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A B S T R A C T

The problem of multi-task regression over graph nodes has been recently approached through Graph-Instructed
Neural Network (GINN), which is a promising architecture belonging to the subset of message-passing graph
neural networks. In this work, we discuss the limitations of the Graph-Instructed (GI) layer, and we formalize
a novel edge-wise GI (EWGI) layer. We discuss the advantages of the EWGI layer and we provide numerical
evidence that EWGINNs perform better than GINNs over some graph-structured input data, like the ones
inferred from the Barabási-Albert graph, and improve the training regularization on graphs with chaotic
connectivity, like the ones inferred from the Erdos–Rényi graph.
1. Introduction

Graph Neural Networks (GNNs) are powerful tools for learning
tasks on graph-structured data [1], such as node classification [2], link
prediction, or graph classification. Their formulation traces back to
the late 2000s [3–5]. In the last years, GNNs have received increasing
attention from the research community for their application in biol-
ogy [6], chemistry [7,8], finance [9], geoscience [10], computational
social science [11], and particle physics [12], to name a few. Among
the available models in the literature, we mention Graph ConvNet,
GraphSage, and Graph Attention Networks as models for tasks such
as graph, node, or edge classification, or for graph regression [13,14].
Yet, the community has neglected the applications concerning the
Regression on Graph Nodes (RoGN) learning task. Indeed, to the best
of the authors’ knowledge, the most used benchmarks do not include
datasets for this task [13,14]. Nonetheless, there is an increasing inter-
est in RoGN, especially among researchers working on physics-based
simulations where, for example, predictions on mesh or grid nodes are
performed (see for example [15]).

RoGN can be stated as multi-task regression, where the input data
are endowed with a graph structure. The benchmark models for multi-
task regression are Fully Connected Neural Networks (FCNNs). Re-
cently, a new type of layer for GNNs has been developed in [10],

∗ Corresponding author at: Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
E-mail address: francesco.dellasanta@polito.it (F. Della Santa).

belonging to the class of message-passing GNNs [8]. From now on
we will refer to these layers as Graph-Instructed (GI) layers; Graph-
Instructed NNs (GINNs) are built by stacking GI layers. GINNs have
demonstrated good performance on RoGN, showing better results than
FCNNs, as illustrated in [10]. Although the GINN architecture has been
specifically designed for RoGN, the usage of GI layers has been recently
extended to supervised classification tasks (see [16]).

We point the reader to the fact that in [10] GI layers and GINNs
are denoted as Graph-Informed layers and Graph-Informed NNs, re-
spectively. In [17], in a different framework from the one addressed
in [10], a homonymous but different model is presented; therefore, to
avoid confusion with [17], we have changed the names of both layers
and NNs.

GI layers are based on a weight-sharing principle, such that their
weights rescale the outgoing message from each node. In this paper,
to improve the generalization capability of their inner-layer repre-
sentation, we introduce Edge-Wise Graph-Instructed (EWGI) layers,
characterized by additional weights (associated with graph nodes) that
enable the edge-wise customization of the passage of information to
each receiving node.

We compare the Edge-Wise GINN (EWGINN) with the GINN in the
experimental settings originally used in [10] for validating the models;
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these settings are RoGN tasks on two stochastic flow networks based
on a Barabási-Albert graph and an Erdos–Rényi graph, respectively.
In particular, we show that EWGINNs perform better on the Barabási-
Albert connectivity structure, with a small increment of the number of
learning weights.

The work is organized as follows: in Section 2 the GI layers are
introduced, recalling their inner mechanisms. Section 3 formally de-
fines EWGI layers and theoretically discusses their properties. Then, in
Section 4, we analyze the experiment results for the RoGN tasks, com-
paring with the previous literature [10]. Finally, Section 5 summarizes
ur work and discusses future improvements and research directions.

2. Graph-instructed layers

This section briefly reviews previous GINNs to establish the frame-
work for introducing our main contribution. Graph-Instructed (GI)
Layers are NN layers defined by an alternative graph-convolution oper-
ation introduced in [10]. Given a graph 𝐺 (without self-loops) and its
djacency matrix 𝐴 ∈ R𝑛×𝑛, a basic GI layer for 𝐺 is a NN layer with
ne input feature per node and one output feature per node described
y a function 𝐺 𝐼 ∶ R𝑛 → R𝑛 such that

𝐺 𝐼 (𝒙) = 𝝈
(

(diag(𝒘)(𝐴 + I𝑛))𝑇 𝒙 + 𝒃
)

, (1)

for each vector of input features 𝒙 ∈ R𝑛 and where:

• 𝒘 ∈ R𝑛 is the weight vector, with the component 𝑤𝑖 associated
to the graph node 𝑣𝑖, 𝑖 = 1,… , 𝑛.

• diag(𝒘) ∈ R𝑛×𝑛 is the diagonal matrix with elements of 𝒘 on the
diagonal and I𝑛 ∈ R𝑛×𝑛 is the identity matrix. For future reference,
we set 𝑊 ∶= diag(𝒘)(𝐴 + I𝑛);

• 𝝈 ∶ R𝑛 → R𝑛 is the element-wise application of the activation
function 𝜎;

• 𝒃 ∈ R𝑛 is the bias vector.
In brief, Eq. (1) is equivalent to the action of a Fully-Connected (FC)

ayer where the weights are the same if the connection is outgoing from
he same unit, whereas it is zero if two units correspond to graph nodes
hat are not connected; more precisely:

̂𝑖𝑗 =

{

𝑤𝑖, if 𝑎𝑖𝑗 ≠ 0 or 𝑖 = 𝑗
0, otherwise

,

where 𝑎𝑖𝑗 , 𝑤̂𝑖𝑗 denote the (𝑖, 𝑗)-th element of 𝐴,𝑊 , respectively.
On the other hand, from a message-passing point of view, the

operation described in (1) is equivalent to having each node 𝑣𝑖 of 𝐺
ending to its neighbors a message equal to the input feature 𝑥𝑖, scaled
y the weight 𝑤𝑖; then, each node sum up all the messages received
rom the neighbors, add the bias, and applies the activation function.
n a nutshell, the message-passing interpretation can be summarized by
he following node-wise equation:

𝑥′𝑖 =
∑

𝑗∈Nin(𝑖)∪{𝑖}
𝑥𝑗 𝑤𝑗 + 𝑏𝑖, (2)

where 𝑥′𝑖 is the output feature of the GI layer corresponding to node
𝑖 and Nin(𝑖) is the set of indices such that 𝑗 ∈ Nin(𝑖) if and only if

𝑒𝑖𝑗 = {𝑣𝑖, 𝑣𝑗} is an edge of the graph. We dropped the action of the
activation function 𝜎 for simplicity.

Layers characterized by (1) can be generalized to read any arbitrary
umber 𝐾 ≥ 1 of input features per node and to return any arbitrary
umber 𝐹 ≥ 1 of output features per node. Then, the general definition
f a GI layer is as follows.

Definition 2.1 (GI Layer — General form [10]). A GI layer with 𝐾 ∈ N
input features and 𝐹 ∈ N output features is a NN layer with 𝑛𝐹 units
onnected to a layer with outputs in R𝑛×𝐾 and having a characterizing

function 𝐺 𝐼 ∶ R𝑛×𝐾 → R𝑛×𝐹 defined by

𝐺 𝐼 (𝑋) = 𝝈
(

𝐖̃
𝑇 ver t cat (𝑋) + 𝐵

)

, (3)

where:
 t

2 
• 𝑋 ∈ R𝑛×𝐾 is the input matrix (i.e., the output of the previ-
ous layer) and ver t cat (𝑋) denotes the vector in R𝑛𝐾 obtained
concatenating the columns of 𝑋;

• tensor 𝐖 ∈ R𝑛𝐾×𝐹×𝑛 is the concatenation along the 2nd dimen-
sion (i.e., the column-dimension) of the matrices 𝑊 (1),… ,𝑊 (𝐹 ),
defined as

𝑊 (𝑙) ∶=
⎡

⎢

⎢

⎣

𝑊 (1,𝑙)

⋮
𝑊 (𝐾 ,𝑙)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

diag(𝒘(1,𝑙))𝐴
⋮

diag(𝒘(𝐾 ,𝑙))𝐴

⎤

⎥

⎥

⎦

∈ R𝑛𝐾×𝑛, (4)

for each 𝑙 = 1,… , 𝐹 , after being reshaped as tensors in R𝑛𝐾×1×𝑛.
Vector 𝒘(𝑘,𝑙) ∈ R𝑛 is the weight vector characterizing the con-
tribution of the 𝑘-th input feature to the computation of the 𝑙-th
output feature of the nodes, for each 𝑘 = 1,… , 𝐾, and 𝑙 = 1,… , 𝐹 ;
matrix 𝐴 denotes 𝐴 + I𝑛.

• the operation 𝐖̃
𝑇 ver t cat (𝑋) is a tensor-vector product and 𝐵 ∈

R𝑛×𝐹 is the matrix of the biases.

Additionally, pooling and mask operations can be added to GI layers
see [10] for more details).

From now on, we call Graph-Instructed Neural Network (GINN) a NN
made of GI layers [10]. We point out that the number of weights of
a GI layer is equal to 𝑛𝐾 𝐹 + 𝑛𝐹 . On the other hand, the number of
weights of a FC layer of 𝑛 units, reading the outputs of a layer of 𝑚
units, is equal to 𝑚𝑛 + 𝑛; therefore, if we consider the case of 𝑚 = 𝑛
and 𝐾 𝐹 + 𝐹 < 𝑛 + 1 (typically satisfied for sufficiently large graphs),
GI layers have fewer weights to be trained compared with the FC layer.
Moreover, we observe that adjacency matrices are typically sparse and,
therefore, the tensor 𝐖 in (7) is typically sparse too. Then, it is possible
o exploit the sparsity of this tensor to reduce the memory cost of the
INN implementation.

3. Edge-wise graph-instructed layers

A possible drawback of GI layers is that their weights rescale
only the outgoing information of the nodes. For example, if nodes 𝑣𝑗
and 𝑣𝑘 are connected to node 𝑣𝑖 in a graph 𝐺 = (𝑉 , 𝐸) such that
(𝑣𝑖, 𝑣𝑗 ), (𝑣𝑖, 𝑣𝑘) ∈ 𝐸, then the units corresponding to 𝑣𝑗 and 𝑣𝑘 in a GI
ayer based on 𝐺 receive the same contribution from the input features

corresponding to node 𝑣𝑖; moreover, if nodes 𝑣𝑗 , 𝑣𝑘 have the same
neighbors, the GI layer’s outputs corresponding to these nodes are the
same except for the contribution of the bias and the contribution from
hemselves. This property is useful to reduce the number of weights per

layer and, depending on the complexity of the target function defined
on the graph nodes, it is not necessarily a limitation. Nonetheless, it
surely limits the representational capacity of the model. Therefore,
some target functions can be too complicated to be modeled by GI
layers.

Given the observation above, it is useful to define a new GI layer
apable of improving the capacity of the model at a reduced cost
n terms of the total number of trainable weights. In this work, we
ropose to modify the classic GI layers by adding an extra set of weights

associated with the nodes to rescale their incoming information. In
brief, given the node-wise Eq. (1), we change it into

𝑥′𝑖 = 𝑤in
𝑖

∑

𝑗∈Nin(𝑖)∪{𝑖}
𝑥𝑗 𝑤

out
𝑗 + 𝑏𝑖, (5)

where 𝑤out
𝑗 denotes the (old) weights for rescaling the outgoing infor-

mation from node 𝑣𝑗 , while 𝑤in
𝑖 denotes the (new) weights for rescaling

the incoming information to node 𝑣𝑖 (see Fig. 1).
A NN layer based on (5) is a layer with one input feature per node

and one output feature per node, described by a function  ∶ R𝑛 → R𝑛

uch that

(𝒙) = 𝝈
(

(diag(𝒘out )(𝐴 + I𝑛) diag(𝒘in))𝑇 𝒙 + 𝒃
)

(6)

for each vector of input features 𝒙 ∈ R𝑛 and where 𝒘out ,𝒘in ∈ R𝑛 are
he weight vectors, where the components 𝑤out , 𝑤in are associated to
𝑖 𝑖



F. Della Santa et al. Journal of Computational Science 85 (2025) 102518 
Fig. 1. Visual representation of (5). Example with 𝑛 = 4 nodes (non-directed graph),
𝑖 = 1; for simplicity, the bias is not illustrated.

the graph nodes 𝑣𝑖, for each 𝑖 = 1,… , 𝑛. For future reference, from now
on, we set 𝑊 ∶= diag(𝒘out )(𝐴 + I𝑛) diag(𝒘in).

In brief, (6) is equivalent to a FC layer where the weights are zero
if two distinct units correspond to graph nodes that are not connected,
otherwise 𝑤̂𝑖𝑗 = 𝑤out

𝑖 𝑤in
𝑗 if 𝑒𝑖𝑗 ∈ 𝐸 or 𝑖 = 𝑗. Therefore, we observe that

each weight 𝑤̂𝑖𝑗 = 𝑤out
𝑖 𝑤in

𝑗 is associated with the edge 𝑒𝑖𝑗 = (𝑣𝑖, 𝑣𝑗 ) in
the graph or the self-loop added by the layer (if 𝑖 = 𝑗). Given the above
observations, we can interpret (6) as the operation of a NN layer with
weights associated with edges instead of nodes. Then, we define the
new layer as Edge-Wise GI (EWGI) Layer.

Remark 3.1 (EWGI Layers — Advantages of the Formulation). Note
that in principle EWGI layers could be defined by associating an in-
dependent weight 𝑤̂𝑖𝑗 to each edge of 𝐺 and each added self-loops.
Nonetheless, the approach here proposed exhibits the following advan-
tages:

• If 𝐺 is a directed graph, we have that 𝑛 − 1 < |𝐸| < 𝑛2 −
𝑛; therefore, for the independent weight formulation the total
number of weights is in the range [2𝑛 − 1, 𝑛2] (biases excluded).
On the other hand, in (6) the number of weights is always equal
to 2𝑛 (biases excluded).

• If 𝐺 is an undirected graph, we have 𝑛 − 1 < |𝐸| < (𝑛2 −
𝑛)∕2; therefore, for the independent weight formulation the total
number of weights is in the range [2𝑛 − 1, 𝑛 + (𝑛2 − 𝑛)∕2] (biases
excluded). On the other hand, in (6) the number of weights is
always equal to 2𝑛 (biases excluded).

The advantage of using formulation (6) is therefore evident: indepen-
dently of the number of graph edges, the number of weights is always
2𝑛, which is essentially the lower bound of the number of weights in
the other formulation.

Analogously to classic GI layers, EWGI layers can be generalized to
read any arbitrary number 𝐾 ≥ 1 of input features per node and to
return any arbitrary number 𝐹 ≥ 1 of output features per node. Then,
the general definition of a EWGI layer is as follows.

Definition 3.1 (EWGI Layer — General Form). An EWGI layer with 𝐾 ∈
N input features and 𝐹 ∈ N output features is a NN layer with 𝑛𝐹 units
connected to a layer with outputs in R𝑛×𝐾 and having a characterizing
function 𝐸 𝑊 𝐺 𝐼 ∶ R𝑛×𝐾 → R𝑛×𝐹 defined by

𝐸 𝑊 𝐺 𝐼 (𝑋) = 𝝈
(

𝐖̃
𝑇 ver t cat (𝑋) + 𝐵

)

, (7)

where the tensor 𝐖 ∈ R𝑛𝐾×𝐹×𝑛 is defined as the concatenation along
the 2nd dimension of the matrices 𝑊 (1),… ,𝑊 (𝐹 ), such that

𝑊 (𝑙) ∶=

⎡

⎢

⎢

⎢

⎣

diag(𝒘(1,𝑙)
out )𝐴 diag(𝒘(1,𝑙)

in )
⋮

diag(𝒘(𝐾 ,𝑙)
out )𝐴 diag(𝒘(𝐾 ,𝑙)

in )

⎤

⎥

⎥

⎥

⎦

∈ R𝑛𝐾×𝑛, (8)

for each 𝑙 = 1,… , 𝐹 , after being reshaped as tensors in R𝑛𝐾×1×𝑛, and
where:

• 𝒘(𝑘,𝑙)
out ∈ R𝑛 is the weight vector characterizing the contribution

of the 𝑘-th input feature to the computation of the 𝑙-th output
feature of the nodes, for each 𝑘 = 1,… , 𝐾, and 𝑙 = 1,… , 𝐹 , with
respect to the outgoing information;
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• 𝒘(𝑘,𝑙)
in ∈ R𝑛 is the weight vector characterizing the contribute of

the 𝑘-th input feature to the computation of the 𝑙-th output feature
of the nodes, for each 𝑘 = 1,… , 𝐾, and 𝑙 = 1,… , 𝐹 , with respect
to the incoming message.

From the definition above, we observe that the number of weights
of a general EWGI layer is 2𝑛𝐾 𝐹 + 𝑛𝐹 . Therefore, if we consider a FC
layer of 𝑛 units, reading the outputs of a layer of 𝑚 = 𝑛 units, the EWGI
layers have a smaller number of weights to be trained if 2𝐾 𝐹+𝐹 < 𝑛+ 1.

From now on, we call Edge-Wise Graph-Instructed Neural Network
(EWGINN) a NN made of EWGI layers.

4. Preliminary results

In this section, we illustrate the results of a preliminary experimen-
tal study about the representational capacity of the new EWGI layers
and EWGINNs. We compare the performances of a set of EWGINNs with
the ones of a set of GINNs for the RoGN task of the two stochastic
maximum flow problems reported in [10]. In particular, we train the
models using the same architectures, hyperparameters, and training
options; for the EWGINNs, we replace GI layers with EWGI layers. In
order to strengthen the study, we train each configuration with respect
to five different random seeds, reporting the median performances for
each configuration.

4.1. Maximum flow regression for stochastic flow networks

Concerning the regression problem, we recall that a stochastic
maximum-flow problem is a problem where the edge capacities in a
flow network are modeled as random variables and the target is to find
the distribution of the maximum flow (e.g., see [18]). The task is to
approximate with a NN model the function
𝛷∶R𝑛

+ ⟶ R𝑚
+

𝒄 ⟼ 𝛷(𝒄) = 𝝋
(9)

where 𝒄 ∶= (𝑐1,… , 𝑐𝑛) ∈ R𝑛
+ is the vector of the capacities of all

the 𝑛 edges of the network and 𝝋 ∶= (𝜑1,… , 𝜑𝑚) ∈ R𝑚
+ is the flow

vector corresponding to the 𝑚 incoming edges of the network’s sink
that generate the maximum flow; in other words, the maximum flow
corresponding to 𝒄 is 𝜑 ∶= ‖𝛷(𝒄)‖1 =

∑𝑚
𝑗=𝑖 𝜑𝑗 .

To address this regression task, we build the GINNs and the
EWGINNs with respect to the adjacency matrix of the line graph of the
flow network; i.e., on the graph where the vertices correspond to edges
of the network and two vertices are connected if the corresponding
edges in the network share at least one vertex. We refer to [10] for
more details about the formulation of this RoGN task for learning the
maximum flow of a stochastic flow network (SFN).

4.2. Performance measures

Let 𝛷̂ denote a NN model trained for learning (9) and let  be a test
set used for measuring the performances of the model. Then, denoted
by 𝝋̂ ∶= 𝛷̂(𝒄) ∈ R𝑚

+, we define the following performance measures:

• Average Mean Relative Error (MRE) of sink’s incoming flows, with
respect to the max-flow:

MRE𝑎𝑣() ∶= 1
𝑚

𝑚
∑

𝑗=1

(

1
||

∑

(𝒄,𝝋)∈

|𝜑𝑗 − 𝜑̂𝑗 |

𝜑

)

. (10)

This error measure describes the average quality of the NN in
predicting the single elements 𝜑1,… , 𝜑𝑚.

• Average max-flow MRE:

MRE𝜑() ∶ 1
||

∑

(𝒄,𝝋)∈

|𝜑 − 𝜑̂|
𝜑

(11)

This error measure describes the NN capability to predict the
vector of fluxes 𝝋̂ such that the corresponding maxflow 𝜑̂ approx-
imates the true maxflow 𝜑.
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Fig. 2. BA. Performances of GINN and EWGINN models in the (MRE𝑎𝑣 ,MRE𝜑) plane.
Marker sizes are proportional to the number of NN weights.

4.3. Data, model architectures, and hyperparameters

We run our experiments on the same data reported in [10] for two
randomly generated SFNs: a network based on a Barabási-Albert (BA)
graph and a network based on an Erdos–Rényi (ER) graph. Each of the
datasets BA and ER consists of 10 000 samples of capacity vectors and
corresponding flow vectors.

In this work, we focus on the harder case illustrated in [10]: for each
SFN, we train the EWGINN and GINN models on 500 samples (20%
used as validation set), measuring the errors MRE𝑎𝑣 and MRE𝜑 on a test
set of 3000 samples. Then, we compare the performances obtained by
EWGINNs and GINNs, looking at the ‘‘median models’’ of each training
configuration, where the median is computed with respect to the five
initializations generated through the different random seeds.

For a fair comparison, the architectures and hyperparameters of
the EWGINN and GINN models are the same and follow the criteria
indicated in [10]. Specifically, we build 60 EWGINN and GINN models
configurations, respectively, for each SFN, varying among these param-
eters: hidden layers’ activation function 𝜎 ∈ {𝐸 𝐿𝑈 , 𝑠𝑤𝑖𝑠ℎ, 𝑠𝑜𝑓 𝑡𝑝𝑙 𝑢𝑠},
depth 𝐻 ∈ {3, 5, 7, 9} for BA and 𝐻 ∈ {4, 9, 14, 19} for ER, output
features of each EWGI/GI layer 𝐹 ∈ {1, 5, 10}, output layer’s pooling
operation (if 𝐹 > 1) 𝑝𝑜𝑜𝑙 ∈ {𝑟𝑒𝑑 𝑢𝑐 𝑒_𝑚𝑎𝑥, 𝑟𝑒𝑑 𝑢𝑐 𝑒_𝑚𝑒𝑎𝑛}. Also, the train-
ing options are the same used in [10]: Adam optimizer [19] (learning
rate 𝜖=0.002, moment decay rates 𝛽1 = 0.9, 𝛽2 = 0.999), early stopping
regularization [20] (550 epochs of patience, starting epoch 200, restore
best weights), reduction on plateau for the learning rate (reduction
factor 𝛼 = 0.5, 50 epochs of patience, minimum 𝜖 = 10−6). Each model
configuration is trained five times, with respect to five different random
seeds, respectively, for a total number of 1200 trained models (600 per
SFN).

4.4. Analysis of the results

Figs. 2 and 3 compare the errors between classical GINNs (tripod
markers) and EWGINN (circular markers). The error plane shows the
MRE𝑎𝑣 error on the 𝑥-axis and the MRE𝜑 on the 𝑦-axis. The dot sizes
are proportional to the number of NN weights, and dots corresponding
to ‘‘median models’’ are colored according to the activation functions.
Each median model is computed, among the five random seeds for each
configuration, with respect to the distance of (MRE𝑎𝑣, MRE𝜑) from the
origin of the plane.

We observe that the performance of GINNs and EWGINNs are
comparable both in BA and ER, but different behaviors characterize
them. In BA (Fig. 2), the comparison is almost straightforward: GINNS
and EWGINNs show similar trends in their performance, varying con-
figurations and random seeds; however, EWGINNs show general better
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Fig. 3. ER. Performances of GINN and EWGINN models in the (MRE𝑎𝑣 ,MRE𝜑) plane.
Marker sizes are proportional to the number of NN weights.

performance than GINNs for this SFN.
On the other hand, in ER (Fig. 3), the performance trends of

GINNs and EWGINNs are different. In particular, we observe that the
EWGINN performances appear ‘‘more stable’’ than the GINN ones,
varying configurations and random seeds. Indeed, we observe that
EWGINN error points present a rather compact distribution, showing
good regularization abilities of EWGINNs on the RoGN task (i.e., they
reduce equally both the errors); on the contrary, GINN errors exhibit a
sparser distribution; then, these models sometimes learn the task focus-
ing more on MRE𝜑 than MRE𝑎𝑣. We point out that the ability to learn
the RoGN task without preferences in reducing one of the two errors is
well appreciated. Indeed, as observed in [10], a small MRE𝜑 and large
MRE𝑎𝑣 can be the result of symmetric underestimation/overestimation
of the single flows. Therefore, even if the best performances are reached
by a subset of GINNs, the EWGINNs prove to be more reliable, varying
hyperparameters and initializations, while maintaining very good per-
formances. These observations in ER can be explained by the more
chaotic connection structure of the SFN, if compared to BA; Indeed,
EWGINNs has a clear advantage in regularizing their training, thanks
to the property of rescaling the incoming information of nodes through
additional weights.

We conclude by observing a cluster of GINNs and EWGINNs with
poor performances for ER, constrained in an extremely small region
(top-right corner, Fig. 3); the reason is an issue with early stopping.
Specifically, a relatively fast reduction of the validation loss (VL)
happens, resulting in a temporary overfitting or non-decreasing-VL phe-
nomenon. This induces an interruption of the training due to the early
stopping. Nonetheless, by removing the early stopping and increasing
the training epochs, we observe that the overfitting phenomenon tends
to disappear (see Fig. 4); moreover, in some cases, the VL starts to de-
crease again after some epochs. Therefore, we conclude that the larger
representational capacity of EWGINNs is an advantage but requires
more careful tuning of the training hyperparameters. On the contrary,
the GINNs are less influenced by this behavior because of their reduced
size; nonetheless, when they ‘‘escape’’ from such situations, they usually
fall into the problem of focusing more on MRE𝜑 than MRE𝑎𝑣.

We defer to future work an in-depth analysis of EWGINNs by
varying the training hyperparameters, such as the early stopping pati-
ence.

5. Conclusion

In this work, we proposed a novel type of GI layer: the Edge-
Wise GI layer. Compared with the original GI layers, each node of
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Fig. 4. Training and validation loss of the EWGINN corresponding to the top-rightmost
dots in Fig. 3.

an EWGI layer is equipped with an additional weight for rescaling
the incoming message. This enables improved representational capacity
and breaks the symmetry of GI layers, where nodes with the same
neighborhood invariably receive the same message from the previous
layer. To analyze the performance of the newly proposed layers, we
compared EWGINNs and GINNs on two benchmark RoGN tasks based
on two SFNs, respectively: one with graph connectivity concentrated
on a few more central nodes (BA); one characterized by a random
structure (ER).

The numerical experiments show comparable performance between
GINNs and EWGINNs on both SFNs, though we observe distinct be-
haviors. EWGINNs perform better than GINNs on BA; on the other
hand they exhibit improved regularization abilities on ER, maintain-
ing comparable performance with GINNs. These results highlight the
advantages of EWGINNs, particularly in handling the chaotic struc-
ture of ER, though their larger representational capacity demands
more careful hyperparameter tuning. Observations of poor performance
models caused by a too-early stopping suggest future studies focused
on optimizing training configurations for EWGINNs. Future work will
focus on applications to real-world problems.

CRediT authorship contribution statement

Francesco Della Santa: Writing – review & editing, Writing –
original draft, Visualization, Validation, Software, Methodology, Inves-
tigation, Formal analysis, Data curation, Conceptualization. Antonio
Mastropietro: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Methodology, Investigation, For-
mal analysis, Data curation, Conceptualization. Sandra Pieraccini:
Writing – review & editing, Writing – original draft, Supervision, Re-
sources, Project administration, Methodology, Investigation, Funding
acquisition, Formal analysis, Conceptualization. Francesco Vaccarino:
Writing – review & editing, Writing – original draft, Supervision, Re-
sources, Project administration, Methodology, Investigation, Funding
acquisition, Formal analysis, Conceptualization.

Code availability

The code for implementing the EWGI layers introduced in this paper
is available at: https://github.com/Fra0013To/GINN/tree/ewginn_dev.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
5 
Acknowledgments

F.D., S.P., and F.V. acknowledge that this study was carried out
within the FAIR-Future Artificial Intelligence Research and received
funding from the European Union Next-GenerationEU (PIANO
NAZIONALE DI RIPRESA E RESILIENZA (PNRR)–MISSIONE 4 COMPO-
NENTE 2, INVESTIMENTO 1.3—D.D. 1555 11/10/2022, PE00000013).
A.M. acknowledges support from the FINDHR project that received
funding from the European Union’s Horizon Europe research and inno-
vation program under grant agreement No. 101070212. This manuscript
reflects only the authors’ views and opinions; neither the European
Union nor the European Commission can be considered responsi-
ble for them. F.D. and S.P. acknowledge support from Italian MUR
PRIN project 20227K44ME, Full and Reduced order modeling of cou-
pled systems: focus on non-matching methods and automatic learning
(FaReX).

Data availability

Link to the data is available at: https://github.com/Fra0013To/
GINN/tree/ewginn_dev/experiments/ewginn_paper_2024.

References

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, P.S. Yu, A comprehensive survey
on graph neural networks, IEEE Trans. Neural Netw. Learn. Syst. 32 (1) (2021)
4–24, http://dx.doi.org/10.1109/TNNLS.2020.2978386.

[2] S.K. Maurya, X. Liu, T. Murata, Simplifying approach to node classification in
graph neural networks, J. Comput. Sci. 62 (2022) 101695.

[3] M. Gori, G. Monfardini, F. Scarselli, A new model for learning in graph
domains, in: Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005, Vol. 2, 2005, pp. 729–734, http://dx.doi.org/10.1109/IJCNN.
2005.1555942.

[4] A. Micheli, Neural network for graphs: A contextual constructive approach, IEEE
Trans. Neural Netw. 20 (3) (2009) 498–511, http://dx.doi.org/10.1109/TNN.
2008.2010350.

[5] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, G. Monfardini, The graph
neural network model, IEEE Trans. Neural Netw. 20 (1) (2009) 61–80, http:
//dx.doi.org/10.1109/TNN.2008.2005605.

[6] P. Cinaglia, Multilayer biological network alignment based on similarity
computation via graph neural networks, J. Comput. Sci. 78 (2024) 102259.

[7] K. Atz, F. Grisoni, G. Schneider, Geometric deep learning on molecular
representations, Nat. Mach. Intell. 3 (12) (2021) 1023–1032.

[8] J. Gilmer, S.S. Schoenholz, P.F. Riley, O. Vinyals, G.E. Dahl, Neural message pass-
ing for quantum chemistry, in: International Conference on Machine Learning,
PMLR, 2017, pp. 1263–1272.

[9] D. Cheng, F. Yang, S. Xiang, J. Liu, Financial time series forecasting with
multi-modality graph neural network, Pattern Recognit. 121 (2022) 108218.

[10] S. Berrone, F. Della Santa, A. Mastropietro, S. Pieraccini, F. Vaccarino, Graph-
informed neural networks for regressions on graph-structured data, Math. 10 (5)
(2022) 786, http://dx.doi.org/10.3390/math10050786.

[11] S. Aref, M. Mostajabdaveh, Analyzing modularity maximization in approxima-
tion, heuristic, and graph neural network algorithms for community detection,
J. Comput. Sci. 78 (2024) 102283.

[12] G. DeZoort, P.W. Battaglia, C. Biscarat, J.-R. Vlimant, Graph neural networks at
the Large Hadron Collider, Nat. Rev. Phys. 5 (5) (2023) 281–303.

[13] V.P. Dwivedi, C.K. Joshi, A.T. Luu, T. Laurent, Y. Bengio, X. Bresson,
Benchmarking graph neural networks, J. Mach. Learn. Res. 24 (43) (2023) 1–48.

[14] V.P. Dwivedi, L. Rampasek, M. Galkin, A. Parviz, G. Wolf, A.T. Luu, D.
Beaini, Long range graph benchmark, Adv. Neural Inf. Process. Syst. 35 (2022)
22326–22340.

[15] F. Pichi, B. Moya, J.S. Hesthaven, A graph convolutional autoencoder ap-
proach to model order reduction for parametrized PDEs, J. Comput. Phys.
501 (2024) 112762, http://dx.doi.org/10.1016/j.jcp.2024.112762, URL https:
//www.sciencedirect.com/science/article/pii/S0021999124000111.

[16] F. Della Santa, S. Pieraccini, Graph-informed neural networks for sparse
grid-based discontinuity detectors, 2024, arXiv:2401.13652.

[17] E.J. Hall, S. Taverniers, M.A. Katsoulakis, D.M. Tartakovsky, GINNs: Graph-
informed neural networks for multiscale physics, J. Comput. Phys. 433
(2021) 110192, http://dx.doi.org/10.1016/j.jcp.2021.110192, URL https://www.
sciencedirect.com/science/article/pii/S0021999121000875.

[18] S. Ding, The 𝛼-maximum flow model with uncertain capacities, Appl. Math.
Model. 39 (7) (2015) 2056–2063, http://dx.doi.org/10.1016/j.apm.2014.10.021,
URL https://www.sciencedirect.com/science/article/pii/S0307904X14004946.

[19] D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, in: Interna-
tional Conference on Learning Representations, ICLR 2015 - Conference Track
Proceedings, 2015, pp. 1–15, arXiv:1412.6980.

[20] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016, www.
deeplearningbook.org.

https://github.com/Fra0013To/GINN/tree/ewginn_dev
https://github.com/Fra0013To/GINN/tree/ewginn_dev/experiments/ewginn_paper_2024
https://github.com/Fra0013To/GINN/tree/ewginn_dev/experiments/ewginn_paper_2024
https://github.com/Fra0013To/GINN/tree/ewginn_dev/experiments/ewginn_paper_2024
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb2
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb2
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb2
http://dx.doi.org/10.1109/IJCNN.2005.1555942
http://dx.doi.org/10.1109/IJCNN.2005.1555942
http://dx.doi.org/10.1109/IJCNN.2005.1555942
http://dx.doi.org/10.1109/TNN.2008.2010350
http://dx.doi.org/10.1109/TNN.2008.2010350
http://dx.doi.org/10.1109/TNN.2008.2010350
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.1109/TNN.2008.2005605
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb6
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb6
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb6
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb7
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb7
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb7
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb8
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb8
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb8
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb8
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb8
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb9
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb9
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb9
http://dx.doi.org/10.3390/math10050786
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb11
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb11
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb11
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb11
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb11
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb12
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb12
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb12
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb13
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb13
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb13
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb14
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb14
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb14
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb14
http://refhub.elsevier.com/S1877-7503(24)00311-9/sb14
http://dx.doi.org/10.1016/j.jcp.2024.112762
https://www.sciencedirect.com/science/article/pii/S0021999124000111
https://www.sciencedirect.com/science/article/pii/S0021999124000111
https://www.sciencedirect.com/science/article/pii/S0021999124000111
http://arxiv.org/abs/2401.13652
http://dx.doi.org/10.1016/j.jcp.2021.110192
https://www.sciencedirect.com/science/article/pii/S0021999121000875
https://www.sciencedirect.com/science/article/pii/S0021999121000875
https://www.sciencedirect.com/science/article/pii/S0021999121000875
http://dx.doi.org/10.1016/j.apm.2014.10.021
https://www.sciencedirect.com/science/article/pii/S0307904X14004946
http://arxiv.org/abs/1412.6980
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://www.deeplearningbook.org


F. Della Santa et al. Journal of Computational Science 85 (2025) 102518 
Della Santa, Francesco Research Associate at Politecnico
di Torino. He got a Master Degree in Mathematics at
University of Florence and a Ph.D. in Pure and Applied
Mathematics at Politecnico di Torino. His main scien-
tific interests concern Deep Learning, Surrogate Models,
Uncertainty Quantification, and Numerical Optimization.

Mastropietro, Antonio Research Fellow at University of
Pisa. Graduated in Mathematical Engineering at Politecnico
di Torino, he got a Ph.D. in Pure and Applied Mathematics
at Politecnico di Torino. His research focuses on eXplainable
AI, Deep Reinforcement Learning, Deep Learning applied
to computer vision, Cooperative Game Theory, and Graph
Neural Networks.
6 
Pieraccini, Sandra Full Professor in Numerical Analysis at
Politecnico di Torino. She got a Master Degree in Mathe-
matics and a Ph.D. in Applied Mathematics and Operation
Research. Her main scientific interests concern Numerical
Optimization and Uncertainty Quantification; recently these
interests have been combined by investigations in the field
of deep learning. She is author of more than 50 scien-
tific publications on international journals and conference
proceedings. She is the head of the working group on ‘‘Math-
ematics for Artificial Intelligence and Machine Learning’’
in the Unione Matematica Italiana (Italian Mathematical
Union).

Vaccarino, Francesco Associate Professor in Geometry at
Politecnico di Torino. Francesco Vaccarino is a mathe-
matician and is currently working on several aspects of
topological data analysis and computational topology. He
gave talks at the International Congress of Mathematicians –
ICM 2006 – Madrid, the Ams – Summer School in Algebraic
Geometry 2005, Netsci 2014, 2015, 2016, JMM AMS MAA
2017. As a scientific journalist, he is regularly publishing on
Tuttoscienze and wrote, with Gabriele Beccaria , the book:
‘‘Prima che accada’’.


	Edge-Wise Graph-Instructed Neural Networks
	Introduction
	Graph-Instructed Layers
	Edge-Wise Graph-Instructed Layers
	Preliminary Results
	Maximum Flow Regression for Stochastic Flow Networks
	Performance Measures
	Data, Model Architectures, and Hyperparameters
	Analysis of the Results

	Conclusion
	CRediT authorship contribution statement
	Code Availability
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


