
21 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

RealTime Monitoring of Human and Process Performance Parameters in Collaborative Assembly Systems using
Multivariate Control Charts / Verna, Elisa; Puttero, Stefano; Genta, Gianfranco; Galetto, Maurizio. - In: JOURNAL OF
INTELLIGENT & ROBOTIC SYSTEMS. - ISSN 1573-0409. - ELETTRONICO. - 110:(2024), pp. 1-16. [10.1007/s10846-
024-02162-8]

Original

RealTime Monitoring of Human and Process Performance Parameters in Collaborative Assembly
Systems using Multivariate Control Charts

Publisher:

Published
DOI:10.1007/s10846-024-02162-8

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2992021 since: 2024-08-28T16:08:14Z

Springer



Vol.:(0123456789)

Journal of Intelligent & Robotic Systems         (2024) 110:126  
https://doi.org/10.1007/s10846-024-02162-8

REGULAR PAPER

Real‑Time Monitoring of Human and Process Performance Parameters 
in Collaborative Assembly Systems using Multivariate Control Charts

Elisa Verna1  · Stefano Puttero1 · Gianfranco Genta1 · Maurizio Galetto1

Received: 3 April 2023 / Accepted: 11 August 2024 
© The Author(s) 2024

Abstract
With the rise in customized product demands, the production of small batches with a wide variety of products is becoming 
more common. A high degree of flexibility is required from operators to manage changes in volumes and products, which 
has led to the use of Human-Robot Collaboration (HRC) systems for custom manufacturing. However, this variety intro-
duces complexity that affects production time, cost, and quality. To address this issue, multivariate control charts are used 
as diagnostic tools to evaluate the stability of several parameters related to both product/process and human well-being in 
HRC systems. These key parameters monitored include assembly time, quality control time, total defects, and operator stress, 
providing a more holistic view of system performance. Real-time monitoring of process performance along with human-
related factors, which is rarely considered in statistical process control, provides comprehensive stability control over all 
customized product variants produced in the HRC system. The proposed approach includes defining the parameters to be 
monitored, constructing control charts, collecting data after product variant assembly, and verifying that the set of param-
eters is under control via control charts. This increases the system's responsiveness to both process inefficiencies and human 
well-being. The procedure can be automated by embedding control chart routines in the software of the HRC system or its 
digital twin, without adding additional tasks to the operator's workload. Its practicality and effectiveness are evidenced in 
custom electronic board assembly, highlighting its role in optimizing HRC system performance.

Keywords Statistical process control · Mass customisation · Human-robot collaboration · Industry 5.0

1 Introduction

In today’s manufacturing environment, the number of prod-
uct variants is constantly increasing due to the market-driven 
growth of customisation, which involves the production of 
small batches with a wide variety of products [1–3]. This 
trend is particularly evident in industries like electronics and 
automotive, where customisation ranges from hardware con-
figurations to personalized features [4]. This trend towards 
mass customisation has also led to the development of new 
technologies, such as additive manufacturing and modular 
manufacturing. These technologies facilitate the cost-effec-
tive production of highly customised products [5, 6].

As a result, there has been a significant shift from mass 
production to the production of small batches, requiring high 
flexibility from operators. In mass customisation, the pair-
ing of humans with collaborative robots, i.e. cobots, in so-
called Human-Robot Collaboration (HRC) systems is prov-
ing effective [2, 7]. However, the complexity introduced by 
product variety impacts production time, cost, and quality 
[8]. Thus, managing this complexity in HRC systems used 
for customised production is critical [8].

Therefore, there is a need for effective monitoring of the 
multiple variables of the manufacturing process to ensure 
the stability of the production system and avoid critical 
situations and delays. To meet this need across various 
HRC applications, the paper proposes a flexible approach 
using Statistical Process Control (SPC) tools, particularly 
Multivariate Control Charts (MCCs). This method adapts 
to different contexts by incorporating a range of param-
eters specific to each application, including both process 
and human well-being metrics. In general, MCCs are used 
whenever simultaneous control of two or more quality 
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characteristics is required [9]. The proposed approach 
exploits MCCs as diagnostic tools in evaluating the sta-
bility of several variables related to each product vari-
ant assembly concerning both process (i.e., process total 
defects, assembly and quality control times), and human 
well-being (i.e., human stress response). Real-time data 
are directly used for the diagnosis. A key feature of the 
proposed approach is the capability to monitor process 
performance jointly with human-related factors, which 
are seldom considered in SPC methods. Thus, in contexts 
where human-robot collaboration is key, and human well-
being is as crucial as process performance, this approach 
is particularly suitable.

The approach proposed includes: (i) defining the param-
eters to be monitored; (ii) constructing control charts; (iii) 
collecting data after product variant assembly; (iv) verifying 
through control charts that the set of parameters is under 
control. If not, the causes of out-of-control data are identi-
fied in real-time and corrective action is taken to remove 
them and prevent their recurrence. The procedure can be 
automated by embedding MCCs routines in the software of 
the HRC system or its digital twin [10].

Thus, the proposed method aims to provide real-time 
feedback on system performance, enabling immediate iden-
tification of out-of-control situations and prompt correc-
tive action, thus contributing significantly to achieving the 
goals of human-centred manufacturing in the Industry 5.0 
paradigm.

This method is applied in this study to an HRC system 
for custom electronic board assembly, showcasing its adapt-
ability. However, it can be extended to diverse contexts in 
HRC systems, as it effectively monitors both process and 
physiological parameters related to human operators. This 
flexible method thus contributes significantly to the goals of 
human-cantered manufacturing in the Industry 5.0 paradigm.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a thorough review of the relevant literature on 
quality measures and tools in HRC systems. Section 3 details 
the methods used in this study, including the assessment of 
product variant complexity and human stress response, the 
proposed multivariate control chart approach, and the per-
formance evaluation of control charts and the management 
of system alerts. Section 4 describes the application of the 
proposed approach in the HRC assembly of custom elec-
tronic boards, including the monitoring of process and prod-
uct defects, assembly and quality control time, and human 
stress levels. Section 5 presents and discusses the results 
obtained from the implementation of the proposed approach 
highlighting its robustness in detecting out-of-control situa-
tions and achieving the goals of human-centred, sustainable 
and resilient manufacturing in the Industry 5.0 paradigm. 
Finally, Section 6 draws conclusions and discusses the impli-
cations of the proposed approach for quality control in HRC 

systems are also discussed, as well as its potential for exten-
sion to other process and human-related parameters.

2  Literature Review

Human-Robot Collaboration (HRC) systems have gained 
significant attention in recent years due to their potential 
to increase productivity, flexibility, and safety in manufac-
turing processes [11, 12]. With the growing trend of mass 
customization, HRC systems offer the ability to combine 
human skills with the precision and accuracy of collabora-
tive robots, resulting in more efficient and effective produc-
tion systems [13, 14].

To ensure optimal performance of these systems, it is 
important to monitor a variety of parameters, including 
both process and human factors. According to the scientific 
literature, performance measures in HRC can be catego-
rized into four key areas: time behavior, process measures, 
physiological measures, and human-robot physical meas-
ures [15]. Parameters in these categories, such as response 
times, task completion, workspace design, safety, product 
quality, and the physiological state of human operators, are 
vital for a comprehensive understanding of HRC systems. 
The inclusion of these diverse measures facilitates a moni-
toring approach that not only focuses on the performance-
centered aspects of HRC systems but also emphasizes the 
human-centered elements, reflecting the dual nature of these 
applications [16–18].

Building on this understanding, the importance of moni-
toring human performance parameters in HRC systems gains 
additional emphasis. Recent years have seen a growing focus 
on the impact of human factors on both performance and 
operator well-being within these systems. Studies explor-
ing the design of HRC tasks have delved into the physical 
and cognitive aspects impacting human operators [15, 19], 
as well as the potential hazards associated with high-load 
robots [20]. Objective physiological measures, such as heart 
rate variability (HRV) and electrodermal activity (EDA), 
are increasingly used to assess how robot movements affect 
the operator's state during HRC tasks [21–24]. For instance, 
Kulić and Croft [25] showed that proximity and speed of 
the robot can significantly affect mental stress, while Arai 
et al. [26] demonstrated the impact of robot movements on 
EDA. Moreover, emotional and cognitive aspects have been 
found to be critical for HRC efficiency [27]. Thus, monitor-
ing human parameters such as HRV and EDA is not just 
vital for the system's performance but is also imperative for 
ensuring the well-being of operators in HRC systems.

Previous studies have explored the use of Statistical Pro-
cess Control (SPC) tools, such as control charts, to moni-
tor various aspects of manufacturing processes [28, 29]. 
However, traditional SPC methods often focus solely on 
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process-related variables, neglecting the importance of 
human-related factors in HRC systems [15, 30]. Multivari-
ate Control Charts (MCCs) are a more sophisticated form of 
SPC that can be used to monitor multiple variables simulta-
neously and detect any out-of-control situations [9, 31, 32]. 
MCCs have been applied to various fields, including manu-
facturing, healthcare, and finance, among others [33–38]. 
However, the use of MCCs in HRC systems to monitor both 
process and human performance parameters is relatively new 
and requires further investigation.

In recent years, several studies have proposed the use of 
MCCs for monitoring multiple variables in manufacturing 
processes. For example, Ahsan et al. [34] proposed a method 
for monitoring variable and attribute quality characteristics 
through MCCs based on Principal Component Analysis 
(PCA) Mix. An example of application was the monitoring 
of a one-year basis machine, and the process failure infor-
mation was recorded in terms of 16 variable characteristics 
and three attribute characteristics. Similarly, Rodrigues et al. 
[33] proposed the use of MCCs to monitor the dimensional 
stability of a metal-mechanical process by considering 
multiple process variables. Harris et al. [38] used MCCs to 
monitor metal cutting processes, specifically titanium alloy 
milling, i.e. a machining process used in the manufacture of 
aircraft landing gear. However, to the best of our knowledge, 
no previous studies have investigated the use of MCCs for 
monitoring both process and human performance parameters 
in HRC systems.

In this study, a novel diagnostic method based on MCCs 
is proposed for real-time monitoring of HRC systems. This 
method aims to fill the gap in the literature by developing 
a diagnostic tool that considers both process and human 
factors. By monitoring both process performance (i.e., pro-
cess total defects, assembly and quality control times) and 
human well-being parameters (i.e., human stress response), 
the proposed approach has the potential to contribute to the 
advancement of HRC systems to achieve human-centred, 
sustainable and resilient manufacturing in the Industry 5.0 
paradigm.

3  Methods

This section delineates the proposed methodology for moni-
toring various parameters during the assembly of product 
variants in HRC systems, focusing on those with different 
complexity levels. In Section 3.1, a method to assess product 
variant complexity is presented. During the assembly of each 
product, real-time data on human and process performance 
parameters, including assembly and quality control times, 
total defects, and human stress response, are collected for 
monitoring. The calculation of the stress indicator is detailed 
in Section 3.2, while other parameters are directly acquired 

during the process observation. Monitoring of these param-
eters via Multivariate Control Charts (MCCs) is discussed 
in Section 3.3. Finally, Section 3.4 introduces a performance 
assessment of the proposed control charts and discusses its 
implication for real-time management of system alerts.

It should be noted that, in the proposed approach utiliz-
ing MCCs, four parameters are monitored concurrently, i.e. 
assembly time, quality control time, total defects, and opera-
tor stress, without assigning any weight. However, if needed, 
weights could be integrated into the MCC methodology to 
prioritize certain parameters over others. Various weight-
ing schemes may be used, such as the use of eigenvectors 
in principal component analysis or assigning different cost 
factors to different types of parameters [39, 40]. Such adap-
tations could help in situations where trade-offs between 
process performance and operator well-being become nec-
essary, enabling a quantifiable balance tailored to specific 
operational goals or industry standards.

3.1  Product Variants Complexity

Human and process performance parameters to be moni-
tored during the production process are highly affected by 
the kind of product to be manufactured and, in particular, 
its complexity, as demonstrated in previous studies [41]. In 
the present paper, each product is characterised by a certain 
level of complexity using the structural complexity model 
[42]. Based solely on structural aspects of the product, this 
model is easily applicable in the early stages of product 
design, when subjective data perceived by operators are not 
readily available nor robust [41]. The model, developed for 
manual assembly, can be extended to HRC assembly con-
texts, where the robot primarily performs organizational and 
logistical tasks such as selecting parts to be assembled in a 
predetermined sequence and feeding them to a human opera-
tor, in charge of manual assembly operations. In the model, 
structural complexity C is defined as [42]:

where C1 , C2 and C3 represent parts, connections, and topo-
logical complexity, respectively.

C1 is the sum of parts complexities, denoting the techni-
cal difficulty associated with managing and interacting with 
the product parts in isolated conditions. Among the various 
methods used in the literature, parts complexity can be esti-
mated with the Lucas Method, i.e. a Design For Assembly 
(DFA) approach, to derive a normalised handling index [43]. 
This index is calculated based on the physical factors of size, 
weight, handling difficulties and orientation (alpha and beta 
symmetry).

C2 , i.e., the complexity of connections, is the sum of the 
complexities of pairwise connections existing in the product 

(1)C = C1 + C2 ⋅ C3
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structure. Connections complexities can be estimated by the 
normalised fitting index from the Lucas Method [43]. The 
fitting index predicts the difficulty of an assembly fitting by 
penalising the physical attributes, including part placing, 
part fastening (e.g., self-securing, screwing, riveting, bend-
ing, mechanical deformation, soldering or welding, adhe-
sive), fitting direction, visibility, alignment, and resistance 
to insertion, that affect the fitting difficulty.

C3 , the topological complexity related to the architectural 
pattern of the assembled product, is defined as the average 
of singular values of the adjacency matrix of the product; it 
increases as the system topology shifts from centralised to 
more distributed architectures [42].

3.2  Human Stress Response Assessment

Numerous studies have focused on evaluating human well-
being in work environments, often using physiological 
measures to objectively assess workers' internal states, such 
as heart rate variability, blood pressure, and electrodermal 
activity [44–47]. Understanding the mental and physical 
state of operators during HRC is vital for supporting their 
well-being. Besides feedback from self-assessment tools, 
physiological measures provide real-time information about 
the operator’s state, including unconscious reactions [46, 
48]. Concepts like mental workload, stress, demand, strain, 
and fatigue are key to understanding cognitive and psycho-
physical aspects in HRC. These aspects have traditionally 
been assessed through tools like NASA-TLX (Task Load 
Index) and Subjective Workload Assessment Technique 
(SWAT), but such tools may suffer from retrospective bias 
and are not suited for continuous monitoring [49–51]. Thus, 
physiological measures, increasingly used for comprehend-
ing the operator’s state, offer a valuable alternative [45, 52]. 
In this study, ElectroDermal Activity (EDA) data is used 
as a stress indicator, evaluating average Skin Conductance 
Response (SCR) during HRC assembly tasks [44], as shown 
in Fig. 1.

To account for variations in human behavior and indi-
vidual operator differences, a calibration phase was imple-
mented for each operator before the assembly tasks. This 
phase involved baseline measurements under resting con-
ditions to establish a personalized reference for each indi-
vidual's stress response.

EDA data was processed using the web-based tool EDA 
Explorer [54]. Physiological data were first analysed to 
detect and remove noise and artefacts by classification algo-
rithms. Then, Continuous Decomposition Analysis (CDA) 
[55] was performed to decompose the EDA signal into con-
tinuous tonic and phasic activity signals. Tonic activity, 
referring to long-term fluctuations in EDA not specifically 
elicited by external stimuli, is best characterized by changes 
in Skin Conductance Level (SCL). Phasic activity refers 

instead to short-term fluctuations in EDA elicited by a usu-
ally identified and externally presented stimulus. Through 
the analysis of the phasic activity signal, Skin Conductance 
Responses (SCRs), i.e., amplitude changes from the SCL 
to a peak of the response (see Fig. 1), can be identified [44, 
56]. In the proposed methodology, the average value of SCR 
peak amplitudes used as a stress indicator of each operator 
in assembling each product variant due to its common use 
[44, 56]. This metric was selected due to its sensitivity in 
reflecting acute stress responses in real-time, aligning with 
the objectives of the study.

To account for individual physiological variability, this 
study normalizes the peak amplitude values in the stress 
indicator calculation [56]. Normalization adjusts for each 
operator's unique stress response, ensuring that the stress 
indicators are comparable across individuals. As a result, 
the stress indicator SI obtained for each operator can be 
expressed as follows:

where ak is the amplitude of the k-th SCR peak, NP is the 
total number of SCR peaks during the assembly of a certain 
product variant, amin and amax are, respectively, the minimum 
and maximum amplitude of SCR peaks obtained directly 
from the EDA signal during the assembly by each operator.

3.3  Multivariate Control Charts

The issue of monitoring human and process performance 
parameters can be addressed as a process monitoring prob-
lem in the SPC framework. For each individual variable, 
univariate control charts can be created [31], with the draw-
back however of not identifying out-of-control data if the 

(2)SI =

⎡
⎢⎢⎢⎢⎣

�∑NP
k=1

ak

NP

�
− amin

amax − amin

⎤
⎥⎥⎥⎥⎦
⋅ 100

Fig. 1  Example of EDA signal during HRC assembly, adapted from 
[53]
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variables are correlated, as shown in Fig. 2. Thus, MCCs are 
to be preferred over univariate control charts for simultane-
ously monitoring process location and process variability of 
selected parameters.

Univariate control of mean and scatter is typically per-
formed using X-bar and S control charts [31]. The X-bar 
chart monitors the process mean or average, while the S 
chart tracks the process variability or standard deviation. 
Their multivariate extensions are, respectively, Hotelling T2 
and Generalized Variance control charts [57], which are used 
for similar purposes in contexts involving multiple variables. 
These MCCs work well when the number of system vari-
ables is not high (10 or less) and, although being based on 
the assumption of normality of variable distributions, are 
also robust in the presence of significant deviations from 
this assumption [31]. However, if severe departures from 
normality occur and data are very skewed, a data transforma-
tion can be adopted to correct the nonnormal condition, e.g. 
a Box-Cox transformation [58].

Typically, two steps are included in the implementation 
of control charts. In Phase I, charts are used to determine 
if the process is in control, and the data gathered is utilised 
to estimate the control limits. In Phase II, charts are used 
to determine if the process remains in control when more 
data are drawn using the estimated control limits obtained 
in Phase I [31].

Monitoring of human and process performance param-
eters refers to individual observations, with one value only 
for each parameter being obtained for each custom product. 
Indeed, products are typically not produced in batches, but 
are often one-of-a-kind products manufactured in variable 
mix based on customer demand. Thus, specific values of the 
control limits for individual observations should be consid-
ered for the adopted charts. In detail, in Phase I, the Hotel-
ling T2 statistic can be approximated using a Beta distribu-
tion with parameters p

2
 and f−p−1

2
 [57]:

with

where p is the number of system variables and m is the 
number of samples used for chart construction in Phase 
I. Therefore, the lower control limit (LCL) and the upper 
control limit (UCL) are the values of T2 statistics in Eq. (3) 
corresponding to a cumulative probability of 0.135% and 
99.865% (corresponding to mean value -3 and + 3 stand-
ard deviations for a normal distribution); however, LCL is 
typically set to zero since any shift in the mean results in an 
increase in T2.

The use of the Beta distribution in Eq. (3) is valid only in 
Phase I. In Phase II, the Hotelling T2 statistics can be approxi-
mated by a Fisher distribution with parameters p and m-p [57]:

Therefore, UCL is now the value of T2 statistics in Eq. (5) 
corresponding to a cumulative probability of 99.865% and 
LCL is set to zero.

In contrast, when using the Generalized Variance chart 
with individual observations, conventional formulas are not 
applicable and an ad-hoc procedure must be employed [31, 
59]. All values should first be standardized using Sullivan and 
Woodall's special covariance matrix [59]:

where ei are the differences between successive observations:

(3)T2 ∼
(m − 1)

2

m
⋅ Beta

(
p

2
,
f − p − 1

2

)

(4)f =
2 ⋅ (m − 1)

2

3 ⋅ m − 4

(5)T2 ∼
p ⋅ (m + 1) ⋅ (m − 1)

m2 − m ⋅ p
⋅ F(p,m − p)

(6)S∗ =
1

2 ⋅ (m − 1)

m−1∑
i=1

e2
i

Fig. 2  Marginal plot for two 
variables X1 and X2 showing 
out-of-controls data detected 
only by a multivariate approach
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Then, an S chart can be used, in which each subgroup 
corresponds to each replication [57]. Therefore, the General 
Variance control limits are:

where sm is the average of the standard deviations of each 
subgroup and c4 is the bias correction of the standard devi-
ation estimate [31]. A central line corresponding to sm is 
typically shown in the Generalized Variance chart. For the 
Generalized Variance charts, the calculation of control limits 
in Phase I and Phase II is the same.

3.4  Performance Evaluation of Control Charts 
and Management of System Alerts

A critical aspect in the assessment of control charts, such as 
the Hotelling T2 and Generalized Variance charts, is their 
statistical performance, which can be effectively measured 
through the Average Run Length (ARL) [31]. The ARL is a 
key metric that represents the expected number of samples 
observed before a control chart detects a specific shift in the 
process being monitored. This concept is pivotal in under-
standing the sensitivity and responsiveness of control charts 
to changes in process parameters.

For the Hotelling T2 control chart, the ARL, denoted as 
ARLd, is particularly important when there is a shift in the 
mean vector of the process parameters. This shift is quan-
tified in terms of the Mahalanobis distance (d), which is 
a measure of how far the mean vector shifts in a multi-
dimensional parameter space [60]. It is important to note 
that the covariance matrix is assumed constant during this 
shift. In practical terms, the ARLd provides a measure of 
how many samples, on average, the T2 chart would examine 
before signaling a change of a specific magnitude [36]. It is 
computed by considering the probability that the T2 statistic 
(see Section 3.3) exceeds the Upper Control Limit (UCL) 
when the mean vector has shifted.

Similarly, for the Generalized Variance chart, the per-
formance can be assessed by considering variations in the 
distribution of each subgroup standard deviation [36]. This 
shift is quantified in terms of the distortion of amplitude q 
of the standard deviation of each subgroup (see Section 3.3). 
The resulting ARL, termed ARLq, is calculated. The ARLq 
thus offers insights into the Generaized Variance chart's abil-
ity to detect shifts in process variability as distortions in the 
standard deviation of subgroup distributions. The calculation 
involves approximating the distorted standard deviation dis-
tribution as normal, especially for a large sample size m [36].

(7)ei = xi+1 − xi i = 1,… ,m − 1

(8)
LCL = sm − 3 ⋅

sm

c4
⋅

√
1 − c2

4
UCL = sm + 3 ⋅

sm

c4
⋅

√
1 − c2

4

Both ARLd and ARLq are crucial in optimizing the design 
and implementation of control charts. They enable practi-
tioners to understand and predict how quickly a chart will 
respond to various types of process changes, thereby aiding 
in making informed decisions about process monitoring and 
control. Through detailed analysis of these metrics, control 
charts can be finely tuned to balance the detection of true 
process shifts against minimizing false alarms, ensuring both 
efficacy and efficiency in process monitoring systems.

In the context of real-time monitoring, the calculation 
of ARL plays a pivotal role in managing system alerts, par-
ticularly in addressing the concerns of false positives or 
negatives. A control chart with a low ARL is highly sensi-
tive and may trigger alerts frequently, which could lead to 
an increased number of false positives. Conversely, a chart 
with a high ARL might be less prone to false alarms but 
could delay the detection of actual process shifts, potentially 
resulting in false negatives.

By calibrating control charts to have an optimal ARL, one 
can effectively manage the trade-off between sensitivity and 
specificity of alerts. A well-tuned ARL ensures that system 
alerts are neither too conservative (resulting in missed detec-
tions) nor too aggressive (leading to frequent false alarms). 
This calibration is particularly crucial in environments 
where the cost of false alerts, either in terms of operational 
disruption or resource allocation, is significant.

A real-time process control system might include a vari-
ety of methodologies to manage alerts. These could encom-
pass steps such as verifying the sequence of data points 
post-alert to distinguish genuine signals from noise, and 
conducting contextual analyses to ascertain the underlying 
causes of observed shifts. Further, such systems are often 
designed to dynamically adjust detection algorithm sensitiv-
ity, ensuring that the precision of the control system is main-
tained. This multifaceted and adaptive approach is crucial in 
contemporary manufacturing and production environments, 
which are characterized by rapid changes and the necessity 
for a control system that is as responsive as it is vigilant.

The overall methodology adopted by the approach pro-
posed in this paper is summarised in Fig. 3.

4  HRC Assembly of Custom Electronic 
Boards

The procedure described above was implemented and tested 
on an HRC system for the assembly of six customized elec-
tronic boards (ID 1—ID 6) using the ARDUINO® UNO 
Starter Kit (see Fig. 4(a)). The kit includes both the physi-
cal components for assembling the electronic boards (listed 
in Table 1) and a software package for programming the 
microcontrollers. Table 1 reports the type and number of 
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components and the complexity factors, calculated as per 
Section 3.1, for each electronic board. In detail,

C1 , the handling complexity index, is derived from the 
Lucas method [43]. It involves aggregating scores for each 
component of the product, with scores assigned based on 
a range of factors like size, weight, handling difficulty, 
and orientation (including alpha and beta symmetry). 
Similarly, C2 is obtained through the Lucas method [43] 
by summing up the difficulty values for each connection 
required to assemble the product. These difficulty values 

are tabular scores assigned based on attributes such as 
component positioning and fastening, assembly direction, 
visibility, alignment, and resistance to insertion. Finally, 
C3 is determined from the product's adjacency matrix, spe-
cifically as the mean value of the matrix's singular values 
[42]. For a comprehensive understanding of these com-
plexity factors and the methodology used for their quan-
tification, including the tables for score assignment, refer 
to the details provided in the specific references [43, 61].

Fig. 3  Schematic of the proposed methodology

Fig. 4  (a) Example of assem-
bled electronic board (ID 4) and 
(b) HRC assembly workstation
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Six operators (five in Phase I and one in Phase II) with 
experience in electromechanics and electronic circuitry, as 
well as automation and engineering skills, were involved in the 
experimental campaign. They were supported by a single-arm 
collaborative robot UR3e (Universal Robots™) equipped with 
an OnRobot RG6 flexible two-finger robot gripper (OnRo-
bot™), as shown in Fig. 4(b). The cobot and gripper param-
eters used for the HRC assembly are reported in Table 2.

The cobot was used to assist operators during assembly 
operations with organizational and logistical tasks, by select-
ing and passing the correct component according to a pre-
defined sequence. The human operator activated the cobot 
by pressing a button located near the workstation whenever 
it needed parts for assembly. After assembly, each electronic 
board was inspected by a trained quality controller to verify 
its operation through the software and identify any remaining 
defects. Operators assembled all six products in random order. 
For each product, the following human and process perfor-
mance parameters were collected: (1) operators' physiological 
data using the Empatica E4 wristband (Empatica S.r.l., Milan, 
Italy), a non-invasive biosensor that collects EDA data at 
4 Hz; (2) the number of total defects, consisting of in-process 
defects (i.e., defects occurring during the assembly process 
due to both operator and cobot) and offline defects (i.e., defects 
detected during the offline quality control); (3) assembly time 

(expressed in minutes); (4) quality control time (expressed in 
minutes). Defects were also classified by type, such as incor-
rect component, misplaced component, component not picked 
by the cobot, component slipped by the cobot, defective com-
ponent, and improperly inserted component.

5  Results and Discussion

5.1  Multivariate Control Charts Results

Multivariate control charts were exploited to monitor the 
four human and process performance parameters related to 
each product variant assembly described in Section 4. The 
p = 4 system variables is an adequate number for the applica-
tion of Hotelling T2 and Generalized Variance control chart 
[31].

In Phase I, a total of thirty products was assembled by five 
operators in random order, following the experimental sys-
tem configuration as per Section 4. The human and process 
performance parameters were collected for each product and 
are reported in Table 3.

All the considered variables resulted to be sig-
nificantly correlated with product assembly complex-
ity (p-value < 0.005). In detail, Pearson correlation 

Table 1  Characteristics of six 
electronic boards assembled (ID 
1—ID 6)

ID 1 ID 2 ID 3 ID 4 ID 5 ID 6

Breadboard 1 1 1 1 1 1
Long wires - 1 2 8 9 13
Short wires 1 3 5 3 6 4
Resistors 1 1 4 6 2 2
Pushbuttons - 2 4 - 2 1
LED 1 1 - 1 - -
Phototransistor - - - 3 - -
Potentiometer - - - - 1 1
Piezo - - 1 - - -
LCD - - - - - 1
Battery snap - - - - 1 -
DC Motor - - - - 1 -
N° of parts 4 9 17 22 24 23
C1 1.64 3.12 5.35 6.59 7.49 6.97
C2 2.90 5.89 10.03 13.39 15.83 18.24
C3 0.75 0.57 0.45 0.40 0.37 0.39
C 3.80 6.50 9.83 11.95 13.37 14.12

Table 2  Cobot and gripper 
parameters used in the HRC 
assembly

Tool Joint speed [°/s] Joint acc. [°/s2] Linear speed 
[mm/s]

Linear acc. 
[mm/s2]

Distance 
[mm]

Force [N]

Cobot 200 200 200 200 - -
Gripper - - - - 16 80
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coefficients (ρ) were calculated, which measure the lin-
ear correlation between two variables. This coefficient 
ranges from -1 to + 1, where + 1 indicates a perfect posi-
tive linear correlation, 0 indicates no linear correlation, 
and -1 indicates a perfect negative linear correlation. 
The obtained values were 0.828 for stress, 0.807 for total 
defects, 0.910 for assembly time and 0.481 for quality 
control time. Figure 5 illustrates in a matrix plot the rela-
tionships between the considered variables with Pearson 

correlation coefficients (ρ) and related p-values, showing 
strong correlation.

Obtained graphs suggest that product variant complex-
ity is the main driver affecting the relationships among the 
variables.

After outlier management, the normality of variables 
distribution was checked by the Shapiro-Wilk test [31], 
resulting in the non-rejection of the normality hypoth-
esis with a 95% confidence level. In this case study, since 

Table 3  Experimental data on 
human and process performance 
parameters

Sample no Phase Product Assembly time 
[min]

Quality control 
time [min]

Total defects Stress

1 I ID 4 12.12 2.08 3 8.97
2 I ID 6 14.17 5.18 7 34.87
3 I ID 1 2.80 0.15 0 0.00
4 I ID 5 11.13 4.03 5 10.00
5 I ID 3 6.57 1.93 3 4.02
6 I ID 2 2.97 0.93 1 3.13
7 I ID 5 13.10 3.50 4 12.70
8 I ID 4 9.00 1.10 3 16.65
9 I ID 3 6.50 2.08 3 8.46
10 I ID 6 14.25 1.70 5 20.45
11 I ID 2 3.30 0.15 0 0.33
12 I ID 1 1.32 0.15 0 0.00
13 I ID 3 10.20 0.15 0 8.95
14 I ID 6 17.48 2.13 6 23.27
15 I ID 1 1.37 0.15 0 0.00
16 I ID 4 10.03 0.30 3 12.16
17 I ID 2 4.98 1.05 2 2.23
18 I ID 5 13.15 0.15 3 11.30
19 I ID 2 3.37 0.15 2 7.35
20 I ID 4 8.85 0.15 3 14.90
21 I ID 1 1.57 0.15 0 0.00
22 I ID 3 6.57 0.15 0 6.35
23 I ID 6 11.83 0.15 4 19.84
24 I ID 5 9.28 0.15 6 11.45
25 I ID 1 1.75 0.00 0 0.00
26 I ID 3 5.83 0.15 2 11.12
27 I ID 5 8.85 0.15 3 9.21
28 I ID 6 10.43 2.42 5 22.01
29 I ID 4 5.78 0.15 0 11.55
30 I ID 2 1.98 0.15 1 5.00
31 II ID 6 23.73 2.27 6 27.88
32 II ID 6 30.00 2.31 8 50.00
33 II ID 2 6.97 0.15 0 1.04
34 II ID 5 14.80 0.15 1 17.31
35 II ID 1 1.89 0.13 0 20.00
36 II ID 3 8.22 0.15 1 8.75
37 II ID 1 2.53 0.15 0 0.00
38 II ID 4 11.35 0.15 2 7.75
39 II ID 2 3.93 5.00 5 3.18
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the normality of the total defects distribution cannot be 
rejected at the 95% confidence level, the theoretical Pois-
son distribution can be approximated by a Gaussian distri-
bution [31]. However, when a multiattribute and multivari-
able process needs to be monitored and the multivariate 
normal distribution is not verified, some transformation 
methods can be used to estimate the transformed mean 
vector and covariance matrix and then design the control 
charts [62]. For example, Niaki and Abbasi [63, 64] pro-
posed a method for monitoring multiattribute processes 
based on transforming multiattribute data so that their 
marginal probability distributions have almost zero skew-
ness. Simulated data were used to find the power of the 
(proper) root transformation for each attribute. Then, the 
transformed covariance matrix was estimated and used to 
design Hotelling T2 control chart [63] and χ2 control chart 
[64], which assumed a multivariate normal distribution, 
making the proposed method an approximate rather than 
an exact procedure.

After normality tests, the data represented in Fig. 5 were 
used to create a historical dataset and design the control 
charts in Phase I (see Fig. 6). Hotelling T2 and General-
ized Variance values of Phase I are reported in Table 4, 
obtained by Eq. (3) and (6), respectively. The control limits 
of Hotelling T2 and Generalized Variance charts of Phase 
I represented in Fig. 6 were obtained from Eq. (3) and (8), 
respectively.

As shown in Fig. 6, no out-of-control data were detected 
in Phase I. Accordingly, the estimates of process mean 
vector and covariance matrix were used in Phase II to test 
whether the process remained in control under normal work-
ing conditions. In Phase II, the assembly of 9 additional 
custom electronic boards was performed by an additional 
operator in random order, and the related parameters were 
collected, as shown in Table 3. The values of Hotelling T2 
and Generalized Variance of Phase II are reported in Table 4, 
obtained by Eq. (5) and (6), respectively. The control limits 
of Hotelling T2 and Generalized Variance charts of Phase II 
represented in Fig. 6 were obtained from Eqs. (5) and (8), 
respectively. As shown in Fig. 6, in such a phase, two out-
of-control data were detected by Hotelling T2 chart and four 
points were detected by Generalized Variance chart.

In detail, to interpret out-of-control points signalled by 
Hotelling T2 chart of Fig. 6 and test the significance of vari-
ables contribution to the composite value of each point, 
the T2 statistic can be decomposed [65]. Accordingly, root 
causes can be promptly identified, as reported in Table 5, 
and assignable causes of variations can be removed.

In addition to the high variability detected for the sam-
ples n. 32 and n. 39, which were also identified as out-of-
control points by the Hotelling T2 chart, the Generalized 
Variance chart flagged samples n. 34 and n. 35 as critical. 
Specifically, sample n. 34 is signalled as out-of-control due 
to high assembly time and stress response values and low 

Fig. 5  Matrix plot of Phase I data with indication of Pearson correlation coefficients ρ and related p-values
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total defects, while sample n. 35 is signalled as out of control 
due to high stress response values.

5.2  Comparison with Univariate Control Charts

This section delves into the comparison between the out-
comes obtained from the MCC method proposed in this 
paper and those derived from univariate control charts. The 
aim is to highlight the differences in results due to the lack 
of consideration for the correlations between variables when 
employing univariate control charts.

For the analysis, univariate control charts were utilized 
for each variable as follows [31]:

• Assembly time, Quality control time and Stress: an I-MR 
(Individuals and Moving Range) chart was used, suitable 
for continuous data that are normally distributed when 
each sample consists of a single measurement.

• Total defects: a c-chart was used, appropriate for count-
ing defects when each sample is a single unit.

Table 6 encapsulates the findings from univariate control 
charts. In detail, Table 6 reports the type of control chart 
used for each variable, the calculated control limits, the 
out-of-control points identified in Phase II, and the specific 
control chart (Individual or Moving Range for the first three 
variables, and c-chart for the fourth variable) where the out-
liers were identified. The Upper Control Limit (UCL) and 
Lower Control Limit (LCL) for these charts were calculated 
using data from Phase I (see Table 3).

In contrast to the results from the Hotelling T2 chart and 
Generalized Variance chart discussed in Section 5.1, the 
univariate control charts identified out-of-control points at 
samples 31 and 38, indicating a deviation from the expected 
range for specific variables. However, these points do not 
align with the out-of-control samples (32 and 39) identified 
by the Hotelling T2 chart and samples (32, 34, 35, and 39) 
identified by the Generalized Variance chart.

The disparity in results between univariate and multivari-
ate approaches is notable. The univariate approach, while 
effective in signaling deviations in individual variables, 
fails to capture the complex interrelations and the collective 
behavior of the variables due to neglecting the correlations 
among them. This discrepancy highlights the enhanced sen-
sitivity of the MCC method, which can detect subtle shifts 
in the process that might be overlooked by univariate charts. 
In contrast, the MCC method, through the Hotelling T2 chart 
and Generalized Variance chart, offers a comprehensive 
analysis by considering the correlations and interdependen-
cies among variables. This is particularly crucial in complex 
manufacturing processes where multiple variables interact 
and influence each other.

The difference in the number of out-of-control points 
detected by the two methods also underscores this point. The 
MCC method, by accounting for the correlations between 
variables, is able to identify a broader set of potential issues, 
suggesting its suitability for complex process monitoring 
where understanding the interplay between variables is key. 
In contrast, the univariate method, while simpler and more 
straightforward, might be more suited for processes where 

Fig. 6  Hotelling T2 and Gener-
alized Variance charts for HRC 
assembly of custom electronic 
boards (Phase I calibration data 
and Phase II new data)
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variables operate more independently or where the primary 
concern is monitoring individual process metrics.

5.3  Performance Evaluation of the Control Charts

The performance of the Hotelling T2 control chart has been 
evaluated by calculating ARLd for Phase I through simulation 
for different values of Mahalanobis distance d [60]. It has 
been assumed that all parameters have a normal distribution 
and, given a specific value of d, all their averages vary by 
the same percentage W. The obtained results are shown in 
Table 7.

By applying the same procedure for Phase II, similar 
results are obtained.

Similarly, performance of the Generalized Variance 
chart has been evaluated through simulation by considering 
a distortion of amplitude q of the distribution of the stand-
ard deviation. By varying the value q, the results shown in 
Table 8 are obtained.

The results highlighted in Tables 7 and 8 demonstrate 
the robust statistical performance of the Hotelling T2 and 
Generalized Variance control charts, respectively, as deter-
mined through simulation processes. For both charts, there 
is a clear inverse correlation between the ARL metrics 
(ARLd for the T2 and ARLq for the Generalized Variance) 
and the respective distortion parameters (Mahalanobis dis-
tance d and amplitude q). These findings corroborate the 
expected behavior that as the extent of deviation or distor-
tion increases, the control charts' sensitivity to detecting 
shifts also rises, hence the observed decrease in ARL values. 
Such behavior emphasizes the charts' agility in signaling 
significant deviations, reinforcing their utility in continu-
ous process monitoring. The recalibrated values within these 
tables are indicative of a vigilant and adaptive monitoring 
system, tailored to maintain high operational quality while 
minimizing the likelihood of false detections.

6  Conclusions

Human-Robot Collaboration (HRC) systems are currently 
used in the production of custom products due to their 
inherent precision and accuracy in assisting and comple-
menting human skills. To ensure optimal system perfor-
mance, several process and human parameters must be 

Table 4  Hotelling T2 and Generalized Variance values in Phase I and 
Phase II

Sample no Phase Product Hotelling T2 General-
ized Vari-
ance

1 I ID 4 5.28 0.479
2 I ID 6 16.44 0.883
3 I ID 1 1.22 0.166
4 I ID 5 12.09 1.005
5 I ID 3 3.60 0.581
6 I ID 2 1.22 0.367
7 I ID 5 9.41 0.722
8 I ID 4 1.41 0.286
9 I ID 3 1.75 0.491
10 I ID 6 1.83 0.332
11 I ID 2 1.20 0.159
12 I ID 1 1.61 0.234
13 I ID 3 7.07 0.682
14 I ID 6 4.00 0.438
15 I ID 1 1.58 0.231
16 I ID 4 1.51 0.461
17 I ID 2 1.76 0.369
18 I ID 5 4.45 0.731
19 I ID 2 2.92 0.323
20 I ID 4 2.75 0.537
21 I ID 1 1.49 0.217
22 I ID 3 2.67 0.366
23 I ID 6 5.18 0.793
24 I ID 5 15.50 0.905
25 I ID 1 1.43 0.150
26 I ID 3 2.03 0.348
27 I ID 5 2.05 0.439
28 I ID 6 2.86 0.322
29 I ID 4 5.54 0.521
30 I ID 2 2.33 0.270
31 II ID 6 14.27 0.942
32 II ID 6 32.84 1.641
33 II ID 2 3.46 0.405
34 II ID 5 12.88 1.052
35 II ID 1 23.78 1.045
36 II ID 3 1.72 0.390
37 II ID 1 1.24 0.171
38 II ID 4 3.66 0.599
39 II ID 2 26.84 1.858

Table 5  Out-of-control data summary for Hotelling T2 chart (Phase II)

Sample Product variant Main root-cause variables (p-value) Out-of-control reason

32 ID 6 Stress (0.0105), Total defects (0.0279), Assem-
bly time (0.0296)

Defective product components detected in-process by operator

39 ID 2 Quality control time (0.0012), Stress (0.0151) Wrong/faulty components undetected by the operator during 
production process
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jointly monitored within the production system. In the 
production of a range of custom product variants, high 
correlations between system’s parameters are often found 
due to the varying levels of product assembly complexity. 
To address this, a novel diagnostic approach for detecting 
variations in process performance and human parameters 
in HRC is proposed, involving using multivariate con-
trol charts, i.e., Hotelling T2 for mean and Generalized 
Variance for variability, to jointly monitor HRC param-
eters. An innovative aspect of the proposed approach is 
the combined monitoring of process performance and 
human-related factors, which are rarely considered in 
statistical process control. By relying on real-time data 
collected during production, this method allows for quick 
and comprehensive stability control at both the product/
process and human levels. The identification of out-of-
control situations caters for the achievement of goals for 
human-centric, sustainable, and resilient manufacturing in 
the Industry 5.0 paradigm.

In addition, the proposed method can be easily integrated 
into HRC software or a digital twin for quality control with-
out requiring additional procedures, making it highly adapt-
able and scalable to different manufacturing settings. The 
robustness of the method has been demonstrated in HRC 
assembly of custom electronic boards, where defectiveness, 
assembly and quality control time, and human stress levels 
were monitored.

Furthermore, the proposed method has the potential to 
be extended to other parameters related to process per-
formance, such as costs and sustainability measures, as 
well as other human-related aspects, such as Heart Rate 
Variability (HRV) indicator [44]. This will enable manu-
facturers to monitor and optimize multiple aspects of their 
production processes, resulting in increased productivity, 
efficiency, and quality of the system, while also ensuring 
the well-being of operators. The flexibility of the proposed 
MCC-based diagnostic approach, with its ability to inte-
grate various types of data, makes it highly scalable and 
adaptable to larger production systems and diverse indus-
tries. Its modular design allows for the easy inclusion of 
additional parameters, supporting its application in varied 
manufacturing contexts beyond custom electronic board 
assembly.
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