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A B S T R A C T

A systematic review on machine-learning strategies for improving generalization in electroencephalography-
based emotion classification was realized. In particular, cross-subject and cross-session generalization was
focused. In this context, the non-stationarity of electroencephalographic (EEG) signals is a critical issue and
can lead to the Dataset Shift problem. Several architectures and methods have been proposed to address this
issue, mainly based on transfer learning methods. In this review, 449 papers were retrieved from the Scopus,
IEEE Xplore and PubMed databases through a search query focusing on modern machine learning techniques
for generalization in EEG-based emotion assessment. Among these papers, 79 were found eligible based on
their relevance to the problem. Studies lacking a specific cross-subject or cross-session validation strategy,
or making use of other biosignals as support were excluded. On the basis of the selected papers’ analysis,
a taxonomy of the studies employing Machine Learning (ML) methods was proposed, together with a brief
discussion of the different ML approaches involved. The studies reporting the best results in terms of average
classification accuracy were identified, supporting that transfer learning methods seem to perform better than
other approaches. A discussion is proposed on the impact of (i) the emotion theoretical models and (ii)
psychological screening of the experimental sample on the classifier performances.
1. Introduction

Emotions play a primary role in learning, reasoning, decision-
making, and communication. An increasing interest in emotions in
the Information and Communication Technology (ICT) sector has led
to the emergence of affective computing, focused on monitoring and
predicting emotions to enhance human–computer interaction [1]. For
instance, innovations like affective loops allowed to facilitate the im-
plementation of adaptive human–machine interfaces [2]. Furthermore,
new emotion monitoring systems find applications in healthcare, aiding
in psychological disorder treatments, autism intervention, well-being
improvement, and stress management [3–5].

Brain-Computer Interface (BCI) systems based on EEG signals have
garnered increasing attention, evident in the exponential growth of
research indexed on platforms like Scopus [6] (see Fig. 1). EEG-based
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Emotion Recognition (ER) has applications across several fields, from
car driving and workplace environments to neuromarketing and enter-
tainment [7–13]. In clinical settings, EEG aids for example in measuring
sleep parameters, detecting epileptic seizures, and addressing autism
spectrum disorders [14–17]. However, EEG signal processing faces
challenges due to inherent variability among subjects and acquisition
times (i.e. sessions), since the EEG signal is usually stochastic and sta-
tionary only for short intervals (generally ranging from a few seconds
to minutes) [18–20]. More in detail, the EEG signal is not a Wide
Sense Stationary signal [21]. This characteristic of non-stationarity
implies a variation in the temporal and spectral characteristics of the
EEG signal over time. This is an open issue in the literature leading
to a loss of generalizability for classification systems across subjects
(inter-subject task) and, for the same subject, across different sessions
(intra-subject task, also known as cross-session) [22]. Machine Learning
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Fig. 1. Scopus trend for EEG-based emotion recognition studies.
(ML) methods are often employed to address these challenges, with an
increasing trend toward deep neural networks and Transfer Learning-
based approaches, such as domain adaptation, domain generalization
and/or hybrid methods [23], enhancing generalizability across subjects
and sessions. This paper provides a systematic review of ML techniques
to enhance generalizability in EEG-based Emotion Recognition across
different subjects and sessions. While previous surveys exist, none
specifically focus on ML’s role in inter/intra-subjective generalization
in this domain.

The rest of the paper is organized as follows: Section 2 reviews
related works, with reference to recent surveys carried out on this
specific topic. Section 3 presents a theoretical background on EEG,
with a first part focusing on BCIs for Emotion Recognition and a
second part on ML for Emotion Recognition. Section 4 presents the
used search queries and the paper selection process according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) method [24]. Section 5 presents the results of the review,
proposing a taxonomy of the ML methods currently proposed in the
selected papers, discussing the ML methods with respect the proposed
taxonomy. A statistical analyses of the results is also reported. Section 6
aims to discuss the achieved results, reporting the most promising
lines of research and approaches, and highlighting current challenges
and possible future directions in this area. Finally, Section 7 draws
conclusions.

2. Related works

In recent years, several reviews have been conducted on general-
ization in EEG-based Emotion Recognition. Alarcao and Fonseca [25]
focus on the generic topic of EEG-based Emotion Recognition, present-
ing a review of papers published in the period from 2009 to 2016.
The survey appears interesting since it focused on the different stages
of the Emotion Recognition process from EEG signals. Moreover, the
survey proposed a criterion for assessing the quality of the papers
by applying a set of well-known guidelines (Brouwer’s recommenda-
tions [26]). However, there is no in-depth analysis on the issue of
inter/intra-subject generalization, nor is the EEG-nonstationarity prob-
lem addressed. Other reviews [27,28] analyze studies on the EEG-based
classification methods, but without focusing on the emotion domain.
Wu et al. [28], offer a non-systematic review focusing on affective BCIs
(aBCIs), but without an in-depth analysis of the Emotion Recognition
problem. The study proposed in [29] defers further investigation of
the problem of EEG-inter/intra-subject variability to future works.
Recently, Li and colleagues [30] published a review focusing on the
topic of EEG-based Emotion Recognition and discussing the importance
of Transfer Learning. While offering some interesting results, it is not
2 
a systematic review (only 18 studies were reported without PRISMA
methodology to collect them).

This paper proposed a systematic literature review focused on the
inter/intra-subject generalization on EEG-based Emotion Recognition
systems and the use of modern ML-based methods as a possible solu-
tion.

3. Theoretical background

3.1. Challenges in EEG cross-domain tasks

Cross-session and cross-subject tasks rely on different assumptions.
In cross-session approaches, the EEG recordings are acquired from the
same subject but at different times. In cross-subject approaches, data
are acquired from different subjects. To date, a rigorous definition
of the term session remains lacking. For instance, in the SEED docu-
mentation [31], the term was used interchangeably with trial, but the
distinction was later reinstated in SEED IV. In addition, it is generally
unclear what is the minimum time interval required between sessions,
and if it is possible to conduct multiple sessions on the same day.
Recently, the term Cross-Day have been adopted to specify sessions
occurring in different days [32–34].

Three sources of uncertainty lead to generalization problems: (i)
measurand, (ii) instrumentation (iii), and environment [35]. The un-
certainty of the measurand is primarily caused by the non-stationarity
of the EEG signal. However other factors have to be considered: (i)
personal traits (personality, circadian rhythms, culture) [36], (ii) per-
sonal states (transient psychic conditions of the subject) [37], (iii)
previous experiences (with the BCI in general or related to the specific
stimuli used in the experimental set-up), and (iv) physical conditions
(also dependent on recent physical stress or feeding in the previous
hours [38]). The main sources of instrumental uncertainty concern
the positioning of the electrodes [39] and the electrode–skin contact
impedance. Humidity, temperature, brightness, noise pollution, and the
ergonomics of the experimental station are sources of environmental
uncertainty. They impact the signal by interacting with the measurand
and the instrumentation [40]. Cross-subject tests are prone to all the
uncertainties associated with the measurand. In contrast, cross-session
tests are not influenced by personal traits, except for circadian rhythms
when sessions are conducted at different times of the day. In Cross-
Session tests, personal states, past experiences, and physical conditions
keep on impacting. Past experiences may have a more pronounced
impact if sessions are temporally close together, and a recently experi-
enced experiment can bias the subsequent sessions. Personal state and
physical conditions affect cross-session tests with a direct relation to
time elapsed: the closer the sessions, the lower the expected variability.
Sources of instrumental uncertainty come into play when equipment is
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taken off and put back on between sessions, as is the case of the cross-
day paradigm. The effect of environmental factors can be influenced by
the time gap between experimental activities. They could have more
impact on two sessions conducted on different days with the same
subject compared to measurements temporally close together involving
different subjects. Additional sources of uncertainty need to be consid-
ered in cross-dataset problems [41], where (i) stimuli, (ii) measurement
instrumentation, and (iii) experimental teams are different.

3.2. Generalization issues in BCI

Three fundamental paradigms of BCI can be distinguished: Ac-
tive, Reactive, and Passive. Active BCI involves voluntary brainwave
modulation, as seen in Motor Imagery (MI). It is generally expected
that within MI, TL is easier to implement compared to ER, primarily
due to the lower variability observed in MI tasks [42]. This reduced
variability in neural patterns during MI activities can facilitate more
straightforward adaptation from one subject to another or from one
session to the next (e.g., [43]). Further insights and in-depth analysis
about TL in MI can be found in [44]. Reactive BCI responds to external
stimuli, such as Event-Related Potential (ERP)-based spellers. Already in
014 a study demonstrated zero-training ERP spelling using Transfer
earning and language statistics [45], while [46] introduced a mod-
lar framework minimizing calibration time with Transfer Learning
nd Convolutional Neural Networks (CNNs). In [47] a TL method is
roposed and validated on both MI and ERP datasets. Lastly, passive
BCI involves users who do not directly or consciously manipulate their
electrical brainwave patterns and focuses on monitoring (like Emotion
Recognition). This review addresses generalization issues in this area.

3.3. Emotional theories

Various emotional theories coexist, notably the discrete and dimen-
ional theories. The discrete theory, influenced by Darwinian tradition
nd exemplified by Ekman and Plutchik, identifies basic, universal and
nnate emotions [48]. Ekman delineates six (anger, disgust, fear, happi-
ess, sadness, and surprise [49]), while Plutchik proposes eight (anger,
nticipation, joy, trust, fear, surprise, sadness, and disgust) arranged
n a wheel model [29]. Conversely, the dimensional theory represents
motions along valence-arousal or valence-arousal-dominance axes,
mphasizing continuous dimensions of pleasantness, arousal, and domi-
ance. Neurophysiological underpinnings are addressed differently; the
imensional theory identifies brain networks [50], while the discrete
heory suggests dedicated neural circuits. The choice between these
pproaches depends on the intended focus in emotion assessment.

.4. BCI for emotion recognition

Emotional states can recognized through various biosignals. Brain
ignals, particularly EEG, gaining prominence due to their high tem-
oral resolution and non-invasiveness. EEG signals span a frequency
ange of [0.01, 100.00] Hz and an amplitude typically within [−100,

100] μV. They encompass five background rhythms classified into delta,
theta, alpha, beta, and gamma bands.

The International 10–20 Positioning System is a standardized
method for electrode placement used to retain consistency across
experiments [51]. Electrode quality, whether wet or dry, impacts signal
fidelity [52]. Wet electrodes use conductive gel in order to ensure
electrode–skin contact, while in the case of dry electrodes, the contact
surface is increased in order to facilitate the electrical contact [53].

The methods and stimuli for emotion induction significantly in-
fluence EEG-based emotion assessment. Techniques like film clips,
images, and music effectively induce emotions, with images offering
standardization advantages [54,55]. Established image datasets like
IAPS [55], OASIS [56], and GAPED [57] facilitate emotion elicitation
experiments. Publicly available EEG databases such as DEAP [58],
3 
SEED [31], and DREAMER [59] aid emotion recognition research. Each
dataset contains different physiological signals and is characterized by
a well-established experimental setup (Table 1). Self-produced datasets
require meticulous preprocessing, including line noise removal, refer-
encing, bad channel removal, and artifact correction [19]. Once the
EEG signal has been pre-processed, it is usually divided into epochs,
and a feature extraction process is then applied. EEG features can be
categorized into three domains, namely (i) time, (ii) frequency, and (iii)
time–frequency. Time domain features include signal statistics (such
as mean, variance, skewness, kurtosis) [60–62], Hjorth parameters
(namely Activity, Mobility, and Complexity) [63], entropy-based mea-
sures [64], and higher-order crossing [65]. Frequency domain features
primarily utilize power spectral density [66], while time–frequency
analysis employs methods like STFT, CWT, DWT, matching pursuit, and
empirical mode decomposition [67,68].

Feature selection is critical due to the high dimensionality of EEG
features [69]. Additionally, selecting informative EEG channels reduces
computational complexity [70].

3.5. Machine learning for emotion recognition

After the EEG signal has been properly pre-processed and a suitable
set of features has been extracted, the data are ready to be fed to a
supervised ML system. The typical pipeline of a ML framework applied
to an EEG Emotion Recognition task is reported in Fig. 2.

A large part of the current literature on Emotion Recognition pro-
posed methods framed in the Transfer Learning approach. This is
because in the classical supervised ML framework a set of already
labeled data has to be available. This implies that, in EEG Emotion
Recognition tasks, a set of EEG signals recorded from one or more
subjects has to be labeled with the emotion felt during the acquisition.
Labeled data can then be used to train the ML system, generating
a ML model able to classify the input data. Once the ML model is
obtained, new unlabeled data can be fed to the ML model to estimate
the corresponding emotion/class. Reserving a portion of the labeled
data outside the training stage to evaluate the trained model is a good
practice. These data can then be used to evaluate the final model pre-
dictions using suitable performance metrics (e.g., accuracy). However,
a standard hypothesis of traditional ML methods is that all available
data come from the same probability distribution, no matter if involved
in the training process or not. Due to the characteristics of the EEG data,
this assumption results not always verified in the EEG signal. Indeed,
the EEG recordings of different subjects can be strongly different from
each other, even under the same conditions [19]. Strong differences
can arise also for EEG recordings acquired from the same subject but
in different times/sessions, leading to low generalization performance
in cross-subject/session problems. In the current literature, this prob-
lem was initially addressed by exploiting additional unlabeled data
belonging to the target subject/session during the training stage (Trans-
ductive Learning approaches). However, these methods do not make
any consideration about the data distributions. In fact, the training EEG
data may belong to significantly different probability distributions than
the data used outside the training phase. In ML literature, this can
be considered an instance of the Dataset Shift problem [71]. Dataset
Shift occurs in an experimental environment where the standard ML
assumption is not verified, i.e. the distributions of the training data and
the data used outside the training stage may be different. The idea that
data used inside and outside of training stage can belong to different
probability distributions is the main hypothesis of the Transfer Learning
approaches.

In the last years, several ML architectures and methods have been
proposed to address the dataset shift problem following the base as-
sumptions of Transfer Learning, and different categorizations of these
methods have been reported [72,73]. One of the first and most im-
portant review on Transfer Learning methods was proposed in [72].
However, several new strategies were proposed in the following years

(e.g., Domain Generalization-based works).
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Table 1
Datasets on emotion recognition classified according to the employed stimuli (av = ‘‘audiovisual’’, a = ‘‘audio’’), #EEGchannels, #subjects,
#sessions, #trials, trial duration, reference theory, and #classes.

Dataset Stimuli #EEG #subjects #sessions #trials Trial Reference #classes
channels duration [s] theory

SEED av 62 15 3 15 240 Dimensional valence (1–3)

SEED IV av 62 15 3 24 120 Discrete happiness, sadness,
fear, neutral (4)

DEAP av 32 32 1 40 60 Dimensional valence (1–9),
arousal (1–9), dominance (1–9)

DREAMER av 14 23 1 18 60 Dimensional valence (1–5),
arousal (1–5), dominance (1–5)

ASCERTAIN av 1 58 1 36 60 Dimensional valence (1–7), arousal (1–7)

MAHNOB av 32 27 1 20 min 39.4 Discrete disgust, amusement,
max 117 joy, fear, sadness, neutral (6)

MPED av 62 23 2 28 min 141 Discrete joy, funny, anger,
max 295 disgust, fear, sad, neutrality (7)

MDME a 14 12 5 24 37 Dimensional valence (1–2), arousal (1–2)
SDMN a 32 26 1 16 30 Dimensional valence (1–2), arousal (1–2)

CMEED av 40 33 1 4 min 67 Discrete amusement, fear,
max 99 anger, tenderness (4)
Fig. 2. A pipeline of a classical ML process involving EEG signals. After the data have been preprocessed and divided into epochs, suitable features are extracted together with a
proper channel selection strategy (if available). Next, the obtained features are fed to the ML system. Feature extraction procedure can be embedded into the ML system block in
the case of end-to-end deep learning methods (such as DNNs).
4. Papers selection method

The present literature review took into account the guidelines for
systematic literature reviews presented by Kitchenham [74]. In addi-
tion, PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) recommendations were adopted in order to transpar-
ently report the document extraction process [24]. The survey was
conducted covering the period between January 2010 to March 2022,
using the following databases: Scopus, IEEE (Institute of Electrical and
Electronics Engineers), Xplore, and PubMed.

In accordance with the PRISMA recommendations, the review
pipeline comprised four successive steps: ‘Identification’, ‘Screening’,
‘Eligibility’, and, finally, ‘Inclusion’, which considerably reduced the
amount of surveyed work. For the initial identification of the articles,
the following query was used in all the selected data sources, taking
into account titles and abstracts: EEG AND (Emotion OR Preference)
AND (‘‘Domain Adaptation’’ OR ‘‘Domain Generalization’’ OR ‘‘Transfer
Learning’’ OR ‘‘Adversarial’’ OR ‘‘Transfer’’ OR ‘‘Cross Session’’ OR
‘‘Cross Subject’’ OR ‘‘Cross Gender’’ OR ‘‘Non-stationary EEG’’ OR
‘‘Subject Invariant’’ OR ‘‘Subject Independent’’ OR ‘‘Cross Individual’’).

From the first phase, 637 articles were collected. Therefore, du-
plicated papers, not peer-reviewed, or not written in English were
excluded from the review as an initial prescreening process. For each
paper that passed the screening stage, a careful examination of the full
text was carried out. In a final screening, further papers were excluded
according to the following exclusion criteria: (a) generalizability issue
not explicitly stated, (b) absence of a cross-subject/cross-session val-
idation strategy, (c) adoption of a ‘multimodal’ approach (i.e. aimed
at supporting EEG-based classification with other biosignals and/or
information), (d) lack of focus on Emotion Recognition. As a result,
4 
79 papers remained and were included in the review analysis. The
complete flow diagram of the systematic review process according to
PRISMA is presented in Fig. 3.

5. Results

The analyzed works can be divided into two main big families,
according to the assumption on the origin of the handled data (e.g. from
a single population/domain described by the same probability distribu-
tion or from different populations/domains):

• Classical ML approaches: all data are assumed to belong to the
same population and are described by the same probability dis-
tribution;

• Transfer Learning (TL) approaches: these methods assume that
data can belong to different populations (domains). Data with
heterogeneous probability distributions can lead to the dataset
shift problem, resulting in a loss of the model’s generalization.
In general, the main goal of a TL method is to reduce the discrep-
ancy between the probability distributions of different domains,
exploiting the knowledge acquired from one or several source
domains to solve a problem in a target domain.

Notation

Except where otherwise specified, in the remaining of this survey
the following notation will be used: 𝐹 refers to a given feature space
and 𝐿 to a given label space. 𝐱(𝑖) refers to a generic data point belonging
to 𝐹 , and 𝑦(𝑖) refers to a generic label from 𝐿. {𝐱(𝑖)}𝑚𝑖=1 is a set of 𝑚
unlabeled data points where 𝐱(𝑖) belongs to 𝐹 , while {(𝐱(𝑖), 𝑦(𝑖))}𝑛 is
𝑖=1
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Fig. 3. PRISMA flow diagram of the systematic review process.
a set of 𝑛 labeled data points, where 𝐱(𝑖) belongs to 𝐹 and 𝑦(𝑖) ∈ 𝐿 is
the corresponding label. A classifier 𝐶 can be viewed as a functional
mapping 𝐶 ∶ 𝐱 ∈ 𝐹 → 𝑦 = 𝐶(𝐱) ∈ 𝐿 usually learned by the data. A Task
𝑇 is a set composed by a label space and a classifier, i.e. 𝑇 = {𝐿,𝐶}.

5.1. Classical ML approaches

A model trained on a set of EEG data acquired from a given subject
at a specific time (or during a specific session) could not work as
expected in classifying EEG signals acquired from different subjects or
from the same subject at different times, resulting in poor generaliza-
tion performance. To deal with this problem, several solutions based
on ML approaches have been proposed over the years such as semisu-
pervised and transductive methods. Semisupervised methods assume
that a part of unlabeled data is available during the training stage,
together with the labeled one. However, differently from TL methods,
no assumptions about the data distribution are made. The idea is that
further data, also if not labeled, can help the training procedure to
better generalize. An example of semisupervised method applied to
Emotion Recognition in the EEG domain is provided in [75]. The
proposed Optimal Graph coupled Semi-Supervised Learning (OGSSL)
model is able to learn a graph of similarity between input features
assuming that, if two data are similar, they are probably acquired in the
same affective state. Therefore, an optimization problem is addressed
to project the data into a new space where this assumption is veri-
fied, allowing both to make predictions and to identify discriminative
EEG features. Differently, [76] proposed semi-supervised Joint Sample
and Feature importance Evaluation (sJSFE), a method exploiting both
labeled and unlabeled data coming from different EEG acquisition
sessions to characterize the importance of data sample. Differently from
semisupervised methods, transductive methods [77] assume that all the
5 
unlabeled target data of the classification problem are available in the
training stage. Furthermore, as in semisupervised but differently from
domain adaptation methods, in transductive methods no assumption
about the distribution of the data is made. The idea is that in several
problems there is only a specific set of data to classify, and it is
available at training time. Note that in standard ML approaches, the
goal is to generalize on new unseen data and a labeled test set is
used only to validate the learned model on new, unseen data adopting
the inductive learning principle [77]. In transductive learning, the
goal is to correctly classify only the available unlabeled set, therefore
the classification problem is defined only on the available unlabeled
data. For example, differently from classical SVMs that leverage only
on labeled data, Transductive SVMs [78] exploit both labeled and
unlabeled test data to find the best decision boundary between classes,
using the unlabeled data as an additional set of information in the
training stage. One of the main drawback of TSVM is that an estimation
of the number of unlabeled data belonging to each class is needed.
Progressive TSVM [79] tries to solve this problem by progressively
labeling the unlabeled data during the training. In this review [80] is
the only study that explicitly uses transductive methods in EEG Emotion
Recognition, where a Progressive TSVM is used in a cross-session ER
problem on EEG data. Instead, the greatest part of the reviewed pro-
posals consisted in proper feature transformation and/or feature selection
processes. The former wants to transform the data features to hold
only the most useful information, assuming that it is shared between
all the subjects/sessions, while the latter are methods to select only
the most useful features from the input signals without changing them.
Usually, in a classical ML pipeline, the feature extraction/selection is
one of the first steps, where the data are transformed before being fed
to the machine learning model. These methods assume that there is
no prior knowledge of the actual data on which the model will be
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used post-training. This stems from a traditional ML assumption that all
data, whether used in training or not, belong to the same probability
distribution, implying that the training data should enough for the
model to generalize effectively.

In the EEG Emotion Recognition context, this means that a proper
EEG data transformation is enough to allow a ML model to generalize
well on never seen EEG data, regardless of whether these new data
belong to a subject/session used during the training or not. Going
deeper, in a ML problem on EEG data the feature extraction and
selection process can be made considering two different aspects of the
signal: (i) the acquired EEG features or (ii) the electrodes composing the
acquisition device. In the first case, a proper transformation or selection
strategy for the EEG features is made, while in the second case the focus
is on selecting the more representative electrodes for the task. In the
following of this subsection, the remaining classical ML approaches are
discussed considering these two different approaches.

EEG features extraction/selection strategies
The reviewed literature proposed several works inspecting if several

known feature extraction methods are suitable to generalize across
several ER settings [81,82]. In particular, in [81] the authors investi-
gate the robustness of ER features in different experimental conditions,
such as different subjects and datasets. The work conducted in [83]
inspects if features encoded into event-related potentials allow to dis-
criminate between emotions in a given subject and also if they can
be adopted across different subjects. Differently, [84] explores the
adoption of Factor Analysis [85] in EEG Emotion Recognition. In [86]
the adoption of averaged features in cross-subject generalization is in-
spected. Instead, in [87] a new filter (Hybrid Adaptive Filter) to isolate
emotion-related features is developed leveraging on both Empirical
Mode Decomposition and genetic algorithms.

In [88,89] the classical Sequential Backward Selection (SBS) ap-
proach for feature selection is applied to find a set of features able to
generalize across different subjects. To find the best subset of features,
SBS decreases the number of features in an iterative way measuring, at
each step, the performance on a given classifier (SVM in [88], Decision
Trees in [89]). Similarly, [90] inspects Sequential Feature Selection
(SFS), an exhaustive procedure over all possible features combinations
with the aim to find the best one in terms of classification performance.
In [91] a feature selection and a channel selection framework are
adopted to mitigate the subject-to-subject variability.

In [92,93], a family of Transferable Recursive Feature Elimination
(TRFE) methods is used to remove the EEG features resulting not
enough generic across all subjects involved. The study is validated on
DEAP dataset in both within-subject and cross-subject scenarios using
SVM as classifier. In [94] Cross-subject Recursive Feature Elimination
(C-RFE) is used to rank features by importance and remove the less
important ones.

In [95], an enhanced version of the established Differential En-
tropy (DE) features is introduced. Unlike DE that focuses solely on the
frequency domain, the proposed Dynamic Differential Entropy (DDE)
features incorporate both the time and frequency domains of the data.
The goal is to learn common characteristics across different subjects
maximizing the difference between classes and minimizing, at the same
time, the difference within classes. [96,97] inspect the behavior of
Dynamic Entropy features in cross-subject EEG Emotion Recognition
adopting SRU-based models [98] and SVMs as ML models respectively.

In [99], latent representations of the EEG data from SEED and DEAP
datasets are learned through a Variational Auto Encoder (VAE, [100])
and then classified using a Long Short-Term Memory (LSTM). VAEs are
generative neural networks able to learn embedding of data in a latent
space. As a classical autoencoder, a VAE is composed of an encoder
network able to project data to an embedding space, and a decoder
network able to reconstruct the original input from the embedding.
VAEs assume that all the data are generated by a random process

involving latent variables. The ability of VAEs to represent latent EEG

6 
factors is also analyzed in [101], along with classical Auto-Encoders
(AEs) and Restricted Boltzmann Machines (RBMs). The generalization
performances are evaluated on DEAP and SEED dataset, exploiting an
LSTM as emotion classifier.

In [102], the cross-subject problem is tackled using Variational
Mode Decomposition (VMD) as feature extraction technique. Perfor-
mance is measured adopting a Deep Neural Network (DNN) as an
emotion classifier. Despite the encouraging results reported in a cross-
subject approach, no reason seems to be given or discussed as to
why the proposed system performs well in the cross-subject scenario.
In [103–105] is shown that some normalization functions usually
adopted to preprocess the EEG data can affect the cross-subject per-
formance.

In particular, in [103] several normalization functions are applied
and evaluated on the available data following two different schemes:
(i) All-subjects, where the whole dataset was normalized regardless
the subjects involved, (ii) Single-subject, where the normalization is
applied individually to each subject. The All-subject one is the most
common method to normalize the entire dataset. The authors show em-
pirically on the SEED dataset that the Single-subject Z-score performs
better in an EEG emotion recognition problem than other normalization
schemes, such as min–max normalization. On the same data, in [104]
the authors apply a single-subject Z-score normalization after each layer
of a neural network (Stratified Normalization).

Differently, in [105] transforms the original features into binary
vectors, where each component has 0 or 1 as value if the feature
is lower or higher than the median feature value, respectively. The
basic assumption is that this transformation leads to a more effective
reduction of the subject-dependent component of the EEG signal.

Channel-based strategies
To achieve EEG-based cross-session ER, in [106,107], a general

set of channels valid across the subjects is searched exploring several
channels selection strategies. Instead, the authors of [108] learn the
importance of each EEG channel in an ER task to retain discriminative
features discarding the noisy and redundant ones.

The authors of [109] propose a neural network model that includes
a channel-attention layer designed to select the most important chan-
nels for identifying a set of emotions. Notably, the different subjects’
personalities are taken into account, training a different network for
each group of subjects with similar personalities. Validation is made
on the ASCERTAIN dataset. This dataset results particularly suited
for this task, since it links together personality, emotional state and
physiological reactions. The placement of the electrodes is taken into
account and modeled as a graph.

Graph representation methodologies resulted effective in modeling
structured data, achieving significant performance in several applica-
tions such as EEG emotion signal processing [110]. In particular, Graph
Neural Networks (GNNs, [111]) are useful to retain the spatial structure
of the electrodes disposition. Usually, the spatial disposition of the
electrodes on the scalp is represented by a fixed and given a priori
graph structure. Differently, Dynamical Graph CNNs (DGCNNs, [110])
and Self-Organized Graph Neural Network (SOGNN, [112]) change the
graph structure leveraging on the input brain signals. The resulting
graph can be processed by graph convolutional layers to extract the
more suitable features and channel for ER tasks.

5.2. TL methods

With respect to Classical ML, TL approaches are gaining popular-
ity thanks to their better performance reported in recent studies. In
literature, current TL methods are divided into two main categories
according to the availability of data belonging to the target distribution

during the training phase:
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Fig. 4. The proposed taxonomy of the TL methods in EEG-based ER. Starting from the root node, the criterion ‘‘target data used in the training phase’’ leads to the creation of
two child nodes: Domain Adaptation (if yes) and Domain Generalization (if no). Domain Generalization in turn generates two nodes depending on the type of data transformation:
learned (Deep DG) or unlearned (Shallow DG). From Domain Adaptation, the Supervised DA (SDA) node is generated if all target data labels are used in the training phase;
otherwise, the Semisupervised/Unsupervised DA (UDA) node is generated. From the latter node, four branches distinguish the data handling strategy: (i) data is transformed using
an a priori defined function (Shallow UDA), (ii) the data transformation function is learned as part of the method (Deep UDA), (iii) data is selected or reweighted using some
strategy (Instance Reweighting and Selection - IRS UDA), and (iv) a combination of the previous approaches is applied (Hybrid UDA). The Shallow UDA methods are divided into
two leaf nodes according to the projection space of the transformation: (i) all data is projected into the same space as the Target domain (Target Space-based - Shallow UDA
TS), (ii) a new shared space is used between the Source and Target (Shared Space-based - Shallow USA SS). Similarly, for Deep UDA methods, two branches lead to two leaf
nodes: (i) Common Space-based (Deep UDA CS) if the Source and Target are projected into a new shared space, (ii) Common+Specific Space-based (Deep UDA CSS) if Source and
Destination are first projected into a single shared space, then, for each available domain, a projection is used in an ad hoc space.
• Domain Adaptation (DA) methods: the DA general assumption is
that data of the target domain are available during the training of
the model, together with data belonging to the source domain(s).
For instance, in the EEG Emotion Recognition, data acquired from
both source and target subjects/sessions are available during the
model training.

• Domain Generalization (DG) methods: in these methods, data
belonging to several domains different from the target domain are
available and can be used during the training, but no data from
the target domain are available at this stage. The knowledge ex-
tracted from multiple source domains is exploited to improve the
model generalization. For instance, in the EEG Emotion Recogni-
tion, labeled data acquired from different subjects/sessions can be
considered as belonging to different domains, and can be used to
build a model able to generalize to a new unseen subject/session,
where no data is available during the construction of model.
Domain Generalization methods can be further split into two
subcategories depending on the type of data transformation:
learned (Deep DG) or unlearned (Shallow DG).

egarding the DA methods, a further division can be made considering
ow the available target data labels are used in the training phase. In
articular, we can identify the following cases:

• Supervised DA (SDA) methods: these methods benefit from the
availability of labeled data from the target subject/session during
the training stage; typical examples of Supervised DA methods
rely on pretrained models, where a model already trained on a
7 
known source domain is adapted to work in a new target domain
exploiting the available target labeled dataset, or studies relying
on few-shot learning, based on ML model built using a small
amount of labeled data available from the target space.

• Unsupervised and Semisupervised DA (UDA) methods: these meth-
ods benefit from unlabeled data coming from the target sub-
ject/session available during the training stage. The method is
Unsupervised if only unlabeled target data are exploited, Semisu-
pervised if further labeled target data are also available.

UDA methods, in turn, can be distinguished based on the strategy
adopted for handling data:

• Shallow UDA: data are transformed using a function defined a
priori;

• Deep UDA: a data transformation function is learned as part of the
method in a end-to-end manner;

• Instance Reweighting and Selection (IRS UDA): data are selected or
reweighted using some strategies;

• Hybrid UDA: a combination of the previous approaches is applied.

Shallow UDA methods can be further divided according to the projec-
tion space of data transformation: (i) all the available data are projected
into the same space of the target domain (Target Space-based - Shallow
UDA TS), (ii) a new shared space is built for both source and target
(Shared Space-based - Shallow UDA SS). Similarly, two subcategories
can be identified also for Deep UDA methods: (i) Common Space-based
(Deep UDA CS) if the source and target are projected into a new shared
space, (ii) Common+Specific Space-based (Deep UDA CSS) if source and
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Destination are first projected into a single shared space, then, for each
available domain, a new projection is used to map the data in an ad
hoc space. Relying on the above considerations, a taxonomy of the TL
methods used in EEG-based Emotion Recognition is reported in Fig. 4.

In general, Transfer Learning methods are based on the concept
of domain. Following the survey of Pan et al. [72] and the notation
introduced in , a domain can be defined as a set 𝐷 = {𝐹 , 𝑃 (𝑋)} where
𝐹 is a feature space and 𝑃 (𝑋) is the marginal probability distribution
of a specific dataset 𝑋 ∈ 𝐹 .

Transfer Learning wants to exploit the knowledge of a domain 𝐷𝐴
n a task 𝑇𝐴 to resolve the same or another task 𝑇𝐵 on another domain
𝐵 . By the definition of domain, it is straightforward that two domains
𝐴 = {𝐹𝐴, 𝑃 (𝑋𝐴)} and 𝐷𝐵 = {𝐹𝐵 , 𝑃 (𝑋𝐵)} can be considered different

f they differ in the feature spaces or in the marginal probability
istributions. Obviously, the same holds for two Tasks 𝑇𝐴 = {𝐿𝐴, 𝑓𝐴}
nd 𝑇𝐵 = {𝐿𝐵 , 𝑓𝐵}. More in details, the following cases can happen:

1. 𝐷𝐴 = 𝐷𝐵 and 𝑇𝐴 = 𝑇𝐵 : since the Tasks and the domains are the
same, this can be considered a standard ML Problem.

2. 𝐷𝐴 ≠ 𝐷𝐵 : 𝐹𝐴 ≠ 𝐹𝐵 or 𝐹𝐴 = 𝐹𝐵 and 𝑃 (𝑋𝐴) ≠ 𝑃 (𝑋𝐵)
3. 𝑇𝐴 ≠ 𝑇𝐵 : 𝐿𝐴 ≠ 𝐿𝐵 or 𝑓𝐴 ≠ 𝑓𝐵 .

Due to the non-stationarity of the EEG signals between different
ubjects/sessions, an emotion classification problem can be viewed
s a multi-domain problem where the data belonging to each sub-
ect/session are sampled from different domains. More specifically, in
n emotion classification problem we can assume that two different
ubjects/sessions 𝐴 and 𝐵 share the same feature space (i.e. the EEG
ata representation) and the conditional data distributions 𝑃 (𝐿𝐴|𝑋𝐴) =
(𝐿𝐵|𝑋𝐵) are the same, but the marginal probability distributions
re different on the available data, i.e. 𝑃 (𝑋𝐴) ≠ 𝑃 (𝑋𝐵). Therefore,
eneralizing across different subjects/sessions can be viewed as re-
ucing the discrepancy between several domains according to some
easurements.

In the current literature, TL strategies can be divided into DA and
G families. These families differ mainly in which data are processed
uring the learning stage. DA methods assume that data sampled from
t least two different domains are available, consisting in one or more
ource domains and one target domain. Usually, methods involving
ore that a single source domain are said multi-source. In the Emotion
ecognition field, the proposed tasks usually involve several subjects
r sessions with different statistical properties, therefore they can be
asily reduced to TL framework. In particular, since data belonging
o different subjects/sessions can have different statistical properties
ue to the non-stationarity of the signal, each subject/session can be
iewed as a different domain. However, several TL strategies proposed
n literature assume only one source and a target domain, the former
orresponding to all the available labeled data (usually the whole train-
ng set), and the latter corresponding to the unlabeled one (usually the
est set). In other words, all the labeled data available are considered
s belonging to the same domain, regardless the actual probability dis-
ributions they belong to. Therefore, these methods implicitly assume
hat all subjects/sessions belong to the same probability distribution,
hich is equivalent to considering all data as belonging to the same

ubject/session. Instead, more recent works handle the available data
n a multi-source framework, considering each labeled subject/session
s belonging to different domains.

In contrast, DG methods assume that labeled data sampled from
≥ 2 source domains are available, while no data from the target

omain is known. DA and DG methods are getting attention in the
cientific literature in different contexts (e.g. image classification and
oice recognition), and several proposals have been made until now.
ne trend of the literature is to adapt DA/DG methods originally
roposed for a context to another one. Recently, several attempts were
ade to adapt well-established DA/DG methods in tasks involving the
EG-based Emotion Recognition. For example, in [113] DA strategies

nitially proposed for image classification are adapted for EEG Emotion (

8 
ecognition. However, each context has its characteristics and pecu-
iarities, making the transfer of a DA method from a task to another
ot straightforward.

DA methods
When unlabeled data belonging to the target domain are used

uring the training stage, the method is considered UDA. If no labeled
arget data is available in the training stage, the approach is said
nsupervised. Conversely, if labeled target data is also exploited during

raining, the method is considered Semisupervised. Several UDA meth-
ds relied on minimizing discrepancy measures between the source and
he target domains. In [73], these methods are categorized into shallow
DA and deep UDA, where:

(A) Shallow UDA: a function to build a new data representation is
given a priori, at most learning the mapping parameters.

(B) Deep UDA: the data representation is fully learned as part of the
UDA strategy.

However, this categorization does not consider works assuming that
ot all the training data can effectively be useful for the target space.
n order to avoid negative transfer [114], a selection of the training
ata may be necessary. Therefore, in this work the Instance Reweighting
nd Selection (IRS UDA) category is added. Reviewing the literature, it
esults that IRS UDA are often used together with Shallow UDA and
eep UDA. In the proposed taxonomy, such methods are identified as
ybrid UDA.

In the following part of this Section, reviewed studies are reported
ccording to the categorization above discussed.

A) Shallow UDA methods
Shallow UDA strategies proposed in literature typically rely on one

f following alternatives:

(A1) Target Space-Based (Shallow UDA TS): these methods search for a
good transformation which directly maps data belonging to the
source domain 𝑆 to the target domain 𝑇 space;

(A2) Shared Space-Based (Shallow UDA SS): these methods aim to find
a transformation that maps source 𝑆 and target 𝑇 data in a
new shared space where the discrepancy between 𝑆 and 𝑇 is
minimized.

nce all the data are projected in a common space, any supervised
ethod can be applied for classification, as both source and target
omains follow a similar distribution.

A1) Shallow UDA TS methods:
The proposal made in [115] tried to align the source space toward

he target one (Subspace Alignment, SA). Rather than using the avail-
ble data in the original feature spaces, Principal Component Analysis
PCA) is adopted for a more robust and compact data representation.
ore specifically, two PCA projection matrices 𝑍𝑆 and 𝑍𝑇 are com-

puted for the source and the target domains, respectively. Therefore, a
transformation matrix 𝑀∗ able to align the source space to the target
ne is computed as:
∗ = argmin

𝑀
||𝑍𝑆𝑀 −𝑍𝑇 ||

2
𝐹 .

his problem has a closed form solution, that is 𝑀∗ = 𝑍𝑇
𝑆𝑍𝑇 .

In [116], Adaptive Subspace Feature Matching (ASFM) is proposed
or EEG-based Emotion Recognition. Based on SA, ASFM takes into
ccount that the subject’s fatigue and attention level can lead to
ismatched marginal and conditional distributions. In [117] (Multi-

ubject Subspace Alignment, MSSA) the ASFM strategy is applied
onsidering each source subject individually (multi-source), using the
rojected data as input for subject-specific classifiers.

Differently, [33] adopted Robust Principal Component Analysis
∗ ∗ ∗
RCA, [118]). RCA decomposes a set 𝑋 of data as 𝑋 = 𝐿 +𝑆 , with 𝐿



A. Apicella et al.

w

p
E
n
a
c
u
a

(

c
i
p
s
m

w

k
i
t
t
a
a

d
t
s
o
d
T

t
t
o
I
c
t
p

𝐵

w
w
i
T
m

H
(
t
p
t
o

w
t
s
p
g
a

P
i
p
P
R

a
e

p
T
m
e
f
i
o
I
i
d
i
e
M

𝑀

w
r
a
i
w

t
p
c
t

(

r

(

a

Neurocomputing 604 (2024) 128354 
and 𝑆∗ low-rank matrix and sparse matrix respectively. These matrices
are computed resolving the following optimization problem:

𝐿∗, 𝑆∗ = argmin
𝐿,𝑆

||𝐿||∗ + 𝜆||𝑆||1 s.t. 𝑋 = 𝐿 + 𝑆

where || ⋅ ||∗ is the matrix nuclear norm, || ⋅ ||1 the 𝑙1 norm and 𝜆 a
eighting parameter.

In [119], Style Transfer Mapping (STM, [120]), a method originally
roposed for personalized handwriting recognition task, is adapted for
EG Emotion Recognition to generalize across different subjects. In a
utshell, STM maps the source data to the target data by means of
n affine transformation. The solution of the proposed problem has a
losed form, so it can be easily computed. Few labeled target data are
sed to select source data, therefore the method assumes that a small
mount of labeled target data is available.

A2) Shallow UDA SS methods:
Among the Shallow UDA SS methods, the Maximum Mean Dis-

repancy (MMD, [121]) is one of the most used discrepancy measure
n DA/DG strategies. MMD was originally proposed to test if two
robability distributions are different or not. Formally, the authors
how that, in a Reduced Kernel Hilbert Space (RKHS), a discrepancy
easure between two distributions 𝑝 and 𝑞 can be defined as:

𝑀𝑀𝐷(𝑝, 𝑞) = ||E𝑋𝑆∼𝑝(𝜙(𝑋𝑆 )) − E𝑋𝑇 ∼𝑞(𝜙(𝑋𝑇 ))||
2
𝐻

where 𝜙(⋅) is an appropriate feature mapping. It results that, in a RKHS,
𝑀𝑀𝐷(𝑝, 𝑞) = 0 if and only if 𝑝 and 𝑞 are the same.

MMD can be empirical estimated as the difference between the
averages of two datasets sampled from the two distributions, once
they are projected in a RKHS. Therefore, considering 𝑋𝑆 and 𝑋𝑇 sets
sampled from the source and the target domain respectively, empirical
𝑀𝑀𝐷(𝑋𝑆 , 𝑋𝑇 ) can be expressed as:

𝑀𝑀𝐷(𝑋𝑆 , 𝑋𝑇 ) =
‖

‖

‖

‖

1
|𝑋𝑆 |

|𝑋𝑆 |
∑

𝑖=1
𝜙(𝐱(𝑖)𝑆 ) − 1

|𝑋𝑇 |

|𝑋𝑇 |
∑

𝑖=1
𝜙(𝐱(𝑖)𝑇 )

‖

‖

‖

‖

2

𝐻

here 𝐱(𝑖)𝑆 and 𝐱(𝑖)𝑇 are elements of 𝑋𝑆 and 𝑋𝑇 , respectively.
Transfer Component Analysis (TCA, [122]) is one of the most well-

nown MMD-based DA method. Two different TCA versions were orig-
nally proposed: (i) an unsupervised one, consisting in finding a data
ransformation such that the data variance is maximally preserved and
he MMD distance between the domains’ distributions is minimized,
nd (ii) a supervised one, where the dependence between training data
nd labels is taken into account.

A performance evaluation of the Unsupervised TCA applied on EEG
ata for Emotion Recognition was made in [123]. Instead of using all
he available EEG data to build the transformation function, a random
election of samples from source domain data is considered, leaving
ut the data of a subject as target. In [124], several TCA spaces with
ifferent dimensions are evaluated on the SEED dataset. Instead, in [32]
CA is tested on self-made EEG data.

In [125] through Transfer Sparse Coding (TSC) the MMD was used
o find a sparse representation of image data sampled from different dis-
ributions. Sparse representations are well-known data approximations
btained as linear combinations of elements in a set of basis functions.
n a nutshell, a sparse coding method searches for a representative over-
omplete set of basis functions (a dictionary) together with an encoding
hat best represents the data. In its simplest form, the sparse coding
roblem can be expressed as

∗, 𝑆∗ = argmin
𝐵,𝑆

||𝑋 − 𝐵𝑆||2𝐹 + 𝜆
𝑛
∑

𝑖=1
|𝐬(𝑖)|

here 𝑋 ∈ R𝑚×𝑛 is a matrix containing the 𝑛 data points to approximate
hile 𝐵 ∈ R𝑚×𝑘 and 𝑆 ∈ R𝑘×𝑛 are the dictionary matrix and the encod-

ng matrix respectively, with 𝑘 > 𝑚 to ensure the over-completeness.
he sparsity is induced by the second equation term on the coefficient
atrix columns 𝐬 and regularized through the hyperparameter 𝜆 ∈ R.
𝐢 t

9 
owever, if 𝑋 is composed of data sampled from two different domains
e.g., 𝑋 = [𝑋𝑆 |𝑋𝑇 ]) the above formalization does not take into account
he differences between the marginal distributions. To deal with this
roblem, [125] adds to the objective function a further regularization
erm that considers the MMD distance between the different domains
f the input data.

Similarly, PCA and Fisher criteria [126] are used together in [127]
ith the aim to compute a common dictionary between source and

arget domains, but preserving both the local information between
amples and the discriminative knowledge between the domains. The
roposed strategy requires a little set of labeled data from the tar-
et domain during the training stage, resulting a Semi-supervised DA
pproach.

While it is not specifically designed for Domain Adaptation, Kernel-
CA (KPCA, [128]) is often used in comparisons with several studies
nvolving DA methods. In fact, KPCA uses the kernel trick [129] to
roject the data into a kernel space. Projected data are then fed to
CA. A comparison between Kernel-PCA and TCA for EEG Emotion
ecognition is reported in [123].

In [130] several shallow UDA approaches such as TCA, KPCA, TSVM
re evaluated on SEED dataset, while in [131] similar methods are
valuated on SEED and DEAP also for cross-dataset generalization.

Subspace Alignment Auto-Encoder (SAAE) [132] is a different pro-
osal which combines together auto-encoders and subspace alignment.
he subspace alignment is obtained through MMD and KPCA to maxi-
ize the embedded data variance. Before the transformation, an auto-

ncoder trained on both source and target data was employed to extract
eatures from the data. One criticism of MMD and similar approaches
s that they aim to minimize the discrepancy between distributions
nly by relying on input features, without considering class predictions.
n [133] the class predictions are exploited to reduce the class confusion
ssue, occurring when a classifier trained on data belonging to a source
omain may confuse to distinguish the correct class from a similar class
n the new domain. Th proposed Minimum Class Confusion (MCC) loss
xploits the prediction on the target data to reduce class confusion.
CC is defined as

𝐶𝐶
(

𝐶(𝑋𝑇 )
)

= 1
|𝐿|

|𝐿|
∑

𝑖=1

|𝐿|
∑

𝑗=1
|𝑄𝑖𝑗 |

here 𝑄 is the class correlation matrix. More in detail, each entry 𝑄𝑖𝑗
eveals the relationship between the class 𝑖 ∈ 𝐿 and the class 𝑗 ∈ 𝐿 in
given batch of data 𝑋𝑇 . A possible way to compute 𝑄 is reported

n [133]. [134] adopts Gated Recurrent Unit (GRU, [135]) together
ith MCC loss in an ER task.

The authors of [131] exploit Maximum Independence Domain Adap-
ation (MIDA) [136] in the EEG Emotion Recognition case. MIDA
rojects the data into a subspace to reduce the inter-domain dis-
repancy in distributions considering independence between domains
hrough the Hilbert–Schmidt Independence Criterion (HSIC, [137]).

B) Deep UDA methods
In deep UDA approaches, a transformation of the feature data

epresentation is embedded into the DA method, in an end-to-end way.
Deep UDA methods can be further divided in:

(B1) Common Space (Deep UDA CS): source and target are projected in
a new shared space;

(B2) Common+Specific Spaces (Deep UDA CSS): source and target are
first projected in a unique shared space, then, for each available
domain, a projection into an ad-hoc space is adopted.

B1) Deep UDA CS methods:
Common Space methods assume that data belonging to both source

nd target domains can be projected in a shared common space where
he classes are more easily separable. As Deep UDA CS methods, [138]



A. Apicella et al.

a
M
h
D
u
R
i

d
e
D
t
c
o
p
f
D
u
E

(
r
C
g
i
c

L
d
T
t

N
c
c
f
a
f
s
i
c
m
m
a
u

o
a
b
t
p
h
a
d
w
s
u
i

a
g
B
b
a
d

i
a
s
1
N
a
a
P
N
i
I
n
p
b
m
A
t
b
t
e
d
a
a
d
A
p

s
D
d
w
t
T
t
t
f
A
t
t
b
b
o
a
c

a
m
a
s
d
s
m
w
t
p

w
d

Neurocomputing 604 (2024) 128354 
(Deep Domain Confusion, DDC) consists in two identical neural net-
works trained together, the former classifying data from the source
domain, the latter adapting the distance between source and target
domains using features of target data. In [139], an extension of MDD
able to exploit the hidden layers activations of a CNN was proposed.
The suggested Joint Maximum Mean Discrepancy (JMMD) uses the
activations provided by all the CNN layers as surrogates of the 𝑃 (𝑋𝑠, 𝑌𝑠)
nd 𝑃 (𝑋𝑡, 𝑌𝑡) distributions. It then computes a generalization of the
MD metric on joint distributions to measure discrepancy. The JMMD

as been investigated in [140] as part of the loss function for a
NN in an Emotion Recognition task. Instead, the authors of [141]
sed DDC with Residual CNNs [142] for cross-subject EEG Emotion
ecognition. To be fed to CNNs, the EEG inputs are firstly transformed

nto Electrode-Frequency Distribution Maps (EFDMs, [143]).
The authors of [144] proposed a DA framework exploiting a stan-

ard CNN, usually composed by a sequence of convolutional layers
nded by a fully-connected ones. The starting assumption is that in a
NN the transition from general to particular task features grows with

he increasing of the network depth. Indeed, in a CNN, while the initial
onvolutional layers learn general features, the final fully-connected
nes learn domain specific features that are not transferable. Their pro-
osed model (Deep Adaptation Network, DAN) deeply adapt the final
ully connected layers minimizing the Multi-Kernel Maximum Mean
iscrepancies (MK-MMD, [145,146]), a multiple kernel variant of MMD
sed as distribution discrepancy measurement. DAN was evaluated in
EG Emotion Recognition on SEED and SEED-IV in [147].

In [148] the proposed Multi-Spatial Domain Adaptation Network
MSDAN) aligns source and target domains considering the spatial
elationships between the electrodes. This is done by using Graph
onvolutional Layers and exploiting MMD distance in the resulting
raph space. Differently from other works, [148] uses data acquired
n a Virtual Reality (VR) environment to generate stimuli, and the
ross-device problem is taken into account.

One of the most used deep UDA strategies is the Domain Adversarial
earning, proposed in [73,149,150]. The basic idea is to make the
ata distributions indistinguishable for an ad-hoc domain classifier.
he authors proposed an embedded DA problem formulation joining
ogether the desired task and the source–target discrepancy.

This can be obtained by a DNN model (Domain Adversarial Neural
etwork, DANN) that, for each input, predicts both the corresponding
lass and the belonging domain. DANN is composed of three main
omponents: a feature extractor, a label predictor, and a domain classi-
ier. The role of the domain classifier is to distinguish between source
nd target domain samples, while the feature extractor is responsible
or transforming the input data into a feature representation that
hould be domain-invariant, therefore minimizing the domain-specific
nformation. Finally, the label predictor is typically used for the main
lassification task. The learning stage searches for a mapping maxi-
izing the class prediction performances and, at the same time, also
aximizing the domain classifier loss to make the feature distributions

s similar as possible. In [151] a general framework for adversarial
nsupervised adaptation methods is proposed.

DANN is evaluated in EEG Emotion Recognition task in [152]
n SEED. In [153] BiDANN, a variation of the original DANN, is
dopted for EEG Emotion Recognition, but considering the differences
etween the brain hemispheres. More in detail, EEG data from the
wo hemispheres are processed separately: two different feature map-
ings, together with a domain discriminator, are learned for the brain
emispheres. The differences between the hemispheres in DA are not
ddressed only by BiDANN; for instance, BiHDM [154,155] uses two
ifferent RNN to encode the data belonging to the two hemispheres,
hile a domain discriminator is used to mix up the features of the

ource and the target domains. [156] a bidirectional LSTM (BiLSTM) is
sed to capture regional and global spatial–temporal features relying on

nformation provided by the channel placement. In particular, features r
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re grouped into several clusters corresponding to different brain re-
ions determined by the spatial locations of EEG electrodes. In this way,
iLSTM networks should learn regional deep features, further weighted
y a proper dynamic weighting scheme. A final domain classifier is
dopted to enforce the learned space to be discriminative between
ifferent domains (in this case, subjects).

In [157] the authors propose a new DA method which is framed
n the context of deep adversarial learning approaches. In particular,

temporal convolutional network is used as encoder. The method is
uccessfully evaluated in both cross-subject and cross-dataset. In [158,
59], domain adversarial approaches are used together with Graph
eural Networks (GNN, [113]) as feature extractor. In particular, the
uthors of [158] lead the learning process to focus on the more tricky
reas of the feature space leveraging on an attention mechanism [160].
erformance is evaluated on SEED dataset. Instead, [159] proposed a
ode-wise Domain Adversarial Training (NodeDAT) method to regular-

ze the learning of a GNN for better subject-independent performance.
n EEG literature, domain adversarial learning and attentional mecha-
isms are widely used in several other studies for EEG tasks, for exam-
le in [151,156,161–163]. In particular, in [156] possible differences
etween several brain regions are exploited with a proper attention
odule. In [164] (ATtention-based LSTM with Domain Discriminator,
TDD-LSTM) a domain discriminator in terms of LSTMs is presented

o reduce the discrepancy between the distributions. An attention-
ased encoder–decoder focuses on emotion-related input data, helping
he final classification probability estimation. The authors of [165]
xploits the Covariance Matrices between EEG data and Riemannian
istances [166]. The work proposed a new kind of ANN (daSPDnet)
ble to retain the intrinsic geometry information of the data. However,
little set of labeled data belonging to the target domain are required
uring the training process, resulting as a semi-supervised method.
similar approach, also requiring a few of labeled target data, was

roposed in [167].
In [151], Adversarial Discriminative Domain Adaptation (ADDA), a

trategy to tackle the DA on an image classification task, was proposed.
ifferently from DANN, the ADDA basic idea consists in building two
ifferent functions for the source and the target domains, represented
ith two different encoders 𝐸𝑆 and 𝐸𝑇 , respectively. 𝐸𝑆 is trained

ogether with a classifier 𝐶 using labeled data from the source domain.
hen, through an adversarial learning procedure, 𝐸𝑇 is trained to map
he target domain data in the same output space of 𝐸𝑆 . Consequently,
arget data can now be classified by 𝐶. A similar idea was adapted
or EEG Emotion Recognition tasks in [168] (Wasserstein GAN Domain
daptation, WGANDA). More in detail, two generators, the former for

he source and the latter for the target domain, are pre-trained to output
wo feature vectors of the same size. These vectors are assumed to
elong to the same feature space. Next, an adversarial training phase
ased on Wasserstein distance minimization fine-tunes the parameters
f the generators so that the outputs match each other as closely
s possible. The combined outputs are then used as input to a final
lassifier.

Inspired by the MMD optimization made in [132], in [161], TDANN,
two stage DA method is proposed. In the first stage, MMD is mini-
ized training a 2D CNN equipped with adaBN [169]. To be fed to the

dopted 2D CNN and to preserve spatial information, the EEG input
ignals are transformed into images [170,171]. In the second stage, a
omain discriminator is used to further reduce the distance between the
ource and the target distributions. Similarly, [172] proposed the Maxi-
izing Domain Discrepancy for EEG-based ER (MMD-ER) architecture,
hich adopts both MMD and an adversarial training procedure to align

he features produced by a CNN and an autoencoder, respectively. The
roposal was tested in a cross-session task.

However, one of the main problems with DANN and similar net-
orks is that only feature data without any labels are considered
uring the adversarial learning process. This type of DA methods can

esult in overlapping distributions of source and target domains by
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reducing the distance between them without considering the belonging
classes. This overlap can lead resulting domains to not be distinguish-
able. Differently, in [173] (Maximum Classifier Discrepancy, MCD), the
labels of the source domain data are also exploited to build good task-
specific decision boundaries between the classes. In particular, MCD
exploits different classifiers fed with the same inputs and evaluating
the discrepancy. More in detail, two classifiers 𝐶1 and 𝐶2 having the
same structure are fed with the output of a feature generator 𝐺. 𝐺
can be fed with data 𝐱 coming from the source or the target domain.
The output of 𝐶1 and 𝐶2 are the labels of the input 𝐱 transformed
by 𝐺. Before the training step, 𝐶1 and 𝐶2 start from different initial
states, rising two different classifiers after the training. How much
the two classifiers disagree on their predictions on the same input is
defined discrepancy by the authors. Indeed, the generator 𝐺 is trained
to minimize the discrepancy projecting source and target data in a same
space, while 𝐶1 and 𝐶2 are trained to maximize the discrepancy (so
that the two classification boundaries are far from each other). The
learned generator 𝐺 will be able to relocate the target domain data
in the source space, but considering its most probable belonging class.
Task-Specific Domain Adversarial Neural Network (T-DANN, [174]) is
an MCD similar model proposed for EEG Emotion Recognition. T-DANN
adapts the conditional distribution between domains and, at the same
time, adapts classification boundaries between classes exploiting MCD
in conjunction with a domain discriminator.

In [175] the authors propose an UDA approach for EEG-based
Emotion Recognition based on a Multi-source co-Adaptation framework
by mining diverse Correlation Information (MACI). Notably, MACI
considers each subject as belonging to a different domain. The pro-
posed method is compared with several standard (shallow) DA ap-
proaches and CNN-based (deep) DA approaches. Cross-subjects and
cross-datasets evaluations are performed.

In [176], Neighborhood Component Analysis (NCA, [177]) is em-
ployed to learn the Mahalanobis distance between data. Therefore,
data are linearly projected into a subspace such that the classification
accuracy is maximized and the dimensionality of the EEG features
is reduced. The obtained features are then used with Geodesic flow
kernel for Unsupervised Domain Adaptation [178]. Instead, Multi-
source Domain Transfer Discriminative Dictionary Learning modeling
(MDTDDL) [179] adopts a dictionary learning procedure to learn a joint
subspace between source and target domains [180]. DEAP and SEED
are evaluated both in cross-subject and cross-session mode.

(B2) Deep UDA css methods:
Although several studies assume that a single common feature space

is enough for DA, Common+Specific Space (Deep UDA CSS) methods
go in different direction, assuming that a single shared classifier built
in a shared space still has poor performance with never seen ses-
sions/subjects. Notably, in these studies each available subject/session
is considered as a single domain, and not as a whole.

Hypothetically, EEG data representations can be split into emotional
components shared among all the subjects, and private components,
specific to each subject. Leveraging on this hypothesis, [23] built a
shared encoder and private encoders for each source subject data,
with the aim to capture the subject-invariant emotional representations
and private components, respectively. The learned encoders are then
used to build several emotion classifiers. Finally, a classifier for a
new subject is built. The parameters of these classifiers are learned
exploiting the shared encoder. A fusion strategy between the classi-
fiers’ outputs is then applied to obtain the final classification result.
However, the proposed framework requires few labeled target data,
falling in the semi-supervised DA category. Multi-source EEG-based
Emotion Recognition Network (MEERNet) [181] proposed a different
classifier for each different domain (subject or session), preceded by
a feature extractor shared by all the domains. Final classification is
made averaging between domain-specific classifiers. Similarly, [182]

proposed a framework composed of a common feature extractor to
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map all the domains in a common subspace, a main task classifier or
regressor, and private discriminators for each domain. The training is
made reducing the Wasserstein distance between the marginal distribu-
tion of each source domain and the target one in an adversarial way.
In [183] the authors proposed a Multi Source-Marginal Distribution
Adaptation (MS-MDA) algorithm for EEG Emotion Recognition. Also
in this case, the key idea is that the final response is obtained by
aggregating the responses of different target–source specific classi-
fiers, preceded by a common feature extractor. Notably, the authors
explore the impact of different types of data normalization on the
performance of the proposed model. MS-MDA is also compared with
several standard DA methods. Similarly, the authors of [184] proposed
Multi-Source and Multi-Representation Adaptation (MSMRA), an ap-
proach with many similarities with MS-MDA. Both cross-subjects and
cross-sessions evaluations are performed.

SDA methods
Supervised DA methods exploit labeled data from both source and

target domain. In [41] a pretrained version of InceptionResnetV2 [185]
is used as feature extractor for EEG data. The classification is made
by a final network layer added to the InceptionResnetV2 network. In-
stead, [186] exploited DenseNet121 [187] as pre-trained model to build
a new architecture fed with EEG data transformed into spectrogram
images.

In [143] a CNN trained on different subjects and sessions of the
SEED dataset is then fine-tuned on a small amount of data acquired
from a subject belonging to DEAP dataset. This was made to evaluate
the cross-dataset Emotion Recognition performance.

In [188] several classifiers trained on data belonging to differ-
ent subjects and sessions are ensembled together in a final classifier
suitable both for cross-session and cross-subject EEG Emotion Recog-
nition. Differently, [189] adopted the few-shot learning paradigm for
the Emotion Recognition task both in cross-subject and cross-session
modalities. Few-shot learning assumes that few labels from different
domains are available. The authors considered different subjects as
different domains, therefore they used few labeled EEG acquisition
for each subject to build a cross-subject emotion classifier. However,
the adopted few-shot evaluation is hard to compare with classical
ML evaluation protocols adopted in the greatest part of EEG Emotion
Recognition literature. Other cases of few-shot learning in EEG Emotion
Recognition are proposed in [190–192]. In particular, [191] exploits a
few-shot learning approach together with an attention mechanism to
deal with the excessive alignment problem. Few-shot learning-based
approaches are also used in [192] where Siamese Networks [193] are
used to evaluate the similarity between samples belonging to different
domains. Siamese networks were originally proposed to determine
whether two different inputs belong to the same class or not. In [192]
the Siamese framework is enhanced to handle different domains.

IRS UDA & Hybrid UDA
IRS UDA methods take into account that not all the training data

can effectively be useful for the target space. Indeed, a part of the data
can lead toward bad performance, therefore it can be better to remove
them or to reduce their weights in the training stage. In [194] TrAd-
aBoost [195], a semi-supervised DA method acting on the instances’
weights, is used to score the source EEG data in order to avoid possible
negative influence of the data during the training process. In a nutshell,
a small amount of labeled target data available during the training stage
helps to vote on the usefulness of each of the available source data in-
stance. As initial step, only data belonging to the source subjects closest
to the target one are selected. Similarity between subjects is computed
according to the MMD similarity and fed to TrAdaBoost as auxiliary
data. The authors of [196] propose Progressive Low-Rank Subspace
Alignment (PLRSA), a novel approach based on TrAdaBoost algorithm

and TCA. Importantly, a tiny amount of labeled target data is used.
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The proposed method is evaluated in both cross-subjects and cross-
sessions scenarios and compared with five state-of-the-art DA methods.
The results seem promising, however the time complexity is a little
more expensive than related state-of-the-art methods. In the revised
literature, IRS UDA methods are often used as an initial step of other DA
methods. For instance, in [34,197] the similarity between source and
target EEG data is measured using the Pearson Correlation Coefficient
and the Average Frechet Distance, respectively. In particular, in [197]
EEG source data closer to the available target data are projected into
a new space through TCA, together with the target one. Finally, the
classification step is made by an Echo State Network (ESN, [198]).

In [199] (DMATN) source data belonging to the existing subjects are
divided into several subdomains. Then, a set of subdomains is chosen
as the most relevant ones for the target data. The proposed architecture
combines together DAN and DANN to learn representation that are
domains invariant.

DG methods
Differently from classical DA, DG assumes that labeled data from

several domains are available, but no data from the target domain is
observed during the training stage [200]. DG methods can be divided
as:

(A) shallow DG: a data transformation is given a priori;
(B) deep DG: the data representation is learned as part of the DG

strategy.

(A) Shallow DG methods
Shallow DG methods share the same principles of shallow UDA

ones, building a shared space between domains, letting the input
data representation unchanged. Domain Invariant Component Analysis
(DICA) [200] searches for common features across several domains.
Features are transformed by a learned orthogonal transformation able
to minimize the dissimilarity between a set of known domains and, at
the same time, preserving the relations between data features and their
real labels. The authors also provided an unsupervised DICA version
which did not take care of the class labels.

In [201], Scatter Component Analysis (SCA) is proposed. The au-
thors’ goal is to propose a method that fits both DG and DA require-
ments. SCA searches for a data transformation where, at the same
time, (i) the source and the target domains are similar, (ii) elements
of the same class are similar, (iii) elements of different classes are well
separated, and (iv) the variance of the whole data is maximized. This is
made introducing Scatter, a measure closely related to MMD. In [202],
SCA and DICA are applied and evaluated on SEED dataset.

(B) Deep DG methods
On the other side, deep DG methods embed the data representation

as part of the generalization strategy. In [203], data from similar
subjects are used to train the same classifier. The similarity is computed
through a clustering algorithm. This subset of similar subjects is used
to train a final CNN classifier. Notably, in [204] a similar strategy is
adopted also in the DA context.

[205] joined together BiDANN and VAE, obtaining a subject-inv-
ariant Bi-lateral Variational Domain Adversarial Neural Network (BiV-
DANN). In the proposed work, the learned features are further refined
by domain adversarial training made across different subjects, with the
aim to learn subject-independent features. Furthermore, to maximize
cross-dataset performance, spectral topography data of the EEG signal
are used as input. The authors of [206] proposed a Multi-Branch Net-
work (MBN) model to separate ‘‘background’’ from ‘‘task’’ features. In
particular, two different branch networks learned background features
and task features, respectively. The learning process adopted data with

opposite task labels and a contrastive loss function.
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6. Discussion

The pie charts in Fig. 5 show some statistics about the papers
included in the survey. First of all, in Fig. 5. (a) is evident that almost
three quarters of the studies surveyed (73.7%) focus on a cross-subject
mode of generalization, while cross-session studies account for only
16.5% and only 9.8% operate a cross-dataset mode of generalization.

The pie chart in Fig. 5. (b) shows the number of times each
EEG dataset is exploited in the reviewed literature. The mainly used
datasets are SEED (44.6%) and DEAP (27.3%). This is followed by
9.9% of studies that propose their own self-produced dataset. Among
the other datasets available in the literature, only SEED IV stands out
(at 5.8%), which is interesting in that it adopts a discrete space of
four emotions for classification (happy, sad, fear and neutral). Instead,
each of the other datasets do not exceed 5% (MAHNOB [207] and
DREAMER [59] (3.3%), CMEED and MPED [208] (1.7%), ASCER-
TAIN [209], MDME [210], and SDMN [211] (0.8%)).

Fig. 5. (c) offers a statistic about the interest of the authors on the
studies examined in the various perspectives of emotion representation.
As already mentioned in Section 1.3, the two dominant perspectives,
and the only ones considered in the literature examined, are those
based on categorical and dimensional models. More than 80% of the
works are based on a representation of emotions, and then their sub-
sequent classification in terms of valence and arousal (and only in one
case also dominance [165]).

Finally, graph 5.(d) shows the percentage distribution according to
the proposed taxonomy. Looking at this graph, it is evident that despite
the majority of generalization studies still being tied to traditional
approaches (34.2%), a significant percentage is moving towards the
use of deep machine learning (Deep UDA CS), reaching 29.3%. This is
followed by Shallow UDA SS approaches (9.8%), Deep UDA CSS (6.1%),
Shallow UDA TS and Supervised DA (4.9%), IRS UDA (3.7%), Hybrid
UDA and Deep DG (2.4%) and finally Shallow DG (1.2%).

The Table 2 provides a brief overview of different methods for
quick comparison. For methods focused on Domain Adaptation, having
data from the target domain is crucial. In specific applications, this
means that new participants would need to go through initial data
collection sessions. These sessions can also be particularly structured
(calibrations) if labels beyond data are requested (Supervised DA).
Recently, new methods are trying to lighten the calibration stage, by
minimizing the quantity of data and labels to be collected (few shot
methods). On the other hand, some DG strategies might offer plug and
play solutions, but they rely on having a large amount of public data
(in particular, in the case of Data-driven Transformation) not available
so far. Furthermore, not all the data can be adapted to the Transfer
Learning procedure, therefore a further data selection strategy can be
part of the method. Concerning the output, certain strategies presume
that a single feature projection space is sufficient to achieve good
generalization performance, whereas others opt to construct multiple
spaces with the belief to enhance generalization performance.

Regarding UDA methods, it is noteworthy that a significant por-
tion of surveyed shallow UDA approaches focused on optimizing the
Subspace Alignment (SA) discrepancy or the Maximum Mean Discrep-
ancy (MMD) discrepancy. Particularly, MMD has garnered considerable
attention in the literature as it enables the creation of a shared com-
mon space where both target and source domain data are projected.
This differs from SA-based methods (or similar Target Similarity-Based
methods), which seek a transformation to fit data from one domain
to another, assuming that the existing domain can correctly repre-
sent all the data. On the other hand, numerous deep UDA methods
leverage adversarial learning paradigms. The multilayer structure of
DNNs allows the first layers to specialize in feature extraction, and
the subsequent layers in classification. The former can be specialized
to project the data into a suitable space where domain differences are

minimized. Consequently, adversarial approaches appear to be the most
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Fig. 5. Pie charts for distribution of papers occurrences according to: (a) generalization types, (b) used datasets, (c) emotional theories, (d) categories of the taxonomy.
Table 2
Comparison of the transfer learning methods according to the use of target data/labels and the processing procedure. ‘X’ indicates the properties
of the methods.

Target data All target labels Data-driven Data selection Single space Multiple space
exploitation exploitation transformation implementation generation generation

Shallow DG
Deep DG X
Supervised DA X X X
Hybrid UDA X X X
IRS UDA X X X
Shallow UDA TS X
Shallow UDA SS X X
Deep UDA CS X X X
Deep UDA CSS X X X X
commonly used technique in the literature to construct an appropriate
set of extractor layers for this purpose.

In Table 4 all papers included in the review are reported, indicating
if belonging to the proposed taxonomy or to classical ML methods.
Moreover, for each research study as the type of generalization (cross-
subject, cross-session, or cross-device), the EEG dataset, the adopted
classifier (whether proposed as a personal contribution or adopted from
the literature), and the validation strategy is reported. The best per-
former solutions in terms of mean classification accuracy are proposed
in Table 3. Only cross-subject studies were considered, as most of the
studies examined. Ten classification issues were focused on. Each issue
is defined by considering the number and type of classes (binary and
ternary on valence and arousal, quaternary on the two-dimensional
valence-arousal plane, binary and quaternary on discrete dimensions)
and the adopted dataset (DEAP, SEED, other). For each issue, the
best performer study in terms of accuracy was identified. Only studies
reporting both mean accuracy and standard deviation were included in
the performance assessment. In Fig. 6 a timeline is depicted illustrating
the development of the different methods. When at least one article is
published, the method/year cell is gray. Each trophy is associated with
the method (published paper) achieving the best performance in one of
the clusters in Table 3.
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Notably, to date, no robust electroencephalographic patterns are
recognized in scientific literature for correlating with emotional states
[212]. Some studies base their results on the asymmetry of scalp
activations. In general, many theories still coexist and are not sta-
tistically well founded, as they are validated on small experimental
samples [213–215].

When aiming for a generalization goal in EEG-based Emotion Recog-
nition, TL methods are becoming more and more established in the
literature. Domain Adaptation methods (Deep UDA CS, Shallow UDA
SS, IRS UDA, Deep UDA CSS, Shallow UDA TS, and Supervised DA)
exceed 60% of the total surveyed studies and exhibit very high accuracy
performances in the table of best performers (see Table 3). In particular,
Deep UDA CS is used by four best performer studies. This could be also
due to the current massive use of this method in literature.

An emblematic case in this context is [112], namely the best per-
former in the classification issue on SEED IV with four discrete classes.
This is an interesting study based on a self-organized graph construction
module. This solution can be considered as a peculiar implementation
of the well established adaptive filters strategy, when the generalization
goal is pursued by customizing the network to the current input.
Conversely, the DA strategies make the data belonging to different
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Table 3
The most representative studies according to their classification accuracy, categorized by EEG dataset (SEED, DEAP, others), by number and type of classes considered. DIM =
Dimensional; DIS = Discrete; sp = self-produced; VAL = valence; ARO = arousal; LV(A)/MV(A)/HV(A) = low/medium/high valence(arousal).

Proposed Study Dataset Reference #Classes Cross Subject Input Preprocessing Eval.
category theory accuracy data data

CLASSICAL ML [96] DEAP DIM (VAL) #2 (LV/HV) 94.67 ± 12.01 DE Customized Artifact Removal LOO
based on EMG and EOG

HYBRID UDA [197] DEAP DIM (VAL) #3 (LV/MV/HV) 68.06 ± 10.93 TFF + Provided by DEAPa LOO
NL-DSF

DEEP UDA CSS [204] DEAP DIM (VAL-ARO) #2 (LV/HV) 73.90 ± 13.50 DE Provided by DEAPa LOO
#2 (LA/HA) 68.80 ± 11.20

DEEP UDA CS [162] DEAP DIM (VAL-ARO) #4 (LALV-HALV- 62.66 ± 10.45 PSD + Provided by DEAPa LOO, SU2SU
LAHV-HAHV) DE Samples with valence > 4.8 and O2OSE

arousal > 5.2 were discarded.

DEEP UDA CS [191] SEED DIM (VAL) #2 (LV/HV) 97.66 ± 14.46 DE Provided by SEEDb LOO

DEEP UDA CS [164] SEED DIM (VAL) #3 (LV/MV/HV) 90.92 ± 1.05 DE Provided by SEEDb LOO

Other DIM (VAL-ARO) #2 (LV/HV) 94.21 ± 5.88 DE Data was downsampled to 128 Hz, LOO
#2 (LA/HA) 88.03 ± 6.32 a bandpass frequency filter (4–45 Hz)

was applied.

DEEP UDA CS [161] Other DIS (HAPPY, SAD #2 (JOY/SADNESS) 83.79 ± 1.55 A band-pass filter (0.1–64.0 Hz) and LOO
FEAR, ANGER) #2 (JOY/ANGER) 84.13 ± 1.37 DE a notch filter (50 Hz) were applied.

#2 (JOY/FEAR) 81.72 ± 1.30 Artifact removal based on FastICA.

CLASSICAL ML [112] Other DIS (HAPPY, SAD #4 (HAPPY/SAD/ 75.27 ± 8.19 DE Data was downsampled to LOO
FEAR, NEUTRAL) FEAR/NEUTRAL) 200 Hz, a bandpass frequency

filter (1–75 Hz) was applied.

a In DEAP, data was downsampled to 128 Hz, a lowpass frequency filter (0–75 Hz) and an EOG removal were applied.
b In SEED, data was downsampled to 200 Hz and a bandpass frequency filter (4.0–45.0 Hz) was applied.
Fig. 6. Timeline of the different methods. When at least one article is published, the method/year cell is gray. Each trophy is associated with the method (published paper)
achieving the best performance in one of the clusters in Table 3.
domains more homogeneous by means of appropriate transformations.
The different impact between DA and adaptive filters approaches can be
better appreciated by making a comparison between the previous study
and [159]. Both studies address the problem of four-class classification
on the same dataset by using a pipeline based on graphs and deep
networks. In the first case, an adaptive graph is used without any DA
methods, while the second study makes use of a (nonadaptive) graph
approach in combination with DA techniques. Even though they use dif-
ferent approaches, the reported accuracy performances are comparable.
This suggests how the dynamic search for feature extraction procedures
represents an interesting frontier for future studies in this area, not
excluding the potential of using this approach in combination with
DA/DG techniques.

Challenges and potential solutions of the surveyed works

When applying TL methods to EEG data for ER tasks, it is important
to consider various challenges. These include general challenges of
14 
using TL in EEG for ER, as well as specific challenges of each category
within the proposed taxonomy of methods.

General challenges and potential solutions about TL in EEG-based ER
Regarding General challenges about the adoption of TL in EEG-

based ER, we highlight the following:
- Different theoretical backgrounds among the datasets: A concern in

the use of public datasets is its underlying theoretical background, often
uncritically accepted by the scientists. Many studies validate the same
machine learning algorithm on different datasets although the targeted
psychic phenomena are radically different. Indeed, each dataset lever-
ages on a specific theory of emotions and related experimental setup
of emotion elicitation. For instance, DEAP is based on a dimensional
approach and SEED IV on discrete one. Moreover, the documentation of
the public dataset lacks information such as the cross-session temporal
interval. This makes it difficult to distinguish if bias stemming from
previous experience or personal states and environmental factors are
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Table 4
Reviewed studies on generalization strategies for Emotion Recognition. Datasets used, classifiers, evaluation strategy (i.e. LOO = Leave-One-Subject/Session/Dataset-Out), and type
of generalization (i.e. intersubjects, cross sessions and cross datasets) are presented for each entry in the table (sp = self produced, nl = not labeled; for the other abbreviations
see Acronyms section).

Proposed category Study Dataset Classifier Evaluation strategy Cross subject Cross session Cross dataset

[93] DEAP TRFE LOO X
[81] DEAP, MAHNOB RF LOO X X
[82] DEAP, SEED SVM LOO X
[110] SEED, DREAMER DGCNN LOO X
[88] DEAP, SEED SVM LOO X
[89] DEAP, sp SBS LOO X
[92] DEAP TRFE LOO X
[99] DEAP, SEED VAE-LSTM LOO X
[102] DEAP SVM LOO X
[105] DEAP, MAHNOB, DREAMER SVM LOO X
[94] DEAP, MAHNOB RFE LOO X
[95] SEED DECNN LOO X
[101] DEAP, SEED VAE-LSTM LOO X

CLASSICAL ML [103] SEED SVM LOO X
[104] SEED SVM LOO X
[109] ASCERTAIN BiLSTM LOO X
[112] SEED, SEED IV SOGNN LOO X
[80] SEED, sp PTSVM LOO X
[96] DEAP RNN-EL LOO X
[75] SEED-IV OGSSL LOO X
[91] DEAP, MAHNOB, DREAMER SVM LOO X
[97] SEED DySampEns-SVM LOO X
[84] sp FA-NN LOO X
[90] sp SFS- VOTE LOO X
[76] SEED-IV sJSFE LOO X
[83] sp FCM LOO X
[86] DEAP DWT-SVM LOO X
[87] sp HAF-HOC LOO X

[194] DEAP SVM LOO X
IRS UDA [176] DEAP NCA LOO X

[199] SEED DMATN LOO X

[116] SEED ASFM LOO X X
SHALLOW UDA TS [117] SEED MSSA LOO X

[33] MDME, SDMN RPCA ASI X
[119] SEED STM LOO X

[123] SEED TCA LOO X
[132] SEED SAAE SU2SU, SE2SE, LOO X X
[130] SEED TPT LOO X

SHALLOW UDA SS [131] DEAP, SEED MIDA LOO X X
[124] SEED TCA LOO X
[127] DEAP, SEED DASRC LOO X X
[32] sp TCA HO X
[134] SEED, MPED GRU-MCC LOO X

[152] SEED DANN LOO X
[147] SEED, SEED IV DAN LOO X
[153] SEED BiDANN LOO X
[168] DEAP WGANDA LOO X
[141] SEED DDC LOO X

DEEP UDA CS [156] SEED R2G-STNN LOO X
[162] DEAP, SEED nl LOO, SU2SU, O2OSE X X
[155] SEED, SEED IV, MPED BiHDM LOO X
[159] SEED, SEED IV RGNN LOO X
[161] SEED, sp TDANN LOO X X
[163] SEED, CMEED A-DNN LOO X
[164] DEAP, SEED, CMEED ATDD-LSTM LOO X X

[148] sp MSDAN LOO X
[190] SEED nl LOO X
[167] SEED nl LOO X
[174] SEED TDANN SU2SU X
[191] DEAP, SEED SDA-FSL LOO X X

DEEP UDA CS [175] DEAP, SEED MACI LOO X X
[157] DEAP, DREAMER AD-TCN LOO X X
[154] SEED BiHDM LOO X
[179] DEAP, SEED MDTDDL LOO X X
[172] SEED MMD-ER LOO X
[140] SEED JDAN LOO X

(continued on next page)
15 
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Table 4 (continued).
Proposed category Study Dataset Classifier Evaluation strategy Cross subject Cross session Cross dataset

[23] SEED PPDA LOO X
[181] SEED, SEED IV MEERNet LOO X X

DEEP UDA CSS [204] DEAP, sp DASC LOO X
[183] SEED MS-MDA LOO X X
[182] SEED wMADA LOO X

HYBRID UDA [34] sp GNB ASI X
[196] DEAP, SEED PLRSA LOO, SU2SU X X
[197] DEAP ESN LOO X

[41] DEAP, SEED, sp nl LOO X X
SUPERVISED DA [143] DEAP, SEED RCNN LOO X X

[186] DEAP, SEED Densenet LOO X
[192] SEED, DEAP FLADA LOO X

SHALLOW DG [202] SEED DG-DANN, DResNet LOO X

DEEP DG [205] DEAP, SEED BiVDANN LOO X
[206] SEED MBN LOO X
the prevalent source of uncertainty. Furthermore, it is not possible
to control confounding due to circadian rhythms because the exper-
iments (both cross-session and cross-subject) are conducted without
keeping the phase of the day fixed. Finally, at present, the available
public datasets do not adopt an established practice of psychological
screening of the subjects involved. In general, studies on EEG-based
emotion assessment could benefit from administering psychometric
questionnaires to participants. Indeed, psychological data could help
to understand individual differences in emotional response, leading to
clustering of subjects [204]. Recently, unsupervised clustering based on
large datasets is emerging as a promising strategy for empirical identi-
fication of personality types [216]. Meanwhile, correlations have been
found between personality types and EEG patterns [217]. Moreover,
prior psychological assessments allow to manage bias due to individual
traits or states. The introduction of psycho-metric tests and assessments
during the production of upcoming datasets could lead to a much more
fruitful use of data in support of generalization.

- Multi-source as single source: a large part of DA strategies uses the
source data as they all belong to the same domain. This assumption
can be too strong, especially if the source data are acquired in dif-
ferent sessions or, worse, from different subjects. This point is taken
into account by multi-source DA approaches, such as Transductive
Parameter Transfer (TPT) [218], or by multi-source DA approaches
specific for EEG data, such as MSSA or MEERNet, where different
source subjects/sessions are considered as different source domains,
and by DG methods.

- Methods designed in different contexts: originally, several well-
known TL methods were developed outside the Emotion Recognition
framework. In recent years, several studies have exploited these meth-
ods in ER but focusing only on their effectiveness, without conducting
an in-depth analysis of the specific contributions made by TL methods
in this field. In fact, several DA pipelines consist of several steps, and
a comparison of performance with and without TL methods does not
identify the most effective steps. For example, in [219] it is shown
that in several cases the data normalization adopted as first step of
several TL pipelines has a stronger impact on the model generalization
respect to the TL methods themselves. Other studies [104,105] have
confirmed that simple data normalization with low computational
and spatial efforts allows for interesting results in EEG-based Emotion
Recognition, in some cases comparable or better than several current
DA/DG approaches. In general, the merits of TL techniques are not in
question, but in the future, a more in-depth analysis by scientists is
needed, for example by accompanying their proposals with ablation
studies.

- Challenges in online use: most TL methods discussed in the literature
rely on target data that is available before the model is actually
deployed, or at the very least, require calibration data. This avail-
ability is not granted due to additional efforts both for the subjects
16 
and the operators. However, certain applications can benefit from
adapting themselves in real-time using data collected during active
usage [220]. However it is important to consider that, even in this
scenario, the non-stationarity of EEG signals presents a significant chal-
lenge, as it may lead to variable data distributions even within the same
session. Consequently, new strategies like Online Transfer Learning
(OTL, [220,221]) or DG techniques able to capture and leverage the
general characteristics of the data should be explored by the scientific
community.

- Quality of the acquisition devices: another point to take into account
is that the proliferation of EEG acquisition devices on the market is
not always coupled with consistency in terms of quality between the
various devices (considering electrode type and positioning, interfer-
ence shielding, signal-to-noise ratio, amplification strategies, etc.). A
comparison among different studies must take into account the quality
of EEG instrumentation used. The IEC 60601-2-26 standard applies
to basic safety and essential performance of electroencephalographs
used in a clinical environment. Among the requirements, the mini-
mum overall signal quality for an electroencephalographic device to
be considered acceptable is defined [222]. Even if IEC 60601-2-26 is a
standard specifically developed for clinical purposes, it is nowadays the
only available standard for EEG instrumentation quality certification.
In the future, it is desirable for research to be increasingly based on
certified instruments. However, an encouraging trend emerges from the
most recent public datasets. Indeed, they are all based on standardized
equipment: (i) Neuroelectrics Enobio 8 in the case of LUMED [41], (ii)
NuAmp Neuroscan in the case of CMEED [164], and (iii) gtec.HIamp
in the case of the dataset produced by [161].

Specific challenges and potential solutions about TL in EEG-based ER
Specific challenges can be highlighted for each DA category of the

proposed taxonomy. In particular:
- DA methods challenges: in several DA strategies labels of both the

source and target domains are not considered in the alignment of the
domains. This type of DA methods can lead to overlapping distributions
of source and target domains, without any consideration on the belong-
ing classes. As a consequence, the class separability can worsen. This
can be a weakness of some shallow UDA methods, such as unsupervised
TCA. UDA methods require the availability of unlabeled target data in
the training phase. In the Emotion Recognition problem, this implies
that EEG recordings belonging to the target session/subject are pro-
vided. This availability is not granted, especially in online applications.
In alternative, initial calibration data can be acquired from the target
subject, but this requires additional efforts both for the subjects and the
operators. Furthermore, Shallow UDA methods require data projections
between different spaces by means of handcrafted transformations.
Therefore, the adopted transformations may not be suitable for the

available data. Moreover, among proposed data transformations, some
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of them require all the data be processed together, with a large amount
of memory needed. On the other side, Deep UDA methods require a
greater number of parameters with respect to a shallow method. This
can result in high computational complexity, such as in MACI and
Adversarial learning-based methods. This can lead toward overfitting
and the curse of dimensionality problems [129] if not enough data
are available. However, despite their high computational load, Deep
UDA methods exhibit the best performance in terms of accuracy at least
in four of the cases considered, as can be seen in Table 2. Regarding
Supervised DA methods, several of them require ML models pre-trained
on data belonging to the source domain. In several tasks (such as image
classification) several models pre-trained on big amount of data are
freely and publicly available to the user (for example ResNet models
trained on ImageNet [142]). However, it is harder to find similar
models trained on EEG data for ER task. This can be due to the
scarcity of publicly available large dataset. Moreover, also by collecting
together several public dataset, the resulting model may have low
performance. Indeed, being the EEG is a highly non-stationary signal,
it results very susceptible to different experimental conditions. Finally,
Instance Reweighting and Selection methods select or score data to
manage uncorrelation between source and target data. Therefore, a
part of the data may not fully used in the training stage, making these
methods strongly dependent on the score/selection function adopted.
Moreover, their computational cost may be not negligible, since they
re-weight the available data according to their similarity.

- DG methods challenges: in contrast to DA approaches, the aim of
G is to generalize over several domains. Therefore, data belonging to

he target may not be required in the training stage. Instead, data from
everal other domains (i.e. sessions/subjects) are required. This may be
mpractical especially in experimental scenarios, due to the difficulties
f enrolling subjects and the time required to conduct multiple acqui-
itions. Thus, DA approaches are currently the most proposed methods
n Emotion Recognition scenarios involving TL.

. Conclusion

In this work, a systematic literature review collecting papers on ma-
hine learning strategies to pursue (cross-subjects and cross-sessions)
eneralizability in EEG-based Emotion Recognition was carried out.
mong the 418 articles retrieved from Scopus, IEEE (Institute of Elec-

rical and Electronics Engineers) Xplore, and PubMed databases, 75
apers resulted eligible. Furthermore, the studies with the best re-
ults in terms of average classification accuracy were identified, and
he ten best results considering as many classification problems were
ighlighted.

Most of the analyzed works adopted Classical ML or TL approaches
o deal with the generalization problem. In particular, TL methods re-
eived a considerable attention from the scientific community, as their
asic framework is particularly suited to the EEG Emotion Recognition
eneralization problem. In spite of their limitations (i.e., the need for
arget data during the training stage), today DA methods result to
e particularly encouraging to handle the EEG Emotion Recognition
eneralization problem. DG methods aim to achieve a more generalized
pproach compared to DA, which relies on target data availability.
owever, due to the challenging nature of this approach, current DG
ethods generally have lower performance than DA approaches in

he task of Emotion Recognition. Finally, works relying on simple
L methods combined with proper normalization strategies lead to

nteresting results with a low computational load. This can be due to
he ability of some simple transformations to project data into spaces
here shared characteristics between the domains are emphasized.

An interesting perspective based on self-organized graph construc-
ion modules emerged as peculiar strategy. This suggests how the
daptive feature extraction procedures represent an interesting frontier
or future studies in this area, not excluding the potential of using this
pproach in combination with DA/DG techniques.
17 
Future research on EEG-based emotion assessment could also ben-
efit from administering psychometric questionnaires to participants
in order to conduct a psychological screening of the experimental
sample [223]. This could help to understand individual differences in
emotional responses, leading to clustering of subjects also taking into
account the different subjects’ personality.

Acronyms

A-DNN - Adversarial Deep Neural Network
AD-TCN - Adversarial Discriminative Temporal Convolutional Network
ASFM - Adaptive Subspace Feature Matching
ASI - Add-Session-In
ATDD-LSTM - Attention-based LSTM
BiDANN - Bi-hemispheres DANN
BiHDM - Bi-Hemispheric Discrepancy Model
BiLSTM - Bidirectional LSTM
BiVDANN - Bi-lateral Variational Domain Adversarial Neural Network
CS - Common Space-based
CSS - Common+Specific Space-based
DAN - Deep Adaptation Network
DANN - Domain Adversarial Neural Network
DASC - Domain Adaptation Subject Clustering
DASRC - Domain Adaptation Sparse Representation Classifier
DDC - Deep Domain Confusion
DE - Dynamic Entropy
DECNN - Dynamic Empirical Convolutional Neural network
DGCNN - Dynamical Graph Convolutional Neural Networks
DG-DANN - Domain Generalization DANN
DResNet - Domain Residual Network
DWT - Discrete Wavelet Transform
DySampEns-SVM - Dynamic Sample Entropies-SVM
EOG - Electrooculography
ER - Emotion Recognition
ESN - Echo State Network
FA-NN - Factor Analysis Neural Network
FCM - Fuzzy-C-means
FLADA - Few-Label Adversarial Domain adaption
GNB - Gaussian Naïve Bayes
GRU-MCC - Gated Recurrent Unit-Minimum Class Confusion
HO - Hold Out
HAF - Hybrid Adaptive Filtering
HOC - Higher Order Crossings
IRS - Instance Reweighting and Selection
JDAN - Joint Distribution Adaptation Network
LOO - Leave-One Subject/Session/Dataset-Out
LSTM - Long short-term memory
MACI - Multi-Source Co-adaptation Correlation Information
MBN - Multi-Branch Network
MDTDDL - Multi-source Domain Transfer Discriminative Dictionary
Learning modeling
MEERNet - Multi-Source EEG-based Emotion Recognition Network
MIDA - Maximum Independence Domain Adaptation
MMD - Maximum Mean Discrepancy
MSDAN - Multi-Spatial Domain Adaptation Network
MS-MDA - Multi Source-Marginal Distribution Adaptation
MSSA - Multi-Subject Subspace Alignment
Na - not available
NCA - Neighborhood Component Analysis
NL-DSF - Nonlinear - Dynamical System Features
O2OSE - ONE-TO-ONE-SESSION
OTL - Online Transfer Learning
OGSSL - Optimal Graph coupled Semi-Supervised Learning
PLRSA - Progressive Low-Rank Subspace Alignment
PPDA - Plug-and-Play Domain Adaptation
PSD - Power Spectral Density
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R2G-STNN - Regional To Global Spatial-Temporal Neural Network
RCNN - Residual CNN
RF - Random Forest
RFE - Recursive Feature Elimination
RGNN - Regularized Graph Neural Network
RNN-EL - Recurrent Neural Network and Ensemble Learning
RPCA - Robust Principal Component Analysis
SAAE - Subspace Alignment Auto Encoder
SBS - Sequential Backward Selection
SFS-VOTE - Sequential Feature Selection-VOTE
SDA-FSL - Single-Source Domain Adaptive Few-Shot Learning Network
SE2SE - session-to-session
sJSFE - semi-supervised Joint Sample and Feature importance Evalua-
tion
SOGNN - Self-Organized Graph Neural Network
sp - self-produced
SSB - Shared Space-Based
STM - Style Transfer Mapping
SU2SU - subject-to-subject
SVM - Support Vector Machine
TCA - Transfer Component Analysis
TDANN - Two-Level Domain Adaptation Neural Network
TFF - Time–Frequency Features
TPT - Transductive Parameter Transfer
TRFE - Transferable Recursive Feature Elimination
TSB - Target Space-Based
UDA - Unsupervised/Semi-supervised Domain Adaptation
VAE - Variational Auto Encoder
WGANDA - Wasserstein Generative Adversarial Network Domain Adap-
tation
wMADA - Wasserstein-Distance-based Multi-Source Adversarial Do-
main Adaptation
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