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Fiber-agnostic machine learning-based Raman
amplifier models

Uiara C. de Moura, Darko Zibar, A. Margareth Rosa Brusin, Andrea Carena, and Francesco Da Ros

Abstract—Machine learning techniques have been ap-
plied to solve many open and highly complex problems
in optical communications. In particular, neural networks
(NN) have proved to be effective in learning the complex
mapping between pump powers and gain profiles in Raman
amplifiers. Since the Raman scattering process is highly
dependent on the optical fiber, these NN-based Raman
amplifier (RA) models are specific for a single optical fiber
type. Therefore, countless NN models are required, one for
each optical fiber type. In this work, we first show that by
combining experimental data from different optical fiber
sources, we can build a fiber-agnostic (or general) NN-
based RA model. This single NN model can predict the gain
profile of a new fiber type (unseen by the model during
training) with a maximum absolute error (averaged over
1500 cases) as low as 0.22 dB. However, this generalization
is only possible when the unseen fiber is similar to the fibers
used to build the model. Therefore, a training dataset with
a wide range of optical fibers is needed to enhance the
chance of accurately predicting the gain of a new fiber.
The first contribution of this work aims at avoiding the
time-consuming experimental measurements of countless
fibers. For that, here we extend and improve our general
model by numerically generating the dataset. By doing so,
it is possible to generate uniformly distributed data that
covers a wide range of optical fiber types. To guarantee
that the numerical simulation is able to reproduce the
experimental results, we also propose a fitting procedure
to extract the Raman gain coefficient from a few experi-
mental measurements. The proposed numerical data-based
general model is used to predict the gain of real fibers
considering their corresponding Raman gain coefficient
(extracted by the fitting procedure). The results show that
the averaged maximum prediction error is reduced when
compared to the limited experimental data-based general
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models. However, even after the fitting procedure, this
fiber-agnostic model purely based on numerical data is
still limited by the discrepancies between numerical and
experimental measurements. Therefore, as the second and
final contribution of this work, we propose the use of
transfer learning (TL) to re-train the numerical data-based
general model using just a few experimental measurements.
Compared with the fiber-specific models, this TL-upgraded
general model reaches very similar accuracy, with just
3.6% of the experimental data. These results demonstrate
that the already fast and accurate NN-based RA models can
be upgraded to have strong fiber generalization capabilities.
They can, therefore, significantly reduce the total number
of RA models that would be needed in multi-span optical
networks.

Index Terms—optical communications, optical ampli-
fiers, machine learning, neural networks.

I. INTRODUCTION

THE concepts of open and disaggregated optical
networks and software-defined networking (SDN)

can improve network flexibility and manageability [1],
[2]. Flexible networks can adapt to changes that might
degrade the signal quality of transmission (QoT). There-
fore, accurate and fast QoT estimator tools play an
essential role. On the one hand, they trigger actions
in response to varying network conditions, allowing the
network to quickly adapt to changes. On the other hand,
inaccurate QoT models require additional design margins
and consequently network over-dimensioning [3].

Optical amplifiers are the main source of noise in
optical communication systems, having a high impact
on the signal QoT [4]. Rare-earth doped fiber ampli-
fiers (xDFA) and Raman amplifiers (RAs) are the most
promising technologies for multi-band optical transmis-
sion [5]. Unlike xDFAs, whose amplified frequency
range is defined by the fiber dopant, RAs have the
advantage of providing lumped or distributed gain at any
frequency and over a variety of optical fibers. Moreover,
broadband Raman amplification is possible by using
multiple pump lasers at appropriate frequencies [6], [7].
Another attractive feature that is particular to RAs is
the control of the gain spectral shape by adjusting the
Raman pump powers. This concept of programmable



gain profiles [8] brings an additional degree of freedom
to SDN-based controlled networks.

Very accurate optical amplifier models numerically
solve a set of nonlinear ordinary differential equations
(ODEs) [9], [10]. However, for real-time QoT estimation
purposes, these models can be time-consuming, espe-
cially for multi-band RA with a high number of pumps.
Moreover, such numerical models are not differentiable
for the backward pumping scheme (the preferred one
due to its robustness to pump power fluctuations). This
prevents their applications in system optimizations based
on gradient descent routines [11]. Therefore, machine
learning (ML) has been recently applied to provide
fast and highly-accurate gain and noise predictions for
erbium-DFAs (EDFAs) [12]–[15] and RAs [16]–[21].
These models have a wide range of applications, such as
effective signal power optimization [22], [23], signal-to-
noise ratio optimization [11], and QoT estimation [24],
[25].

For the RA, these ML-based models are specific to
the given optical fiber used for gathering the training
data. This is because the Raman gain strength and
spectral shape depend on the material composition, the
length, the attenuation, and the effective area of the
optical fiber [26]. Relying on these fiber-specific models
requires countless models to be available, one for each
considered fiber span [27], and a massive amount of
data to train each of them. Therefore, generalizable RA
models that can predict the RA performance for fiber
types unseen during training are critically needed.

We recently proposed an artificial neural network
(NN) model for the backward pumping RA that in-
cludes the fiber parameters as additional inputs [28].
By considering an experimental training dataset with
samples from multiple fiber types, such a fiber-agnostic
(or general) model shows good generalization properties
when the fiber-under-test (FUT) is not part of the training
dataset. However, this is only true when the FUT has
similar properties as the fibers used during training and
has sufficient cases around it. Other fiber cases, whose
parameters are outside the model training range, have a
very poor prediction performance. This could be solved
by generating comprehensive experimental data with a
wide variety of fiber types and span lengths. However,
this brings the same problem as for the fiber-specific
models: the need for massive experimental data.

In this work, we extend [28] by enhancing the training
dataset with numerically (synthetically) generated data.
In this case, the fiber parameters can be varied uniformly,
making it possible to cover a wider range of optical
fibers. This synthetic dataset is generated after a fitting
procedure to extract the Raman gain coefficient from the

experimental data. This procedure is needed to match
synthetic and experimental results and, therefore, make
it possible to apply the numerical NN models to predict
experimental data by using the estimated Raman gain
coefficient. The proposed numerical data-based model
is tested over an experimental dataset considering dif-
ferent commercial optical fibers. Obtained results show
improvements when compared to the experimental data-
based general models for most of the fiber cases. How-
ever, this approach is still limited by discrepancies be-
tween numerical and experimental measurements, even
after extracting the experimental Raman gain coefficient.

Finally, to overcome these experimental-versus-
numerical discrepancies, we apply transfer learning
(TL) [29] by re-training the numerical data-based model
with a few experimental cases. This new TL general
model is able to provide gain predictions with very
similar accuracy as for the fiber-specific models, with
the great advantage of requiring just 3.6% of the training
data. We, therefore, propose a TL-upgrade process for
the general model that takes only ∼1 hour, going against
the 8.5 hours required just to get the experimental data
to train a single fiber-specific model. We experimentally
demonstrate that such a general model based on numer-
ical data and enhanced by TL has great generalization
performance for different optical fibers. Moreover, it also
avoids the need to embed a full numerical ODE solver
into the QoT estimator as in [30], [31].

The paper is structured as follows. Section II reviews
numerical and ML-based RA models, highlighting their
main advantages and drawbacks. Section III describes
the experimental setup used to gather the experimental
data as detailed in Section IV. Part of this data will be
used to train the experimental data-based NN models
and the other part will be used to test all the NN models
generated in this work. Section V reviews the fiber-
specific and general models based on experimental data,
presenting and discussing the main results from [28].
Section VI introduces the new general model based on
numerical data. In this section, we describe in detail how
the data is generated and the models are trained. Since
we have some discrepancies between experimental and
numerical data, we also show how we update the fiber
parameters w.r.t the ones used in Section V and how
we perform a fitting procedure to extract the Raman
gain coefficient. Finally, to make the numerical data-
based general model more robust to experimental versus
numerical errors, Section VII uses the concepts of TL
to enhance the numerical model generalization accuracy
considering just a few experimental cases. Section VIII
then summarizes and compares all the NN models
results, presenting an overall discussion. Section IX
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concludes this work.

II. RAMAN AMPLIFIER MODELS

Signal and pump power evolution in RA is described
by a set of ODEs [32]:

dPs,i

dz
= −αsPs,i + gRPp,jPs,i, (1)

−dPp,j

dz
= −αpPp,j −

fp,j
fs,i

gRPs,iPp,j , (2)

where Ps,i is the signal power at frequency fs,i, Pp,j

is the pump power at frequency fp,j , αs,i and αp,j

are the signal and pump attenuation coefficients (also
at frequencies fs,i and fp,j , respectively), and gR is
the Raman gain efficiency in (W· km)−1 normalized
with respect to the fiber effective area Aeff . gR is a
function of the frequency shift between pump and signal
(fp,j−fs,i). These equations are for the counterpumping
RA configuration considered in this work. A thorough
equation that accounts for Np pumps and Ns signal
channels can also be found in [32]. This thorough model
also includes pump–pump/signal-signal interactions and
spontaneous Raman scattering.

When evaluating RAs, we are interested in their
response in terms of gain and/or noise, given changes
in the parameters that can affect this response. These
parameters can be represented by a vector X. Through-
out this paper, X will assume different dimensions
depending on what parameters are considered for a
given RA. As for Y, we will focus on predicting the
Raman gain spectral shape G and, therefore, Y = G.
The function f(X) = Y can be obtained by solving
equations (1-2) applying numerical methods like the one
within GNPy library [9]. Notice that by using such a
numerical approach, the effect of different parameters
can be investigated such as the above mentioned Ps,i,
Pp,j , αs, αp, gR, and Aeff . X can incorporate one or
more of these parameters and any other physical layer
parameter such as fiber length and lumped attenuations
(splices, couplers, etc). Although highly accurate, these
numerical methods are very complex to be embedded
into real-time QoT applications. They also require a
detailed physical layer parameters extraction, as in [31],
to accurately predict the gain profile. Finally, their non-
differentiable characteristics limit their application to
gradient-free system optimization approaches.

NNs, on the other hand, are universal approximators
applied to extract the underlying function from noisy
data [33]. For the RA case, they can be applied to extract
the function f(X) = Y from experimental (or numer-
ical) generated data. Relying on matrix multiplications,

these models are faster than applying numerical methods
to solve equations (1-2). One of the main advantages of
using machine learning to model the behavior of the RA
is that these models are built exclusively and directly
from experimental data. Therefore, previous knowledge
of the experimental system is not critical. Although
not as accurate as numerical models, NN-based RA
models have proven to be very efficient in predicting
Raman gain profiles [16], [17], [19], [27], amplified
spontaneous emission (ASE) noise [18], [34] and noise
figure (NF) [20]. In these models, X incorporates just the
Raman pump powers and has, therefore, dimension Np

(number of pumps). They will be referred to henceforth
as the fiber-specific RA models because they predict the
gain of a specific optical fiber. It means that the fiber
parameters such as αs, αp, gR, Aeff , and length are
fixed and do not need to be considered in X.

Moreover, NN models are also applied to learn the
inverse mapping f(Y)−1 = X to solve the inverse sys-
tem design problem for the RA [8], [35]. These inverse
NNs are also fiber-specific models and they are used for
the RA inverse design. In other words, they provide a
direct retrieval of the pump power configuration given
the desired gain profile. In this work, NN will be applied
to learn only the direct mapping f(X) = Y.

III. EXPERIMENTAL SETUP

Fig. 1 shows the RA experimental setup used to
generate the datasets to train and/or test the RA NN
models. The light source is an ASE source covering
the C-band (192-196 THz). The total power of the fully
lit bandwidth is +2.6 dBm at the input of the optical
fiber, however, good generalizability to a quite large
range of input power levels has already been shown, e.g.
in [35] , as long as you remain in the unsaturated regime.
The RA consists of an optical fiber and a commercial
Raman pump module combining Np = 4 lasers with fixed
frequency and adjustable powers. Pump wavelength and
maximum power values are shown in Fig. 1. These fixed
pump frequencies are able to amplify the full C-band.
Pumps and signals are combined through a wavelength
division multiplexer (WDM) in a counter-propagating
scheme. At the RA output, an optical spectrum analyzer
(OSA) captures the power spectra to calculate the on-
off gain profiles, i.e., the difference between the output
power spectra with the lasers turned on and off. The gain
profile is down-sampled to Ns = 40 signal channels at
100-GHz (ITU-T grid).

Five different optical fiber types are considered in
this setup. These fibers cover a wide range of fiber
lengths (L), signal (αs) and pump (αp) attenuation
coefficients, and effective areas (Aeff ), as shown in
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Optical fiber
WDMLight source OSA

Raman amplifier

Raman pumps, p 1 2 3 4

Frequency, f [THz] 206.1 207.5 209.0 210.6

Maximum power [mW] 145.0 158.5 180.0 152.5

Fig. 1. Raman amplifier setup for experimental and numerical data-
set generation. WDM: wavelength division multiplexer, OSA: optical
spectrum analyser.

Table I. Standard single-mode fiber (SMF) is well known
and widely deployed in terrestrial systems. Two lengths
are considered for the SMF: 50 and 100 km, referred
to as SMF1 and SMF2, respectively. Highly nonlinear
fiber (HNLF) and dispersion compensating fiber (DCF)
are special fibers commonly used for lumped (discrete)
RAs [36], with the latter presenting the advantage of also
compensating for chromatic dispersion. Optimizations in
the DCF design for submarine applications resulted in
the inverse dispersion fiber (IDF) [37]. IDF has also been
used for lumped RAs as an alternative to DCFs due to
its lower attenuation [36]. Ultra low loss fiber (ULLF) is
used for submarine and unrepeated links due to its lower
loss and wider effective area for nonlinear impairments
reduction. Both SMF and ULLF can be used as the gain
medium for distributed RAs.

IV. EXPERIMENTAL DATA GENERATION

For each optical fiber case in Table I, we collect
1,500 measurements, giving a full dataset with a total of
9,000 samples. Each sample k consists of a pump power
configuration P(k) = [P

(k)
p,1 , P

(k)
p,2 , P

(k)
p,3 , P

(k)
p,4 ]

T , the fiber
parameter information F(k) = [L(k), α

(k)
s , α

(k)
p , A

(k)
eff ]

T ,
and the corresponding measured RA on-off gain G(k) =

[G
(k)
s,1 , G

(k)
s,2 , ..., G

(k)
s,40]

T , where T denotes the transpose.
The pump power values are drawn from uniform distri-
butions, whose minimum value is 0 mW and maximum
values are the ones in Fig. 1. The fiber parameters

TABLE I
Optical fibers parameters

Parameter L αs αp Aeff

Units km dB/km dB/km µm2

HNLF 7.5 1.00 1.20 10
DCF 4.8 0.50 0.80 15
IDF 15 0.23 0.31 31

SMF1 50 0.20 0.25 80
SMF2 100 0.20 0.25 80
ULLF 50 0.16 0.2 153

L: fiber length, α: attenuation coefficient, Aeff : effective area.
Maximum/minimum values are in bold.

Pp,1

Pp,4

1

2

NHN

Pp,1

Pp,4

L

αs

αp

Aeff

Pp,2

Pp,3

(a) Fiber-specific models (b) General models

X = 

Gs,1

Gs,40

= YX = 

1

2

1

2

Gs,1

Gs,40

= Y

NHNNHN

Fig. 2. Neural network architecture for (a) fiber-specific and (b) general
models based on experimental data. NHN is the number of nodes in
the hidden layer.

in F(k) are fixed and according to Table I. In our
experimental setup, each sample takes around 20 seconds
to be measured. Thus, the total time required to measure
the dataset is around 8.5 hours per fiber case.

Another dataset is generated in the same way, with an
identical number of samples, for testing the models. The
full and fiber-specific test datasets are labeled Dtest and
DOF,test, respectively.

V. EXPERIMENTAL DATA-BASED RA MODELS

A. Fiber-specific NN models

A simplified version of the fiber-specific datasets are
used to train the fiber-specific models. This version
removes the fiber parameter information F

(k)
OF since

it is not relevant for these models. The simplified
(simp) specific dataset is then given by DOF,simp =
{P(k),G(k)}1500k=1 .

Six fiber-specific NN models for each fiber case in
Table I are independently trained over its corresponding
training dataset DOF,simp. These models are referred
to as NNOF . They consider the fully connected two-
hidden-layer NN architecture illustrated in Fig. 2(a), with
pump power configuration P as input X and Raman
gain G as output Y (consistent with DOF,simp). The
training updates the NN weights using backpropagation
in Tensorflow (Keras Library) through 500 epochs, a
batch size of 32, and considering mean squared error as
loss function. DOF,simp is divided in the following way:
100 samples are reserved for hyperparameter optimiza-
tion (detailed later in this section), and the remaining
1400 are used for training. The choice of 500 epochs is
kept for all the NN models, as it is sufficient to ensure
training convergence for all cases here considered. Under
such conditions, the training of these models takes of the
order of tens of minutes on a low-tier laptop, with none
of the models exceeding 30 min.

First we analyze the models convergence w.r.t the
training size, going from 50 to 1400 samples in
DOF,simp. The obtained results are shown in Fig. 3,
where MaxAE is the maximum absolute error along
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Fig. 3. Convergence analysis for the fiber-specific models NNOF in
terms of <MaxAE>, i.e., the maximum absolute error MaxAE aver-
aged over the 100 samples reserved for hyperparameter optimization.

the 40 signal channels. It is defined as MaxAE =
max(|G−G̃|), with G̃ being the NN gain prediction, i.e.
G̃ = NNOF (P). In this case, <MaxAE> is calculated
as:

<MaxAE> =
1

K

K∑
k=1

max(|G(k) − G̃(k)|), (3)

with K = 100 samples reserved for hyperparameter
optimization. The results shown in Fig. 3 confirm that
a good convergence is achieved with 1400 samples for
all models. Therefore, the final fiber-specific models are
trained considering 1400 samples.

The hyperparameter optimization consists in a
grid search over the number of hidden nodes
(NHN = {10, 20, 30}), the activation function (fact =
{sin, tanh, sigmoid}), the optimization algorithm (opt),
and the learning rate (LR = {10−1, 10−2, 10−3, 10−4}).
More information about the optimization algorithms
available within Tensorflow can be found in [38]. It
means that several NN models are trained considering
different hyperparameters. Each model is evaluated over
the 100 samples are reserved for hyperparameter op-
timization. The hyperparameters with the best perfor-
mance are shown in Table II. The activation function of
the output nodes is linear and it is not optimized in this
process. The training reserves 30% of the training data
to verify if the model is over-fitting. It means that during
the training, the model is tested over a different set, not
used for training, to verify if the error is decreasing.
When this validation error starts to increase, the training
stops (early-stop criteria).

The performance of the final fiber-specific models
are presented in Fig. 4 in terms of probability density
function (PDF) of MaxAE. In this case, MaxAE is calcu-

0.00 0.25 0.50 0.75 1.00 1.25 1.50
MaxAE [dB]

0

2

4

6

8

10

12

PD
F

Model FUT
Fiber-specific models (exp. DS)

NNHNLF     HNLF, 0.22±0.1
NNDCF      DCF, 0.19±0.09
NNIDF       IDF, 0.27±0.14
NNSMF1     SMF1, 0.14±0.06
NNSMF2     SMF2, 0.25±0.14
NNULLF      ULLF, 0.09±0.06

Fig. 4. Experimental data-based, fiber-specific models performance in
terms of probability density function (PDF) of the maximum absolute
error MaxAE indicating mean (<MaxAE>) and standard deviation
(σ) values as <MaxAE>±σ. In this case, the fiber-under-test (FUT)
is the same fiber (OF) used to generate the dataset to train the models
NNOF .

lated over the samples in a simplified version of the test
dataset given by DOF,test,simp = {P(k),G(k)}1500k=1 , i.e.,
removing the fiber parameter information F

(k)
OF . Mean

(<MaxAE>) and standard deviation (σ) for MaxAE are
also shown as <MaxAE>±σ in the legend. In this case,
NNOF is trained and tested considering the same fiber
and, therefore, FUT in Fig. 4 corresponds to OF in
NNOF . These models are highly accurate for all fiber
cases, with MaxAE ranging from 0.09±0.06 dB (ULLF)
to 0.27±0.14 dB (IDF).

However, these fiber-specific models have very poor
generalization properties, i.e., they cannot be applied
to predict the gain profile for an optical fiber different
from the one used during the training. Fig. 5 shows the
performance of these models when FUT ̸= OF . In this
case, FUT are all the fibers, except OF . We refer to
it as FUT = OFout in Fig. 5. This poor accuracy is

TABLE II
Neural network parameters for the fiber-specific models

(experimental data-based)

Model NHN fact opt LR

NNHNLF 20 sigmoid adamax1 10−2

NNDCF 30 tanh adam2 10−3

NNIDF 30 sigmoid ftrl3 10−1

NNSMF1 30 sigmoid adam2 10−2

NNSMF2 10 sigmoid nadam4 10−2

NNULLF 20 sigmoid adam2 10−3

1. Adamax = adaptive moment estimation (Adam) variant based on
the infinity norm,
2. Adam: adaptive moment estimation,
3. ftrl: follow the regularized leader,
4. Nadam: Nesterov accelerated adaptive moment estimation (Adam).
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0 5 10 15 20 25
MaxAE [dB]

0.0

0.1

0.2

0.3

0.4

0.5

0.6
PD

F
Model FUT

Fiber-specific models (exp. DS)

NNHNLF     HNLFout, 6.76±2.85
NNDCF      DCFout, 2.87±2.42
NNIDF       IDFout, 3.94±1.79
NNSMF1     SMF1out, 3.01±2.6
NNSMF2     SMF2out, 2.88±2.52
NNULLF      ULLFout, 5.64±3.2

Fig. 5. Experimental data-based, fiber-specific models performance in
terms of probability density function (PDF) of the maximum absolute
error MaxAE indicating mean (<MaxAE>) and standard deviation
(σ) values as <MaxAE>±σ. In this case, the fiber-under-test (FUT)
is referred to as OFout, and corresponds to all the other fibers different
from the fiber (OF) used to generate the dataset to train the models
NNOF .

expected since the Raman gain shape and level are highly
dependent on the properties of the optical fiber [26]. In
other words, a model without knowledge of the fiber
characteristics cannot generalize to a different fiber type.
This means that a dedicated NN model is needed for
each fiber type/length. Considering the high diversity of
fiber types and span lengths in optical communication
systems, this would require a huge number of fiber-
specific models and also a massive amount of measure-
ments to gather the data for training. Moreover, QoT
estimator tools would need to incorporate countless RA
NN models and update them if a new fiber is deployed in
the system. Therefore, a general model able to predict the
RA performance for fiber types unseen during training is
highly desired. This would require QoT estimator tools
to incorporate just a single RA model that would work
for any optical fiber.

B. General NN models (experimental data-based)

The general model is applied to learn not only the
mapping between pump configuration and gain profiles
but also how the fiber characteristics affect these gain
profiles. Therefore, the fiber parameters shown in Table I
are incorporated into the NN input X, resulting in
X = [Pp,1, Pp,2, Pp,3, Pp,4, L, αs, αp, Aeff ], as shown
in Fig. 2(b). To keep the approach practical, these param-
eters were chosen due to their importance in determining
the gain profiles and also because they are commonly
provided by the fiber’s suppliers on the fibers’ data-
sheets [28]. The Raman gain coefficient (gR) requires
additional characterization. However, we verified that

L [km]

100 s
[dB/km]

100 p [dB/km]

Aeff
[ m2]

20
40
60
80
100
120
140
160

HNLF
DCF
IDF
SMF1
SMF2
ULLF

Fig. 6. Optical fiber parameters distribution showing the extreme cases.

L [km]

100 s
[dB/km]

100 p [dB/km]

Aeff
[ 2]

0.5
1.0
1.5
2.0
2.5
3.0
3.5

log(10L)

log(100 s)

log(100 p)

log(10Aeff)

HNLF
DCF
IDF
SMF1
SMF2
ULLF

Fig. 7. Optical fiber parameters distribution after applying the loga-
rithmic transformation function indicated in each axis.

general NN models trained considering gR do not show
higher accuracy w.r.t the models not considering it.
These results are not shown here because they are not
relevant to the general discussion.

In Fig. 6 we can visualize how the fiber parameters are
distributed in a non-uniform way. Therefore, we need to
perform an input transformation to the fiber parameters
to make them more uniformly distributed among the
optical fibers. This transformation is needed to improve
the accuracy of the models. The resulted transformation
is shown in Fig. 7, where a log function is applied to
all fiber parameters after being multiplied by 10 (L and
Aeff ) or 100 (αs and αp).

To be able to evaluate the generalization properties of
the proposed general model, i.e. its ability in predicting
the gain profile for an unseen FUT, we build six general
NN models. Each model is trained over the dataset D \
DFUT , where \ is the set difference operator. This means
that the data corresponding to the FUT is removed from
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the training dataset D. These models are referred to as
NNFUTout

and they are tested over the test dataset of
the removed fiber DFUT,test. NNFUTout training and
testing datasets are shown in Table III. These datasets
were defined in Section IV.

These general models consider the single-hidden layer
architecture illustrated in Fig. 2(b). We apply 10-fold
cross-validation for model selection. During the train-
ing, the weights are updated using an extreme learning
machine (ELM) [39] method implemented in MATLAB.
In this single-step and fast training approach, referred
to as either ELM or random-projection method, only
the last layer’s weights are updated using the training
dataset by regularized least squares (regularization pa-
rameter λ). The hidden layer’s weights are randomly
assigned according to a normal distribution (zero mean
and standard deviation σw) and are kept constant during
the training. The hyperparameter optimization resulted
in fact = sine, σw = 10−2.5, and λ = 10−8 for all
general models and NHN according to Table III. A
linear activation function is considered for the output
nodes. Model averaging using 20 parallel NNs is applied
to compensate for the hidden layer’s weights random
assignment. This means that the predicted gain is the
averaged output of 20 independently trained NN models.
We also trained the general models using backpropaga-
tion, applying the same procedure as for the fiber-specific
models described in Section V-A. However, such models
trained using backpropagation are not as accurate as the
ones considering ELM. Therefore, their results are not
considered here.

The performance of the models is evaluated similarly
to the fiber-specific models. Fig. 8 shows MaxAE’s PDF
for each general model NNFUTout

, where a degradation
in performance is observed especially for the fiber cases
whose parameters have maximum or minimum values
in Fig. 7. It is known that the generalization of a NN

TABLE III
Training and testing datasets (DS) and the number of hidden

layers (NHN ) for the general models (experimental data-based)

Model Train DS Testing DS NHN

NNHNLFout D \ DHNLF DHNLF,test 500

NNDCFout D \ DDCF DDCF,test 400

NNIDFout D \ DIDF DIDF,test 700

NNSMF1out D \ DSMF1 DSMF1,test 600

NNSMF2out D \ DSMF2 DSMF2,test 800

NNULLFout D \ DULLF DULLF,test 700

fact = sine, σw = 10−2.5, and λ = 10−8 for all models. \ is the set
difference operator.
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NNHNLFout        HNLF, 2.4±0.94
NNDCFout         DCF, 2.81±1.13
NNIDFout          IDF, 0.89±0.35
NNSMF1out        SMF1, 0.22±0.09
NNSMF2out        SMF2, 0.5±0.27
NNULLFout        ULLF, 0.46±0.19

Fig. 8. Experimental data-based, general models performance in terms
of probability density function (PDF) of the maximum absolute error
MaxAE indicating mean (<MaxAE>) and standard deviation (σ)
values as <MaxAE>±σ. In this case, the data of the fiber-under-
test (FUT) is removed from the dataset used to generate the model,
providing a total of 6 models corresponding to each removed FUT.

model is influenced by the size of the training data and
how representative the training data is over the space
of interest [40]. To verify if this low accuracy is due
to insufficient data in the training dataset, we perform
a convergence analysis w.r.t to training dataset size. For
that, each fiber case in the training dataset D \ DFUT

contributes with the same number of samples (50 to
1500) to the overall training dataset, providing a total of
250 to 7500 samples. The results are presented in Fig. 9,
showing that after around 500 samples, the performance
is already very similar to the ones obtained in Fig 8.
This hints that the problem is more likely related to the
fiber parameter distribution in the training dataset, rather
than the need for more samples. In Fig 9, <MaxAE> is
calculated for the fiber not considered for training, i.e.,
G(k) ∈ DFUT,test and K = 1500 in equation (3). Model
averaging is not considered for the convergence analysis.

In fact, returning to Fig. 8, HNLF has the highest
[αs,αp] and the lowest Aeff values. Thus, when pre-
dicting the HNLF gain profiles using NNHNLFout , the
inputs are outside the training range, and NNs are known
for their poor ability to extrapolate information [33].
IDF parameters, on the other hand, have no mini-
mum/maximum values in Table I. However, NNIDFout

has a relatively low accuracy with <MaxAE>≈ 1 dB.
Even though the input transformation provides a better
distribution (or representativeness) of the fiber parame-
ters, recall that NNIDFout

is trained over D \ DIDF .
When removing the IDF data in Fig 7, a gap ap-
pears, affecting the uniform distribution. Therefore, this
suggests that NNIDFout is not trained with sufficient
samples around its fiber parameters. This is not the
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Fig. 9. Convergence analysis for the general models NNFUTout in
terms of <MaxAE>, i.e., the maximum absolute error MaxAE aver-
aged over all the cases in the corresponding test dataset DFUT,test.

case for the NNSMF1out
. NNSMF1out

shares all its
parameters with other fiber cases (SMF2 and ULLF).
This leads to the best generalization performance, with
a <MaxAE> of 0.22 dB, i.e. close to the fiber-specific
model performance shown in Fig. 4. Therefore, a good
generalization is most likely to be achieved when the new
FUT is inside the model training range and has sufficient
samples around it.

These poor generalization properties could be im-
proved by considering a large number of optical fibers
with different parameters to diversify the training dataset.
However, this would require time and effort for mas-
sive experimental measurements over a wide variety of
fiber types and span lengths. Therefore, as the main
contribution of this work, we propose to generate the
dataset numerically, with better control of the granularity
of the fiber parameters and, therefore, a more uniform
distribution of the cases within the dataset. Moreover,
synthetic data would allow for parallelized generation,
with high contrast with the experimental data.

VI. NUMERICAL DATA-BASED RA MODELS

To overcome the limitations and drawbacks of gener-
ating a comprehensive experimental dataset, we generate
a numerical dataset considering uniform distributions of
the optical fiber parameters. The simulations considered
the numerical solver available within the open-source
library GNPy [9] and referred to as the Raman solver
(RS) from now on. The new general models, trained over
the numerical data, will be tested over the experimental
data, i.e., for each experimental DFUT,test.

The setup considered for the numerical simulations
matches the experimental setup of Fig. 1. In this case,

the light source is 40 continuous-wave lasers in the C-
band (ITU-T grid, 100 GHz spaced) with a total power
of +2.6 dBm, as in the experimental dataset collection.
Also different from the experiment, all pump lasers have
a maximum power of 200 mW.

A. Fiber parameters update

To make the approach simple and to avoid additional
laboratory measurements, Table I in Section III considers
typical values retrieved from the literature [36], [37] and
from fiber suppliers specifications [41]–[43]. However,
the attenuation coefficients (αs and αp) are not accu-
rate enough for the RS to reproduce the experimental
results. Therefore, we update the attenuation coefficients
after simple measurements using a frequency-tunable op-
tical time-domain reflectometer (OTDR). These updated
(updt) values are presented in Table IV and they were
measured at 1550 nm (signal) and 1450 mm (pump).

Moreover, RS considers the Raman gain coefficient
(gR) instead of the Aeff to solve the ODEs describing
the Raman effect. Therefore, to build a model with
numerically generated data from the RS and apply it
to predict the gain of an experimental fiber, we need to
extract the fiber’s gR and use it as one of the inputs of the
NN model. Fig.10 shows the normalized gR curves from
the literature [36] for the fibers considered in this work
(except for ULLF because it is very similar to the SMF).
As we mentioned in Section V-B, obtaining these curves
and their respective peaks would require additional and
more complex characterization for each optical fiber.
Therefore, here we propose a simple procedure to extract
gR peak (gpeakR ) from a few experimental measurements
(a small part of the same experimental data used to train
the models in Section V-B). Furthermore, in this work,
we consider the same attenuation coefficient (αp) and the
same Raman gain coefficient for all pumps. Therefore, to
compensate for these simplifications, the proposed fitting
procedure also extracts pump power calibration values
lPi

for each pump i at the fiber input. These include,
e.g. the frequency dependence of gpeakR and αp, and
connection losses.

The proposed fitting procedure consists in solving
an optimization problem to extract gpeakR and lP1−4

from a few experimental measurements for a given
fiber case. The solution of this problem has the form
s = [gpeakR , lP1

, ..., lP4
]T . To find the optimum solution

sopt, we apply the RS to numerically solve equation
(1-2) and provide the RA response in terms of gain
for a trial solution s. The idea is to find a way to
adjust this trial solution until the error between numerical
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Fig. 10. The normalized Raman gain coefficient versus the frequency
shift between pump and signal for the optical fibers considered in this
work (ULLF curve is very similar to the SSMF) [36]

and experimental gain measurements is small enough.
It is very challenging to obtain an expression for the
gradient of these equations to apply a gradient descent
optimization technique to find sopt. Therefore, we solve
this problem by using the differential evolution (DE)
algorithm, a derivative-free optimization method based
on genetic algorithm concepts [44].

The DE algorithm starts with a population of initial
solutions S = {s1, s2, ..., sN}. These solutions are eval-
uated and updated in an iterative process until they con-
verge to a (sub-)optimum solution. As a stochastic global
optimization method, DE tries to escape from local
optima, but an optimum solution is not guaranteed [44].
In general words, at each epoch, each candidate solution
is evaluated over n experimental measurements from
DOF . This evaluation considers a cost function fcost(s)

relating experimental G
(k)
exp ∈ DOF and numerical

G
(k)
num gains for each solution s:

fcost(s) = max{max(|G(k)
exp −G(k)

num|)}nk=1 (4)

where G
(k)
num is a function of s. It is obtained by running

the RS considering the pump configuration from DOF

attenuated by the pump lumped losses in s, and gpeakR

according to the solution s. It also considers the updated
values for αs and αp from Table IV. These values are
kept constant during the optimization process.

A more detailed explanation of DE is out of the scope
of this work and can be found in [44]. The population
size is N = 60 and the optimization set has n = 10
experimental measurements from DOF . The maximum
number of epochs is set to 100. A validation set with
10 new experimental measurements (also from DOF ) is
used to monitor the best solution of the iteration and

avoid over-fitting. It means that the final solution sopt is
the one that provides the best performance in the vali-
dation set. Additionally, we also consider increasing n.
However, it just increases the optimization time without
bringing improvements to the results.

The complete optimization takes less than 30 minutes
considering running 12 parallel instances of the RS, a
very similar time processing achieved by [31]. In our
case, this time could be significantly reduced by at least
a factor of 10 if we could evaluate all N = 60 candidate
solutions over the optimization set (n = 10), which gives
600 RS instances, totally in parallel for each iteration.

The optimized values of gpeakR are also shown in
Table IV. The optimized pump power calibration values
are shown in Table V and they do not have a clear trend
w.r.t the wavelength. This is because they account for
the impact of several physical effects and measurement
uncertainties based on lumped effective values. Such
calibration values compensate for the choice of a simpli-
fied model which does not account for the wavelength
dependence of attenuation, gain peak and effective area,
as well as measurement uncertainty that can generate
connector loss and pump diode driving current errors.

Finally, we reproduce the full experimental data D ∪
Dtest numerically, considering the updated fiber param-
eters from Table IV, the gR curves from Fig 10, and
the pump power calibration values from Table V. The
maximum absolute error between Gexp and Gnum along
the channels max(|Gexp − Gnum|) is summarized in
Fig. 11. Mean (<max(|Gexp−Gnum|)>) and standard

TABLE IV
Updated optical fibers parameters

Parameter L αs,updt αp,updt gpeakR
Units km dB/km dB/km (W · km)−1

HNLF 7.5 0.89 1.12 5.15
DCF 4.8 0.48 0.68 3.04
IDF 15 0.24 0.33 1.59

SMF1 50 0.19 0.24 0.39
SMF2 100 0.19 0.24 0.34
ULLF 50 0.15 0.2 0.21

L: fiber length α: attenuation coefficient, gpeakR : Raman gain
coefficient peak. Maximum/minimum values are in bold

TABLE V
Optimized pump power calibration values

Parameter lP1
(dB) lP2

(dB) lP3
(dB) lP4

(dB)
HNLF 1.31 1.53 0.98 0.50
DCF 2.50 2.56 1.69 0.94
IDF 2.77 2.45 1.39 1.16

SMF1 0.91 0.71 0.30 0.47
SMF2 0.59 -0.23 -0.48 0.01
ULLF 2.36 2.09 0.95 0.97
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Fig. 11. Probability density function for the fitting error
max(|Gexp − Gnum|) calculated over the experimental data D ∪
Dtest (removing 20 cases used for the DE optimization). Numerical
simulations consider the updated fiber parameters from Table IV.
Mean (<max(|Gexp −Gnum|)>) and standard deviation (σ) val-
ues for max(|Gexp − Gnum|) are indicated as <max(|Gexp −
Gnum|)>±σ in the legend.

deviation (σ) (shown as <max(|Gexp − Gnum|)>±σ
on the right side of each legend) are calculated over
all 2980 cases (removing the cases used for the DE
optimization). These errors are related to measurement
inaccuracies and can be considered as the lower limit for
the numerical data-based general models performance.

The new fiber parameters from Table IV and the
lumped pump losses from Table V are used to up-
date the experimental datasets from Section IV. This
is because we test all the numerical data-based models
built in this section over the experimental data. We
also use the experimental data to re-train the numerical
model by means of transfer learning, as it will be
detailed in Section VII. These updated datasets will be
referred to as DOF,updt and are given by DOF,updt =

{P(k)
updt,F

(k)
OF,updt,G

(k)}1500k=1 , with Pupdt = [Pp,1 −
lP1

, ..., Pp,4 − lP4
] (Pp,i is in dBm), FOF,updt =

[L,αs,updt, αp,updt, g
peak
R ], and G(k) as in DOF (Sec-

tion IV). The same update is performed to obtain the
test datasets DOF,test,updt from DOF,test and the values
in Tables IV and V. Notice that Aeff is replaced by
gpeakR in FOF,updt. We opt to use Aeff in the first part
of this work because it is promptly available in the fiber’s
suppliers data-sheet. However, as already mentioned,
RS considers gpeakR instead of Aeff to generate the
numerical data. Therefore, the numerical models need
the information of the fiber gpeakR to predict its the
gain profile. Moreover, having both gpeakR and Aeff is
redundant since gpeakR is normalized by Aeff .
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Fig. 12. Neural network architecture for general models based on
numerical data.

B. Numerical data generation

The numerical dataset could be generated by uni-
formly varying from minimum to maximum the values
of the fiber parameters in Table IV. However, this would
lead to unrealistic cases, such as high attenuation fibers
with long transmission distances. Therefore, we generate
two numerical dataset groups corresponding to lumped
(lump) RAs with high gR and distributed (dist) RAs with
low gR. They are referred to as Dlump and Ddist, re-
spectively, and their intervals are according to Table VI.
Dlump has high attenuation coefficients over up to 20 km
of fiber lengths. Whereas Ddist is the opposite (low
attenuation coefficients and fiber lengths higher than
20 km). We generate the numerical data considering the
literature gR curves from Fig. 10. Ddist uses the SMF gR
curve and Dlump uses an average between HNLF, DCF,
and IDF. More than 100,000 samples were generated for
each dataset group.

Each sample k in the numerical dataset con-
sists of a pump power configuration P

(k)
num =

[P
(k)
p,1 , P

(k)
p,2 , P

(k)
p,3 , P

(k)
p,4 ]

T , a fiber parameter information

F
(k)
num = [L(k), α

(k)
s , α

(k)
p , gpeakR

(k)
]T , and the corre-

sponding RA response in terms of on-off gain G
(k)
num =

[G
(k)
s,1 , G

(k)
s,2 , ..., G

(k)
s,40]

T . The pump power values in
Pnum are drawn from U [0; 200] mW. Different from the
experimental dataset in Section IV, here the fiber pa-
rameters in Fnum are drawn from uniform distributions
considering the intervals in Table VI.

The final numerical datasets are given by
Dlump/dist = {P(k)

num,F
(k)
num,G

(k)
num}Kk=1, with K

= 105,521 for Dlump and K = 106,561 for Ddist.

TABLE VI
Fiber parameter ranges for the numerical datasets

Parameter Dlump Ddist

L (km) U[1:20] U[20:120]
αs (dB/km) U[0.20:1.20] U[0.15:0.22]
αp (dB/km) U[0.28:1.28] U[0.18:0.32]

gpeakR ((W · km)−1) U[1.00:5.50] U[0.20:0.99]
gR curve (Fig. 10) < [HNLF,DCF, IDF ] > SMF
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C. General NN models (numerical data-based)

We consider three numerical models: a general model
trained over the full Dnum = Dlump ∪ Ddist dataset,
and two independently models trained over Dlump

and Ddist. These models are referred to as NNnum,
NNdist, and NNlump, respectively. Dlump generalizes
for HNLF, DCF and IDF and Ddist generalizes for
SMF1, SMF2 and ULLF. Dnum, Dlump and Ddist

are divided into training, hyperparameter optimization
(hyperparam. opt.), and testing, according to the sizes
shown in Table VII. Just part of all samples generated
in Section VI-B is used. The training sizes were obtained
after a convergence analysis checking the NNs accuracy
in the hyperparam. opt. set for different training sizes.
Notice that the training data size for NNnum is larger
than the sum of the training data for NNlump and
NNdist. It is because NNnum should generalize for
lumped and distributed RAs.

These models consider the NN architecture presented
in Fig. 12, with X = [Pp,1, ..., Pp,4, L, αs, αp, g

peak
R ]T

and Y = G (consistent with Dnum and DOF,test,updt).
They are trained in a similar way as for the fiber-specific
models in Section V-A, i.e applying backpropagation
in TensorFlow to update the NN weights. We consider
500 epochs and a batch size of 32. A portion of 30%
of the training set is reserved to avoid over-fitting. An
hyperparameter optimization phase defines the number
of hidden nodes (NHN ), the optimization algorithm
(opt), the learning rate (LR), and the activation function
(fact) for the hidden nodes. This is done by evaluating
the candidate models over the hyperparam. opt. set and
selecting the best model, whose parameters are also
shown in Table VII. The output layer nodes consider
a liner activation function.

Fig. 13 shows the performance in terms of MaxAE
(max(|G − G̃|)) of the proposed numerical models
tested over the numerical testing set (Table VII). Recall
that G̃ is the NN gain prediction. All three models

TABLE VII
Dasaset sizes and neural network parameters for the numerical

data-based general models

NN models NNlump NNdist NNnum

Training 90,000 30,000 170,000
Hyperparam. opt. 10,000 10,000 20,000

Testing 10,000 10,000 20,000
LR 10−3 10−2 10−3

opt Nadam1 Adamax2 Nadam1

fact = sigmoid, and NHN = 30 for all models.
1. Nadam: Nesterov accelerated adaptive moment estimation (Adam),
2. Adamax = adaptive moment estimation (Adam) variant based on
the infinity norm.
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Fig. 13. Numerical data-based, general models performance in terms
of probability density function (PDF) of the maximum absolute error
MaxAE indicating mean (<MaxAE>) and standard deviation (σ)
values as <MaxAE>±σ. Training and test datasets are numerical.

are highly accurate, with very low <MaxAE> values.
NNdist has the best performance, very similar to the
one obtained for a fiber-specific numerical model (only
SMF) in [18]. NNlump and NNdist present a smaller
<MaxAE> degradation. Regarding maximum MaxAE,
it goes from 0.4 dB for NNdist to around 1 and 1.6 dB
for NNlump and NNnum, respectively. However, for
both NNlump and NNnum, just ≈1% of the cases have
maximum MaxAE > 0.4 dB.

Fig. 14 shows the performance over the experimental
data (DFUT,test,updt) for NNnum (Fig. 14(a)) and for
NNlump and NNdist (Fig. 14(b)). That is testing the
model traning using the numerical dataset (with updated
parameters) on the measured test dataset. These results
are very similar to each other, showing that dedicated
models for each group is not necessary. When compared
to the general experimental model results in Fig. 8, the
numerical models are able to bring down the errors
for the highly inaccurate cases, i.e. HNLF and DCF.
<MaxAE> drops from 2.4 to 1.01 dB (HNLF) and from
2.81 to 0.41 dB (DCF). While maximum MaxAE goes
from ≈7 dB to ≈2 dB (HNLF) and to ≈1.4 dB (DCF).
Improvements are also observed for IDF and ULLF, es-
pecially for maximum MaxAE, which reduces from ≈2.5
to ≈1.8 dB (IDF) and from ≈1.2 to ≈0.6 dB (ULLF).
Except for the HNLF, the performance of the numerical
models are very close to the fit errors in Fig. 11. These
errors limit the performance of the numerical models
in Fig. 14 and are the reason why it is not possible to
improve the performances for the SMF cases (SMF1 and
SMF2). They also prevent to achieve performance close
to the fiber-specific experimental models in Fig. 4.
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NNnum      SMF1, 0.49±0.15
NNnum      SMF2, 0.65±0.26
NNnum      ULLF, 0.31±0.06
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(b) Lumped/distributed models (num. DS)

NNlump     HNLF, 0.97±0.34
NNlump     DCF, 0.42±0.19
NNlump     IDF, 0.79±0.29
NNdist     SMF1, 0.5±0.16
NNdist     SMF2, 0.65±0.26
NNdist     ULLF, 0.3±0.08

Fig. 14. Numerical data-based models performance in terms of probability density function (PDF) of the maximum absolute error MaxAE
indicating mean (<MaxAE>) and standard deviation (σ) values as <MaxAE>±σ. The models are tested over the experimental data
corresponding to the fiber-under-test (FUT) DFUT,test,updt.

VII. TRANSFER LEARNING DATA-BASED MODELS

It is well known in the ML community that a NN
model previously trained on a large and general enough
dataset can be customized via transfer learning (TL) for
a more specific task [29]. This is done by re-training
a base (pre-trained) model considering the dataset of a
new but related, task. In the ML context, this concept is
applied when the training data for the new specific task
is limited. Therefore, the re-training step requires fewer
cases, when compared to the number needed to train the
model from scratch.

Here, we apply TL to improve the performance of
NNnum. In other words, it means that NNnum, already
trained over a very general and numerically generated
RA data, can be fine-tuned for specific and experimental
fibers by means of TL. In this case, we consider the
experimental data of each fiber case (updated in Sec-
tion VI-A), i.e., DOF,updt. The re-training consists in
using the random experimental data to update just the
output layer weights of NNnum (highlighted in orange
in Fig. 12), using its current values as an initial condition.
The hidden layers’ weights are kept constant and are
responsible for keeping the knowledge already learned
from the general numerical data.

As done for the experimental fiber-specific cases, we
build six models, each one corresponding to an optical
fiber case OF used for the re-training. These models
are referred to as NNTL,OF and are also trained by
backpropagation in Tensorflow (epochs = 500, batch size
= 32). Recall that each DOF,updt has 1500 samples, of
which we use a random subset for re-training. Here, we
also reserve 100 samples for hyperparameter optimiza-
tion.

Since the idea of TL is to use as few training samples
as possible, we start by evaluating how many samples we
need to re-train NNnum. Fig. 15 shows how <MaxAE>
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Fig. 15. Transfer learning convergence analysis when re-training the
NNnum with different TL training sizes in terms of <MaxAE>, i.e.,
the maximum absolute error MaxAE averaged over all the cases in the
corresponding DOF,test,updt dataset for each OF .

changes with the training size for the NNTL,OF models.
In this case, <MaxAE> is calculated using equation (3)
over K = 100 cases reserved for hyperparameter opti-
mization. These results show that all models converge for
200 random samples in the training dataset. This value
corresponds to only 14.3% of the samples used to train
the fiber-specific models in Section V-A.

An hyperparameter optimization is applied to find
the best optimization algorithm (opt) and learning rate
(LR). It results in the values presented in Table VIII
for TL training sizes of 50 and 200. The activation
function (fact) and number of hidden layers (NHN ) are
the same as for the NNnum (Table VII), as the network
architecture is kept fixed in the TL.

Fig. 16 shows the performance the NNTL,OF models
over DOF,test,updt when considering just 50 samples
in the re-training dataset. This corresponds to less than

12



0.0 0.5 1.0 1.5 2.0
MaxAE [dB]

0

2

4

6

8

10

12
PD

F
Model FUT

General models (TL)

NNTL, HNLF   HNLF, 0.36±0.14
NNTL, DCF    DCF, 0.25±0.11
NNTL, IDF     IDF, 0.42±0.18
NNTL, SMF1   SMF1, 0.23±0.1
NNTL, SMF2   SMF2, 0.29±0.13
NNTL, ULLF   ULLF, 0.12±0.06

Fig. 16. TL data-based models performance in terms of probabil-
ity density function (PDF) of the maximum absolute error MaxAE
indicating mean (<MaxAE>) and standard deviation (σ) values as
<MaxAE>±σ over the test dataset DFUT,test,updt. In this case,
FUT the fiber case used to re-train NNnum with just 50 samples.

3.6% of the samples used to train the fiber-specific mod-
els and already outperforms NNnum accuracy shown in
Fig. 14. These results show how just a few cases of the
new fiber can be useful to fine-tune NNnum. Moreover,
it also shows how NNnum can provide valuable back-
ground knowledge to have an accurate general model for
a specific fiber.

Therefore, the proposed general model considering TL
can be applied to a totally new optical fiber. For that, we
have to perform the following steps, given that the base
model NNnum is already trained. 1. measure 50 random
experimental data as described in Section IV (∼17
minutes); 2. use 20 of these data for the simple procedure
described in Section VI-A to extract gpeakR and lumped
pump losses lP1−4 (<30 minutes); 3. perform a quick
measure for the fiber attenuation coefficients (αs and

TABLE VIII
Neural network parameters for the TL data-based models

TL training size −→ 50 200
Hyperparameter −→ opt LR opt LR

NNTL,HNLF adagrad1 10−1 adamax2 10−2

NNTL,DCF adagrad1 10−1 adam4 10−2

NNTL,IDF adamax2 10−1 adadelta5 10−2

NNTL,SMF1 ftrl3 10−2 nadam6 10−2

NNTL,SMF2 adagrad1 10−1 ftrl3 10−2

NNTL,ULLF adamax2 10−2 adamax2 10−2

1. Adagrad: adaptive gradient algorithm,
2. Adamax: adaptive moment estimation (Adam) variant based on the
infinity norm,
3. ftrl: follow the regularized leader,
4. Adam: adaptive moment estimation,
5. Adadelta: adaptive gradient algorithm (Adagrad) extension, LR
adaptation based on a moving window of gradient updates,
6. Nadam: Nesterov accelerated adaptive moment estimation (Adam).

αp) using an OTDR, as also described in Section VI-A
(<20 minutes); 4. use these 50 experimental data to re-
train the base model NNnum (∼2 minutes considering
hyperparameter optimization). This entire process takes
less ∼1 hour per new optical fiber. In contrast with the
8.5 hours to measure the experimental training data to
build the fiber-specific models.

VIII. SUMMARIZED RESULTS AND DISCUSSIONS

Fig. 17 summarizes the performance of all NN models
evaluated in this work. Fitting errors from Fig. 11 are
also plotted in Fig. 17 as a grey dashed line for the mean
a grey shadow for the standard deviation. This is done to
recall that the performance of the numerical data-based
models is limited by them. The specific experimental
data-based models have the best performance. The gen-
eral models considering the experimental data have the
worst performance for most cases. The accurate result for
the SMF cases is due to the fact that these fiber cases
share most of their parameters with other fibers used for
training the general model.

Even limited by the numerical-experimental fitting
errors, most cases have improvements in mean and
maximum MaxAE for the numerical data-based models.
General NN models for the lumped (NNlump) and
distributed (NNdist) RAs have the same performance
as a single general NN model NNnum. Comparing
experimental and numerical data-based general mod-
els, the latter is able to improve the <MaxAE> of
the fibers with the poorest generalization properties
by ∆<MaxAE>=-2.3 dB (HNLF) and ∆<MaxAE>=-
2.4 dB (DCF) (see Fig. 17(a) and (b), respectively). This
comes with the cost of degrading the performance of
the SMF1 and SMF2 cases by ∆<MaxAE>=+0.3 dB
(SMF1, Fig. 17(d)) and ∆<MaxAE>=+0.15 dB (SMF2,
Fig. 17(e)) due to numerical-experimental fitting errors
limitations. This is a small degradation when compared
to the HNLF and DCF improvements.

Finally, applying TL to the numerical data-based
model has significantly improved its performance,
achieving the same gain prediction accuracy as for the
fiber-specific models if we consider 200 experimental
cases for the re-training. In Fig. 17 we compare both,
50 and 200 experimental training sizes, corresponding
to 3.6% and 14.3% of the data considered for the fiber-
specific models training, respectively. This shows that
with just 3.6% of the data needed for an accurate fiber-
specific model, the re-trained general model outperforms
its previous accuracy. Moreover, only applying TL (or
the undesirable fiber–specific models) it is possible to
overcome the fitting errors between experimental and
numerical measurements.
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Fig. 17. Maximum absolute errors (MaxAE) bar plots for all models tested over different fiber cases: (a) HNLF, (b) DCF, (c) IDF, (d) SMF1, (e)
SMF2, and (f) ULLF. Mean (<MaxAE>) and standard deviation (σ) values are shown as <MaxAE>±σ. Fitting errors between experimental
and numerical measurements (Fig. 11) are plotted as a grey dashed lines for the mean and grey shadow for the standard deviation.

In this work, the proposed framework is applied
to the direct mapping f(X) = Y. But it could be
extended for the inverse mapping f−1(Y) = X as
well.Additionally, as inter-channel and inter-pump stim-
ulated Raman scattering effects are both modeled and
experimentally measured, the framework could directly
extend to ultra-wideband amplifiers as shown for fiber-
specific models in [8] and [35].

IX. CONCLUSION

In the first part of this paper, we summarized our
previous works on the neural network-based RA models.
We showed that very accurate Raman gain predictions
are achieved when applying fiber-specific models based
on experimental data. We also showed that neural net-
work models can generalize to different optical fibers.
This is done by incorporating the fiber parameters as
additional inputs to the neural network. These so-called
general models are able to predict the gain profile
of a new fiber not considered in the training stage
with a maximum prediction error as low as 0.22 dB
(averaged over 1500 testing samples). However, this is
only true when the parameters of the new fiber have
values within the parameters range considered during
training and have enough samples around them. Fiber
cases that do not fulfill this requirement have a maximum

prediction error of up to 2.81 dB (also averaged over
1500 testing samples). This could certainly be improved
by considering a wide range of optical fibers parameters
in the experimental data, but it would require several
experimental measurements to account for the broad
variety of optical fiber types commercially available.

In the second part, we proposed an upgrade of the
general models by generating the data numerically. This
numerical data covered a wide range of optical fiber
parameters uniformly distributed. General models based
purely on numerical data have better generalization ca-
pabilities when compared to the general models based on
experimental data, with improvements of up to 2.4 dB
in the averaged maximum prediction error (also over
1500 testing samples). We saw that the performance of
the numerical general models was limited by the errors
between experimental and numerical data. To reduce
these errors, we propose the use of transfer learning to
re-train the numerical general models considering just
a few experimental samples. After transfer learning, the
general models were able to provide very similar gain
prediction accuracy as to the fiber-specific models with
just 3.6% of the training data. Finally, we demonstrate
a complete procedure to fine-tune a general model for
a specific fiber case based on a few measurements that
take around 1 hour in total.
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