton regions, such as the liquid
metal region (Fig. 9). The stability line becomes more and more inde-
pendent of the Morton number, and the E€otv€os number at which
instabilities occur becomes a constant. The viscous effect is negligible
in this region, and the stability is only controlled by the balance
between the inertia and the surface tension forces (Morton number).

FIG. 6. Comparison between Tomiyama’s correlation and PSI-BOIL simulation
results.

FIG. 7. Comparison of terminal velocity as the function of bubble diameter between
Tomiyama’s correlation and PSI-BOIL.
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Since the Weber and E€otv€os numbers are connected, the stability can
also be expressed as a function of the E€otv€os number,

Stability ¼ f
Fi
Fst


 �
¼ f We Eoð Þð Þ ¼ g Eoð Þ: (31)

The region in which the bubble passes from a spherical-like body to a
wobbling disk for different material proprieties has been investigated.
Figure 10 suggests that the transition happens almost at the same
E€otv€os number for all three metals (Eo¼ 1.7). This is further proof
that this process is not influenced by the Morton number, because the
viscosity effects are negligible, compared to the inertia and superficial
ones.

NOVEL CORRELATION FOR BUBBLE ASPECT RATIO

At the beginning of the simulation, the bubble is into a quiescent
liquid, and it has a spherical shape. The bubble starts to rise, due to an
unbalance of the gravity and Archimedes force.

As the bubble rises with increasing velocity, hydrodynamic pres-
sure due to metal flow at the top of the bubble increases. Due to the
incompressibility constraint, bubble compression at the top and bot-
tom leads to elongation at the sides, and the bubble shape becomes
elliptic.

Moore (1959) proposed a simple correlation for the bubble aspect
ratio X, which is valid for spherical-like bubbles, but loses its applica-
bility for higher Weber numbers:

X ¼ 1þ 9
64
�WeþO We2ð Þ: (32)

In analytical theory, we propose a new semi-analytical method for
the aspect ratio of a bubble rising in liquid metals. The bubble aspect
ratio depends only on the total pressure field on the bubble surface.
Since Re� 1, the viscous pressure is neglected, with respect to the
kinetic pressure, and the inviscid approximation, thus, becomes
reasonable.

FIG. 8. Right: Velocity for Eo¼ 1.12 and 3.1 bubbles. Left: x–z section of bubble trajectory (left: Eo¼ 1.12 right: Eo ¼3.1).

FIG. 9. Grace diagram (Acrivos, 1979). FIG. 10. Reynolds vs E€otv€os for bubbles rising in different liquid metals.
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Analytical theory

Force balance and curvature

Once the bubble has reached its terminal velocity, the accelera-
tion of the system is zero and the bubble and all its components are in
force equilibrium

P
F ¼ 0ð Þ. The force balance of a bubble interface

can be calculated if the inner and the outer pressure are known, as
illustrated in Fig. 11.

The force balance in each moment (�t) can be expressed by

pin ¼ pout þ cv: (33)

Since the velocity field is zero at the beginning of the rise (t¼ 0), Eqs.
(34) and (35), can be asserted:

pin ¼ cvo þ qgh: (34)

pin � qgh ¼ cvo ¼
4c
D
: (35)

The outer pressure is found by applying the Navier–Stokes equations
along a streamline from the non-perturbed region to the interface, Eq.
(36). Since the viscous effect is negligible, the flow field can, therefore,
be approximated as an irrotational field r�~u ¼ 0ð Þ. The energy
inside the fluid is conserved. The total outer pressure is the sum of the
gravitational pressure, qgh and the kinetic pressure, 1

2q u21 � u2
	 


.
The gravitation force is not technically constant, since it depends on
the depth of the liquid, but for simplification reasons, it was set con-
stant to qgh, with h being the depth of the bubble center of the mass.
Assuming that the fluid is almost perfectly inviscid, there are no inter-
face boundary layers and the interface tangential liquid velocity is
non-zero u== sð Þ 6¼ 0; ur sð Þ ¼ 0

	 

,

pout sð Þ ¼ qghþ 1
2
q u21 � u2 sð Þ
	 


: (36)

The inner pressure can easily be computed by applying the
Navier–Stokes equations to the inner gas. Basically, the pressure field
inside the bubble is spatially almost constant, that is,rp ¼ 0.

Once the bubble has reached its terminal velocity, the shape
remains constant, which means that the bubble curvature is kept

constant at each point. In the same way, the velocity field across the
bubble does not change. The gravitational term linearly decreases dur-
ing rising of the bubble, since the depth is decreasing qg h� u1 � t½ 
.
The inner gas pressure also decreases to keep the system stable and to
provide force balance at each point in time. Therefore, the pin tð Þ �
qgh tð Þ term is a constant during bubble rising,

v sð Þ ¼
1
2
qu2 sð Þ þ qgh� pin �

1
2
qu21

c
: (37)

Equation (37) suggests that the local interface curvature is linearly
dependent on the kinetic pressure and inversely proportional to the
surface tension coefficient. Furthermore, qgh� pin � 1

2 qu21 is con-
stant for each point of the interface. Therefore, the driving factor to
compute the curvature is the interface tangential velocity field, u== sð Þ.
In order to obtain the ideal resolution of the bubble shape problem,
inviscid Euler equations have to be solved around the bubble to find
the tangential velocity, u==, to the surface, as this is needed to calculate
the bubble curvature, vðsÞ, according Eq. (37).

Here, an equivalent method, which avoids the need to solve the
Euler equations for the ellipsoidal coordinates and provides an accu-
rate correlation for stable ellipsoidal bubbles in inviscid liquid, is
proposed.

Let us now consider the bubble at the first instant in which it is
quiescent and has a perfect spherical shape. In this situation, the veloc-
ity field is zero, and the main driven force is the Archimedes force

Nevertheless, for simplicity, the hydrostatic pressure is set equal
to qgh for the bubble aspect ratio calculation on the entire interface,
since h� D, and the relative difference between pup and pdown is neg-
ligible. Setting the hydrostatic pressure constant is a reasonable
approximation to compute the bubble shape. However, it cannot be
assumed in the momentum balance equation because the difference
between the upper and lower hydrostatic pressures is the driving factor
behind the rise in the bubble. If the hydrostatic pressure is assumed to
be constant, the bubble is in static equilibrium. It can be established,
from the balance of the forces acting on the surface at t¼ 0 (Fig. 11),
that pout � qgh, which was previously demonstrated to remain con-
stant during bubble rising, is equal to the initial curvature over-
pressure, cv0,

pin � qgh ¼ cv0: (38)

Using Eqs. (37) and (38), the final balance equation on the interface
[Eq. (39)] shows how the local curvature behaves. It is equal to an ini-
tial constant value plus a kinetic pressure dependent value. It is clear
that the velocity field is the only factor that influences the local bubble
curvature. Regions with high kinetic pressure result in a low curvature
interface, and vice versa. Ideally, the velocity field u sð Þ can be found by
solving the Euler equations for the ellipsoidal shape and it clearly
depends on the local curvature u sð Þ ! u s; v sð Þð Þ of the bubble. This
process tends to become complex and long,

cv sð Þ ¼ cvo þ
1
2
q u2 sð Þ � u21
	 


: (39)

Curvature at the top of the bubble

In our analysis, the bubble shape was considered to be a perfect

ellipsoid x2
a2 þ

y2

b2 þ z2
c2 ¼ 1

� �
. Since the flow is axisymmetric, theFIG. 11. Force balance on the bubble interface.
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bubble shape in the x and y directions is the same a ¼ bð Þ and the
ellipsoid can be perfectly characterized by only the a and c parameters.
To characterize the problem, it is only necessary to solve the curvature
equation at two different points on the bubble, since there are only
two unknowns. The first point considered is the bubble stagnation
point in which the kinetic pressure is the highest, Eq. (40). Here, the
fluid stops, and all the kinetic energy is transmuted into pressure. This
is a convenient solution point since here the velocity is zero for any
aspect ratio,

vmin ¼ v h ¼ 0ð Þ ¼ vo �
1
2
q � u21

c
: (40)

Curvature at the side of the bubble

The second point that was considered is the one with the highest
curvature, which occurs at an angle of 90�, with the curvature being
defined as

vmax ¼ v h ¼ p
2


 �
¼ vo þ

1
2
q
c
� u2

p
2


 �
� u21


 �
: (41)

Here, the fluid velocity, to satisfy conservation of the mass
r � u ¼ 0ð Þ, increases, with a consequent production of a negative
kinetic pressure on the interface, which, in turn, stretches the bubble.
How the tangential velocity behaves at each other point is not of inter-
est since only the largest and the smallest curvatures are needed. The
major problem is to find the tangential velocity at 908.

Tangential velocity field

First, from the solution of the Euler equations in the spherical
coordinates, only the tangential component of the velocity is present
on the interface, and not the radial one. In a perfect spherical case,
u== p

2

	 

¼ 3

2 u1.
Equations (42) and (43) are Euler incompressible equations for

mass and momentum conservation, respectively,

r � u ¼ 0; (42)

q � @u
@t
þ q � u � rð Þu ¼ �rpþ qg: (43)

Equations (44) and (45) are the radial and tangential velocity field sol-
utions of the Euler incompressible equations,

ur r; hð Þ ¼ u1 1� R3

r3


 �
cos hð Þ; (44)

u== r; hð Þ ¼ �u1 1þ R3

2r3


 �
sin hð Þ: (45)

In an ideal case, the tangential velocity decreases / 1
r3

	 

from 3

2 u1 to
u1, moving away from the sphere. An equivalent model is used for
the ellipsoidal bubble in which, for a certain range, the velocity is uni-
formly constant and equal to the interface tangential velocity (Fig. 12).
We assume that, after a certain distance, the flow is no longer per-
turbed by the presence of the sphere (Fig. 12). Nevertheless, the veloc-
ity is considered spatially uniform in the perturbed region and equal to
the tangential velocity at the interface [Eq. (46)]. The key point is to
find the distance beyond which the velocity drops from the tangential
velocity value to zero. The distance has been decided imposing that all
liquid momentum of the real case is confined only in the perturbed
range in the modeled case. In view of integral volume flow rate conser-
vation (Fig. 13), the ideal “perturbed range” can be found for a spheri-
cal bubble [Eq. (47)] and it is equal to

ffiffiffi
3
p
� R.

x is defined as the ratio between the distance from the center of
the bubble at which the flow starts to become unperturbed to the side
radius of the bubble,

p xRð Þ2 � u1 ¼ p xRð Þ2 � R2
� �

� 3
2
u1; (46)

x ¼
ffiffiffi
3
p

: (47)

This approach can also be used for ellipsoidal bubbles, but with some
geometrical corrections. Vtot is the total volume of the bubble, and it is

FIG. 12. Difference between real side velocity field and modeled one for a spherical body (x-z or y-z).

FIG. 13. Top view of a spherical bubble.
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kept constant during the rise since no breakup phenomena take place.
The width of the bubble is dependent on its characteristic diameter

D ¼
ffiffiffiffiffiffiffiffi
6�Vtot

p
3

q
 �
and on the bubble aspect ratio X ¼ a

c

	 

. Using the

current definitions, and assuming that the bubble volume does not
change under compression, the width is found as a function of the ini-
tial diameter and the aspect ratio,

a ¼ D �
ffiffiffiffi
X
8

3

r
: (48)

Volume flow rate conservation [Eq. (49)] is applied to an ellipsoidal
bubble (Fig. 14) to determine the liquid side velocity u p

2

	 

, Eq. (50),

p xað Þ2 � u1 ¼ p xað Þ2 � a2
� �

� u p
2


 �
; (49)

u
p
2


 �
¼ u1 �

x2

x2 � 1
: (50)

In the ellipsoidal case, finding x is the key point since it is only known
a priori in the spherical case. We assume that x is a function of aspect
ratio X, which is always greater than unity, and x X ¼ 1ð Þ ¼

ffiffiffi
3
p

. It is
generally known that u== p

2

	 

is higher in highly distorted bubbles,

since a larger amount of fluid is deflected as a result of the presence of
the bubble and this fluid flows entirely on the side of the bubble,
d u p=2ð Þ

d X > 0. Terminal bubble velocity u1 decreases slightly as the
aspect ratio increases, since the drag coefficient is higher for highly dis-
torted bubbles: du1d X < 0. Therefore, according to Eq. (51), x2=ðx2 �1Þ
increases with X. By solving Eq. (52), it is possible to prove that x Xð Þ
monotonously decreases with X, Eq. (53). Furthermore, x Xð Þ only
reaches 1 asymptotically (Fig. 15),

d
x2

x2 � 1


 �
dX

¼
d

uðp=2Þ
uinf


 �
dX

¼

duðp=2Þ
dX


 �
� uinf�

duinf
dX


 �
� uðp=2Þ

u2inf
> 0;

(51)

d
x2

x2 � 1
dX

¼
2x � dx

dX
� x2 � 1ð Þ � x2 � 2x � dx

dX
x2 � 1ð Þ2

¼
dx
dX
� �2xð Þ

x2 � 1ð Þ2
> 0;

(52)

dx
dX

< 0: (53)

For practical calculations, it was hypothesized that x Xð Þ follows a
decrease that is proportional to 1

Xn, as can be seen in Eq. (54). Under
this assumption, the function is controlled by the n parameter, which
is an unknown, while n represents how fast the function tends to 1.
The latter is a free parameter that is guessed by comparing the theory
with the PSI-BOIL simulation,

x Xð Þ �
ffiffiffi
3
p
� 1

	 

Xn

þ 1: (54)

Curvature calculation

According to the previous consideration, higher curvature [Eq.
(55)] and lower curvature [Eq. (56)] can be calculated and correspond
to p

2 and the 0 angle, respectively,

vmax ¼ v
p
2


 �
¼ 4

D
� 1
2
� q � u

2
1

c
� 1� x2 Xð Þ

x2 Xð Þ � 1

 !2
0
@

1
A; (55)

vmin ¼ v 0ð Þ ¼ 4
D
� 1
2
� q � u

2
1

c
: (56)

The analytical expression of the aspect ratio of an ellipsoid can be
found from the different calculations (Fig. 16). In our case, the velocity
field and the bubble shape are axisymmetric. In fact, there is no depen-
dence of any variable on 0 < u < 2p (a ¼ bÞ:

The side [Eq. (57)] and the top [Eq. (58)] curvatures of a 3D
ellipsoid can be analytically expressed as a function of the ellipsoidal
aspect ratio Xð Þ and the semi-major axis að Þ. Equation (59) is obtained
from the ratio of Eqs. (58) to (57),

FIG. 14. On the left, side representation of the ellipsoidal bubble, on the right top view of the ellipsoidal bubble.

FIG. 15. Possible omega function (the ratio between the distance from the center
of the bubble at which the flow starts to become unperturbed to the side radius of
the bubble).
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vmax ¼
1
Rs
þ 1
Rt
¼ a

c2
þ 1
a
¼

a
c


 �2

þ 1

a
¼ X2 þ 1

a
; (57)

vmin ¼
1
Rs
þ 1
Rt
¼ c

a2
þ c
a2
¼ 2

a
� c
a
¼ 2

a � X ; (58)

vmin

vmax
¼

2
a � X


 �
X2 þ 1

a


 � ¼ 2

X X2 þ 1ð Þ : (59)

Substituting the definition of the max. and min. curvature for bubbles
[Eqs. (55) and (56)] in Eq. (58), an explicit correlation between the
Weber number and the bubble aspect ratio [Eq. (63)] is found. This a
proof that the bubble deformation in inviscid fluids is only controlled
by the ratio of the inertia to the surface tension forces.

Let us define FðXÞ as Eq. (60) for compactness reasons,

F Xð Þ ¼ x2 Xð Þ
x2 Xð Þ � 1

; (60)

vmin

vmax
¼ 2

X � X2 þ 1ð Þ ¼
4� 1

2
� q � u

2
1 � D
c

4� 1
2
� q � u

2
1 � D
c

� 1� F2 Xð Þ
	 
 ; (61)

vmin

vmax
¼ 2

X � X2 þ 1ð Þ ¼
4� 1

2
We

4� 1
2
We � 1� F2 Xð Þ

	 
 ; (62)

We ¼ 16� 8X � X2 þ 1ð Þ
2 � 1� F2 Xð Þð Þ � X � X2 þ 1ð Þ : (63)

Once xðXÞ has been estimated, the correlation can successfully be
used in Eq. (63). If we linearize the function in the surroundings of
X¼ 1, the Moore linear correlation is found.

Moreover, the omega function cannot be known a priori, unless
the Euler equations are analytically solved in ellipsoidal coordinates.
This formula is valid as long as the bubble shape can be considered an
ellipsoid. When the top curvature becomes zero, the ellipsoidal aspect
ratio mathematically diverges to infinity. In order to keep this theory
valid, the top curvature has to be greater than zero, Eq. (64). This

condition is achieved when the Weber number of a bubble is less than
8, Eq. (65). However, this limit is practically never reached because the
bubble becomes unstable much sooner We � 4ð Þ,

vTOP ¼
4
D
� 1
2
� q � u

2
1

c
� 0; (64)

We
 8: (65)

Comparison of the aspect ratio of the analytical
solution to PSI-BOIL

The following analytical solution has been compared with the
CFD results to determine the n parameter that fully characterizes the
omega function, x Xð Þ [Eq. (66)]. Aspect ratio X was calculated for 30
simulations for three different sets of materials (argonþsteel,
argonþGaInSn, and nitrogenþmercury) within the 0.1< Eo< 1.2
range.

Unfortunately, the bubble shape is more sensitive than the termi-
nal velocity to the grid size. The relative error of the aspect ratio clearly
depends on the Dx

Rmin
¼ Dx � vmax ratio, which represents how well the

grid manages to represent the bubble interface at the point with the
highest curvature on the side of the bubble.

Grid sensitivity studies were conducted for an Eo¼ 0.5 bubble,
and the relative error pertaining to the aspect ratio was almost 10%,
compared to an ultrafine grid simulation where a spatial resolution of
50 cells on the bubble diameter has been adopted (D/dx¼ 50).
Furthermore, it was observed that the lack of accuracy of the grid
always leads to an underestimation of the aspect ratio. Even though
the relative error is lower for small bubbles, since they are less
stretched, a conservative analysis was adopted, and a 10% relative error
was set for all the points.

The best interpolation was found for n¼ 1.34. Exponential fitting
has been performed with R2¼ 0.92,

x Xð Þ �
ffiffiffi
3
p
� 1

	 

X1:34

þ 1; (66)

F Xð Þ ¼ x2 Xð Þ
x2 Xð Þ � 1

; (67)

We ¼ 16� 8X � X2 þ 1ð Þ
2 � 1þ F2 Xð Þð Þ � X � X2 þ 1ð Þ : (68)

Equation (68) precisely predicts the bubble aspect ratio in an inviscid
regime (Fig. 17). It is applicable to bubble rising in liquid metal for
0< Eo< 1.2. However, above Eo¼ 1.2, the bubble becomes unstable,
the shape is no longer ellipsoidal and the theory in no longer valid.

CONCLUSIONS

In this study, Computational Fluid Dynamics (CFD) simulation
has been used to improve knowledge of a bubble rising in liquid met-
als. More precisely, the bubble rising velocity and the bubble deforma-
tion were investigated using the CFD code, that is, PSI-BOIL.

A rising bubble in liquid metal was studied, and the predicted ter-
minal rising velocity was compared with Tomiyama’s correlation. The
simulation results showed that the drag coefficient is only controlled
by the E€otv€os number for large bubbles and shows the same tendency
as Tomiyama’s correlation. A semi-analytical model for bubble shape
deformation was then derived for liquid metal and compared with the

FIG. 16. Ellipsoidal representation of the bubble.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 104101 (2022); doi: 10.1063/5.0102756 34, 104101-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


simulation results. The result shows that inviscid approximation works
well for bubbles in liquid metal and that the bubble aspect ratio is only
controlled by the Weber number. Furthermore, a new stability crite-
rion for bubbles in a liquid metal has been proposed. In the proposed
criterion, bubble stability in the considered liquid metal was not con-
trolled by the Morton number, but only by the E€otv€os number.
Transition from an ellipsoidal to a wobbling disk shape took place for
the fixed E€otv€os number (Eo¼ 1.7). The novelty is the formulation of
a stability criterion for high Reynold (1000<Re< 10 000) bubble sta-
bility for which experimental correlation are hardly achievable.

As a follow-up of this article, further studies on bubble aspect
ratio are going on. Simulations on bubble rising in metals under mag-
netic field (horizontal and vertical) to study bubble shape, trajectory,
and velocity are also planned.
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