
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Effect of Network Structure and Committed Minority Placement in Promoting Social Diffusion / Gao, Tianshu; Zino,
Lorenzo; Ye, Mengbin. - In: IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS. - ISSN 2329-924X. -
ELETTRONICO. - 11:2(2023), pp. 2326-2339. [10.1109/TCSS.2023.3303568]

Original

Effect of Network Structure and Committed Minority Placement in Promoting Social Diffusion

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCSS.2023.3303568

Terms of use:

Publisher copyright

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2981288 since: 2024-04-04T06:53:59Z

IEEE



1

Effect of network structure and committed minority
placement in promoting social diffusion

Tianshu Gao, Lorenzo Zino, Member, IEEE, Mengbin Ye, Member, IEEE,

Abstract—Social diffusion is the phenomenon whereby a popu-
lation collectively adopts a novel (alternative) behaviour, opinion,
product or technology to replace an existing status quo. Often
the process is driven by a small number of individuals, termed
committed minority, who stubbornly promote the alternative.
In this work, we use an experimentally-proven game-theoretic
agent-based model to explore how social diffusion is influenced
by the network of social interactions, the placement of committed
minority and the timing that committed minority are introduced
into the network. Through a campaign of Monte Carlo sim-
ulations, we find that diffusion occurs quicker on sparse and
highly-clustered networks. In addition, we show that placing
the committed minority at nodes with the highest Bonacich
centrality with a negative attenuation factor seems to be the best
approach for facilitating diffusion. Then, we find that the timing
of introducing committed minority has a negligible effect on the
diffusion process. Finally, our findings are tested and confirmed
on two case studies of real-world networks.

Index Terms—Social diffusion; centrality measures; social
networks; agent-based

I. INTRODUCTION

A. Background on Social Diffusion

SOCIAL diffusion refers to the collective adoption of a
new alternative behaviour, opinion, product, or technology

by a population to replace a status quo, in a process that is
primarily driven by interactions among the population rather
than by regulations or policies [1]–[5]. In many instances,
these interactions involve social influence and coordination,
whereby individuals benefit from coordinating on the same
choice [6]. There is a strong interest in the scientific com-
munity to develop theories and models of social diffusion, as
this phenomenon has relevance in many different application
domains, including adoption of medical preventive interven-
tions [7], [8], new cultural traits [2], emergency response [9],
and environmentally-friendly practices [10].

Besides social influence and coordination, there could be
many other driving forces that can help promote social diffu-
sion. Recently, two of them have received particular interest
in the social diffusion literature. The first is choice advantage,
that is, when the alternative gives more benefits to individuals
than the status quo. Successful diffusion of the alternative has
been linked to a sufficiently large advantage [4], [5], [11]. The
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second is the presence of committed minority (also termed as
committed individuals) who stubbornly choose the alternative
instead of the status quo. Since interactions underpin social
diffusion, the presence of a sufficiently large committed mi-
nority, who interact with uncommitted individuals, can also
lead to successful diffusion [1], [12].

Social diffusion can be studied empirically, using field
data and/or sociological experiments [1], [2], [12]–[15]. These
studies have explored a wide range of issues, including the
aforementioned factors of choice advantage and committed
minority. One of the robust findings of empirical and ex-
perimental studies is the ‘S-shaped’ adoption curve, which
describes the fraction of alternative adopters over time [16],
[17]. Besides field studies and experiments, mathematical
models of diffusion have also emerged as viable approaches
to studying the phenomenon of social diffusion.

B. Literature Review of Models of Social Diffusion
Here, we provide a brief review of the state-of-the-art

literature in mathematical modelling of social diffusion. We
focus on agent-based models, which in the past two decades
have become especially popular for studying social diffusion
thanks to their ability to simulate the actions and inter-
actions of agents (individuals) in a large population over
time [18]. One of the key advantages of ABMs is that
they are able to link individual-level (microscopic level)
dynamics to the emergence of population-level (macroscopic
level) phenomena [19], thereby allowing researchers to explore
how individual- and group-level factors can affect the social
diffusion process. For instance, ABMs have been used to
study the impact of limited individuals’ rationality [4], [5],
[20], population heterogeneity [1], [21], constraints on the
interactions among agents, external interventions [22] and
positive externalities [23].

One class of ABMs that has been traditionally used to study
social diffusion are epidemic models, originally developed
to study the spread of infectious diseases. The underlying
assumption of such models is that the probability an individual
adopts the alternative increases for each interaction they have
with another individual who has already adopted the alterna-
tive [24]–[27]. The key conclusions drawn from such models
include: (i) Diffusion occurs quickly in highly connected
networks; (ii) Clusters in a network hamper diffusion while
long-range connections accelerate it; (iii) Nodes with high
degree are key for social diffusion. However, epidemic models
fail to capture the complex interaction patterns that can arise
during social diffusion [28], and this may lead to erroneous
conclusions, as noted in [20].
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To address these limitations, game-theoretic models have
become increasingly popular in the study of social diffusion
over the past two decades. These models assume that indi-
viduals can repeatedly revise their decisions on the choice
between the status quo and the alternative over time, and
each individual’s decision can influence other individuals’
decisions. Decisions are made in a game-theoretic framework:
each individual obtains a payoff from selecting the status
quo and the alternative, and individuals tend to base their
choice on maximising their payoff. Since individuals tend to
coordinate on their choice, these models are typically based on
games involving coordination. In [29], Kandori et al. studied a
coordination game-theoretic model and proved convergence to
an equilibrium in which all agents adopt the same choice. This
work was mainly focusing on the scenario in which each agent
knows every other agents’ choices, i.e. interaction network is
fully connected. In [30], Ellison et al. explored the impact
of restricting agents to local interactions. This line of research
has been further developed in [20], where the convergence rate
is estimated as a function of the network structure on which
individuals can interact. A key conclusions is that, unlike what
was observed with epidemic models, high-degree nodes and
long-range connections slow down the diffusion process.

Using game-theoretic ABMs, many works have studied
choice advantage as the driving force of social diffusion [4],
[20], [29], [30]. In contrast, there have been few game-
theoretic ABMs that focus on committed individuals as the
main driver of diffusion. Both choice advantage and com-
mitted minority were examined in [11], while the number of
the committed individuals needed to guarantee diffusion was
studied in [1]. Importantly, a series of group experiments was
conducted in [1]; the experimental data led to the proposal of
a game-theoretic model that, besides coordination, included
two additional mechanisms of inertia and trend-seeking, well
known in the social-psychology literature [31], [32]. The ex-
perimental data was also used to identify the ABM parameters.

C. Main Contribution of This Paper

In this paper, we extend this effort. Specifically, [1] was
focused on understanding how many committed minority were
needed to guarantee social diffusion in a fully-connected
population, while the important role of the network of social
interactions were neglected. Here, we use the experimentally-
grounded ABM developed and calibrated in [1] to investigate
several important research questions related to the complexity
of real-world networks of social interactions and concerning
the possibility to design effective strategies to place the
committed minority to unlock social diffusion. Using com-
mitted minority as the driving force for social diffusion, our
investigations yield the following key contributions.

First, we explore how the network structure influences
social diffusion, including the speed of diffusion and the
likelihood that diffusion occurs. By performing a campaign
of Monte Carlo numerical simulations over different classes
of networks with different features in terms of sparsity and
clustering, we find that highly connected networks hamper
social diffusion. This contradicts the conclusions obtained

using epidemic models, but is consistent with the findings of
game-theoretic models [20]. In addition, we find that clustering
affects the diffusion process. In particular, we observe that
diffusion is more likely to occur in highly-clustered networks,
similar to what observed in other game-theoretic models [20],
but we additionally show that it typically takes more time.
This finding provides more nuance to our understandings of
the role of clustering in social diffusion.

Second, we explore the possibility to locate committed
individuals in the network in a suitable way to accelerate
the social diffusion process. To this aim, we test different
placement schemes, based on different network centrality
measures [33]. Our numerical findings suggest that Bonacich
centrality with a negative attenuation factor is the best way
to position the committed minority. This finding reveals that
nodes who are connected to isolated nodes are the gateway
for successful diffusion. In other words, it is not the degree
of a node, but rather how many low-degree nodes a node is
connected to, that determines the importance of the node. This
insightful finding opens new directions for determining critical
actors in social diffusion processes.

Third, since emerging trends were found to play an im-
portant role in the diffusion process [1], [11], [32], we test
whether introducing the committed individuals gradually over
a period of time to create a (manufactured) trend towards
the alternative may be beneficial to facilitate social diffusion.
Our findings suggest that trivial implementations of gradual
introductions of the committed individuals over time have an
insignificant impact on the social diffusion process, suggesting
that future effort should be placed toward investigating more
refined strategies.

Fourth, in order to solidify our findings, we investigate two
case studies of real-world social networks of sizes and with
different characteristics, in which we test our ABM and the
insights derived regarding network topology and committed
minority placement on a real-world network structure [34].
The analysis of the case studies supported our findings, high-
lighting the key role of sparsity and clustering in facilitating
social diffusion, and confirming the effectiveness of locating
the committed minority in nodes with high Bonacich centrality
with a negative attenuation factor.

In summary, our main contributions, supported by the
analysis of different classes of synthetic networks and the two
real-world case studies, are the following:

• We show that sparse and highly-clustered networks in-
crease the likelihood of social diffusion, although the
latter may result in slower diffusion.

• We discover that the positioning of committed minority
on the network can be key to achieving social diffusion. In
particular, targeting nodes with high Bonacich centrality
with negative attenuation factor proves highly effective
across all types of networks.

• We find that trivial implementations of gradual intro-
ductions of the committed individuals over time have a
negligible impact on social diffusion.

The rest of paper is structured as follows. In Section II, we
present mathematical preliminaries and the diffusion model,
and formulate the research questions. Then, our main results
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are presented in Sections III, IV and V. In Section VI, we
discuss the two case studies. Section VII concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first review elements of graph theory and
then describe the decision-making model used to study social
diffusion. After that, we introduce four classes of networks
and different centrality approaches that will be used in our
study. Last, we formulate our research questions.

A. Graph Theory

An undirected unweighted graph is a tuple G = (V, E ,A),
where V = {1, . . . , n} is the set of n ≥ 2 nodes, E ⊆ V×V is
the set of (undirected) edges, and A ∈ Rn×n is the adjacency
matrix. The element eij = (i, j) ∈ E denotes an undirected
edge between nodes i and j (because the edge is undirected,
eij can also be written as eji). Self-loops are not permitted,
i.e. eii /∈ E , for all i ∈ V . The adjacency matrix A = {aij}
has entries aij = aji = 1 if and only if (i, j) ∈ E , and
aij = aji = 0 otherwise. Node i and node j are said to be
neighbours if (i, j) ∈ E . The set of neighbours of i is given by
Ni = {j ∈ V : (i, j) ∈ E}. The degree of node i, denoted by
di =

∑n
j=1 aij is the number of neighbours of i. The average

degree of the graph is denoted by d =
∑n

i=1 di/n. A path
between node i1 and node ik is a sequence of distinct edges
of the form (i1, i2), (i2, i3), · · · , (i(k−1), ik), where ij ∈ V
and (ij , il) ∈ E . The length of a path is equal to the number
of edges in the path, and the geodesic distance between two
nodes i and j, denoted as ℓij , is the length of the shortest path
between these two nodes. A graph is connected if there exists
a path between every pair of nodes.

B. Game-Theoretic Decision-Making Model

We consider a population V = {1, · · · , n} of n ≥ 2
individuals, interacting on a connected network G = (V, E ,A).
At each time-step t = 1, 2, ..., individuals are able to revise
their choices from a binary strategy set S = {0, 1}, where 0
represents the status-quo and 1 represents the alternative. The
strategy choice of individual v ∈ V at time-step t is denoted by
xv(t) ∈ S. At each time-step, each individual may revise their
strategy according to a noisy myopic best-response (loglinear
learning). Namely, the probability of individual v choosing
strategy x ∈ S at the next time-step is given by

P[xv(t+ 1) = x] =
exp{βvπv(x)}

exp{βvπv(0)}+ exp{βvπv(1)}
, (1)

where βv ∈ [0,∞) denotes the rationality of individual v and
πv(x) denotes the payoff for individual v choosing strategy
x ∈ S , which is detailed below. We say that βv captures the
bounded rationality of individual v because βv = 0 means
that both strategies have a uniform probability to be chosen,
while as βv → ∞, the probability that individual v chooses
the strategy that has a higher payoff approaches 1.

network dynamics state

neighbors’ decisions

trend x̂v

individual’s

payoffs

best

response

individual’s

decision xv

i
x

xx

τv

αv

rationality βv

γv

Fig. 1. Flow chart of the operating mechanism of the Game-Theoretical
Decision-Making Model

The payoff πv(x) is defined as

πv(1) =
αv

dv

∑
w∈Nv

xw(t) + γvxv(t) + τvx̂v(t), (2a)

πv(0) =
αv

dv

∑
w∈Nv

(1− xw(t)) + γv(1− xv(t))

+ τv(1− x̂v(t)), (2b)

with

x̂v(t) =
1

2

[
1 +

1

n− 1

∑
w∈Nv

(xw(t)− xw(t− 1))
]
. (3)

In the above, the parameters αv , γv and τv are non-negative
constants that satisfy αv+γv+τv = 1 for all v ∈ V . As a result,
each payoff πv(0) and πv(1) is a convex combination of three
summands. The first term encapsulates a social coordination
mechanism, which is typical of game-theoretic ABMs for
social diffusion [5], [20]: individual v’s payoff increases by
adopting the same strategy as their neighbours. The other two
terms capture important social-psychology mechanisms, and
their incorporation into the payoff function of a game-theoretic
ABM for social diffusion was first propose in [1]. Specifically,
the second one captures an inertia mechanism [31], incentivis-
ing the individual to stick with their current choice. The third
term encapsulates a trend-seeking mechanism [32]: individuals
increase their payoff by choosing the strategy which has
increased in prevalence across the entire population from the
previous time-step t − 1 to the current time-step t, captured
by the term x̂v(t) in Eq. (3). A flow chart representing the
operating mechanism of the model is illustrated in Fig. 1.

The ABM presented in this paper first appeared in [1],
where it was demonstrated that, during social diffusion, incor-
porating all three mechanisms in the payoff function enabled
the model to closely match the empirical data at both the
individual- and population-level. Ref. [1] showed that the
inertia mechanism produced a long time delay before adoption
of the alternative took off, while the trend-seeking mechanism
ensured an explosive transition from a majority adopting the
status quo to the majority adopting the alternative; this long
delay and rapid diffusion closely describes the classical ‘S-
shaped’ adoption curve from empirical studies [16], [17]. In
addition, Ref. [1] parametrised the model using the empirical
data collected, obtaining values for βv, αv, γv , and τv , with
the model implemented on an all-to-all network structure. In
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this paper, building on that experimentally-grounded ABM,
we have introduced a network structure to constrain the
interactions between the agents while retaining the parameter
values in [1], and we aim to investigate the impact of such a
network on the diffusion process.

C. Network Classes

In this work, we explore the impact of the network topology
on the social diffusion process. To this aim, we consider four
classes of synthetic networks, which are classical within the
network science literature [33]. Subsequently, we consider a
real-world network from an empirical dataset. Here, we review
the four different network classes and describe the process for
generating networks in each class.

1) Random d-regular (RR) Networks: A class of networks
in which every node is randomly connected to d other nodes,
and thus all nodes have degree d, for an integer d ≥ 1. We
generate an RR network using a configuration model. First, we
give each node d ‘tentacles’ and we create a ‘tentacle pool’.
Then, we pick a pair of ‘tentacles’ from the pool uniformly
at random. If these two ‘tentacles’ belong to two distinct
nodes that are not connected by an edge, an edge is added
between the two nodes and the two ‘tentacles’ are removed
from the pool. The network formation process terminates when
all ‘tentacles’ are removed from the ‘tentacle pool’ [20].

2) Erdős–Rényi (ER) Networks: A class of networks in
which every pair of nodes is connected by an (undirected)
edge with probability p ∈ (0, 1), independent of every other
pair of nodes. For large-scale networks, the degree distribution
of an ER network follows a Poisson distribution, with average
d = (n− 1)p.

3) Barabási–Albert (BA) Networks: A class of networks,
generated as follows. Starting from a fully connected network
with n0 nodes termed as hubs, we add the remaining n− n0

nodes to the network one by one, and each newly added node
is connected to m existing nodes. In particular, the probability
of a new node connecting to an existing node i is proportional
to the degree of node i. Large-scale BA networks are good
proxies of real-world networks, since they are characterised
by the scale-free property, i.e. the degree of the nodes follow
a power-law distribution [33], with average degree d = 2m.
In our simulations, we set the number of hubs at n0 = d+ 1.

4) Watts-Strogatz (WS) Networks: A class of networks
in which the geodesic distance between any two nodes is
typically small relative to the number of nodes in the network
(the average geodesic distance grows proportionally to the
logarithm of the number of nodes n). Hence, WS networks
replicate the so-called small-world characteristic and the pres-
ence of clusters, which is observed in many real-world social
networks [33]. We generate a WS network by firstly creating
a ring lattice network with n nodes in which every node
is connected to its d nearest nodes, with d ≥ 2 an even
integer. Then, we rewire each edge with a probability pws

independently. If an edge is rewired, we in fact remove the
edge and randomly select one of the two nodes that had been
connected by this edge. We then connect this chosen node to
one of the other n − 2 nodes in the ring, selected uniformly

at random. Note that, despite having small geodesic distances
between any two nodes, WS networks are characterised by a
fairly homogeneous degree distribution, concentrated around
the average degree d.

When exploring the impact of the network on social diffu-
sion, we will focus on the effect of average degree, d, and
global clustering coefficient c. While the former has been
extensively discussed in the above, the latter is defined as

c =

∑
i,j,k∈V aijajkaki∑
i∈V di(di − 1)

, (4)

and captures the fraction of closed triadic interactions in
the network. While RR, ER, and BA networks are fully
characterised by a single parameter (d, p, and m, respectively)
which allows us to set only the average degree1, the generation
of WS networks allows for setting an additional parameter
(the re-wiring probability). This parameter can be used to
regulate the global clustering coefficient [33]. In fact, to obtain
clustering coefficient c, we can set the rewiring probability as

pws = 1− 3

√
4c(d− 1)

3(d− 2)
. (5)

D. Centrality Approaches

In the second part of our study, we will examine the
possibility to place the committed individuals in the most
“important” nodes, in order to accelerate the diffusion process.
The notion of importance of a node, however, is not univocal.
In fact, different approaches, termed centrality measures, have
been proposed to rank nodes by their importance [33]. Our
study will compare different centrality approaches to inform
our placement of committed individuals. Specifically, the ap-
proaches are degree, eigenvector, closeness, betweenness, and
Bonacich centrality [33]. Note that because we compare the
relative values of centrality between nodes, it is not necessary
to perform a normalisation of the values.

1) Degree centrality: In this approach, the centrality of a
node v ∈ V is equal to its degree dv , so that the higher the
degree of a node, the greater its degree centrality.

2) Eigenvector centrality: In this approach, a node is
considered “important” if is connected to many important
nodes. Formally, let ϕv denote the eigenvector centrality of
node v ∈ V , and ϕ = [ϕ1, . . . , ϕn]

⊤ denote the vector
of centralities. Then, the eigenvector centrality is given by
Aϕ = λmaxϕ. Here, λmax is the eigenvalue of the adjacency
matrix A with largest real part. Note that because G is
connected and undirected, A is an irreducible symmetric
matrix and thus the Perron-Frobenius Theorem establishes that
λmax is real and unique [35].

3) Closeness centrality: This approach evaluates the mean
geodesic distance from a given node to all other nodes in a
network. Formally, the closeness centrality of node v ∈ V , is
computed as

θv =
∑

j∈V\{v}

n− 1

ℓvj
, (6)

1For ER networks, the inherent stochasticity allows only for setting the
expected average degree, letting p = d/(n− 1) and not each realisation.
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where ℓvj is the geodesic distance between nodes v and j.
Note that a node with larger closeness centrality θv , has a
smaller mean geodesic distance to other nodes.

4) Betweenness centrality: This approach measures the
extent to which the node stands on the communication paths
of other pairs of nodes. Formally, the betweenness centrality
of node v ∈ V is equal to

ζv =
∑

i,j∈V\{v}

δij(v)

δij
, (7)

where δij denotes the total number of shortest paths between
nodes i and j, and δij(v) is the number of those paths that
pass through node v.

5) Bonacich centrality: This approach aims to take into
consideration the two ideas of reachability and power. On
the one hand, an individual is considered more reachable if
their neighbours have more connections, since this individual
thus has a path to a greater number of other individuals
within a give number of hops [36]. On the other hand, an
individual is more powerful if their neighbours have fewer
connections, because by assuming that influence is uniform,
an individual’s influence on their neighbour increases as their
neighbour’s degree decreases. To formalise this idea, the
Bonacich centrality µ = [µ1, · · · , µn]

⊤ is computed as

µ =
(
I − η

λmax
A
)−1

A1n , (8)

where I is the identity matrix, 1n is the all-1 vector, λmax

is the largest eigenvalue of the adjacency matrix A, and
η ∈ [−1, 1] is a constant termed attenuation factor. If the
attenuation factor η is positive (negative, respectively), nodes
with higher Bonacich centrality are more reachable (powerful,
respectively). When η = 0 and η = 1, the Bonacich cen-
trality is equal to degree centrality and eigenvector centrality,
respectively. The magnitude of the attenuation factor can be
thought of as capturing a ‘radius’ around each node for which
reachability or power is computed.

E. General Simulation Setup and Research Questions

We are now in a position to describe how we use the game-
theoretic model to study a social diffusion scenario, the general
simulation setup, and formalise the research questions to be
investigated in this paper. In each of our simulations, there are
n = 1, 000 individuals. At t = 0, we set initial conditions so
that all individuals choose the status quo (i.e. xv(0) = 0 for all
v ∈ V). Then, at t ≥ 1, we introduce a set of individuals called
the committed minority, who always stubbornly select the
alternative (strategy 1). When not differently stated, committed
minority are introduced in the network at t = 1 by choosing
nodes uniformly at random. We use ρc ∈ [0, 1] to denote
the fraction of the population who are committed minority
individuals. As identified experimentally in [1], the rest of the
uncommitted population are divided into two distinct classes
of individuals (termed explorers and non-explorers) and we use
ρe ∈ [0, 1] to denote the fraction of explorers in the uncom-
mitted population. Each class of individuals is characterised
by a common set of values for the parameters αv , γv and τv .

Specifically, we set at αe = 0.48, γe = 0.10, and τe = 0.42 for
explorers; and αne = 0.42, γne = 0.42, τne = 0.16, for non-
explorers. The rationality of all uncommitted individuals is
set at βv = 7.8. These agent parameter values were identified
in [1] from experimental data. Even though these parameters
were obtained from experiments in all-to-all networks, we
believe it is unlikely that the parameters between all-to-all
networks and general networks would deviate by orders of
magnitude. Therefore, we decide to use the parameters from
[1] in this study, varying the parameter ρe to check robustness
of our findings, while obtaining empirically-informed param-
eters for specific networks is a focus for future research.

Given the probabilistic nature of the model in Eq. (1),
where each uncommitted agent has a positive probability to
play strategy 1 at each time t, full diffusion eventually occurs
almost surely. However, such an event may occur only after
an extremely long time, and thus it may be never observed
in practice. Hence, the key question is to examine, given a
network G and the model parameters, the time for diffusion
to occur, termed diffusion time. Namely, we wish to identify
whether diffusion will occur within a reasonable time-window
or take arbitrarily long to occur. In the latter scenario, we say
that the model predicts that diffusion will not occur in the
real-world, because such a large diffusion time would suggest
the committed minority die out or give up, a new alternative
emerges, or some other exogenous change occurs rendering
the model scenario irrelevant. Hence, we consider a fixed
simulation time-window of Tmax = 20, 000 time-steps, and we
say that diffusion occurs if at least 90% of the uncommitted
individuals choose the alternative at the same time-step, within
the simulation time-window. The diffusion time is defined as
the earliest time-step at which diffusion occurs, defined by

T ∗=inf
{
0 ≤ t ≤ Tmax :

1

n(1− ρc)

∑
v∈V\C

xv(t) ≥ 0.9
}
, (9)

where C denotes the set of committed individuals. We stop the
simulation if either full diffusion is observed or we reach Tmax

time-steps. We say that a simulation run is a ‘successfully
diffused simulation run’ if T ∗ < +∞.

Due to the stochastic nature of the model, we employ
a Monte Carlo approach to estimate the probability that a
successful diffusion occurs and the corresponding expected
diffusion time. Specifically, and in order to obtain insightful
observation while minimising the effect of noise, we run 100
independent simulations for each particular set of simulation
parameters. The two outputs (i.e. the two criteria of diffusion
speed) of the Monte Carlo simulations are i) the percentage of
successfully diffused simulation runs, denoted by fd, which is
an estimate of the diffusion probability, and ii) the arithmetic
mean of the diffusion time of the successfully diffused simu-
lation runs, denoted by T ∗. We point out that T ∗ is computed
only over the successfully diffused simulation runs, i.e. over
those runs with T ∗ < ∞. Hence, T ∗ is not defined if fd = 0.

We use the two criteria defined above, viz. fd and T ∗,
to characterise diffusion speed. Moving from fully connected
networks studied in [1] to general connected networks, we
wish to study how a variety of factors such as the network
structure, and the number of committed minority and their



6

placement, influence social diffusion and in particular diffusion
speed. The research questions are now formally detailed.

Research Question 1: The first research question is to
determine how the diffusion speed is impacted by different
network topology structures, i.e. the four different network
classes introduced in Section II-C, and network characteristics
including average degree and global clustering coefficient.

Research Question 2: The second question concerns where
one should locate committed minority on a network to accel-
erate the diffusion speed. The different centrality approaches
described in Section II-D will be used to find the most
appropriate positions for the committed minority.

Research Question 3: The third question explores whether
introducing committed minority gradually can accelerate the
diffusion process. To be more precise, most studies into social
diffusion assume that all committed individuals are introduced
at the start. However, people’s sensitivity to trends [32] opens
up a question as to whether we can gradually introduce
committed individuals over a certain number of time-steps to
generate a trend and exploit the trend-seeking mechanism to
accelerate social diffusion.

III. QUESTION 1: IMPACT OF NETWORK TOPOLOGY

A. Simulation Setup

We employ Monte Carlo simulations to study the diffusion
model on the four classes of networks presented in Section
II-C and on fully connected networks, to investigate Research
Question 1. To enable a systematic comparison between the
four network classes (which can have significantly different
topological characteristics), we compare simulation outcomes
for RR, ER, BA and WS networks with the same average
degree, d. Namely, we run a series of simulations for the four
network classes with d ∈ {4, 8, 12, 16, 20, 100}. To ensure
the reliability of the conclusion of our study, we also run
simulations on an all-to-all network, which serves as a baseline
scenario in which the network topology has no impact on
social diffusion. The global clustering coefficient is set at
c = 0.25 for WS networks by suitably setting the re-wiring
probability using Eq. (5), and we vary the fraction of explorers
in ρe ∈ {0.25, 0.5}. In all the simulations, committed minority
is introduced in a fraction ρc of nodes, chosen uniformly at
random.

B. Diffusion Probability

First, we compare the estimated diffusion probability fd on
the four classes of networks and on fully connected network
as a function of the committed minority fraction ρc. The
results for RR networks are shown in Fig. 2(a); the results
for the other networks, which are qualitatively similar to RR
networks, can be found in the Supplementary Material (Figs.
S1-S3).

From Fig. 2(a), we observe that the curves are all qual-
itatively similar, whereby there exists a threshold value of
committed minority fraction ρ∗c such that below the threshold,
almost all simulations fail to diffuse, while above the thresh-
old, fd increases rapidly as ρc increases, to reach fd = 100%.
Notice that the value of the threshold ρ∗c increases as average

degree increases; this is also observed in ER, WS and BA
network classes (see Supplementary Material, Figs. S1-S3),
suggesting that it is easier to achieve social diffusion in sparser
networks. However, the effect of the average degree on ρ∗c
diminishes asymptotically as d grows large.

Providing rigorous analytical support for this observation
is nontrivial due to the stochastic nature of the model and
the complexity of the network topology, and is thus be-
yond the scope of this paper. Nonetheless, we offer here
some quantitative intuition by examining the strategy selection
probability for an arbitrary individual i, which is ultimately
determined by which one of the two payoffs in Eq. (2) is
larger. Specifically, we observe that the first term of Eq. (2a)
is larger than the first of Eq. (2b) if and only if the majority of
the neighbours of i adopts the innovation. If the di neighbours
of i are sampled randomly, then the probability of observing
a majority of innovators even though the innovators are in
the minority rapidly decreases as di increases, due to the
central limit theorem. As a consequence, as the average degree
increases, the probability that an arbitrary agent switches to
the alternative when the status quo is still adopted by the
majority decreases, thereby reducing the chances to observe
social diffusion.

Figure 2(b) confirms this intuitive observation, showing that
the committed minority threshold ρ∗c on all four classes of
networks are smaller than the threshold for a fully connected
network. Moreover, this figure also allows us to compare the
effect of different network topology classes. In particular, we
observe that the WS network threshold value ρ∗c is significantly
lower than the ρ∗c of the other three network classes, which are
instead comparable (this is consistent across different values of
average degree d). Finally, we observe that, while the threshold
for the other networks is extremely sharp, BA networks have
a smother transition from 0% to 100% of diffusion. We
conjecture that this smoother transition may be due to the high
heterogeneity in the BA network, which amplifies the effect
of stochasticity.

C. Diffusion Time

Figures 2(c) and 2(d) show the diffusion time as a function
of the committed minority fraction ρc for RR networks with
different average degree and for the four different network
classes with d = 4, respectively2. We observe that there
are similarities and differences between the patterns of the
diffusion probability (Figs. 2(a)–2(b)) and of the diffusion time
(Figs. 2(c)–2(d)). Specifically, here there is also a threshold
value of ρc above which T ∗ decreases rapidly. This threshold
value mostly coincides with ρ∗c from the previous subsection,
and the same observations made in the above concerning the
impact of the average degree and of the network structure still
hold. However, we observe that the diffusion time is more
affected by the stochasticity of the process and the transition
between slow diffusion to fast diffusion is less sharp. The
error bars in Fig. 2(c) illustrating the 95% confidence interval

2The curves for WS, ER, BA, and fully connected networks are similar to
the ones for RR networks in Fig. 2(c) and are reported in the Supplementary
Material, Figs. S6-S8.
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Fig. 2. Simulation results for Research Question 1. In (a,b), we report the estimated diffusion probability on (a) RR networks with different average degree d,
and (b) different networks with d = 4, and fully connected (all-to-all) network. In (c,d), we report the mean diffusion time and corresponding 95% confidence
interval on (c) RR networks with different average degree d, and (d) on different networks with d = 4. Common parameters are ρe = 0.5 and n = 1, 000.
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Fig. 3. Distribution of diffusion time T ∗ for RR networks (d = 16, ρe = 0.5,
and ρc = 0.18). The mean diffusion time is T ∗ = 5, 016.5.

of T ∗ confirms this finding, showing how the distribution
of the diffusion time gets broader as ρc approaches the
threshold ρ∗c . This increased stochasticity is especially visible
for BA networks (cyan curve in Fig. 2(d)), also explaining
the lower sharpness observed in the transition in the diffusion
probability fd.

To gain more insight into these aspects, we now examine
the distribution of diffusion times over the 100 independent
simulation runs. By observing the histogram of the diffusion
time reported in Fig. 3, we find that distribution patterns on
four classes of networks and fully connected network are
similar (more figures can be found in the Supplementary Ma-
terial, Figs. S9-S11). Overall, we observe that the proportion
of diffusion times that lie within 2, 000 − 18, 000 time-steps

is relatively small. In fact, when the system is far from the
threshold ρ∗c , the distribution is unimodal with a peak at one
of the two extremes: at 0 − 2, 000 time-steps if ρc ≫ ρ∗c ,
or at > 20, 000 time-steps if ρc ≪ ρ∗c (the latter meaning
no diffusion has occurred). Close to the threshold, instead the
distribution is typically bimodal, with peaks on both extremes.
Interestingly, this means that when the committed minority
fraction is (slightly) below the threshold, full diffusion can
still occur quickly in some simulation runs even though full
diffusion does not occur in most simulation runs by Tmax;
this is a consequence of the stochastic nature of the model.
However, if diffusion occurs, T ∗ is typically small.

D. Role of the Clustering Coefficient

As we noted when discussing Fig. 2(b), given any fixed
value of d, the value ρ∗c for WS networks is the smallest among
the four classes of networks. This suggests that the specific
properties of WS networks may be crucial for favouring social
diffusion. In particular, compared with the structure of the
other three networks, a key characteristic of WS networks is
the higher global clustering coefficients c. Hence, we conduct
a further investigation on WS networks by performing an
additional campaign of Monte Carlo simulations in which
we vary c ∈ {0.1, 0.2, 0.25, 0.4, 0.6}, and study the diffusion
speed. We fix the average degree and the fraction of explorers
at d = 8 and ρe = 0.25, respectively.

The results of our simulations are summarised in Fig. 4.
In particular, from Figs. 4(a) and 4(b), we observe that on
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Fig. 4. Additional simulations for Research Question 1. In (a–b), we consider WS networks, and we report (a) the estimated diffusion probability and (b)
mean diffusion time for different values of the clustering coefficient c. In (c), we report the diffusion time distribution on the WS Network with c = 0.6 and
ρc = 0.05. In (d), we show the fraction of individuals adopting the alternative strategy over time for single representative simulation runs. The committed
minority fraction is set to ρc = 0.15 for RR ER and BA networks; ρc = 0.11 and 0.04 for WS networks with c = 0.2 and c = 0.6, respectively (the
committed minority fraction is selected differently for the networks, so that it is always close to the threshold ρ∗c ). Common parameters are ρe = 0.25,
n = 1, 000, and d = 8.

WS networks, the larger the global clustering coefficient c,
the smaller the threshold value ρ∗c . A similar behaviour is
generally observed also in terms of the mean diffusion time
T ∗: when ρc is small, we generally observe that T ∗ is smaller
if c is larger. However, this relationship becomes insignificant
when the committed minority fraction is above the threshold
for all networks. In fact, we can see that when ρc > 0.15,
there is virtually no difference in the mean diffusion time for
c ∈ {0.2, 0.25, 0.4}: fast diffusion occurs in all the scenarios.
Interesting is the behaviour for extremely clustered WS net-
works (magenta curve). For such networks, the threshold ρ∗c
is extremely small. However, the mean diffusion time remains
generally quite large even above the threshold. Briefly, the
intuition is that in highly clustered networks it is easier to
achieve social diffusion, but harder to achieve it quickly. Next,
we provide further evidence to support such a claim.

As can be seen by comparing Fig. 4(c) with Fig. 3, the
distribution of T ∗ on the WS networks with large global
clustering coefficient are very different from those on RR, ER
and BA networks and also different from WS networks with
small-to-medium global clustering coefficient (recall that we
set c = 0.25 in Section III-B). Specifically, Fig. 4(c) shows
that T ∗ is approximately normally distributed with a mean of
T ∗ ∈ (6000, 7000).

Finally, Fig. 4(d) illustrates some representative simulation
runs of the diffusion process over time for the different net-
work topologies, with parameters chosen so that the system is

in proximity of the threshold ρ∗c . We can see that the diffusion
patterns on RR, ER, BA, and WS networks with c = 0.2 are
extremely similar. Namely, after a long time period in which
the status quo is the overwhelming majority strategy, there is a
tipping point and the fraction of the individuals who adopt the
alternative strategy increases explosively; full diffusion occurs
very shortly after the tipping point. A similar diffusion pattern,
where there is a delay followed by explosive diffusion, is
observed by Ye et al. in experimental data and, numerically, on
fully connected networks [1]. However, the diffusion on WS
networks with a large global clustering coefficient of c = 0.6
has a different pattern. There is no explosive diffusion and the
number of alternative strategy adopters increases at a modest
(mostly linear) rate. Video animations of the diffusion process
are available (see Supplementary Material) and they provide
a visual representation of Fig. 4(d).

Based on all of these observations, we comment on the
effect of increasing global clustering coefficient on WS net-
works. Greater clustering ensures that diffusion is more likely
to occur. However, the downside is that if full diffusion does
occur, the diffusion can be significantly slower, although this
effect is more pronounced when there are fewer committed
minority. We provide an intuitive argument to justify our
observation. On highly clustered WS networks, the alternative
quickly diffuses within some clusters, but the spread between
clusters takes a long time due to the scarcity of edges between
clusters. These observations are consistent with findings from
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Fig. 5. Simulation results for Research Question 2. Estimated diffusion probability as function of the committed minority fraction for different centrality-based
ranking on (a) ER networks, (b) BA networks, (c) WS networks with c = 0.25, and (d) WS networks with c = 0.6.

other diffusion models, whereby clustering can promote diffu-
sion but the weakness of long-ties between clusters can hinder
it [20], [28].

IV. QUESTION 2: CENTRALITY-BASED PLACEMENT

A. Simulation Setup

Here, we investigate Research Question 2 by comparing
different centrality-based approaches to determine the most
influential nodes in the network. Specifically, we consider
the five centrality measures described in Section II-D, that
is, degree, eigenvector, closeness, betweenness, and Bonacich
centrality, and we use them to rank the nodes of the network.
Then, for each ranking, committed minority are introduced
at the nodes with the highest centrality value. Monte Carlo
simulation results are compared to the baseline results obtained
in the analysis of Research Question 1 in Section III, in which
committed minority are introduced uniformly at random. We
refer to such a baseline scenario as the random position ap-
proach. In all simulations, we consider networks with average
degree d = 8 and set the fraction of explorers to be ρe = 0.25.
Simulations are conducted on the different network structures
analysed in Research Question 1, i.e. RR, ER, BA, and two
instances of WS networks with c = 0.25 and c = 0.6.

B. Effectiveness of Centrality-Based Approaches

We start by comparing six different centrality-based rank-
ings. Namely, we consider degree, eigenvector, degree close-
ness, betweenness, and two different implementations of

Bonacich centrality, one with a positive attenuation factor (η =
0.9) and one with a negative attenuation factor (η = −0.9);
see Section II-D for more details.

The results of our numerical simulations are illustrated in
Fig. 5, which reports the estimated diffusion probability fd,
for ER, BA and the two instances of WS networks3, as a
function of the committed minority fraction ρc. While the
outputs of our simulations seem to change across different
network structures, we find several common traits that lead
us to make some general observations on centrality-based
placement strategies.

First, in most network structures, we observe that where the
committed minority is located has indeed a strong impact on
the emergent behaviour of the system. In fact, for all networks
except the RR network, we observe a significant shift in the
threshold ρ∗c . In general, introducing the committed minority
in highly central nodes often seems to be highly effective in
favouring social diffusion. It is worth noticing that the only
exception to this pattern is recorded for the RR network. In
this case, the negligible impact of centrality-based placement
is not surprising, since the high regularity of the topology
means that most centrality measures to be either equal or differ
only slight between all the nodes (e.g. degree centrality); this
suggests that all the nodes have a similar influence on the
dynamics. However, this is not the case of most real-world
networks that, as we shall see in Section VI, do not have such

3Results on RR networks are less interesting and reported in the Supple-
mentary Material, Fig. S12.
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a regular structure [33], [34].
Second, for the network structures for which the positioning

of committed minority impacts the outcome, the extent of such
an impact strongly depends on the network topology. In fact,
while for ER and WS networks we register moderate shifts in
the threshold ρ∗c with respect to the random position approach
(blue curve), such impact seems to be exacerbated by the scale-
free structure of the BA network, where using centrality-based
approaches seems to yield a ten-fold decrease in the committed
minority fraction needed to guarantee social diffusion.

Third, while centrality-based placement approaches seem
to be effective in reducing the committed minority fraction
needed to guarantee social diffusion, we should observe that,
since different centrality measures provide different rankings,
the outcomes are often different depending on the measure
used. In particular, we register strong differences when consid-
ering ER and WS networks (see Figs. 5(c), 5(d), 5(a)) whereas,
for BA networks, the centrality measures are extremely highly
correlated due to the scale-free structure [33], yielding no
significant difference between the results (see Fig. 5(b)).

Finally, we conduct simulations on different population
sizes of n = 2000 and n = 500 (results reported in the
Supplementary Material, Figs. S26–S30). By observing those
figures, we demonstrate that our findings in Section III and
Section IV remain consistent across different population sizes.

C. Impact of Using Different Centrality Approaches

The last observation suggests that not all centrality measures
are equally effective in reducing the committed minority frac-
tion needed to unlock social diffusion. This observation calls
for further investigation toward understanding which centrality
measure is the most effective.

For ER networks, we observe in Fig. 5(a) that all centrality-
based approaches seem to decrease the threshold, with the
best result attained by the Bonacich centrality with a neg-
ative attenuation factor. On mildly clustered WS networks
(c = 0.25), we record similar results (see Fig. 5(c)). However,
in this case, we observe that using the eigenvector centrality
(green curve) does not seem to offer any clear advantage
with respect to random positioning. Simulations on highly
clustered WS networks (reported in Fig. 5(d)) further confirm
this observation. Here, the eigenvector approach significantly
increases ρ∗c , which means that using the eigenvector centrality
to rank the nodes for placement of committed minority actually
hampers the diffusion process. Moreover, in such extreme
scenario of highly-clustered WS networks, we also observe
that some other centrality measures appear to be counterpro-
ductive, namely degree and closeness, and Bonacich centrality
with a positive attenuation factor. On the contrary, Bonacich
centrality with a negative attenuation factor still outperforms
the other centrality measures, including random positioning.

To summarise, even though the impact of centrality-based
approaches may have strong differences across different net-
work structures, in the above analysis, we have highlighted
an important common trait: Bonacich centrality with negative
attenuation factor η = −0.9 seems to be the best approach to
effectively decrease the committed minority fraction needed

to achieve social diffusion. Finally, additional simulations,
reported in Supplementary Material (Figs. S13-S16), suggest
that the magnitude of the negative attenuation factor has a
minor impact on the outcome of the diffusion process, yielding
the conclusion that the best way to insert committed minority
in a population is to target nodes with high Bonacich centrality,
computed with any negative attenuation factor.

It is worth noticing that, while Bonacich centrality with
negative attenuation factors is always optimal, regardless of
the magnitude of the attenuation factor chosen, using positive
attenuation factors is less beneficial and, sometimes even
hinders social diffusion. Such an observation has a twofold
implication. First, ‘powerful’ nodes are more important than
‘reachable’ nodes in the social diffusion process (see Sec-
tion II-D on how attenuation factor relates to ‘powerful’ and
‘reachable’ nodes). Second, provided the attenuation factor
is negative, the magnitude has an insignificant effect on the
diffusion speed (recall that the magnitude captures how far-
away nodes impact the reachability or power of a node).
Finally, we remark that compared with ‘reachable’ nodes,
‘powerful’ nodes are connected to a larger number of nodes
with lower degree. Our findings in Section III indicate that
networks with lower average degree favour diffusion, and this
is entirely consistent with our novel observation that placing
committed minority at ‘powerful’ nodes can enhance social
diffusion. Intuitively, nodes with lower average degree are
more ‘isolated’, and perhaps more vulnerable to influence
from committed minority. These observations are consistent
with empirical studies done in different areas of research.
For instance, it has been observed that isolated people are
more likely to be victims of financial fraud [37], and under
certain circumstances more likely to become politically radi-
calised [38].

V. QUESTION 3: EFFECT OF TIMING

A. Simulation Setup

Now that we have established that the positioning of the
committed minority can strongly influence social diffusion,
we now study the effect of timing. Specifically, we investigate
whether gradually introducing committed minority affects the
diffusion speed. Hence, we split the committed minority into
tg groups, and we introduce one group every tp time steps.
Formally, the number of committed individuals present in the
population at time step t (denoted by nc(t)) is equal to

nc(t) =

{
nρc

tg
⌈ t
tp
⌉, if 1 ≤ t ≤ tgtp

nρc, if t > tgtp
, (10)

Simulations are conducted on different classes of networks
(RR, ER, BA, WS with c = 0.25 and c = 0.6) with average
degree d = 8. We consider two distinct scenarios. In the first
scenario, we set tp = 1 and we vary tg ∈ {1, 5, 15}. In other
words, we gradually increase the number of committed indi-
viduals within the first tg time-steps. In the second scenario,
we fix tg = 5, and we consider tp ∈ {5, 20, 100}. That is, we
split the committed individuals into 5 groups and introduce
one group every tp time-steps. In all simulations, we intro-
duce committed minority in nodes starting with the highest
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Fig. 6. Simulation results for Research Question 3, illustrating the estimated
diffusion probability in the different scenarios.

Bonacich centrality with the attenuation factor η = −0.9. The
fraction of explorers is set at ρe = 0.5.

B. Result

Figure 6 reports the results of our Monte Carlo simulations
for WS networks (results for RR, ER and BA networks are
similar and can be found in the Supplementary Material (Figs.
S17–S20)4). The plots show that the advantages in implement-
ing a gradual introduction of the committed minority with
respect to the baseline scenario (red curve) are (if any) very
marginal.

To explain such results, we provide the following intuitive
analysis. With respect to the scenario in which committed
individuals are introduced at t = 1, a gradual introduction
of the committed minority can enforce the third term in
Eq. (2a) (the one associated with sensitivity to trends) to
be larger than the one in Eq. (2b) in the time-steps that
follow the introduction of committed minority. However, the
magnitude of that term is small, since the committed minority
is diluted. Moreover, the first term (related to the coordinating
mechanism) may decrease too, until the entire committed mi-
nority is introduced, weakening its potential impact on social
diffusion. Furthermore, we observe that the experimentally
obtained payoff coefficients [1] indicated that, regardless of
the individual being an explorer or non-explorer, αv > τv ,
meaning that all things being equal, the coordination term
carries a greater weighting for the strategy selection compared
to the trend-seeking term. Hence, naive implementations of
timely introduction of committed minority might fail in fa-
cilitating social diffusion, suggesting that more sophisticated
intervention policies should be explored.

VI. CASE STUDIES

In the previous sections, we have investigated the three
research questions on different classes of synthetic networks,
obtaining some important observations on the impact of key
features of the network topology (e.g.sparseness, clustering,
scale-free structure) on social diffusion, and on how to design
the introduction of committed minority, targeting nodes with

4Additionally, we test the scenario in which the committed minority are
introduced at random nodes, obtaining similar results (see Supplementary
Material, Figs. S21–S25).

high Bonacich centrality. We will conclude the paper by
verifying our results on two case studies, in which we use
two real-world social network structure, from [34] and [39].

In those two case studies, we perform two sets of sim-
ulations, investigating Research Questions 2 and 3, respec-
tively. First, we use the five different centrality approaches
tested on the synthetic networks (Section IV) to evaluate
the effectiveness of introducing the committed minority in
the most central nodes. We compare our results with the
scenario in which committed minority are placed at the random
positions. In these simulations, the fraction of explorers is set
to ρe = 0.25. Second, we perform the same simulations done
in Section V, toward assessing the effectiveness of introducing
the committed minority in a gradual fashion. In such scenario,
we introduce the committed minority in nodes with the highest
Bonacich centrality with attenuation factor η = −0.9, which is
the most effective strategy according to our numerical findings,
and we set the fraction of explorers to ρe = 0.5.

A. Case 1: Coauthorship network
1) Network Structure: We consider a coauthorship network

between scientists who have published papers on topics related
to ‘network structure’, discussed in [34]. The dataset is avail-
able at [40]. The nodes represent 379 scientists belonging to
the largest connected component of the examined dataset; an
edge between two nodes means that the two nodes (scientists)
have at least one coauthored publication. The network is
illustrated in Fig. 7(a), where the diameter of each node is
proportional to its Bonacich centrality with the attenuation
factor η = −0.9; the eight most central nodes are in red.

Before presenting the results of our Monte Carlo simula-
tions, we would like to point out some relevant properties
of the coauthorship network (more details can be found
in [34]). The network has average degree d = 4.82 and global
clustering coefficient c = 0.74. This means that the network
exhibits sparsity and high clustering, which is consistent with
key characteristics of WS networks. However, the coauthorship
network is also scale-free. In fact, the degree distribution of the
coauthorship network follows a power-law distribution, which
is similar to BA networks. Therefore, the coauthorship network
holds characteristics of both WS networks and BA networks,
and we expect to observe a behaviour similar to those observed
in synthetic networks with these properties.

2) Results: Figure 7(b) illustrates the results of the first
set of simulations. Our findings on the coauthorship network
are consistent with our conclusions from the analysis of
the synthetic networks in Section IV. In fact, we find that
centrality-based placement of committed minority has a strong
impact on the social diffusion process. However, whether this
impact favours or hinders social diffusion depends on the cen-
trality measure used to rank the nodes. In particular, Bonacich
centrality with a negative attenuation factor is superior to
all other methods, while closeness and eigenvector approach
increase the threshold ρ∗c , similar to what was observed in
highly clustered WS networks (see Fig. 5(d)). Moreover, we
also find that betweeness and degree centrality are also good
ranking approaches, as they decrease the threshold ρ∗c , as
observed for BA networks in Fig. 5(b).
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Fig. 7. Simulation results of the coauthorship network case study in Section VI-A. In (a), we illustrate the network structure. In (b), we report the estimated
diffusion probability for different centrality-based rankings. In (c), we report the distribution of diffusion time, for ρc = 0.065 and ρe = 0.25; the committed
individuals are placed at random position.

In terms of the distribution of diffusion time over 100
independent runs, by observing Fig. 7(c), we find that the
distribution is wide. This is a combination of the behaviour of
BA networks in which the distribution peaks at the extremes
(see Fig. 3) and highly clustered WS networks in which the
distribution peaks in the middle (see Fig. 4(c)).

The second set of simulations (results reported in the
Supplementary Material, Fig. S31), depict a scenario similar
to the one discussed in Section V, where a naive gradual
introduction of committed minority seems to have a marginal
impact on social diffusion.

B. Case 2: Norwegian boards of directors network

1) Network Structure: In our second case study, we analyse
a dataset that portrays the boards of directors of 384 Norwe-
gian public limited companies from September 2010 to August
2011. The network consists of 1,095 nodes, representing in-
dividual directors, and an edge between two nodes (directors)
indicates that they have served together on the same board
at least once. The network is illustrated in Fig. 8(a), where
the diameter of each node is proportional to its Bonacich
centrality with the attenuation factor η = −0.9; the ten most
central nodes are in red. The average degree of the network
is d = 7.08, with a power-law distribution, resembling the
degree distribution observed in BA networks. Moreover, the
network has a large global clustering coefficient of c = 0.84,
consistent with the characteristic of WS networks. Hence, we
can conclude that the Norwegian boards of directors network
shares similarities with BA networks and highly-clustered WS
networks. As a result, we expect to observe a behaviour similar
to what we observed in synthetic BA networks and highly-
clustered WS networks.

2) Results: The result of the first set of simulations is
as shown in Fig. 8(b). Notably, our observations on the
Norwegian boards of directors network closely resemble
those made on the coauthorship network. Specifically, we
find that centrality-based placement of committed minority
has a significant impact on the social diffusion process. In
particular, Bonacich centrality with the attenuation factor
η = −0.9 yields the highest promotion of social diffusion,
while closeness and eigenvector considerably impede the
diffusion process, mirroring observations in highly clustered

WS networks. Furthermore, we also find that betweeness and
degree centrality favour the diffusion, which is coincident with
our observations on BA networks in Fig. 5(b).

The distribution of diffusion time, obtained from 100 inde-
pendent runs, is given in Fig. 8(c). Similar to the coauthorship
network, we observe a wide distribution, as a combination of
patterns observed in BA networks (in which the distribution
reaches its highest values at the extremes, cf. Fig. 3), and in
highly clustered WS networks (in which the distribution tends
to peak in the middle, as illustrated in cf. Fig. 4(c)).

In the second set of simulations (in the Supplementary
Material, Fig. S32), our findings confirm the conclusions
of Section V: a naive gradual introduction of committed
minority individuals appears to have a minimal impact on
social diffusion.

VII. DISCUSSION AND CONCLUSION

In this work, we studied the influence of network topology
structure, the placement of committed minority, and the timing
of introducing the committed minority on social diffusion
processes. We found that sparser networks tend to accel-
erate the diffusion process, while Watts–Strogatz networks,
especially highly-clustered ones, performed better than other
network classes. Concerning how to position the committed
minority, we found that using Bonacich centrality with a
negative attenuation factor to find the most influential nodes
is the best approach. Meanwhile, introducing the committed
minority over time in a naive fashion has limited effect.

These findings extend the literature on mathematical mod-
elling of social diffusion by providing novel insights, grounded
on an experimentally-validated model [1], to support existing
empirical and theoretical studies. In particular, the beneficial
effect of network sparsity on social diffusion is consistent with
similar observations from other mathematical models [20],
[30]. The observation on the key role of clustering in pro-
moting diffusion echoes well-known sociological theories [28]
and experimental studies [41], as well as more recent empirical
studies on diffusion of COVID-19 [42].

In our second research question, we investigated how to
determine the most influential nodes in the network. This
problem has been extensively studied in the literature, through
many empirical and theoretical studies. Virtually all studies
conclude that the position of a node in a network has a strong
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Fig. 8. Simulation results of the Norwegian boards of directors network case study in Section VI-B. In (a), we illustrate the network structure. In (b), we
report the estimated diffusion probability for different centrality-based rankings. In (c), we report the distribution of diffusion time, for ρc = 0.065 and
ρe = 0.25; the committed individuals are placed at random position.

impact on its influence [22], [43]. However, the centrality
measure that should be used to determine the most influential
nodes depends on the characteristics of the dynamics consid-
ered, e.g. eigenvector centrality for epidemic spreading [44]
or betweenness centrality for information diffusion [45]. Our
study, performed on an experimentally-validated model for
social diffusion, suggests that using Bonacich centrality with
a negative attenuation factor is the best approach to introduce
the committed minority in this social diffusion scenario. Our
findings are consistent with empirical studies on the risk of
being victims of financial frauds [37] or political radicalisa-
tion [38].

Finally, while there is empirical evidence that people are
sensitive to emerging trends [32], in particular during social
diffusion [1], little has been investigated on how such sen-
sitivity can be leveraged to design effective interventions to
favour social diffusion. Our study contributes to this research
direction, suggesting that the design of such policies is a
nontrivial problem, since the naive strategies proposed has
limited impact.

Although this paper has provided answers to important
research questions, several problems remain open. First, we
found that the Bonacich centrality is the best approach to
positioning committed minority, and it would be useful to com-
pare this against the other optimisation-based methods (such
as those arising in influence maximisation problems). Second,
the failure of naive strategies introducing committed minority
over time suggests that more sophisticated strategy should be
designed and tested, potentially leveraging the cluster structure
of the network. Third, here we have assumed that individuals
have exact information about the ongoing trend. In the future,
we plan to consider scenarios in which biased, limited, or
just local trend information is available. Fourth, our findings
are based on numerical simulations; rigorous mathematical
analysis of the model to support these findings is envisaged
for future work. Finally, we performed our study using the
parameters identified from online experimental data in [1], and
varying the proportion of explorers in the population to check
robustness. Other experiments should be designed to further
verify the robustness of our findings, including identifying
parameter values for different network structures (if there
is a difference at all) and different social contexts (e.g. the
diffusion of conventions vs. technology products, or tight vs.

loose cultures).
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