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a b s t r a c t 

The ongoing COVID-19 pandemic has led public health authorities to face the unprecedented challenge 

of planning a global vaccination campaign, which for most protocols entails the administration of two 

doses, separated by a bounded but flexible time interval. The partial immunity already offered by the first 

dose and the high levels of uncertainty in the vaccine supplies have been characteristic of most of the 

vaccination campaigns implemented worldwide and made the planning of such interventions extremely 

complex. Motivated by this compelling challenge, we propose a stochastic optimization framework for 

optimally scheduling a two-dose vaccination campaign in the presence of uncertain supplies, taking into 

account constraints on the interval between the two doses and on the capacity of the healthcare system. 

The proposed framework seeks to maximize the vaccination coverage, considering the different levels of 

immunization obtained with partial (one dose only) and complete vaccination (two doses). We cast the 

optimization problem as a convex second-order cone program, which can be efficiently solved through 

numerical techniques. We demonstrate the potential of our framework on a case study calibrated on the 

COVID-19 vaccination campaign in Italy. The proposed method shows good performance when unrolled 

in a sliding-horizon fashion, thereby offering a powerful tool to help public health authorities calibrate 

the vaccination campaign, pursuing a trade-off between efficacy and the risk associated with shortages 

in supply. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In response to the COVID-19 health crisis, we witnessed an 

nprecedented mobilization of the scientific community. Within 

his joint effort, mathematical models and operational research 

OR) have emerged as valuable tools to help assist public health 

uthorities in their complex decisions during epidemic out- 

reaks ( Nowzari, Preciado, & Pappas, 2016; Zino & Cao, 2021 ). In 

articular, during the first stages of the COVID-19 pandemic, they 

ave been supportive in forecasting the epidemic spread ( Calafiore, 

ovara, & Possieri, 2020; Parino, Zino, Porfiri, & Rizzo, 2021b; 

aylor & Taylor, 2021; Truszkowska, 2021 ), including local out- 

reaks ( Chang & Kaplan, 2021 ), understanding how to allocate pa- 

ients to facilities ( Hosseini-Motlagh, Samani, & Homaei, 2021 ), and 
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elping to devise nonpharmaceutical interventions ( Eryarsoy, Shah- 

anzari, & Tanrisever, 2022; Fischetti, Fischetti, & Stoustrup, 2021; 

siligianni, Tsiligiannis, & Tsiliyannis, 2022 ). With the availability of 

accines, new challenges have emerged concerning the planning of 

n unprecedented mass vaccination campaign. Also in this phase, 

athematical models and OR have been key to help assist public 

ealth authorities ( Choi, 2021 ). 

Most of the OR literature regarding vaccination has focused 

n optimizing the vaccine supply chain ( Duijzer, van Jaarsveld, & 

ekker, 2018 ). For instance, in Lin, Zhao, & Lev (2022) , the au-

hors focus on matching uncertainties on the supply-side and on 

he demand-side; in Arifo ̆glu & Tang (2022) , an incentive program 

or coordinating the supply chain is proposed for the seasonal Flu 

accine; and in De Boeck, Decouttere, Jónasson, & Vandaele (2021) , 

upply chains in resource-limited settings are optimized using a 

patial model. Also, from an epidemic modeling perspective, the 

esign of optimal vaccination strategies is a largely debated topic 
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nd a whole body of literature has been developed toward en- 

apsulating vaccines and their effect in epidemic models. In these 

odels, vaccinations are incorporated by means of additional com- 

artments in population or network models, or via game-theoretic 

echanisms to capture individual-level decisions on whether to 

ake the vaccine shot or not ( Wang et al., 2016 ). 

Despite these effort s, the 2021 COVID-19 vaccination cam- 

aign has laid bare unprecedented difficulties in planning a mas- 

ive vaccine rollout that entails the administration of two vaccine 

oses in a short time, facing limited stocks and uncertain sup- 

lies, especially in the early phases of the campaign. Many of the 

orks modeling the COVID-19 vaccination campaign mimic the ef- 

ect of immunization by encapsulating a simplistic implementa- 

ion of the vaccination process into the disease progression model. 

n Giordano (2021) ; Sinha, Kumar, & Chandra (2021) , one-dose vac- 

ination processes are used to investigate the prioritization of the 

ecipients of the vaccine. Leveraging a coordinate descent algo- 

ithm, Bertsimas, Digalakis, Jacquillat, Li, & Previero (2022) study 

ow to optimally locate mass vaccination centers. The problem 

f optimally scheduling vaccination appointments given a set of 

patially-located vaccination sites is treated in Zhang, Li, Cao, & 

en (2022) by formulating a mixed-integer linear program and 

pproximating the solution via heuristics. 

Another critical issue concerns devising inventory policies to 

ptimize the completion of the recommended two-dose adminis- 

ration. In Parino, Zino, Calafiore, & Rizzo (2021a) , a model predic- 

ive control approach is used to optimally design two-dose vacci- 

ation rollouts in a deterministic framework. A similar problem is 

onsidered in Mak, Dai, & Tang (2021) using a deterministic com- 

artmental model. Other studies assess the effectiveness of delay- 

ng the second vaccine dose ( Moghadas, 2021; Tuite, Fisman, Zhu, 

 Salomon, 2021 ). While these works provide interesting insight, 

hey rely on the limiting assumption that vaccine supplies are de- 

erministic. To the best of our knowledge, the problem of a two- 

ose vaccine allocation with a stochastic supply is treated only in 

humsky, Smith, Hoen, & Gilbert (2021) . Therein, the problem is 

ormulated as a stochastic dynamic program, for which some in- 

ight into the structure of optimal solutions can be gained. How- 

ver, the size of the state space and the complexity of the stochas- 

ic dynamic program make the computation of optimal solutions 

nfeasible, limiting the findings to heuristics. 

To fill in this gap, here we present an effectively-solvable opti- 

ization framework for devising a two-dose vaccination campaign 

n the presence of uncertain supplies. First, we introduce a linear 

rogramming (LP) approach for dealing with the ideal, determin- 

stic scenario in which the time profile of the vaccine supplies is 

ssumed to be exactly known in advance. Such a simplified ap- 

roach allows us to discuss the constraints, including the bounds 

n the interval between the administration of the first and the 

econd dose of the vaccine, and to formulate an objective func- 

ion that accounts for the effectiveness of the partial immunization 

chieved with a single dose of the vaccine ( Polack, 2020; Voysey, 

021 ). Then, we discuss a more realistic scenario in which ran- 

om uncertainty affects the vaccine supply, toward the definition 

f a stochastic optimization problem with chance constraints and 

ffine decision variables to address such uncertainty in supply. This 

roblem is then shown to be representable in the form of a convex 

econd-order cone program (SOCP), and hence amenable to an ef- 

cient global solution ( Lobo, Vandenberghe, Boyd, & Lebret, 1998 ). 

We use the proposed optimization framework to investigate 

he optimal vaccination policies for the 2021 COVID-19 vaccination 

ampaign. In particular, we calibrate the model on the Italian vac- 

ination campaign, utilizing publicly available data to fit the uncer- 

ainty model for the supplies ( Vaccini, 2021 ), and we consider the 

wo most commonly used vaccines, which have different character- 

stics in terms of effectiveness and administration timing: Comir- 
1270 
aty by Pfizer-BioNTech and Vaxzevria by AstraZeneca ( Polack, 

020; Voysey, 2021 ). Besides demonstrating the use of the pro- 

osed optimization framework in a real-world scenario, our find- 

ngs allow us to contribute to the fast-growing field of vaccine dis- 

ribution in OR by discussing some important properties of the 

ptimal solution. In particular, we focus on the effectiveness of 

mplementing sliding-horizon schemes, whereby the optimization 

roblem is solved over a shorter time-window than the entire op- 

imization horizon, the optimal solution is implemented, and then 

e-evaluated at fixed time-steps. Furthermore, we analyze the sen- 

itivity of the solution to the uncertainty in the supply. Finally, we 

iscuss how the proposed optimization framework can be utilized 

y public health authorities to trade-off efficacy of the vaccination 

ampaign and the risk of setbacks due to shortages in the supply. 

Our contribution is threefold. First, we propose a novel opti- 

ization framework to address the so far overlooked challenge 

f optimally devising a two-dose vaccination campaign in the 

resence of uncertain supplies. The flexibility of our optimization 

ramework allows for its applicability to many real-world scenar- 

os. Second, we provide a mathematical formulation of the op- 

imization problem in the form of a SOCP. Such a formulation 

nables the use of efficient and computationally-effective solvers 

nd algorithms to derive the optimal solution of the optimization 

roblem. Third, we discuss a relevant application of the proposed 

ramework to the 2021 COVID-19 vaccination campaign in Italy, 

llustrating how the framework allows for a straightforward cali- 

ration of the model parameters to real-world data and discussing 

ome important properties of the optimal solution and of the real- 

orld implementation of our OR method. 

. Problem setting 

.1. Notation 

We denote the set of real, nonnegative real, nonnegative inte- 

er, and strictly positive integer numbers as R , R ≥0 , Z ≥0 , and Z > 0 ,

espectively. A vector x is denoted with bold lowercase font, with 

 th entry x i . A matrix A is denoted with bold capital font, with

 i j denoting the jth entry of the i th row. Vector e i is a all-0 vec-

or, except for a 1 in the i th entry. The all-1 and all-0 matrices

re denoted by 1 and 0 , respectively, and the identity matrix by 

 . When needed, dimensions are denoted as one positive integer 

ndex (for vectors) and two indices (for matrices), which are the 

umber of rows and columns, respectively. The superscript � de- 

otes the transpose operator. Inequalities for vectors or matrices 

re intended entrywise (i.e., x ≥ 0 means x i ≥ 0 , ∀ i ). We denote by

 [ ·] the probability of an event and by E [ ·] the expectation of a

andom variable (RV). We denote by � the cumulative distribution 

unction (CDF) of a Gaussian RV with zero mean and unit variance, 

nd by �−1 its inverse (quantile function). 

.2. Problem setting 

Due to the practical nature of the problem, which considers the 

cheduling of vaccination for large populations (e.g., entire coun- 

ries), we approximate the population as a continuum of individu- 

ls, which allows us to avoid all the issues and limitations related 

o the optimization of integer variables. Let 

• t ∈ Z ≥0 be a discrete-time index; 
• T ∈ Z > 0 denote the time-horizon of the vaccination campaign. 

The time-horizon is measured in time units of constant (fixed) 

duration. In the rest of this paper, we will consider one week 

as a time unit; 
• k min ∈ Z > 0 and k max ∈ Z > 0 denote the minimum and maximum 

interval between the two doses of the vaccine (here, in weeks), 
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respectively (i.e., the second dose should be administered be- 

tween the beginning of the k min th week and the beginning of 

the k max th week after the first one); δ := k max − k min is the du-

ration of the time-window for the second dose; 
• x e (t) ≥ 0 be the number of individuals in the population who 

are eligible for receiving the vaccine but have not received the 

first dose at the beginning of week t; 
• x f (t) be a k max -dimensional vector where the component 

x f 
i 
(t) ≥ 0 denotes the number of individuals at the beginning 

of week t who have received the first dose i weeks before, but 

have not received the second dose yet; 
• x d (t) ≥ 0 denote the number of individuals who, at the begin- 

ning of week t , have received the first dose k max weeks before 

or more, but have not received the second dose yet. For these 

individuals, the second dose is delayed by more than the maxi- 

mum amount of time admitted; 
• x s (t) ≥ 0 be the number of individuals who have already re- 

ceived the s econd dose of the vaccine at the beginning of week 

t; 
• u f (t) ≥ 0 be the number of first doses administered to individu- 

als counted by the x e (t) variable during week t; 
• u 

s (t) be a (δ + 1) -dimensional vector, where the i th component 

u s 
i 
(t) ≥ 0 , for i = 1 , . . . , δ, denotes the number of second doses

administered during week t to individuals who have received 

the first dose k min − 1 + i weeks before (i.e., those counted by 

x f 
k min −1+ i (t) ); the entry u s 

δ+1 
(t) ≥ 0 denotes the number of sec- 

ond doses administered to individuals who have received the 

first dose since more than k max weeks (i.e., those counted by 

x d (t) ); 
• S(t) ≥ 0 be the (cumulative) vaccine supply received up to and 

including the beginning of week t; 
• c(t) ≥ 0 be the total capacity of vaccines that the healthcare 

system is able to administer during week t . 

The dynamics of the vaccination procedure is described by 

he following (k max + 3) -dimensional system of linear recurrence 

quations: 

x e (t + 1) = x e (t) − u 

f (t) 

 

f 
1 (t + 1) = u 

f (t) 

x f i (t + 1) = x f i −1 (t) i = 2 , . . . , k min 

x f i (t + 1) = x f i −1 (t) − u 

s 
i −k min 

(t) i = k min + 1 , . . . , k max 

 

d (t + 1) = x f k max 
(t) − u 

s 
δ+1 (t) + x d (t) 

x s (t + 1) = x s (t) + 

δ+1 ∑ 

i =1 

u 

s 
i (t) , (1) 

hich are initialized at the beginning of the vaccination campaign 

ith x e (1) = N , where N is the total number of individuals in the

opulation that should be vaccinated, x f 
i 
(1) = 0 for i = 1 , . . . , k max ,

 

d (1) = 0 , and x s (1) = 0 . 

The linear dynamics in Eq. (1) can be conveniently cast as 

 (t + 1) = A x (t) + b 

f u 

f (t) + B 

s u 

s (t) , (2) 

here the state variable x (t) is the (k max + 3) -dimensional vec- 

or x (t) := [ x e (t ) x f (t ) � x d (t ) x s (t )] � , the decision variables are the

calar u f (t) and the (δ + 1) -dimensional vector u 

s (t) , and A ∈ 

 

k max +3 ,k max +3 , b f ∈ R 

k max +3 , and B 

s ∈ R 

k max +3 ,δ+1 are defined as 

 := 

⎡ 

⎢ ⎢ ⎣ 

1 0 1 ,k max −1 0 0 0 

0 0 1 ,k max −1 0 0 0 

0 k max −1 , 1 I k max −1 ,k max −1 0 0 0 

0 0 1 ,k max −1 1 1 0 

0 0 1 ,k max −1 0 0 1 

⎤ 

⎥ ⎥ ⎦ 

, 

b 

f 
:= 

[ −1 

1 

0 k max +1 , 1 

] 

, 

B 

s := 

[ 

0 k min +1 ,δ+1 

−I δ+1 ,δ+1 

1 1 ,δ+1 

]

T

1271 
. Optimization problem 

.1. An LP approach for the deterministic scenario 

Before introducing the stochastic framework for the uncertain 

upply case, we first discuss a “nominal” scenario in which sup- 

lies are deterministic. 

ssumption 1. We assume that the cumulative supply S(1) , 

 . . , S(T ) is a deterministic sequence, entirely known at time t = 1 . 

Under this assumption, the problem of designing an optimal 

wo-dose vaccination strategy can be cast as an LP, hence its global 

ptimal solution can be computed with extreme numerical effi- 

iency ( Boyd & Vandenberghe, 2004 ). Our purpose is to devise an 

ptimal vaccination strategy in terms of first and second doses, i.e., 

esigning u f (t) and u 

s (t) , over a given time horizon T , so that an

ppropriate objective function involving the number of vaccinated 

ndividuals over the considered time horizon is maximized, while 

atisfying suitable constraints on the vaccination process. We start 

y discussing the constraints. 

Nonnegativity. The state variable and the optimization variables 

hould be nonnegative (entrywise), i.e., 

 (t) ≥ 0 , t = 1 , . . . , T + 1 ; (3) 

 

f (t) ≥ 0 , t = 1 , . . . , T ; (4) 

 

s (t) ≥ 0 , t = 1 , . . . , T . (5) 

ote that in Eq. (3) , nonnegativity is required also at time T + 1 ,

o ensure that the control implemented at time T yields a feasible 

tate. 

Stock. The cumulative number of doses administered until week 

cannot exceed the cumulative vaccine supply received up to the 

eginning of that week, which can be conveniently formulated as 

 t 

k =1 
u 

f (k ) + 

∑ t 

k =1 

∑ δ+1 

i =1 
u 

s 
i (k ) ≤ S(t) , t = 1 , . . . , T . (6)

Capacity. The total number of doses administered during week 

 = 1 , . . . , T , cannot exceed the weekly capacity, i.e., 

 

f (t) + 

∑ δ+1 

i =1 
u 

s 
i (t) ≤ c(t) , t = 1 , . . . , T . (7)

Delay. Second doses should be performed in the interval be- 

ween k min weeks and k max weeks after the first dose. We may 

llow for a fraction α ∈ [0 , 1] of the population who received the 

rst dose to wait past the limit k max weeks for receiving the sec- 

nd one. If excess wait is not allowed, then α = 0 is set in the

odel. This yields the following constraints: 

 

d (t) ≤ α
(

x d (t) + 

∑ k max 

i =1 
x f i (t) 

)
, t = 1 , . . . , T + 1 . (8)

For the sake of readability, we define three vectors 

 := [ x (1) � . . . x ( T ) � ] � , u 

f =: [ u f (1) . . . u f (T )] � , and u 

s :=
 u 

s (1) � . . . u 

s ( T ) � ] � that gather the state and decision variables 

ver the entire duration of the vaccination campaign, respectively. 

e define the following linear objective function to be maximized: 

f ( x , u 

f , u 

s ) := 

∑ T 

t=1 
x s (t) − γ

∑ T 

t=1 
x e (t) . (9) 

he first summand of Eq. (9) carries a positive contribution and 

ccounts for the number of fully vaccinated individuals during the 

ntire duration of the vaccination campaign. The second summand, 

n the other hand, entails a negative contribution and accounts for 

he population that is still waiting to start the vaccination process. 

he parameter γ ≥ 0 weights the relative contribution of the two 
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erms: for γ = 0 , the optimizer maximizes the number of fully vac- 

inated individuals; for γ � 1 , instead, the key objective tends to 

e the minimization of the population that has still to receive the 

rst dose. Note that, even though the expression in Eq. (9) does 

ot directly depend on the decision variables, such a dependence 

s indirectly shaped by the evolution of the state x , which is de- 

ermined by Eq. (2) and thus depends on the decision variables u 

f 

nd u 

s . To sum up, under Assumption 1 , the vaccination problem 

an be formulated as an LP, in which the linear objective func- 

ion f ( x , u 

f , u 

s ) is maximized subject to the linear constraints in 

qs. (2) –(8) . 

emark 1. Eq. (9) can be re-written in order to explicitly con- 

ider the number of individuals with one and two vaccine doses. 

y rewriting the number of unvaccinated individuals x e (t) as the 

ifference between the total population N and the number of indi- 

iduals vaccinated with at least one dose, we obtain 

f = 

∑ T 

t=1 
x s (t) − γ

∑ T 

t=1 
x e (t) 

= 

∑ T 

t=1 
x s (t) − γ

∑ T 

t=1 

(
N − x s (t) −

∑ k max 

i =1 
x f i (t) − x d (t) 

)
= 

∑ T 

t=1 

[ 
(1 + γ ) x s (t) + γ

(∑ k max 

i =1 
x f i (t) + x d (t) 

)] 
− γ NT 

= (1 + γ ) 
∑ T 

t=1 
x s (t) + γ

∑ T 

t=1 

[ ∑ k max 

i =1 
x f i (t) + x d (t) 

] 
− γ NT . 

(10) 

he first term accounts for the number of fully vaccinated individ- 

als; the second one for the number of individuals with a single 

ose; while the last one (i.e., γ NT ) is a constant that can be ob-

iously dropped in the process of maximization. Hence, if we con- 

eniently set the ratio γ / (1 + γ ) equal to the ratio between the

ffectiveness of a single dose of vaccine and the one of two doses, 

hen maximizing the function f implies the maximization of the 

accination coverage over time, in terms of the sum of the total 

umber of individuals vaccinated with a single dose multiplied by 

he effectiveness of a single dose and the total number of individ- 

als with two doses multiplied by the effectiveness of two doses, 

p to some constants that play no role in the maximization. 

.2. Dealing with supply uncertainty 

In the approach discussed in the previous section, we com- 

uted the entire optimal vaccination schedule over the horizon 

 = 1 , . . . , T , based on an assumed perfect knowledge at t = 1 of

he entire supply function over t = 1 , . . . , T ( Assumption 1 ). How-

ver, this assumption may be quite unrealistic in practice, since on 

he one hand there is uncertainty on the future delivery of vac- 

ines, and on the other hand, there is no necessity of devising a 

ully “here-and-now” schedule at t = 1 for the whole foreseeable 

uture, since as time unrolls we may want to exploit the opportu- 

ity of suitably adjusting the schedule on the basis of the actual 

upply. In the remaining of this section, we discuss how to tackle 

oth these issues, and we eventually formalize the problem of de- 

igning an optimal vaccination strategy in the scenario of uncer- 

ain supplies as a second-order cone programming (SOCP) prob- 

em ( Lobo et al., 1998 ). 

In the following, we assume that the (cumulative) supply S(t) 

t the generic time-instant t is known up to a given level of uncer- 

ainty, and we assume that the level of uncertainty (i.e., its stan- 

ard deviation) may vary with time in a fashion known a priori. 

his setting is summarized in the following assumption. 

ssumption 2. We assume that the cumulative supply is in the 

orm 

(t) = 

ˆ S (t) + σ (t ) δ(t ) , t = 1 , . . . , T (11)
1272 
here ˆ S (t) is the given nominal (or expected) time profile of the 

umulative supply, σ (t) is the given time profile of the standard 

eviation of the uncertainty, and δ(t) , t = 1 , . . . , T , is a sequence of

ndependent and identically distributed (IID) RVs with zero mean 

nd unit variance, representing the uncertainty on the cumulative 

upply at time t . 

The uncertainty model in Assumption 2 is able to capture the 

resence of delays (or earliness) in the actual supply with respect 

o the scheduled one ˆ S (t) and relies on the assumption that sup- 

liers, when not able to comply with an order, will try to accom- 

odate it in the next delivery. Hence, a delay (or earlyness) at time 

does not affect the expected future supplies. 

At this stage, we let the decision variables related to the first 

nd second dose to react to changes in the cumulative supply. 

pecifically, we assume vaccination policies to take an affine form, 

.e., 

u 

f (t) = 

ˆ u 

f (t) + g f (t ) 
(
S(t ) − ˆ S (t) 

)
, 

 

s (t) = 

ˆ u 

s 
(t) + g s (t ) 

(
S(t ) − ˆ S (t) 

)
, (12) 

here ˆ u f (t) ∈ R and 

ˆ u 

s 
(t) ∈ R 

δ+1 represent the nominal vaccina- 

ion schedules, and g f (t) ∈ R and g s (t) ∈ R 

δ+1 represent the ad- 

ustment gains, whose purpose is to correct the nominal decisions 

ˆ  f (t) and 

ˆ u 

s 
(t) as a consequence to deviations of the cumulative 

upply from its nominal (or expected) value. Note that the policies 

n Eq. (12) are fully causal , since the decision variables at t depend 

nly on the uncertain supply realization up to t , while the future 

upplies remain uncertain and are suitably treated via probabilis- 

ic constraints, as discussed next. The idea of linear policies, or 

ffine-adjustable variables, has been introduced in the context of 

obust optimization in Ben-Tal, Goryashko, Guslitzer, & Nemirovski 

2004) and has been adopted in several uncertain decision prob- 

ems, see, e.g., Calafiore (2009) . 

The decision variables of the optimization problem will now be 

ˆ  f (t) , ˆ u 

s 
(t) and g f (t) , g s (t) , t = 1 , . . . , T , rather than u f (t) , u 

s (t) .

he optimization problem will therefore provide us with the pa- 

ameters to plug into Eq. (12) and, from these equations at each t , 

ased on the observation of the actual outcome of S(t) , we shall 

ecide for the actual number of first and second dose vaccinations 

o be delivered during day t . 

Under Assumption 2 , substituting Eqs. (11) and (12) into the dy- 

amics in Eq. (2) , we can determine the recursions that govern the 

volution of the stochastic system. Specifically, the state variable 

 (t) of the system evolves according to the stochastic recursion 

 (t + 1) = A x (t) + B 

f ˆ u 

f (t) + B 

s ˆ u 

s 
(t) + σ (t ) 

(
B 

f g f (t ) + B 

s g s (t) 
)
δ(t ) . 

(13) 

ince the state x (t) is an RV, it might be convenient and useful for 

he derivations in the following to explicitly write two different 

xpressions for the temporal evolution of its expected value and 

or the shift of the RV with respect to it. Specifically, if we define 

he expected value ˆ x (t) := E [ x (t)] and the shift ˜ x (t) := x (t) − ˆ x (t) ,

e have that 

ˆ 
 (t + 1) = A ̂

 x (t) + B 

f ˆ u 

f (t) + B 

s ˆ u 

s 
(t) , (14) 

nd 

˜ 
 (t + 1) = A ̃

 x (t) + b (t ) δ(t ) , (15) 

here the vector b (t) ∈ R 

k max +3 is defined as 

 (t) := σ (t ) 
(
B 

f g f (t ) + B 

s g s (t) 
)
. (16) 

inally, we derive a recursion equation for the covariance matrix of 

 (t) , defined as �(t) := E [ ̃ x (t) ̃ x � (t)] , for which it holds 

(t + 1) = A �(t ) A 

� + b (t ) b 

� (t ) . (17) 
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Due to the stochasticity of the system, the constraints should 

e expressed in terms of probabilities ( Calafiore & Ghaoui, 2006; 

rékopa, 1995 ). To this aim, we fix the risk parameter ε ∈ (0 , 1 / 2) ,

hich represents the probability that a constraint is violated, and 

e cast the constraints as follows. 

Nonnegativity . Since the state and the number of doses per- 

ormed are stochastic, we re-formulate Eqs. (3) –(5) in a probabilis- 

ic fashion as 

 [ x i (t) ≥ 0] ≥ 1 − ε, t = 1 , . . . , T + 1 , i = 1 , . . . , k max + 3 , (18) 

 [ u 

f (t) ≥ 0] ≥ 1 − ε, t = 1 , . . . , T , (19) 

 [ u 

s 
i (t) ≥ 0] ≥ 1 − ε, t = 1 , . . . , T , i = 1 , . . . , δ + 1 , (20) 

Stock . Similarly, we impose that 

 

[ t ∑ 

k =1 

u 

f (k ) + 

t ∑ 

k =1 

δ+1 ∑ 

i =1 

u 

s 
i (k ) ≤ ˆ S (t) + σ (t ) δ(t ) 

] 
≥ 1 − ε, 

 = 1 , . . . , T . (21) 

Capacity . We set 

 

[ 
u 

f (t) + 

∑ δ+1 

i =1 
u 

s 
i (t) ≤ c(t) 

] 
≥ 1 − ε, t = 1 , . . . , T . (22)

Delay . The constraints can be stated on the expected states, i.e., 

ˆ 
 

d (t) ≤ α
[ 

x d (t) + 

∑ k max 

i =1 
ˆ x f i (t) 

] 
, t = 1 , . . . , T + 1 . (23)

Finally, the objective function f in Eq. (9) is now an RV, since 

t depends on the realization of the stochastic process x (t) . The 

pproach we take now is to maximize its expected value, yielding 

he following expectation objective 

 := E [ f ] = E 

[ T ∑ 

t=1 

x s (t) − γ
T ∑ 

t=1 

x e (t ) 
] 

= 

T ∑ 

t=1 

ˆ x s (t ) − γ
T ∑ 

t=1 

ˆ x e (t) , 

(24) 

here ˆ x (t) must satisfy the recursion equation in Eq. (14) , and the 

onstraints discussed above. In general, maximizing Eq. (24) might 

e a difficult task, due to the stochastic nature of the system and, 

ltimately, the nature of the uncertainties δ(t) . In the following, 

e will show that, under some reasonable assumptions on the na- 

ure of the uncertainties δ(t) , the optimization problem can be cast 

s a SOCP, and thus easily solved. 

.3. Convex second-order cone problem formulation 

From now on, we make the following assumptions about the 

ncertainties. 

ssumption 3. We assume that Assumption 2 holds, and that δ(t) , 

or t = 1 , . . . , T is a sequence of IID Gaussian RVs with zero mean

nd unit variance. 

Under Assumption 3 , Eq. (13) yields a sequence of Gaussian 

andom vectors with expected value ˆ x (t) and covariance matrix 

(t) ( Ross, 2019 ). Using this property, we derive the following ex- 

licit expressions for the constraints. 

Nonnegativity (state variable) . From Eq. (18) , we observe that 

he generic i th component of the state variable x i (t) is a Gaussian-

istributed RV with expected value ˆ x i (t) and variance e � 
i 
�(t) e i . 

e have therefore that P [ x i (t) ≥ 0 ] = 1 − P [ x i (t) ≤ 0 ] = 1 −
 [ 

x i (t) − ˆ x i (t) √ 

e � 
i 
�(t) e i 

≤ − ˆ x i (t) √ 

e � 
i 
�(t) e i 

] = 1 − �(− ˆ x i (t) √ 

e � 
i 
�(t) e i 

) . Thus, P [ x i (t) ≥ 0 ] 

1 − ε if and only if (iff) �
(

− ˆ x i (t) / 
√ 

e � 
i 
�(t) e i 

)
≤ ε, which in 
1273 
urn holds iff − ˆ x i (t) / 
√ 

e � 
i 
�(t) e i ≤ �−1 (ε) . Hence, being ε < 1 / 2 , 

he generic i th constraint in Eq. (18) is equivalent to 

 �−1 (ε) | √ 

e � 
i 
�(t) e i ≤ ˆ x i (t) . (25) 

otice that we have from Eq. (17) that �(1) = 0 , and that we

an write the following recursion �(t) = 

∑ t−1 
k =1 

A 

t−k −1 b (k ) b (k ) � 

 A 

t−k −1 ) � , t ≥ 2 . Hence, we can write e � 
i 
�(t) e i = ‖ f i ‖ 2 2 , where

f i (t) := [ e � 
i 

A 

t−2 b (1) , e � 
i 

A 

t−3 b (2) , . . . , e � 
i 

A b (t − 2) , e � 
i 

b (t − 1)] � . It

ollows that Eq. (25) is expressed as a second-order cone con- 

traint | �−1 (ε) |‖ f i (t) ‖ 2 ≤ ˆ x i (t) , where, by Eq. (16) , f i (t) is an

ffine function of the variables g f (k ) , g s (k ) , k = 1 , . . . , t − 1 . Hence,

he (probabilistic) nonnegativity constraint on the state variables 

n Eq. (18) can be written as 

 �−1 (ε) |‖ f 
i (t) ‖ 2 ≤ ˆ x i (t) , t =2 , . . . , T + 1 , i=1 , . . . , k max +3 . 

(26) 

Nonnegativity (optimization variables) . Eq. (19) yields 

 [ u f (t) ≥ 0] = 1 − P [ u f (t) < 0] = 1 − P [ ̂  u f (t) + σ (t ) | g f (t ) | δ(t ) < 0] = 

 − P [ δ(t) < − ˆ u f (t ) /σ (t ) | g f (t ) | ] = 1 − �(− ˆ u f (t ) /σ (t ) | g f (t ) | ) . 
ence P [ u f (t) ≥ 0] ≥ 1 − ε iff

ˆ 
 

f (t) ≥ νε σ (t ) | g f (t ) | , t = 1 , . . . , T . (27)

imilar, from Eq. (20) we derive the explicit constraint 

ˆ 
 2 (t) ≥ νε σ (t ) | g s i (t ) | , t = 1 , . . . , T , i = 1 , . . . , δ + 1 . (28)

Stock . We rewrite the stock constraints in Eq. (21) as 

 

[ t ∑ 

k =1 

(
ˆ u 

f (k ) + 

δ+1 ∑ 

i =1 

ˆ u 

s 
i (k ) 

)
+ ξ (t) ≤ ˆ S (t) 

] 
≥ 1 − ε, t = 1 , . . . , T , 

(29) 

here ξ (t) := 

∑ t 
k =1 σ (k )( g f (k ) + 

∑ δ+1 
i =1 g s 

i 
(k )) δ(k ) − σ (t ) δ(t ) . We

bserve that ξ (t) is the linear combination of t independent Gaus- 

ian RVs. Hence, also ξ (t) is a Gaussian RV with E [ ξ (t)] = 0 and

 [ ξ 2 (t)] = ‖ v (t) ‖ 2 
2 
, where v (t) := [ σ (1)( g f (1) + 

∑ δ+1 
i =1 g s 

i 
(1)) , σ (2)

 g f (2) + 

∑ δ+1 
i =1 g s 

i 
(2)) , . . . , σ (t )( g f (t ) + 

∑ δ+1 
i =1 g s 

i 
(t) − 1) � . The con-

traints in Eq. (29) are thus rewritten as P [ ξ (t) / ‖ v (t) ‖ 2 ≤
 ̂

 S (t) − ˆ U (t )) / ‖ v (t ) ‖ 2 ] = �
(
( ̂  S (t) − ˆ U (t ) 

)
/ ‖ v (t ) ‖ 2 ) , where we set

or brevity ˆ U (t) := 

∑ t 
k =1 

(
ˆ u f (k ) + 

∑ δ+1 
i =1 ˆ u s 

i 
(k ) 

)
. The above probabil- 

ty is greater than or equal to 1 − ε iff
(

ˆ S (t) − ˆ U (t ) 
)
/ ‖ v (t ) ‖ 2 ≥

−1 (1 − ε) = −�−1 (ε) = νε , whence we obtain the explicit con- 

traint: 

ˆ 
 (t) + νε ‖ v (t ) ‖ 2 ≤ ˆ S (t ) , t = 1 , . . . , T . (30)

Capacity. The capacity constraints in Eq. (22) are expressed, for 

ll t = 1 , . . . , T , as P [ ̂  u f (t) + 

∑ δ+1 
i =1 ˆ u s 

i 
(t) + σ (t )) δ(t ) ≤ c(t)] ≥ 1 − ε,

hich, proceeding as in the previous cases, is equivalent to 

ˆ 
 

f (t) + 

δ+1 ∑ 

i =1 

ˆ u 

s 
i (t) + σ (t ) νε 

∣∣∣g f (t ) + 

δ+1 ∑ 

i =1 

g s i (t ) 

∣∣∣ ≤ c(t ) , t = 1 , . . . , T . 

(31) 

Delay. Finally, we note that the expression in Eq. (23) is already 

ormulated in terms of expected states. 

If we stack all the ˆ u f (t) , ˆ u 

s 
(t) , g f (t) , and g s (t) variables

n four vectors ˆ u 

f = [ ̂  u f (1) , . . . , ̂  u f (T )] � , ˆ u 

s = [ ̂ u 

s 
(1) � , . . . , ̂  u 

s 
(T ) � ] � ,

 

f = [ g f (1) , . . . , g f (T )] � , and g s = [ g s (1) � , . . . , g s (T ) � ] � , we can for-

ulate the optimization problem as: 

max 
ˆ 
 

f 
, ̂ u 

s 
, g f , g s 

J = 

∑ T 

t=1 
ˆ x s (t) − γ

∑ T 

t=1 
ˆ x e (t) (32) 

.t.: Eqs. (14) , (26), (27), (28), (30), (31), (23) . 
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emark 2. Problem (32) has (k max + δ + 5) × T + k max + 3 vari-

bles —(k max + 3) × (T + 1) state variables and (δ + 2) × T deci-

ion variables— and (k max + δ + 8) × T + k max + 4 constraints, and 

nvolves the optimization of a linear objective function subject 

o linear constraints and the intersection of second-order cones. 

ence, it is a SOCP, for which the global optimal solution can 

e computed in polynomial time via interior point methods ( Lobo 

t al., 1998 ), and standard and efficient algorithms have been de- 

eloped, see, e.g., Mosek ( Andersen, Roos, & Terlaky, 2003 ). 

emark 3. Despite the fact that the optimal policy in Eq. (12) is 

eactive and takes into account the uncertainty, one should con- 

ider that, as time unrolls and vaccines are supplied, part of the 

ncertainty is revealed. Hence, in practical applications, it makes 

ense to deploy Problem (32) within a sliding-horizon framework. 

Fixing a simulation horizon T s < T and a re-evaluation step T r < 

 s , every T r time steps starting from t = 1 , one could utilize

roblem (32) to compute the optimal vaccination policy for the 

ollowing T s time steps and apply it for the first T r steps. Then, 

fter T r time-steps, one can re-evaluate the policy by utilizing 

gain Problem (32) , with updated initial conditions and uncer- 

ainty model (informed by the time-series of supplied observed 

n the real world), and apply it for the following T r time-steps. 

his process can be repeated until the end of the time-horizon 

f the vaccination campaign. Similar sliding-horizon schemes have 

een successfully used in the literature of optimization under 

ncertainty, sometimes under the name of folding horizon. See, 

.g., Ben-Tal, Golany, Nemirovski, & Vial (2005) ; Cohen, Golany, 

 Shtub (2016) ; Dabadghao, Marandi, & Roy (2021) ; De Ruiter, 

rekelmans, & den Hertog (2016) ; Gorissen, Yaníko ̆glu, & den Her- 

og (2015) . 

emark 4. Particular combinations of the parameters and input 

alues may result in unfeasible optimization problems. Specifically, 

he nonnegativity of the optimization variables in Eqs. (19) and 

20) and the stock constraint in Eq. (21) may not be simultaneously 

erified for some values of t . This can typically happen in the first 

eeks, in the presence of small supplies with high uncertainty. 

 simple way to address this issue in practice is to fix u f (t) = 0

nd u 

s (t) = 0 for all t = 1 , . . . k and solve the Problem (32) starting

rom week t = k + 1 , where k = min { s : Problem (32) is feasible for

ll t ∈ [ s + 1 , T ] } . 

. Application to 2021 COVID-19 vaccination campaign in Italy 

To demonstrate the proposed optimization framework against 

eal-world data, we use it to investigate the 2021 COVID-19 vacci- 

ation campaign in Italy. 

.1. Vaccine parameters 

We consider Comirnaty and Vaxzevria, which have been the 

wo mostly used vaccines in the first phases of the vaccination 

ampaign. 

Comirnaty. In Italy, the two doses are administered at least 

 min = 3 weeks apart and at most k max = 6 weeks apart. The ef-

cacy during the interval between the two doses was estimated 

n clinical trials as 52%, while both doses yield a 95% protec- 

ion ( Polack, 2020 ). Hence, following Remark 1 , we set γ = 1 . 21 . 

Vaxzevria. The Italian Medicines Agency indicates that the ad- 

inistration of the second dose should be ideally performed dur- 

ng the twelfth week and, in any case, at least ten weeks after the 

rst dose. Consequently, we set k min = 10 and k max = 12 . Clinical

ata confirm a vaccine efficacy of 76% after the first dose and 82% 

fter two doses ( Voysey, 2021 ), yielding γ = 12 . 66 . 
1274 
.2. Expected supply and uncertainty model 

We use the official data of the daily supply of COVID-19 vac- 

ines in Italy from January 4, 2021 to July 19, 2021 ( Vaccini, 2021 ).

e set the discrete time unit equal to one week and we aggregate 

he data accordingly. 

Based on these data, we construct a model for the expected cu- 

ulative supply ˆ S (t) . The unfolding of the supply delivered (see 

ig. 1 A, B) suggests that the size of weekly supplies increases lin- 

arly with time. Hence, we suppose a quadratic trend for the ex- 

ected cumulative supply ˆ S (t) . We model the data by using a 

eighted least-square technique ( Chatterjee & Simonoff, 2013 ). In 

articular, since the tth entry of the cumulative supply vector is 

he sum of t vaccine deliveries, each one characterized by its level 

f uncertainty, in fitting the weighted least-square model, we as- 

ociate with the tth data-point of the Italian cumulative supply 

he weight 1 /t . Using the weighted least-square estimator we ob- 

ain 

ˆ S (t) = 65 , 160 t 2 − 2 , 459 t + 814 , 0 0 0 for Comirnaty and 

ˆ S (t) =
 , 309 t 2 + 398 , 300 t + 440 , 800 for Vaxzevria, where Comirnaty is

dministrated starting from the week of January 19, while the ad- 

inistration of Vaxzevria starts from the week of February 22. 

lso, we use the fitted model to estimate the uncertainty associ- 

ted with the predictions (i.e., the model prediction errors or fore- 

ast error ), whose values are reported in Table S1 in the Supple- 

entary Material. We use these estimations as σ (t) , and we fi- 

ally obtain the supply in the form discussed in Eq. (11) , under 

ssumption 3 , i.e., assuming that σ (t) , for t = 1 , . . . , T is a se-

uence of IID Gaussian RV with zero mean and unit variance. The 

esulting fitting with the correspondent 95% prediction intervals 

or the two vaccine supplies are reported in Fig. 1 . 

Finally, we set the maximum weekly capacity c(t) = 1 . 2( ̂  S (t) −
ˆ 
 (t − 1)) , i.e., we assume that the healthcare system can accom- 

odate a number of vaccine doses that is slightly greater than the 

xpected weekly supply. 

.3. Analysis of the optimal solutions 

We compute the optimal vaccination rollout using the opti- 

ization framework described in Section 3.3 , with the expected 

upplies and uncertainty model derived for the 2021 COVID-19 

accination campaign in Italy. We use the actual time-series of the 

talian supply from Vaccini (2021) as the realization of the process. 

nless stated otherwise, we set ε = 0 . 05 . 

First, we compare the performance of the optimal solution with 

he baseline performance of the solution of the LP proposed in 

ection 3.1 , computed assuming that the exact time-series of the 

upplies are known a priori. This solution, even though unreal- 

stic since it ignores the uncertainty, serves as a benchmark for 

valuating the performance of the other approaches and the ef- 

ect of uncertainty on the vaccination campaign. With respect to 

he LP solution, with both vaccines we observe that the presence 

f uncertainty may slow down a vaccination campaign. In particu- 

ar, we observe a 3 . 60% reduction of the total number of doses ad-

inistrated for the Comirnaty vaccination campaign. For Vaxzevria, 

hich is characterized by higher levels of uncertainty, the perfor- 

ance are even worse, as we record a 8 . 61% drop in the number

f administered doses. 

We next discuss a sliding-horizon implementation of the pro- 

osed approach, following Remark 3 . We compare different so- 

utions, obtained using different sliding-horizon policies (all with 

 s = 20 ): (a) no re-evaluation , which is the numerical solution of 

OCP computed over the entire horizon; (b) weekly re-evaluation , 

n which the sliding horizon moves on a weekly basis ( T r = 1 ): ev-

ry week the uncertainty model is re-estimated following the pro- 

edure described in Sec. 4.2 , appropriately shifting the time index; 

hen, the optimal solution is re-computed by solving the SOCP over 
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Fig. 1. Italian cumulative supply S(t) for the two types of vaccines (blue) and the fitted model ˆ S (t) , with the 95% confidence intervals (orange and gray, respectively). 

Fig. 2. Optimal solution with no re-evaluation (blue), weekly (orange), and monthly re-evaluation (green) for the two vaccines. Panels A–B show the time-series of first 

doses; C–D of second doses; and E–F the evolution of the number of fully vaccinated individuals. 

a  

t

u

a  

t

e

f

e

b

k

s

m

i

l

r

r

t

t

c

t

i

b

c

w

v

J

d

i

t

 time horizon T s = 20 and it is applied for T r = 1 week, before

he following re-evaluation; (c) monthly re-evaluation , in which the 

ncertainty model is updated and the strategy is re-evaluated on 

 4-week basis ( T r = 4 ); and (d) bimonthly re-evaluation , in which

he uncertainty model is updated and the strategy is re-evaluated 

very T r = 8 weeks. In other words, once an optimal solution is 

ound, it will be applied for the next T r weeks before being re- 

valuated. Together with the re-evaluation of the optimal solution 

ased on the increased data on the time-series of the supplies, a 

ey advantage of the sliding-horizon technique resides in the pos- 

ibility of utilizing such data to also re-calibrate the uncertainty 

odel at each iteration, thereby reducing the level of uncertainty 

n the supply as the vaccination campaign proceeds. 

In Fig. 2 A–D, for both vaccines we report the optimal so- 

utions for the cases of no re-evaluation, weekly, and monthly 
1275 
e-evaluation. We notice that the solutions for the entire horizon 

esult in a smooth trend of first and second doses, while the op- 

imal solutions with the sliding horizon have more discontinuous 

rends, as they are able to re-evaluate the campaign in response to 

hanges in the supply. Fig. 2 E, F shows the temporal evolution of 

he number of vaccinated population under the different policies, 

llustrating how the implementation of a sliding horizon could be 

eneficial. We analyze in detail the different cases in Table 1 . We 

ompare the strategy that uses the sliding horizon with the case 

ith no re-evaluation. The comparison is presented as percentage 

ariation of i) the: average utility function during the optimization 

, which is related to the average coverage of the population 

uring the vaccination campaign, as discussed in Remark 1 , and 

i) the total number of doses of vaccine administered V during 

he entire campaign. The results show the beneficial effect of 
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Table 1 

Performance with sliding horizon, with respect to the scenario with 

no re-evaluation. 

Comirnaty Vaxzevria 

�J �V �J �V 

re-evaluation T r = 1 week 2.95% 6.30% 0.26% 7.74% 

re-evaluation T r = 4 weeks 1.71% 6.64% 0.15% 5.54% 

re-evaluation T r = 8 weeks 1.52% 6.68% 0.13% 3.52% 
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Table 2 

Effect of the level of uncertainty on the performance of the optimization frame- 

work. 

Comirnaty Vaxzevria 

weekly monthly weekly monthly 

�J �V �J �V �J �V �J �V 

10 σ -10.32% -21.04% -8.05% -8.26% - - - - 

4 σ -3.17% -7.37% -2.89% -0.97% -1.66% -20.27% -1.70% -21.90% 

2 σ -0.95% -2.50% -1.03% -0.16% -0.44% -5.89% -0.55% -5.95% 

0 . 5 σ 0.53% 1.28% 0.64% 2.10% 0.26% 2.12% 0.31% 1.63% 

0 . 25 σ 0.82% 1.87% 0.96% 3.21% 0.40% 3.25% 0.45% 1.27% 

0 . 1 σ 0.99% 2.19% 1.14% 3.79% 0.49% 4.01% 0.54% 1.25% 
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l

mplementing a sliding-horizon technique and highlight a non- 

rivial trade-off between performance and re-evaluation periods, 

hereby more frequent re-evaluations may result in a performance 

ncrease. 

In particular, the use of a sliding horizon yields an increase in 

he total number of doses administered. For Comirnaty —which is 

haracterized by lower levels of uncertainty— such an increase is 

pproximately by 6 − 7% and it seems not to be strongly influ- 

nced by the re-evaluation frequency. However, we observe that 

horter re-evaluation periods can be beneficial toward increas- 

ng the vaccination coverage during the campaign, with increases 

rom 1 . 52% for bimonthly re-evaluation to 2 . 95% for weekly re-

valuation. On the other hand, the higher levels of uncertainty in 

he Vaxzevria supply seem to further increase the benefits of fre- 

uent re-evaluations, as also the total number of doses adminis- 

ered seems to be strongly affected by the re-evaluation policy. In 

act, the implementation of a sliding-horizon technique increases 

he doses administered by 7 . 74% in the case of 1 week re-valuation.

Summarizing, being able to set up flexible vaccination roll- 

uts that can be re-evaluated in order to accommodate potential 

hanges in the expected supply by utilizing the proposed optimiza- 

ion framework with a sliding horizon can bring to a considerable 

mprovement of the performance of the vaccination campaign. In 

ddition, the frequency of re-evaluation seems key in determin- 

ng the increase in the performance, especially when the supply 

s highly uncertain. 

emark 5. We solved the problem using Mosek ( Andersen et al., 

003 ) implemented with CVX in MatLab R2021a. The most compu- 

ationally demanding problem (Comirnaty) involves 667 variables 

nd 809 constraints. It was solved in approximately 24 seconds on 

 2.9 Gigahertz 6-Core Intel Core i9. 

.4. Sensitivity with respect to the uncertainty 

In the previous analysis, we considered the level of uncertainty 

stimated from Italian data ( Vaccini, 2021 ). Here, we extend our 

nalysis by considering the effect of different levels of uncertainty 

n the performance of our optimization framework. We use as a 

aseline the level of uncertainty σ (t) estimated from the Italian 

ata, and, for the two sliding-horizon policies described in the 

bove (weekly and monthly), we consider different scenarios in 

hich the level of uncertainty is increased by two, four or ten 

imes, or decreased by the same amounts —for Vaxzevria, we omit 

o report the results with tenfold uncertainty because, due to the 

igh baseline uncertainty, the problem is often infeasible. Table 2 

eports the variation of the average utility function J and total 

umber of doses V administered with respect to the baseline sce- 

ario. 

Predictably, increasing the uncertainty negatively affects the 

erformance, while a decrease has a positive impact. Interestingly, 

he effect of such an impact is highly nonlinear and is affected 

y the characteristics of the vaccine and the re-evaluation policy 

mplemented. In particular, it seems that our optimization frame- 

ork is able to deal with increased levels of uncertainty without 

ig performance losses up to a critical threshold. Once this crit- 
1276 
cal threshold is reached, the performance quickly drops (as can 

e observed with a tenfold increase in the uncertainty for Comir- 

aty and with a fourfold increase for Vaxzevria, which has already 

 higher baseline level of uncertainty). Besides depending on the 

haracteristics of the vaccine, the critical point seems also to be 

nfluenced by the re-evaluation policy. Specifically, policies with 

ess frequent re-evaluations seem to be more resilient than policies 

ith frequent re-evaluations. These observations should be care- 

ully considered in view of our findings in Section 4.3 . In fact, in

he previous section, we showed that frequent re-evaluations of 

he optimal policy may be beneficial in the presence of higher lev- 

ls of uncertainty. However, it seems that above a critical threshold 

or the uncertainty —fortunately, several times larger than the one 

bserved in real data— the optimization framework fails in deal- 

ng with the uncertainty. A possible explanation could be that, at 

ach re-evaluation, the uncertainty model for the expected sup- 

ly ˆ S (t) is re-computed. In the presence of an extremely high un- 

ertainty, this may lead to overfitting the data, and the advantage 

f having frequent re-evaluation is therefore lost, thus decreasing 

he performance. To sum up, our findings suggest that frequent re- 

valuation of the vaccination policy may be a double-edged sword 

hen the uncertainty level is very high and that the accurate es- 

imation of the uncertainty model (based on historical data and 

n information given by the suppliers) is key toward optimally 

esign the sliding horizon policy. However, our estimation of the 

ncertainty model for the COVID-19 vaccination campaign in Italy 

uggests that real-world scenarios have levels of uncertainty that 

re below such a critical threshold, and frequent re-evaluations are 

hus often preferable. 

.5. Sensitivity with respect to the risk parameter 

One of the key parameters in our framework is the risk pa- 

ameter ε, i.e., the probability of violating the constraints in the 

tochastic optimization framework. Practically, setting the value of 

means to determine the probability with which we allow the 

omputed optimal solution to be unfeasible due to the stochas- 

icity of the supply. Thus, large values of ε correspond to allow- 

ng higher risks of unfeasible plans that could result in problem- 

tic online steerings of the vaccination rollout. On the other hand, 

maller values of ε would provide more conservative solutions, 

hich are often safer but may yield unsatisfactory performance. 

ntuitively, policy makers should set the value of ε to trade off be- 

ween potentially high performance and the risk of implementing 

roblematic steerings. In the simulations above, we proposed op- 

imal solutions using ε = 0 . 05 . Here, we explore the effect of dif-

erent values of ε, spanning from very safe implementations with 

 = 0 . 005 , to extremely risky scenarios, in which we set ε = 0 . 4 . 

The results are reported in Table 3 , where we compare the 

erformances with the one obtained in the safest scenario, 

 ε = 0 . 005 ). Predictably, we observe decreasing performance as 

ong as we approach safer scenarios. Interestingly, while increasing 
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Table 3 

Effect of the risk parameter on the performance of the optimization framework. 

Comirnaty Vaxzevria 

weekly monthly weekly monthly 

�J �V �J �V �J �V �J �V 

ε = 0 . 4 1.41% 3.55% 1.77% 4.04% 0.72% 7.41% 0.85% 5.84% 

ε = 0 . 3 1.23% 3.18% 1.58% 3.39% 0.63% 6.47% 0.75% 5.89% 

ε = 0 . 2 1.01% 2.75% 1.33% 2.45% 0.52% 5.39% 0.65% 6.22% 

ε = 0 . 1 0.71% 2.05% 1.00% 1.21% 0.36% 3.89% 0.49% 5.84% 

ε = 0 . 05 0.49% 1.46% 0.71% 0.46% 0.25% 2.77% 0.34% 4.53% 

ε = 0 . 01 0.14% 0.39% 0.10% -0.19% 0.07% 0.77% 0.09% 1.34% 
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toward more risky strategies has a strong initial impact on the 

erformance, such an effect seems to saturate, becoming smaller 

nd smaller as we move to more risky strategies. In fact, while 

ncreasing ε from 0.005 to 0.1 increases the number of doses 

dministered for Comirnaty with a weekly evaluation by 2 . 05% , 

 further increase of the parameter by 0.1 would increase the 

oses by just a further 0 . 7% . This suggests that policy makers can

etermine an optimal trade-off value for such a parameter, corre- 

ponding to the point at which the increase in the performance 

tarts becoming not sufficiently large to justify the corresponding 

ncreases in the risk. Another interesting observation can be found 

hen comparing the solutions with different sliding-horizon 

olicies. In fact, the optimal solutions with monthly re-evaluation 

eem to be slightly more affected by changes in ε than those 

evised on a weekly basis. Hence, opting for vaccination strategies 

hat are more risky could be more beneficial when policy makers 

annot re-evaluate the strategy with high frequency. However, in 

he presence of high levels of uncertainty (i.e., with Vaxzevria) and 

ith less frequent re-evaluations, the increase in the performance 

ssociated with the implementation of risky strategies seems to 

uickly saturate, suggesting that conservative scenarios may be 

referred when the uncertainty in the supply is large. From the 

olicy makers, point of view, this could constitute an interesting 

pproach to evaluate the trade-off between the maximization of 

he vaccination and the risk of an infeasible vaccination plan. 

. Conclusion 

We proposed a novel optimization framework for dealing with 

he optimal design of a two-dose vaccination rollout in the pres- 

nce of uncertain vaccine supply. We cast the optimization prob- 

em as a numerically-solvable SOCP, with an objective function that 

akes into account the vaccine efficacy and the partial immunity 

ained after a single dose. The framework incorporates realistic 

onstraints on the administration timing of the vaccine —minimum 

nd maximum period that should elapse between the doses, lim- 

ted capacity of the healthcare system, and tunable parameters that 

odel the uncertainty in the supply. 

We demonstrated the proposed optimization framework on 

 case study calibrated on the COVID-19 vaccination campaign 

n Italy. The results illustrated the applicability of the proposed 

ramework to design vaccination rollout, in real-world scenarios, 

hanks to its formulation as a SOCP. In particular, we showed that 

 sliding-horizon implementation could improve the performance, 

ven in the presence of high levels of uncertainty. This case study 

lso showed how the framework might be used by public health 

uthorities to accurately design a vaccination rollout, by setting the 

e-evaluation frequency of the rollout and trading off performances 

nd risk due to uncertainties in the supplies. 

The flexibility of our framework paves the way for several ex- 

ensions. First, further features may be incorporated (e.g., addi- 

ional booster doses, or the combination of different types of vac- 

ine) through additional state variables. Second, we considered a 
1277 
niform population, where the vaccination of each individual pro- 

ides the same contribution to the objective function. Partition- 

ng the population in classes, depending on the individuals’ risk 

and thus on the benefit of vaccinating them— may be a suit- 

ble strategy to use our framework for devising a vaccination roll- 

ut not only in terms of scheduling first and second doses, but 

lso in terms of their prioritization. All these extensions could be 

mplemented at the cost of slightly increasing the computational 

omplexity, without changing the very fabric of the optimization 

ramework. Finally, we modeled uncertainty by means of Gaus- 

ian noise in the cumulative supply, which captures delays (or 

arliness) of committed weekly supplies. Further sources of un- 

ertainty, such as the cancellation of supply may be modeled by 

ncluding additional features to the uncertainty model, such as a 

ernoulli process for missing deliveries. These extensions, however, 

ould call for a different formulation of the stochastic optimiza- 

ion problem and are envisaged for our future research. 
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