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Abstract: The design and experimental verification of a deeply implanted conformal printed antenna
is presented. The hip implant acts as the ground plane for a coaxial-cable-fed trapezoidal radiator
designed to transmit biological signals collected within the body by proper biosensors. The arrange-
ment, consisting of a metallic (or equivalent) hip implant, bio-compatible gypsum-based dielectric,
and conformal radiator, was tested when the hosting 3D-printed plastic bone was immersed in
tissue-like liquid contained in a plastic bucket. The dimensions of the set-up are similar to a human
leg. Matching and radiation characteristics are presented in the industrial, scientific, and medical
(ISM) frequency band (2.4–2.5 GHz), showing the feasibility of the proposed arrangement.

Keywords: bio-electromagnetic; bio-telemetry; conformal antennas; implanted antenna; in-body
microstrip antenna

1. Introduction

Bio-telemetry is becoming ever more diffused in the modern medical world. It allows
for the remote monitoring of patients, improving their personal well-being, as monitoring
of their physiological signals can be carried out in the home environment and reduce
hospitalization time, hence cutting costs for the healthcare system. Measurements of
patients’ physiological signals can be performed by means of either wired or wireless
devices [1–3]. The results of the measurements of the signals in the form of current and/or
voltage are transmitted through the proper system and received by the appropriate control
devices [4,5] for re-transmission or elaboration.

The idea of implanting a sensing device with antennas and wireless functionality
into bio-tissues (e.g., vessels or bones) has been considered for over a decade. Different
forms of antennas folded into limited cylindrical/conical space have been thoroughly
investigated [6].

Recently, crucial developments have been achieved in this field; the latest of these
are based on the higher precision obtained due to the use of implantable medical devices
(IMDs). These sensor-equipped apparatuses can collect data closer to the area of interest;
therefore, a more precise description of the relevant physiological signal(s) can be taken.
A signal has to be sent outside the body; one of the first and most common designs is
based on low-frequency inductive links [7]. This method has been used for a long time, but
due to some significant limits such as low data rates, restricted range of communication,
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and increased sensitivity to inter-coil positioning [8], a new approach, known as radio-
frequency-linked IMDs, has been suggested as a solution to overcome these issues [9].

IMDs are quite common, and their use has contributed to a remarkable increase
in the quality of life, and consequently, an increase in human well-being. Nowadays,
these devices are widely used in various medical fields: monitoring body temperature,
cardioverter defibrillators [10], checking blood glucose [11], monitoring the pH level of
skin samples [12], cochlear [13] and retinal devices [14], wireless cardiac pacemakers [15],
and teeth-implantable devices [16]. Many other innovations are under different stages
of development.

Frequency bands dedicated to bio-telemetry IMDs include 402−405 MHz (ITU-R
Recommendation SA.1346.) [17,18], 868−868.6 MHz, 902.8−928 MHz, and 2.4−2.5 GHz.
For the investigations discussed in this paper, the last frequency range mentioned above
has been considered. It is known as an ISM frequency band [19].

The aim of the study was to describe a low-profile implanted antenna with a hip
implant as the ground plane. The proposed configuration’s main advantages are multifold.
The antenna is located on the implant; thus, no extra space with respect to the implant itself
is needed. In addition, it is meant to be inserted into the human body concurrently with
the implant, so no extra surgery is necessary. The antenna is thought to transmit collected
bio-signals nearby to the implant, a necessary and important aspect during rehabilitation
after the surgery. Biosensors such as pH, temperature, humidity, and Ca-ion concentration
can be located near the wounded tissue and linked to an electronic device. This latter
mechanism (i) controls the sensors that collect data, (ii) refines these inputs, and (iii) sends
them to the antenna. The presence of sensors close to the tissues of interest leads to the
real-time detection of aspects such as implant rejection, infections, and gum recession. The
circuitry can be located inside the metallic implant, which also acts as a shield.

Bio-compatibility, miniaturization, and patient safety are the most challenging aspects
when designing IMDs. Bio-compatibility refers to both dielectrics and conductors. Though
the considered metal is almost transparent to the numerical design, the limitations of
available dielectrics are more critical. The relative dielectric constant and losses must be
considered to tune the resonant frequency of the antenna within the body. The considered
technology determines the porosity, possible thickness, and other medical characteristics,
e.g., capability to connect to bone (ossification) [20].

The importance of bio-compatible materials used for implantable antennas has ab-
sorbed scientists’ attention. The main purpose is to make sure that the implantable antennas
are perfectly covered by these materials to restrain the biological tissue exposed to the
dielectric material of the antennas. The main problem arises because of the conductiv-
ity of biological tissue, resulting in causing short circuits with the implantable antenna.
This is hazardous and may damage the human tissue, generate infections, and render the
antennas useless.

There are two main methods to avoid the aforementioned problems. The first is the use
of implantable devices with bio-compatible substrates. Ti-based alloys are largely employed
for medical implants in orthopedic applications, thanks to their brilliant bio-compatibility
and osseointegration capacity, combined with good mechanical properties. Recent research
has focused on the development of Ti-based alloys containing a high level of beta phase,
in order to lower the Young’s modulus of the alloy and to arrive at a Young’s modulus
that is close to that of human cortical bone (E = 15–30 GPa), avoiding a stress-shielding
effect. In this context, some of the authors of the present paper carried out investiga-
tions in order to develop a beta phase containing quaternary Ti-based alloys, such as
Ti-10Nb-10Zr-5Ta, Ti-20Nb-20Zr-4Ta, and Ti-29.3Nb-13.6Zr-1.9Fe. Another way to preserve
bio-compatibility is the use of bio-compatible encapsulation, when the implantable device is
covered with a thin layer of bio-compatible material [21], as reported in [22]. Here, enhance-
ment of the bio-compatibility of the metallic alloy was achieved with an electrochemical
anodization method.
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Some well-known materials are categorized into two groups, as follows. The first
group consists of ceramic materials such as Teflon (ϵr = 2.1, tan δ = 0.001), MACOR
(ϵr = 6.1, tan δ = 0.005), alumina (ϵr = 9.4, tan δ = 0.006) [18], and zirconia with ϵr = 10,
tan δ= 0.0005 [23].

The second group consists of polymeric materials. The most well-known are Parylene-
C, characterized by ϵr = 2.95, tan δ = 0.013 [24], Polymaid with ϵr = 4.3, tan δ= 0.004, and
Polypropylene (ϵr = 2.55, tan δ = 0.003) [25]. Hydroxyapatite [26] is another bio-compatible
substance. Gypsum is a familiar bio-material which is non-metallic and consists of hydrated
calcium sulfate (CaSO4·2H2O). This material has received attention for several decades in a
variety of uses, especially in dentistry. Moreover, because of the osteoconductive properties
of CaSO4, gypsum is widely used in bone creation. In addition, the bio-resorption (safe
for the human body) of gypsum is another advantage for this bio-material that makes it
attractive [27]. The values above refer to the ISM frequency band.

In the present design, miniaturization was not essential. Some of the implants, e.g., hip
or knee, are large by default. This usually metallic part represents an ideal ground plane
for antennas. Combining them with low-space-occupation configurations, e.g., printed
microstrip antenna, the radiator can be inserted in the body with zero volume requirement,
which is the major advantage of the proposed solution. In some cases, as for the knee
implant, these ground planes are close to the skin, but, in other cases, as for a hip implant
considered in this study, they are deeply located within the body. This antenna location
raises other challenging issues, as the high water content of the body induces high losses.

After designing and fabricating the implantable antennas, the next step is to test the
final model. The measurements can be done by two main methods: in vitro [28], when the
model is tested in the laboratory in a similar environment to the living body environment
but with no use of any living tissue, and in vivo, when the model is tested on living
organisms [29]. In this study, the measurement was carried out in the laboratory by means
of a quasi-in vitro technique defined in one of the following sections, so no living tissue
was involved.

This research topic has already been considered by some of the authors in previous
publications; here, the main differences with respect to the disseminated configurations
are summarized, aiming to highlight the advancement in different terms such as feasibility
or performance. In [30], a cylindrical implant was considered, and the mutual coupling
reduction between two printed radiators was investigated. The antenna was embedded in
a Polydimethylsiloxane (PDMS) layer located between the bone and muscle. The radiation
mechanism of a recess-fed conformal patch antenna was investigated in [31]. The novelty
of the present study is in considering a slightly modified conical shape implant, similar
to a commercial one, supporting a trapezoidal printed antenna. The configuration was
numerically simulated and prototyped. This latter has been measured in terms of matching
and radiation pattern. This study represents a substantial advancement with respect to the
state of the art [32–36].

This paper is organized as follows. The antenna design is discussed and the associated
numerical results are presented in Section 2. Section 3 is devoted to the presentation of the
prototyping steps, description of the measurement set-up, presentation of the experimental
results and their comparison with the numerical data. Conclusions are presented in
Section 4.

2. Methods

The theoretical implant is of a conical shape fully immersed in a cylindrical bone of
radius Rbone. The bone is surrounded by a muscle layer and a fat layer that is externally
bounded by the skin. The radii of the different interfaces are denoted as follows: Rmf
(muscle–fat), Rfs (fat–skin), and Rs (skin–air). To perform experimental validation of the
proposed configuration avoiding the use of any in vivo conditions, the configuration was
slightly modified, as described below.
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2.1. Geometries of the Implant, Dielectric Layer, and Bone

The considered geometry is shown in Figure 1 (left). It is akin to a commercial implant,
reported in Figure 1 (right).

It was found that the spurious radiation from the feeding microstrip influences the
radiation pattern (RP). The cylindrical implant was substituted by a conical one in [36],
where a turn-style antenna was presented achieving circular polarization. The two or-
thogonal dipoles were located at the bone–muscle interface. In the present solution, the
antenna positioning is more realistic, as the antenna is located on the surface of the im-
plant; therefore, no additional intervention is required during the surgery. In the present
investigation, a single conformal patch was considered, having a conical shape implant as
the ground plane. Feeding is through a coaxial cable, going through the implant and the
dielectric layer that covers it. Even if, from the electromagnetic point of view, it is not sig-
nificant, the metallic implant and antenna can be realized, for example, by a bio-compatible
Ti-alloy, e.g., [37].
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Figure 1. Technical drawing of the geometry of the implant (left); geometry of a commercial im-
plant [38] (right).

The implant in Figure 1 (left) is 1 mm slimmer along the overall length with respect
to the commercial one, with this thickness used for a bio-compatible dielectric supporting
the printed antenna. The thickness of 1 mm (in diameter) was equally subdivided between
the metal implant and bone, i.e., a slimmer implant, and a larger hole in the bone for
implantation was considered. Additionally, an empty internal part of the implant was
thought to be capable of hosting future electronics (not considered here), and a coaxial
cable fed the antenna. In addition, the corrugated surface of the commercial implant was
substituted with a smooth one.

2.2. The Simulation Environment

Commercial electromagnetic field simulation software, more precisely the Computer
Simulation Technology Suite [39], was used for the simulations, targeting resonance at
the central frequency of the ISM band. Two small changes were considered in relation
to the literature. (i) A different dielectric constant of the bone was considered, as it was
prototyped by a 3D printer (see below), and (ii) with respect to the in vitro case, it consisted
of the substitution of the fat and skin layers by a single plastic layer, corresponding to the
container of the tissue-like liquid. This set-up is named quasi-in vitro.

The above changes would not affect the target to prove the feasibility of the implanted
system; only the dimensions of the patch would be slightly altered to still resonate at
2.45 GHz, due to the different dielectric constants of the different layers. Thus, the geometry
in Figure 2 was implemented. The dielectric constant of the different layers and leading
dimensions are reported in Table 1. The limits for the muscle correspond to the measured
values (see below).
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Figure 2. CAD model of the implant immersed in the body implemented in CST (left), antenna detail
(center), and implant with dielectric layer and antenna artwork (right).

Table 1. Dimensions of different parts of the structure.

Tissue Material Radial Extension Length Rel. Diel.

(mm) (mm) Constant

Skin–Fat Plastic-1 200–203 257 2.2

Muscle Liquid 15–200 257 52.7–54.5,
σ = 1.7–1.85

Bone Plastic-2 15 200 3.4

Dielectric Gypsum top: 11.5–12.5
bottom: 6.5 4–7.5 140 2.7

Implant PEC top: 11.5/bottom: 6.5 140 -

As can be observed, the fat layer among the muscle and skin is missing, as the simula-
tions were performed according to the quasi-in vitro conditions stated above, which related
to the laboratory set-up used for the measurements (see below). To anticipate this multi-
layer geometry, the bone was prototyped by a 3D printer (Plastic-2), the muscle tissue-like
liquid was synthesized according to [19,40] and measured/characterized experimentally,
while the skin–fat layers were substituted with a plastic bucket (of a slightly conical shape,
similar to a leg) of Plastic-1 material. The dielectric layer of thickness of td = 1 mm all along
the implant length consisting of gypsum [27,41] was chosen because of the similar structure
of bone (high calcium content of both materials) and low cost.

The antenna consists of a trapezoidal metallization (see Figure 3, left). Its dimensions
were determined by optimization using a CST internal genetic algorithm routine; 4 variables
were considered, namely patch length (L), shorter (Wm) and longer (WM) patch sizes,
and location (F) of the feeding point with respect to the patch edge toward the top of the
implant (larger part). The trapezoidal shape adds a further degree of freedom that can
compensate, for example, for the curvatures of the metallic surface [42,43]. The cost function
components were resonant frequency, impedance bandwidth, and efficiency bandwidth.
For assembly reasons, the location of the feeding point was fixed, and the patch was moved
along the axial direction, corresponding to changing the value of parameter F. A hole of
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1 mm diameter with the center at 43 mm from the top of the implant was considered to
allow the passing of the central conductor of a standard fully modeled SMA connector
through the implant, used to feed the patch. The CAD model of the dielectric-covered
implant hosting the antenna is shown in Figure 2 (right). The matching of the geometry for
L = 33.5 mm, Wm = 22 mm, WM = 56 mm, and F = 5.5 mm is reported in Figure 3 (right).
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2.3. Prototyping

The prototyping process was carried out in different steps.

2.3.1. D Printing

The implant, dielectric, and bone were realized using 3D printer technology. A
photograph of them is shown in Figure 4. A special kind of plastic material (available in
two different forms, black and clear) was used to print them. These structures were printed
with a “3 Form” 3D printer (in the inset). In a second step, the plastic implant was covered
by a copper sheet. From an electromagnetic point of view, this corresponds to a metallic
implant. Even if a metallic geometry was also realized, the lighter, copper-covered plastic
one was used during the measurements, facilitating the rotation during the measurements
(see below).
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The bone is a cylindrical structure with a conical hole inside to host the coated implant
equipped with the antenna. Its 3D-printed version would be used for the experimental



Sensors 2024, 24, 1170 7 of 12

validation, to avoid the use of any living tissue. The die was also 3D-printed. Its dimensions
are equal to that of the bone geometry; it consists of two identical parts aimed to be used as
a mold to realize a uniform dielectric layer around the implant to fully fit the “hole” in the
bone (see Figure 4 (right)).

2.3.2. Preparation of the Antenna Sample

Half of the mold was filled with gypsum, along with the metallic implant. This was
covered by the second half of the mold, allowing excess gypsum to be expelled. Before
doing so, a ϕ = 1 mm diameter hole was drilled at the proper location of the feeding. It
would serve as the passage for the semi-rigid coaxial cable used to feed the patch antenna.
Once the gypsum had solidified, the mold was eliminated, and the gypsum was cleaned
from the hole. In the present investigation, the trapezoidal patch was realized separately
and positioned on the conical surface of the gypsum with plastic tape. In the actual
realization, a deposition can be used. The feeding semi-rigid coaxial cable was inserted in
the cavity inside the implant, and, by hand, its central conductor soldered with tin to the
patch. A photograph of the specimen is shown in Figure 2 (right).

2.4. Experimental Set-Ups

The experimental part of the investigation had target measurements of the (i) dielectric
constant of the self-prepared tissue-like liquid, (ii) matching, and (iii) RP. The experimental
set-up used for these quantifications and the procedure used during the evaluations are
described below.

3. Results and Discussion
3.1. Measurement of the Dielectric Characteristics of the Tissue-Like Liquid

The tissue-like liquid associated with the muscle was prepared according to references
in Section 2. The following mixture was prepared: around 4 l deionized water, 350 g sugar,
and 150 g salt, which were combined. In this composition, sugar and salt play a key role
in the permittivity (ϵr) of the liquid. By increasing the amount of sugar, ϵr rises, but it
reduces when the salt concentration increases. However, it should be noted that the amount
of sugar and salt affects the losses. The fine-tuning of the composition was completed
following the measurements of the dielectric characteristics of the liquid using a Keysight
Technology P9375A set-up.

The measurements were based on the experimental evaluation of the capacity between
the two ends of the meter, when the space between them was filled by the liquid. Numerical
elaboration considering dispersive effects was performed by in-house software developed
in the Matlab environment and tested on commercial samples. A photo of the system
is shown in Figure 5 (top), connected to a network analyzer that in turn connects to a
PC hosting the code. The values of the complex dielectric constant, in Figure 5 (bottom),
were saved in an ASCII file, later used in the simulations carried out in CST. They refer to
400 mg of commercial sugar melted in 1000 mL of demineralized water. In the interested
2.4–2.5 GHz frequency band, the values of εr and σ varied between 52.7 and 54.5 and
between 1.7 and 1.85, respectively.

3.2. Measurement of the Antenna Matching

A photo of the antenna in the quasi-in vitro configuration is shown in Figure 5 (top). It
shows the building used for optimizing the antenna sizes for this actual set-up. Measured
matching is compared with the simulated data in Figure 3. A good agreement can be
observed, as the two resonances are present for both sets of data in the interested frequency
band. The difference in magnitude was related to the losses in the tissue-like liquid that
was used. The losses in the synthesized tissue-like liquid depend on the amount of sugar
and salt. In addition, the water content of living tissue depends on age, gender, medical
history, etc.
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3.3. Measurement of the Antenna Gain and RP

Antenna RP and gain measurements were carried out in an anechoic chamber using
the substitution method. Two identical R&S HF906 double-ridged horn antennas were
considered for the reference measurement carried out by a Keysight N5227A Vector Net-
work Analyzer (VNA). The distance between the two horn antenna apertures was set to
1.4 m, and 201 frequency points in the 2–3 GHz band were considered. Then, one of the
horns was substituted by the antenna immersed in the tissue-like liquid. The bucket was
placed on a turning table, having the antenna center at the same height as the center of the
aperture of the antenna for the reference measurement. The turning table can be rotated in
the [−180, 180] azimuthal angular interval around the symmetry axis of the implant with
a step of 1◦ by a step-by-step motor, controlled by software developed in Labview. The
measured values of the transmission coefficient (S21) were recorded. The post-processing
performed in Matlab considered the gain of the horn antenna, spatial attenuation, and
power transmission coefficient, accounting for the earlier measured matching. A photo of
the system is shown in Figure 6 (for both co- and cross-polarization).

The measured RPs at the limits of the interested band and at the central frequency
of 2.45 GHz in the H (x0y with respect to the coordinate system indicated in Figure 2)
plane of the antenna are reported in Figure 7. The difference in amplitude for the two
components, co- and cross-polarization, is around 10 dB. This is due to the trapezoidal
shape that generates higher azimuthal currents than a square/rectangular patch, as currents
are also flowing in the azimuthal direction. Moreover, the propagating electromagnetic
field from the source outward encounters different layers and, according to the description
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of the mechanism in [31], the TE and TM propagation are affected differently. In the present
investigation the polarization of the radiated field has not been inserted in the optimization
process, but in case this aspect can be considered as a further degree of freedom, also to get
circular polarization.
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A quite stable pattern in the considered frequency band can be observed, with a
reduction in the gain at the lower limit. The higher value of the field in the non-broadside
direction is due to the generated surface waves in the gypsum dielectric, according to the
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discussion in [31]. However, this phenomenon guarantees a relatively stable wide angular
coverage; therefore, the relative location of the patient and external receiver does not affect
the quality of the overall system. The null in the radiation pattern for phi = 180◦ is due to
the cancellation of the radiation of the two oppositely propagating surface waves going
around the structure.

4. Conclusions

The design and experimental validation of a deeply implantable smart orthopedic
device aiming to send biological signals from inside a human body in the ISM frequency
band are discussed. The real-life conical, large implant was covered with bio-compatible
dielectric, gypsum, supporting a low-profile conformal trapezoidal radiator fed by a semi-
rigid coaxial cable. For validating the simulation results, a prototype was subjected to
experimental validation. The explored structure was bounded with a bone made of plastic
that was immersed in a mixture of water, sugar, and salt, mimicking human muscle tissue.
The aspect of the overall arrangement is like an adult leg. The experimental data match the
numerical data in terms of wideband and radiation pattern.
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